Overview of Genomic Studies on Rodent Tumors and Its Translational Relevance

Arun Pandiri, PhD, DACVP, DABT
Cellular and Molecular Pathology Branch
Division of the National Toxicology Program
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting
December 12, 2018
Overview

• A recap on molecular studies in rodent tumors in the NTP

• Goals of genomic studies on rodent tumors from NTP studies

• Progress on genomic studies on mouse hepatocellular carcinomas from NTP studies

• NTP collaborations

• Potential future studies and collaborations
• A recap on molecular studies in rodent tumors in the NTP

• Goals of genomic studies on rodent tumors from NTP studies

• Progress on genomic studies on mouse hepatocellular carcinomas from NTP studies

• NTP collaborations

• Potential future studies and collaborations
Comparisons of Leading Sites of New Cancer Cases in Humans to Tumor Sites in Animal Models

- **Male**
 - Lung
 - Prostate – Uncommon
 - Intestine
 - Pancreas
 - Liver
 - Lymphoma
 - Non-Hodgkin’s Lymphoma
 - Esophagus – Uncommon
 - Urinary Bladder
 - Kidney

- **Female**
 - Lung & Bronchus
 - Breast
 - Colon & Rectum
 - Intestine
 - Ovary
 - Non-Hodgkin’s Lymphoma
 - Leukemia
 - Uterine Corpus
 - Brain
 - Liver

Molecular Studies on NTP Rodent Tumors - A Recap

• Goals
 – Translational relevance of rodent tumors for human health
 – Mechanisms of tumors arising spontaneously or due to chemical exposures
 – Inclusion of the molecular data in NTP technical reports

• Examples
 – Chloroprene and isoprene caused similar \textit{Kras} mutations in mouse lung tumors that are distinct from mutations in 1,3-butadiene exposures (Sills \textit{et al.}, 1999)

 – \textit{Kras}, \textit{Egfr} and \textit{Tp53} mutations in mouse and rat lung tumors from cobalt metal and cobalt sulfate heptahydrate exposures (Hong \textit{et al.}, 2015)

 – Alterations in MAPK, WNT, and TGF-\(\beta\) signaling in large intestinal tumors in rats exposed to Aloe vera extract (Pandiri \textit{et al.}, 2011)
Histopathology of the large intestinal tumors in rats exposed to AVNWLE

AVNWLE-induced large intestinal tumors in F344/NCTR rats have morphological features similar to human colon cancer.

Colon adenocarcinoma - Rat

Colon adenocarcinoma - Human

Hisatsune et al., 2013
Molecular Alterations in Human Colorectal Cancer

Molecular Alterations in Human Colorectal Cancer

Mutation Analysis using Sanger Sequencing

Comparison of mutation frequencies in AVNWLE-induced large intestinal tumors in rats with human colorectal cancer (CRC) and other rat CRC models

<table>
<thead>
<tr>
<th>Group</th>
<th>% Ctnnb1 mutations</th>
<th>% Kras mutations</th>
<th>% Tp53 mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVNWLE</td>
<td>33</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Human CRC</td>
<td>15-26</td>
<td>40-60</td>
<td>50*</td>
</tr>
<tr>
<td>Azoxymethane</td>
<td>50-80</td>
<td>30-60</td>
<td>0</td>
</tr>
<tr>
<td>Heterocyclic Amines</td>
<td>50-75</td>
<td>0-14</td>
<td>0</td>
</tr>
</tbody>
</table>
PCR arrays - WNT, MAPK, TGF-β pathways

Clustering of normal colon, adenoma and carcinoma samples based on WNT, MAPK, TGF-β pathway directed gene expression profiles

Principal Components Analysis

Hierarchical Cluster Analysis
Altered molecular pathways

- 39/84 genes: Wnt/Ctnnb1 pathway
- 24/84 genes: MAPK pathway
- 24/32 genes: TGF-β pathway
- 33/60 genes: Other genes in hCRC
Rat Large Intestinal Tumors vs. Human Colon Tumors

- Share similar morphological features
- Share similar molecular alterations
 - Contain point mutations in *Kras* or *Ctnnb1*
 - Have gene expression alterations within Wnt, MAPK, and TGF-β signaling pathways as well as other relevant CRC genes
- AVNWLE-induced colon tumors in F344 rats share similar morphological and molecular features with human colon cancer

Pandiri et al., Toxicol Pathol. 2011;39(7):1065-74.
Mutational Analysis of Co-induced Rodent Lung Tumors

<table>
<thead>
<tr>
<th>Cobalt metal dust (mg/m³)</th>
<th>Kras mutation incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B6C3F1/N mouse</td>
</tr>
<tr>
<td>0</td>
<td>0/10 (0)*</td>
</tr>
<tr>
<td>1.25</td>
<td>11/16 (69)***</td>
</tr>
<tr>
<td>2.5</td>
<td>11/23 (48)**</td>
</tr>
<tr>
<td>5.0</td>
<td>24/30 (80)***</td>
</tr>
<tr>
<td>CMD-treated combined</td>
<td>46/69 (67)***</td>
</tr>
</tbody>
</table>

*p<0.001 within the chamber controls: significant trend by the Cochran-Armitage test
p<0.05, *p<0.01, ****p<0.001 within the exposed groups: significantly different from the chamber controls by the Fisher’s exact test

- **Unique mutations in codon 12 of Kras gene**
 - **G to T transversions** in cobalt metal dust induced A/B carcinomas
 - **G to A transitions** in spontaneous A/B carcinomas from historical controls

- **Similar findings in cobalt sulfate heptahydrate induced alveolar/bronchiolar tumors**

- **G to T transversions related to oxidative stress**

Hong et al., Toxicol Pathol. 2015;43(6):872-82.
Cobalt Sulfate-induced ROS Production

A549 = transformed type II cells from human lung cancer
BEAS-2B = immortalized human bronchial epithelial cells

Control

CSH 10mM

Dichlorodihydrofluorescein Diacetate (DCFDA) Assay

Immuno-Spin trapping (IST) assay

DCFDA Assay: General oxidative activity

DHE Assay: Hydroxyl and superoxide radicals

IST: Trapping of radicals with 5,5-dimethyl-1-pyrroline N-oxide (DMPO)
• A recap on molecular studies in rodent tumors in the NTP

• **Goals of genomic studies on rodent tumors from NTP studies**

• Progress on genomic studies on mouse hepatocellular carcinomas from NTP studies

• NTP collaborations

• Potential future studies and collaborations
Technology Driving Science

• Sanger sequencing
 – Mutational hotspots (single gene/exon/codon level interrogation)
 – Mutations unique to cancer type or etiology (Curtiss and Vogelstein)

• Next generation sequencing
 – Whole genome or whole exome (all coding and non-coding regions)
 – Discovery of novel genetic/epigenetic events
 – Targeted sequencing of gene panels for screening

• Mutation signatures (Alexandrov, Stratton et al., 2013)
 – 6 types of substitutions: C>A, C>G, C>T, T>A, T>C, and T>G (all substitutions are referred to by the pyrimidine of the mutated Watson–Crick base pair)
 – 6 types of substitutions * 4 types of 5’ base * 4 types of 3’ base = 96 possible mutation types
Mutation Signatures (Alexandrov et al., 2013)

4 types of 5’ base * 6 types of substitutions * 4 types of 3’ base = 96
Mutational Signatures to Understand Mechanisms

MUTATIONAL PROCESSES
- DNA replication
- Genotoxins
- DNA repair deficiency
- DNA editing

SOMATIC MUTATIONS
- Small mutations
- Structural Variants
- Copy Number Variants
 - SNV
 - Indels
 - Translocation
 - Inversion
 - Loss
 - LOH
 - Gain

MUTATIONAL SIGNATURES
- Tumor sequencing
- Variant calling
- Genomic landscape
- Catalogue mutations
- Patterns of mutations
- Modeling
- Link patterns to mutagenesis

Mylinhthibodeau, Wiki Commons
Environmental Exposures & Mutation Signatures

<table>
<thead>
<tr>
<th>Mut. Sig.</th>
<th>Exposure</th>
<th>Etiology</th>
<th>Characteristic DNA lesion</th>
<th>Signature hallmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>Age</td>
<td>Spontaneous deamination of 5-methylcytosine, correlates with age</td>
<td>• C > T</td>
</tr>
</tbody>
</table>
| 4 | Tobacco smoke | (+)benzo(a)pyrene | (+)benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide-dG adduct | • C > A
• CC to AA tandem mutations
• Transcriptional strand bias |
| 7 | Sunlight | UV light | Pyrimidine dimers | • C to T at dipyrimidines
• CC > TT tandem mutations
• Transcriptional strand bias |
| 11 | Chemotherapy | Temozolamide | O6-methylguanine | • C > T
• Transcriptional strand bias |
| 22 | Food contaminant| Aristolochic acid| 7-(deoxyadenosin-N(6)-yl) aristolactam I adduct | • T > A
• Transcriptional strand bias |
| 24 | Food contaminant| Aflatoxin B1 | 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct | • C > A
• Transcriptional strand bias |
| 29 | Tobacco chewing| Mixtures | Unspecified | • C > A
• CC to AA tandem mutations
• Transcriptional strand bias |

http://cancer.sanger.ac.uk/cosmic/signatures, Hollenstein et al., Oncogene (2017) 36, 158–167
Mutational Signatures across Human Cancer

http://cancer.sanger.ac.uk/cosmic/signatures
Mutational Signatures across Human Cancer

http://cancer.sanger.ac.uk/cosmic/signatures
Mutational Signatures in Human Liver Tumors

http://cancer.sanger.ac.uk/cosmic/signatures

<table>
<thead>
<tr>
<th>Signature</th>
<th>C>A</th>
<th>C>G</th>
<th>C>T</th>
<th>T>A</th>
<th>T>C</th>
<th>T>G</th>
<th>C>A</th>
<th>C>G</th>
<th>C>T</th>
<th>T>A</th>
<th>T>C</th>
<th>T>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature 1</td>
<td></td>
</tr>
<tr>
<td>Signature 2</td>
<td></td>
</tr>
<tr>
<td>Signature 3</td>
<td></td>
</tr>
<tr>
<td>Signature 4</td>
<td></td>
</tr>
<tr>
<td>Signature 5</td>
<td></td>
</tr>
<tr>
<td>Signature 6</td>
<td></td>
</tr>
<tr>
<td>Signature 7</td>
<td></td>
</tr>
<tr>
<td>Signature 8</td>
<td></td>
</tr>
<tr>
<td>Signature 9</td>
<td></td>
</tr>
<tr>
<td>Signature 10</td>
<td></td>
</tr>
<tr>
<td>Signature 11</td>
<td></td>
</tr>
<tr>
<td>Signature 12</td>
<td></td>
</tr>
<tr>
<td>Signature 13</td>
<td></td>
</tr>
<tr>
<td>Signature 14</td>
<td></td>
</tr>
<tr>
<td>Signature 15</td>
<td></td>
</tr>
<tr>
<td>Signature 16</td>
<td></td>
</tr>
<tr>
<td>Signature 17</td>
<td></td>
</tr>
<tr>
<td>Signature 18</td>
<td></td>
</tr>
<tr>
<td>Signature 19</td>
<td></td>
</tr>
<tr>
<td>Signature 20</td>
<td></td>
</tr>
<tr>
<td>Signature 21</td>
<td></td>
</tr>
<tr>
<td>Signature 22</td>
<td></td>
</tr>
<tr>
<td>Signature 23</td>
<td></td>
</tr>
<tr>
<td>Signature 24</td>
<td></td>
</tr>
<tr>
<td>Signature 25</td>
<td></td>
</tr>
<tr>
<td>Signature 26</td>
<td></td>
</tr>
<tr>
<td>Signature 27</td>
<td></td>
</tr>
<tr>
<td>Signature 28</td>
<td></td>
</tr>
<tr>
<td>Signature 29</td>
<td></td>
</tr>
<tr>
<td>Signature 30</td>
<td></td>
</tr>
</tbody>
</table>
Goals of Sequencing NTP Rodent Tumors

• Identification of mutation signatures in rodent tumors from defined exposures
 – Link the signatures to mechanisms of carcinogenicity
 – Potentially link human tumors to environmental exposures
 – Discovery of potential new mutation signatures

• Distinguishing spontaneous tumors from chemically induced tumors
 – Histologically indistinguishable
 – May provide a context/support for NTP’s carcinogenicity calls

• Identification of biomarkers for prediction of carcinogenicity from shorter-term *in vivo* studies or *in vitro* studies
 – Genomic and epigenomic approaches
 – Development of potential in vitro approaches
Overview

- A recap on molecular studies in rodent tumors in the NTP
- Goals of genomic studies on rodent tumors from NTP studies
- **Progress on genomic studies on mouse hepatocellular carcinomas from NTP studies**
- NTP collaborations
- Potential future studies and collaborations
Whole Exome Sequencing of Mouse HCC

An update..

Samples
• Spontaneous HCC (M, F), n=40
• Genotoxic chemicals (Gtx), n=40
• Non-genotoxic chemicals (NGtx), n=60
• Non-tumor controls (M, F), n=20

Methods
• Illumina exome paired-end sequence reads (150x)
• mm10 (alignment), B6C3F1/N, dbSNP, Mutect1

Results
• SNVs, mutation spectra, signatures, driver genes
Mutation Spectra of Mouse HCCs

<table>
<thead>
<tr>
<th>Context</th>
<th>NGtx1</th>
<th>NGtx2</th>
<th>NGtx3</th>
<th>NGtx4</th>
<th>NGtx5</th>
<th>NGtx6</th>
<th>SpC-M</th>
<th>SpC-F</th>
<th>Gtx1</th>
<th>Gtx2</th>
<th>Gtx3</th>
<th>Gtx4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C>A</td>
<td></td>
</tr>
<tr>
<td>C>G</td>
<td></td>
</tr>
<tr>
<td>C>T</td>
<td></td>
</tr>
<tr>
<td>T>A</td>
<td></td>
</tr>
<tr>
<td>T>C</td>
<td></td>
</tr>
<tr>
<td>T>G</td>
<td></td>
</tr>
</tbody>
</table>
Somatic Signatures: NMF - Barchart

Mutation Signatures in Mouse HCCs

- **S1**
- **S2**
- **S3**
- **S4**
- **S5**

<table>
<thead>
<tr>
<th>Motif</th>
<th>NGtx1</th>
<th>NGtx2</th>
<th>NGtx3</th>
<th>NGtx4</th>
<th>NGtx5</th>
<th>NGtx6</th>
<th>SpC-M</th>
<th>SpC-F</th>
<th>Gtx1</th>
<th>Gtx2</th>
<th>Gtx3</th>
<th>Gtx4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C>A</td>
<td></td>
</tr>
<tr>
<td>C>G</td>
<td></td>
</tr>
<tr>
<td>C>T</td>
<td></td>
</tr>
<tr>
<td>T>A</td>
<td></td>
</tr>
<tr>
<td>T>C</td>
<td></td>
</tr>
<tr>
<td>T>G</td>
<td></td>
</tr>
</tbody>
</table>
Next Steps for the Mouse HCC Project

- Examine mutation signatures in mitochondrial genomes and nuclear genomes from tumors
- High depth RNA-Seq to correlate with the exome data
- Copy number alterations using aCGH array
- mi-RNA Seq
- Whole genome bisulfite sequencing (David Adams - Sanger institute)
Overview

• A recap on molecular studies in rodent tumors in the NTP

• Goals of genomic studies on rodent tumors from NTP studies

• Progress on genomic studies on mouse hepatocellular carcinomas from NTP studies

• **NTP collaborations**

• Potential future studies and collaborations
Cancer Research UK Grand Challenge Grant: *Cancer mutation signatures to identify unknown cancer etiologies*

- International partnerships led by Sir Mike Stratton from the Wellcome Trust Sanger Institute
- Identify mutation signatures from known carcinogens (~150)
- *To identify and characterize the biological processes underlying mutation signatures (Allan Balmain (UCSF) and David Adams (Sanger))*
- NTP support for the cancer mutation signature project
 - Identification of chemical carcinogens, sample selection, pathology review, DNA isolation, ~30 NTP studies
- Sanger contribution for the cancer mutation signature project
 - Generated whole genome sequence data on NTP parental strains (C57BL6/N, C3H/HeN) as well as the B6C3F1/N hybrid
Other NTP Collaborations

IARC, Lyon, France

• Jiri Zavadil and Magali Olivier (Molecular Mechanisms and Biomarkers Group, Mechanisms of Carcinogenesis Section)

• To complement the IARC cancer monographs and also to provide a translational context to the rodent cancer data

• Pathology review, sample selection, and shipment of tissue sections

Ramazzini Institute, Bologna, Italy

• Fiorella Belpoggi and Andrea Vornoli

• TrueSeq Custom Amplicon Assay (TSCA) based on top 25 mutated genes in human gliomas

• TSCA analysis of rat brain tumors to examine human relevance
Overview

• A recap on molecular studies in rodent tumors in the NTP
• Goals of genomic studies on rodent tumors from NTP studies
• Progress on genomic studies on mouse hepatocellular carcinomas from NTP studies
• NTP collaborations

• Potential future studies and collaborations
Potential Future Studies/Collaborations

- Cancer mutation signatures from genotoxic chemicals are fairly strong and probably are conserved across species.
- Cancer mutation signatures from non-genotoxic chemicals may be variable due to multiple modes of action (MOA):
 - Activation of multiple nuclear receptors
 - Species and organ specificity
- Majority of the chemical carcinogens have a non-genotoxic mode of action, often with multiple MOAs.
- Generate multi-omics data from rodent tumor tissues resulting from exposures with a well defined *single* MOA:
 - Tumors derived from exposures that target specific nuclear receptors such as AhR, PPAR-α, CAR/PXR, etc.
 - Link each of the resulting mutation signature to a specific MOA.
Conclusion and future directions

Human

- Rodent Models
 - Conerved Molecular Pathways
 - Human relevance

- **Mechanistic understanding**
 - Integrated -omics approaches
 - Molecular pathways
 - Exposure
 - Neoplasia

- **Prediction**
 - Short-term *in vivo* screens
 - Epigenetic landmarks
 - Mutation signatures
 - Driver mutations
 - Gene expression
 - *in vitro* screens
 - Immortalized cells
 - 3D cell culture

Adapted from The Cancer Genome Atlas Research Network, 2017
Translational Toxicology Pipeline

Molecular Pathology: Phenotypic anchoring

- Mechanisms, Translation, Prediction
Acknowledgements

All NTP staff

• Brian Berridge, John Bucher
• Robert Sills, Ron Herbert
• Alex Merrick and the TGMX faculty
• Keith Shockley
• Ramesh Kovi, Miaofei Xu, Kiki Ton

Our collaborators

• David Adams, Laura Riva (Sanger)
• Allan Balmain (UCSF)
• Jiri Zavadil, Magali Olivier (IARC)
• Fiorella Belpoggi, Andrea Vornoli (RI)

Epigenomic core

• Greg Solomon

Microarray core

• Kevin Gerrish

Bioinformatics core

• Ashley Brooks
• Adam Burkholder
• Pierre Bushel
• Jianying Li
• Jason Li