NTP Activities on Bisphenols

Nigel Walker, PhD, DABT
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting
June 20, 2018
Bisphenol-A (BPA)

- Chemical widely used to make polycarbonate plastics and epoxy resins
- Widespread low exposure (<1 µg/kg body weight (bw)/day) from migration of small amounts into foods from food contact materials
- Considerable debate over risk posed by “low level” exposure
- Guideline studies conducted under Good Laboratory Practices (GLP) show no effects of concern at “low doses”
- Academic “investigative” studies report that BPA induces a variety of effects in a variety of model systems at low exposures
Historical NTP Context

• National Toxicology Program (NTP) Monograph (2008)
• Evaluated the available scientific literature about the possible effects of BPA on human development and reproduction
• Conclusions

![Diagram showing levels of concern for adverse effects: Serious Concern, Concern, Some Concern, Minimal Concern, Negligible Concern.]

- Developmental toxicity for fetuses, infants, and children (effects on the brain, behavior, and prostate gland)
- Developmental toxicity for fetuses, infants, and children (effects on the mammary gland and early puberty in females), and reproductive toxicity in workers
- Reproductive toxicity in adult men and women and malformations in newborns
Some Bisphenol Analogs/Derivatives

- Widespread exposure to a variety of chemicals with similarity to BPA
 - Detected in foodstuffs, house dust, river and lake sediment, personal care products, and thermal paper
 - Detected in human biological specimens
 - Several chlorinated and brominated derivatives of BPA are used as flame retardants
 - In contrast to BPA, most are poorly understood with respect to potential toxicity

<table>
<thead>
<tr>
<th>Structure</th>
<th>Abbreviation (CASRN)</th>
<th>Detection</th>
<th>Structure</th>
<th>Abbreviation (CASRN)</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPS</td>
<td>(80-09-1)</td>
<td>blood[^19], food[^20], dust[^89], sediment[^81], urine[^12; 163]</td>
<td>2,4-BPS</td>
<td>(5397-34-2)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>4,4-BPF</td>
<td>(620-92-8)</td>
<td>food[^19; 31; 32; 91], dust[^90], sediment[^81], receipt[^140], urine[^12; 163], municipal sewage sludge[^137]</td>
<td>BPS-MAE</td>
<td>(97042-18-7)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>BPAP</td>
<td>(1571-75-1)</td>
<td>food[^22; 31; 32; 91], dust[^89], sediment[^81], receipt[^140]</td>
<td>TGSA</td>
<td>(41481-66-7)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>BPAF</td>
<td>(1478-61-1)</td>
<td>food[^22; 31; 32; 91], dust[^89], sediment[^81], municipal sewage sludge[^137]</td>
<td>BPS-MPE</td>
<td>(63134-33-8)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>BPB</td>
<td>(77-40-7)</td>
<td>food[^22; 31; 32; 91], dust[^89], sediment[^81], blood[^99], urine[^21]</td>
<td>BPC</td>
<td>(79-97-0)</td>
<td></td>
</tr>
<tr>
<td>BPP</td>
<td>(2167-51-3)</td>
<td>food[^22; 31; 32; 91], dust[^89]</td>
<td>BPBH</td>
<td>(24038-65-4)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>BPZ</td>
<td>(843-55-0)</td>
<td>food[^14; 92], sediment[^81], PCP[^13]</td>
<td>DD-70</td>
<td>(93589-69-6)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>D-8</td>
<td>(95235-30-6)</td>
<td>blood[^134], receipt[^134]</td>
<td>D-90</td>
<td>(191680-83-8)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>2,2-BPF</td>
<td>(2467-02-9)</td>
<td>resin[^11]</td>
<td>BTUM</td>
<td>(151882-81-4)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>BPE</td>
<td>(2081-08-5)</td>
<td>municipal sewage sludge[^137]</td>
<td>MBHA</td>
<td>(5129-00-0)</td>
<td></td>
</tr>
<tr>
<td>TMBPA</td>
<td>(5613-46-7)</td>
<td>polycarbonate resin[^9]</td>
<td>Perafast 201</td>
<td>(232938-43-1)</td>
<td>receipts[^140]</td>
</tr>
<tr>
<td>BDP</td>
<td>(5945-33-5)</td>
<td>flame retardant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bisphenols are an exemplar for multiple issues being addressed by NTP and NIEHS

- What is “endocrine disruption”
- How do we effectively assess hazards posed by compounds that cause “endocrine disruption”
- What is low dose?
- Shape of the dose response and evidence for non-monotonicity of effects across the dose range
- How to integrate academic investigative research with regulatory guideline complaint research for decision making
- How to assess hazards for classes of structurally/functionally related compounds
- How to rapidly assess hazard of “replacements” for commodity chemicals that are shown to be toxic in model systems
• CLARITY-BPA Research Program: Peer Review of Core Study and Next Steps

• Evaluation of Bisphenol Analogues
• CLARITY-BPA Research Program: Peer Review of Core Study and Next Steps
 – How do we effectively assess hazards posed by compounds that cause “endocrine disruption”
 – Shape of the dose response and evidence for non-monotonicity of effects across the dose range
 – How to integrate academic investigative research with regulatory guideline complaint research for decision making

• Evaluation of Bisphenol Analogues
 – How to assess hazards for classes of structurally related compounds
 – How to rapidly assess hazard of “replacements” for commodity chemicals that are shown to be toxic in model systems