Integrating Literature Analysis into the NTP Research Pipeline

Windy Boyd
NTP Board of Scientific Counselors Meeting
December 12, 2018
DNTP Translational Toxicology Pipeline Plan

Define Hypotheses & Design a Testing Strategy

- Data Mining
- QSAR Profiling
- Bioactivity Screening
- In vitro Studies
- Longer-term in vivo Tests
- Short-term in vivo Tests
- Knowledge Integration

Communicate

Evidence Mapping

Inform Public Health Decisions

Systematic Review

Literature Analysis
Evidence Mapping
- Inform Research
 - Data pockets
 - Data gaps

Literature Analysis
- Define Hypotheses & Design a Testing Strategy
 - In vitro Studies
 - Short-term in vivo Tests
 - Longer-term in vivo Tests
 - Knowledge Integration

Data Mining
- QSAR Profiling
- Bioactivity Screening

Inform Public Health Decisions
Parkinson's disease (PD) due to progressive neurodegeneration

- Aggregation of α-synuclein in Lewy bodies
- Loss of dopaminergic neurons in substantia nigra
- Signs include tremor, rigidity, and shuffling gait

Highly prevalent but etiology of most PD cases unknown

- Genetics only account for ~10% of cases
Environmental factors

- Exposures to pesticides linked to Parkinson’s in epidemiological studies
- Need for better understanding of which environmental factors may be contributing and how they act
- Neurodegeneration is not included in routine toxicological testing strategies
- Lack of methods to rapidly identify environmental exposures
Project team

- Combined scientific expertise in neurotoxicology, *in vitro* screening, toxicoinformatics, and literature analysis

Goals

- Identify previously evaluated chemicals, genes and pathways, and model systems
- Develop a battery of *in vitro* and alternate model organism assays to screen chemicals for potential effects
NTP Parkinson’s Disease Project

Strategy to identify potential chemical contributors

- Expert knowledge
- Published literature
- Tox21 HTS data
- Chemical and assay selection
- Toxicogenomic databases
• Questions: Which chemicals, genetic targets, and models have been reported in the scientific literature?

• PubMed search identified >90,000 records with mention of Parkinson’s disease

• Screened studies for environmental chemical exposure and categorized by study characteristics
Exposures Associated with Parkinson’s Disease

Automated Tagging of All Environmental Exposures

- Metals (1734)
- Smoking (1163)
- Alcohol (778)
- Occupational (442)
- Air Pollution (235)
- Miscellaneous (172)
- PAHs (35)
- Stress (4339)
- Drugs of Abuse (2654)
- Nutrition (2490)
- Pesticides (2576)
Manual categorization of 1,840 studies revealed similar trend as automated tagging and allows researchers to explore published literature.
Parkinson’s Disease Evidence Map

Most-reported Environmental Chemicals

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Effect</th>
<th>Human</th>
<th>In vivo</th>
<th>In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>Exposure</td>
<td>115</td>
<td>106</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Positive control</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Paraquat</td>
<td>Exposure</td>
<td>22</td>
<td>135</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Positive control</td>
<td>37</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Rotenone</td>
<td>Exposure</td>
<td>10</td>
<td>137</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Positive control</td>
<td></td>
<td>204</td>
<td>274</td>
</tr>
<tr>
<td>Nicotine</td>
<td>Exposure</td>
<td>21</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>16</td>
<td>61</td>
<td>18</td>
</tr>
</tbody>
</table>
Environmental Chemicals in >10 Studies

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Human</th>
<th>In vivo</th>
<th>In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maneb</td>
<td>8</td>
<td>43</td>
<td>22</td>
</tr>
<tr>
<td>Aluminum</td>
<td>17</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Iron</td>
<td>17</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>10</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>Mercury</td>
<td>19</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Copper</td>
<td>10</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Lead</td>
<td>20</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>PCBs</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zinc</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Mancozeb</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

- Very few chemicals with multiple reports
- All metals and/or pesticides except PCBs
- Many chemicals with single study (not shown)
Candidate Chemical Library

• Predicted actives
 – Positive controls
 • MPTP, rotenone, paraquat
 – Metals and metal compounds
 • Manganese tricarbonyl (MMT), maneb, methyl mercury, ziram
 – Organochlorines
 • DDT, heptachlor, dieldrin, lindane, endosulfan, TCE, hexachlorobenzene
 – Organophosphates
 • Chlorpyrifos, diazinon
 – Other pesticides
 • Permethrin, benomyl, tributyltin methacrylate, quintozene

• Unknowns
 – Triphenyl phosphate
 – Isopropylated phenyl phosphate
 – Captan
 – Glyphosate
 – Pyridaben
 – Acetaminophen

• Predicted Negatives
 – Saccharin sodium
 – L-ascorbic acid
 – D-glucitol
 – Acetyl salicylic acid
Informing Assay Selection for Targeted Testing

Motor deficits

Related changes in gene expression

Neuroinflammation

Mamta Behl
Tox Branch
Parkinson’s Disease Evidence Map

in vitro Effects of Paraquat Exposure

Some studies may have characterized multiple health effects or species and therefore may be represented multiple times. Row and column grand totals represent counts of distinct references.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Human</th>
<th>Rat</th>
<th>Mouse</th>
<th>Rat x Mouse</th>
<th>Bovine</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA (TH+) neurons</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td></td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Dopamine (DA and metabolite levels, DAT and receptor expression, TH immunoreactivity)</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>alpha synuclein, Tau phosphorylation, tubulin</td>
<td>11</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Proteasome (Parkin, proteasomal activity)</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Mitochondrial effects</td>
<td>22</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Other (general expression changes, etc.)</td>
<td>40</td>
<td>28</td>
<td>13</td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Oxidative stress</td>
<td>40</td>
<td>39</td>
<td>13</td>
<td>2</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Cell viability (LDH levels, apoptosis, total cell number)</td>
<td>65</td>
<td>60</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>137</td>
</tr>
<tr>
<td>Grand Total</td>
<td>81</td>
<td>74</td>
<td>30</td>
<td>2</td>
<td>1</td>
<td>178</td>
</tr>
</tbody>
</table>
Reported *in vitro* Models

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Category</th>
<th>Cell, tumor, subfraction type</th>
<th>Tissue origin</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH-SY5Y</td>
<td>tumor</td>
<td>neuroblastoma</td>
<td>brain, bone marrow metastasis</td>
<td>49</td>
</tr>
<tr>
<td>SK-N-SH</td>
<td>tumor</td>
<td>neuroblastoma</td>
<td>nerve, bone marrow metastasis</td>
<td>7</td>
</tr>
<tr>
<td>primary mesencephalic cultures</td>
<td>primary</td>
<td>neurons</td>
<td>mesencephalon</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neurons, glia</td>
<td>mesencephalon</td>
<td>2</td>
</tr>
<tr>
<td>PC12</td>
<td>tumor</td>
<td>pheochromocytoma</td>
<td>adrenal gland</td>
<td>20</td>
</tr>
<tr>
<td>N27</td>
<td>transformed</td>
<td>neurons</td>
<td>mesencephalon</td>
<td>17</td>
</tr>
<tr>
<td>primary cerebral cortex cultures</td>
<td>primary</td>
<td>glia</td>
<td>cerebral cortex</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>microglia</td>
<td>cerebral cortex</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neurons</td>
<td>cerebral cortex</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neurons, glia</td>
<td>cerebral cortex</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oligodendrocyte progenitors</td>
<td>cerebral cortex</td>
<td>1</td>
</tr>
<tr>
<td>primary cerebellar cultures</td>
<td>primary</td>
<td>granule neurons</td>
<td>cerebellum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neurons</td>
<td>cerebellum</td>
<td>3</td>
</tr>
<tr>
<td>BV-2</td>
<td>transformed</td>
<td>microglia</td>
<td>brain</td>
<td>5</td>
</tr>
<tr>
<td>primary astrocytes</td>
<td>primary</td>
<td>astrocytes</td>
<td>brain</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cerebral cortex</td>
<td>1</td>
</tr>
<tr>
<td>brain cultures</td>
<td>ex vivo</td>
<td>mixed</td>
<td>brain</td>
<td>1</td>
</tr>
</tbody>
</table>

✓ majority of studies conducted in human and rat tumorigenic cell lines with fewer more relevant, complex models
Toxicoinformatic Analysis

- Selected genes associated with Parkinson’s
 - Illumina’s NextBio datamining software
 - Comparative Toxicogenomics Database (CTD)

- Grouped 233 genes into 15 disease-relevant pathways

- Linked genes to studies included in literature analysis

- Gene expression reported in 47% of relevant studies
 - 57% of 233 genes evaluated in those studies
Identifying Chemical-Gene Combinations

Chemical Classes
- Pesticides
- Nicotine
- Metals
- Other

Biological Pathways
- Apoptosis
- Adenosine Receptor
- Axon guidance/synaptic
- Dopamine
- Dopamine Receptor
- Immune System
- α-synuclein/Lewy body
- Neuronal survival/activity
- Other
- Other receptors
- Mitochondria/ox phos
- Transcription factor
- Transporter
- Ubiquitin

Nisha Sipes
BSB
NTP Parkinson’s Disease Project

Strategy to identify potential chemical contributors

- Expert knowledge
- Published literature
- Tox21 HTS data
- Chemical and assay selection
- Toxicogenomic databases
DNTP Translational Toxicology Pipeline Plan

Define Hypotheses & Design a Testing Strategy

- Bioactivity Screening
- QSAR Profiling
- Data Mining

ADME/Chemistry

In vitro Studies

Short-term in vivo Tests

Longer-term in vivo Tests

Knowledge Integration

Communicate

Inform Public Health Decisions

Evidence Map

Systematic Review

Informed

Next

Future?
Acknowledgements

NTP/NIEHS

• Nisha Sipes
• Mamta Behl
• Andy Rooney
• Vickie Walker
• Scott Auerbach

OHAT

• Brandy Beverly
• Kembra Howdeshell
• Kyla Taylor

External

• Kris Thayer, former project lead, US EPA
• Ana Antonic, University of Melbourne
• Courtney Skuce, Robyn Blain, Pamela Hartman, Kelly Shipkowski, Sophie Hearn, ICF
• Austin Wray and Aaron Niman, US EPA

Peer Review

• Chris McPherson, Paraquat Scoping Report
• Nisha Sipes, Paraquat Scoping Report
Thank you

Questions?

…on behalf of OHAT