

Integrating Literature Analysis into the NTP Research Pipeline

Windy Boyd NTP Board of Scientific Counselors Meeting December 12, 2018

DNTP Translational Toxicology Pipeline Plan

\mathbf{O}

DNTP Translational Toxicology Pipeline Plan

Background

- Parkinson's disease (PD) due to progressive neurodegeneration
 - Aggregation of α -synuclein in Lewy bodies
 - Loss of dopaminergic neurons in substantia nigra
 - Signs include tremor, rigidity, and shuffling gait
- Highly prevalent but etiology of most PD cases unknown
 - Genetics only account for ~10% of cases

Environmental factors

- Exposures to pesticides linked to Parkinson's in epidemiological studies
- Need for better understanding of which environmental factors may be contributing and how they act
- Neurodegeneration is not included in routine toxicological testing strategies
- Lack of methods to rapidly identify environmental exposures

Strategy to identify potential chemical contributors

- Project team
 - Combined scientific expertise in neurotoxicology, *in vitro* screening, toxicoinformatics, and literature analysis
- Goals
 - Identify previously evaluated chemicals, genes and pathways, and model systems
 - Develop a battery of *in vitro* and alternate model organism assays to screen chemicals for potential effects

Strategy to identify potential chemical contributors

Literature analysis

- Questions: Which chemicals, genetic targets, and models have been reported in the scientific literature?
- PubMed search identified >90,000 records with mention of Parkinson's disease
- Screened studies for environmental chemical exposure and categorized by study characteristics

Automated Tagging of All Environmental Exposures

Parkinson's Disease Evidence Map

		Human	In vitro	In vivo
Pesticides	Insecticides	33	504	375
	Herbicides	24	139	181
	Pesticides	11	3	1
	Fungicides	10	31	56
	Acaricides	1	1	
	Fumigants	1		
Metals	Metals	151	153	138
Nicotine	Nicotine	38	35	97
Other	Coolants	1		
	Disinfectants	1		
	Flame retardants		2	
	Fragrances			1
	Gases	1		
	Gasoline additives		1	
	Industrial	9	4	3

✓ Manual categorization of 1,840 studies revealed similar trend as automated tagging and allows researchers to explore published literature

Most-reported Environmental Chemicals

		Human	In vivo	In vitro
Manganese	Exposure	115	106	98
	Positive control		6	8
Paraquat	Exposure	22	135	97
80.5	Positive control		37	36
Rotenone	Exposure	10	137	198
	Positive control		204	274
Nicotine	Exposure	21	36	17
	Treatment	16	61	18

Environmental Chemicals in >10 Studies

	Human	In vivo	In vitro
Maneb	8	43	22
Aluminum	17	14	14
Iron	17	8	19
Dieldrin	10	6	23
Mercury	19	1	6
Copper	10	6	12
Lead	20	2	4
Cadmium	5	2	10
PCBs	9	3	3
Zinc	8	5	2
Mancozeb	1	7	4

- Very few chemicals with multiple reports
- All metals and/or pesticides except PCBs
- Many chemicals with single study (not shown)

Candidate Chemical Library

Predicted actives

- Positive controls
 - MPTP, rotenone, paraquat
- Metals and metal compounds
 - Manganese tricarbonyl (MMT), maneb, methyl mercury, ziram
- Organochlorines
 - DDT, heptachlor, dieldrin, lindane, endosulfan, TCE, hexachlorobenzene
- Organophosphates
 - Chlorpyrifos, diazinon
- Other pesticides
 - Permethrin, benomyl, tributyltin methacrylate, quintozene

Unknowns

- Triphenyl phosphate
- Isopropylated phenyl phosphate
- Captan
- Glyphosate
- Pyridaben
- Acetaminophen

Predicted Negatives

- Saccharin sodium
- L-ascorbic acid
- D-glucitol
- Acetyl salicylic acid

Informing Assay Selection for Targeted Testing

Parkinson's Disease Evidence Map

in vitro Effects of Paraguat Exposure			Species				
	Effect	Human	Rat	Mouse	Rat x Mouse	Bovine	Grand Total
More	DA (TH+) neurons	2	8	9			16
	Dopamine (DA and metabolite levels, DAT and receptor expression, TH immunoreactivity)	4	6	1	1		11
É	alpha synuclein, Tau phosphorylation, tubulin	11	4	2			16
	Proteasome (Parkin, proteasomal activity)	10	3				13
	Mitochondrial effects	22	13	2			37
SPE	Other (general expression changes, etc.)	40	28	13			78
	Oxidative stress	40	39	13	2		89
Less	Cell viability (LDH levels, apoptosis, total cell number)	65	60	19	2	1	137
	Grand Total	81	74	30	2	1	178

*Some studies may have characterized multiple health effects or species and therefore may be represented multiple times. Row and column grand totals represent counts of distinct references.

Reported *in vitro* **Models**

Cell line	Category	Cell, tumor, subfraction type	Tissue origin	
SH-SY5Y	tumor	neuroblastoma	brain, bone marrow metastasis	49
SK-N-SH	tumor	neuroblastoma	nerve, bone marrow metastasis	7
primary mesencephalic primary		neurons	mesencephalon	22
cultures		neurons, glia	mesencephalon	2
PC12	tumor	pheochromocytoma	adrenal gland	20
N27	transformed	neurons	mesencephalon	17
primary cerebral cortex	primary	glia	cerebral cortex	1
cultures		microglia	cerebral cortex	1
		neurons	cerebral cortex	7
		neurons, glia	cerebral cortex	1
		oligodendrocyte progenitors	cerebral cortex	1
primary cerebellar	primary	granule neurons	cerebellum	3
cultures		neurons	cerebellum	3
BV-2	transformed	microglia	brain	5
primary astrocytes	primary	astrocytes	brain	4
			cerebral cortex	1
brain cultures	ex vivo	mixed	brain	1

 \checkmark majority of studies conducted in human and rat tumorigenic cell lines with fewer more relevant, complex models

Toxicoinformatic Analysis

- Selected genes associated with Parkinson's
 - Illumina's NextBio datamining software
 - Comparative Toxicogenomics Database (CTD)

- Grouped 233 genes into 15 disease-relevant pathways
- Linked genes to studies included in literature analysis
- Gene expression reported in 47% of relevant studies
 - 57% of 233 genes evaluated in those studies

Identifying Chemical-Gene Combinations

Identifying Chemical-Assay Combinations

ToxCast and Tox21 Data

Strategy to identify potential chemical contributors

DNTP Translational Toxicology Pipeline Plan

Acknowledgements

NTP/NIEHS

- Nisha Sipes
- Mamta Behl
- Andy Rooney
- Vickie Walker
- Scott Auerbach

OHAT

- Brandy Beverly
- Kembra Howdeshell
- Kyla Taylor

External

- Kris Thayer, former project lead, US EPA
- Ana Antonic, University of Melbourne
- Courtney Skuce, Robyn Blain, Pamela Hartman, Kelly Shipkowski, Sophie Hearn, ICF
- Austin Wray and Aaron Niman, US EPA

Peer Review

- Chris McPherson, Paraquat Scoping Report
- Nisha Sipes, Paraquat Scoping Report

...on behalf of OHAT

Thank you

Questions?

