Contract Concept: Genetic Toxicology Testing in Support of NTP

Kristine Witt, MS
Genetic Toxicology Group Leader
Biomolecular Screening Branch
Division of the National Toxicology Program
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting
June 18, 2019
Genetic Toxicity Testing at NTP

Background

• Genetic toxicology tests have been conducted by the NTP using a contract mechanism since 1979.

• Genetic toxicity data contribute to the comprehensive evaluation of compound toxicity and compound mechanism of action.

 – One of 6 basic testing areas required by the Organisation for Economic Co-operation and Development (OECD, 2011) in screening chemicals for toxicity

• Conducted through contracts because of facility and personnel requirements

• Although often part of the carcinogenicity assessment of a chemical, genetic damage is implicated in a variety of adverse human health effects:

 • Cancer*
 • Neurodegenerative, neurological conditions*
 • Birth defects
 • Genetic disease, somatic mosaicism
 • Cardiovascular disease*

*NTP Health Effects Innovation area
NTP Genetic Toxicology Database As a Resource

Largest publicly available single repository of genetic toxicology data in the world
Data considered authoritative by groups worldwide

Number of studies, 1979 – May 2019
- 3070 bacterial mutagenicity (Ames) assays
- 852 \textit{in vivo} rodent micronucleus assays
- 105 \textit{in vivo} rodent comet studies
- 12 \textit{in vitro} comet assays
- 49 \textit{in vitro} micronucleus assays
- 10 \textit{in vivo Pig}-\textit{a} gene mutation assays
- 21 MultiFlow™ DNA Damage assays

Current Assays

Legacy Assays
- 1797 legacy assays (e.g., \textit{Drosophila}, SCE, L5178Ytk+/−)

Total Assays = ~5900 completed
Rationale for the Genetic Toxicity Testing Contract

• Assist NIEHS, FDA, EPA, and other government scientists in evaluating chemical toxicity and investigating mechanism of action

• All chemicals that enter NTP testing are evaluated for genotoxicity under this contract

• Genotoxicity data are considered in designing NTP testing strategies

• Data used in chemical evaluations by the NTP Office of the Report on Carcinogens and are included in NTP Technical Reports (3-month subchronic and 2-year cancer bioassays)

• Influence international policies in genotoxicity testing and regulation
Genetic Toxicology Testing for NTP

Primary Current Capabilities

<table>
<thead>
<tr>
<th>Assay</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td></td>
</tr>
<tr>
<td>bacterial mutation (Ames) assay*</td>
<td>Mutation induction</td>
</tr>
<tr>
<td>micronucleus induction in mammalian cells*</td>
<td>Chromosomal damage, structural and/or numerical</td>
</tr>
<tr>
<td>comet assay in mammalian cells</td>
<td>DNA damage</td>
</tr>
<tr>
<td>MultiFlow® DNA Damage assay</td>
<td>High throughput assay to identify genotoxicants and provide MOA for MN induction</td>
</tr>
<tr>
<td>CometChip® Platform</td>
<td>High throughput DNA damage assay</td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
</tr>
<tr>
<td>peripheral blood micronucleus assay**</td>
<td>Chromosomal damage in erythrocytes, structural and/or numerical</td>
</tr>
<tr>
<td>comet assay in rodents**</td>
<td>DNA damage in a variety of target tissues (e.g., liver, brain, stomach, colon, lung)</td>
</tr>
<tr>
<td>Pig-a gene mutation assay in rodents***</td>
<td>Mutation induction in erythrocyte stem cells</td>
</tr>
<tr>
<td>Evaluation of genotoxicity biomarkers in humans</td>
<td>Translational studies in collaboration with the NIEHS CRU and other clinical centers</td>
</tr>
</tbody>
</table>

*OECD TG; required or accepted by regulatory agencies

#integrated into existing animal studies; ideal for human monitoring
MultiFlow® DNA Damage Assay

Multiplexed *in vitro* assay for genotoxicity prediction and mode of action in human TK6 cells

Rapid screening of large sets of compounds:
- 96-well plate format
- Multiple biomarkers of activity
- Automated, flow cytometric scoring

Assay detects 2 key endpoints strongly associated with genotoxicity potential
- Translocation of p53 to nucleus
- Phosphorylation of histone H2AX

Machine learning algorithm characterizes chemical activity
- Classifies compounds as genotoxic or non-genotoxic – can serve as a first pass screen for groups of compounds
- Provides MOA for micronucleus induction (clastogenic v. aneugenic)

Tested a variety of NTP compounds (genotoxic, nongenotoxic, variety of MOAs)
- Good agreement between NTP data and MultiFlow results
- Currently using this assay to provide both genotoxicity and mode of action information on selected groups of NTP compounds

High throughput *in vitro* comet assay to measure induced DNA damage

- Highly sensitive DNA damage detection platform due to large number of data points
- Suitable for testing large sets of compounds, multiple doses simultaneously
- Rapid throughput and data analysis via customized image and data analysis software

Validation study:

- 72 selected NTP compounds screened in TK6 and Jurkat cells
- Good concordance with NTP data

Currently using this assay platform to test selected groups of chemicals of interest to NTP

Each well in the 96-well plate has ~300 microwells

Image courtesy of Robert Sobol, Ph.D. University of South Alabama
Retain the Current Battery

- **Bacterial reverse mutation assays** – still the gold standard in mutagenicity testing (OECD TG; regulatory acceptance)

- **In vivo rodent erythrocyte micronucleus assays** in peripheral blood* (OECD TG; regulatory acceptance)

- **In vivo rodent comet assays*** to measure DNA damage levels in a variety of tissues (OECD TG; regulatory acceptance)

- **In vivo Pig-a gene mutation assay*** in mice and rats (OECD TG in preparation)

- **In vitro micronucleus** in human cell lines (OECD TG 487; regulatory acceptance)

- **In vitro comet assays** in human cell lines; supportive data, MOA information

- **In vitro MultiFlow™ and CometChip® assays** for increased throughput, initial screening for prioritization, and MOA information; supportive data in regulatory submissions

- **Continue to develop informative translational studies in humans**

* Easily integrated into NTP toxicity studies
Promising new approaches for enhancing genetic toxicology

• A variety of new molecular and high throughput approaches that hold great promise are currently under development in various laboratories. Examples include:

 – Emerging sequencing technologies (e.g., Duplex Sequencing, ccfDNA)

 – Identification of new biomarkers and gene expression patterns

 – Spheroids of human liver cells (e.g., HepaRG, PHH) for bioactivation – replace induced rat liver S9?

• The new contract needs the technical capability to determine if and how to use well-characterized, accepted cutting-edge approaches, should these show clear benefit for adding value to genotoxicity profiling

• Possible benefits offered by new approaches:

 – Additional insight into modes of action

 – Early indications of exposure hazard, before clonal expansion and tumor formation

 – High throughput approaches to screen large sets of compounds for genotoxicity potential
A Comprehensive Approach to Genetic Toxicity Testing

<table>
<thead>
<tr>
<th>Assay</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td></td>
</tr>
<tr>
<td>Bacterial mutation (Ames) assay*</td>
<td>Mutation induction</td>
</tr>
<tr>
<td>Micronucleus induction in mammalian cells*</td>
<td>Chromosomal damage</td>
</tr>
<tr>
<td>MultiFlow® DNA Damage assay</td>
<td>High throughput assay to identify genotoxicants, provide MOA for MN induction</td>
</tr>
<tr>
<td>Comet assay in mammalian cells</td>
<td>DNA damage</td>
</tr>
<tr>
<td>CometChip® Platform</td>
<td>High throughput DNA damage assay</td>
</tr>
<tr>
<td>Erythrocyte micronucleus assay# *</td>
<td>Chromosomal damage</td>
</tr>
<tr>
<td>Comet assay# *</td>
<td>DNA damage in a variety of target tissues</td>
</tr>
<tr>
<td>Pig-a assay</td>
<td>Mutation induction in erythrocyte stem cells</td>
</tr>
<tr>
<td>Evaluation of genotoxicity biomarkers in humans</td>
<td>Translational studies in collaboration with the NIEHS CRU and other clinical centers</td>
</tr>
<tr>
<td>Emerging sequencing technologies</td>
<td>Chemical-induced genomic changes</td>
</tr>
<tr>
<td>New biomarkers, gene expression patterns</td>
<td>Mode of action, human relevance</td>
</tr>
<tr>
<td>High throughput assays</td>
<td>Mutation and chromosome damage detection</td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
</tr>
<tr>
<td>Potential</td>
<td></td>
</tr>
</tbody>
</table>

*OECD TG; required or accepted by regulatory agencies

easily integrated into existing animal studies; ideal for human monitoring
• In reviewing the contract concept, please consider the following:
 – Scientific, technical or program significance of the proposed activity
 – Availability of the technology and other resources necessary to achieve required goals
 – Extent to which there are identified, practical scientific or clinical uses for the anticipated results
 – Where pertinent, adequacy of the methodology to be used in performing the activity

• Vote on whether a contract mechanism is the appropriate mechanism to support the proposed activities.