Converging on Cancer Workshop

Cynthia Rider, PhD, DABT
Toxicology Branch
Division of the National Toxicology Program
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting
June 18, 2019
• Strong interest
 – 130 registered for in-person attendance
 – ~500 registered for webcast
• Location: Washington DC, EPA William Jefferson Clinton Building
• Format: Plenary talks and breakout session work
• Themes for breakout session groups:
 – Hazard and risk assessment
 – Tools and technologies
 – Mixtures
Why did we have the workshop?

- Report on Carcinogens
 Use of mechanistic data in monographs

- Health Effect Innovation
 Modernizing Cancer Testing at NTP

- Testing Program
 Nomination of Low Dose Mixtures and Cancer

Engage experts and stakeholders in discussions to inform multiple NTP efforts
Why did we have the workshop?

• Multiple agencies use mechanistic data in evaluation of carcinogenicity
 – They are at different stages of developing more structured frameworks (e.g., key characteristics of carcinogens)
 – There are multiple tools for extracting, organizing, and visualizing mechanistic data

• Early communication and collaboration among agencies and with stakeholders on this topic is beneficial to all
Why did we have the workshop?

Factors to consider:
- Human relevance
- Purpose
- Regulatory confidence
- Validation
- Cost/time

NTP should be a leader in the effort to modernize carcinogenicity testing.
Why did we have the workshop?

- The Halifax Project hypothesis was nominated by the Environmental Working Group to NTP for testing

Halifax Hypothesis

Environmentally-relevant levels of noncarcinogenic chemicals interact with hallmark pathways to contribute cumulatively to the development of cancer

Goodson et al., 2015. Carcinogenesis 36: S254-296
Goals of Berkeley Working Group:

- Refine the key characteristics
- Develop a list of assays that map to cancer pathways
- Formulate hypotheses and testing approaches for environmental mixtures
Pre-workshop webinars

• The Path to Converging on Cancer
 – Cynthia Rider (NIEHS/NTP)

• Cancer Risk Assessment for Chemical Mixtures at US EPA
 – Glenn Rice (US EPA)

• Carcinogenicity Health Effects Innovation: Modernizing the NTP Approach for Assessing Carcinogenic Risk from Environmental Exposures
 – Warren Casey (NIEHS/NTP)

• The Key Characteristics of Carcinogens: Integration with the Hallmarks of Cancer and Assays and Biomarkers to Measure Them
 – Mark Fielden (Amgen)
Breakout session questions on mixtures

• What should we be studying (carcinogens or non-carcinogens)?
 – Should we be addressing the joint action of co-carcinogens below their individual cancer thresholds?
 – Should we focus on chemicals that are not carcinogens but target the Hallmarks/Key Characteristics and could contribute to cancer development jointly?

• How should we be studying them?
 – Can mixtures hypotheses be generalizable across cancer types?
 – When should they be specific to tumor types/incidence based on ADME principles and knowledge of key events for that cancer type?
Defining the problem

• Low dose
• Mixtures
• Cancer

Strategy

• Co-carcinogen
• Non-carcinogen
• Combination

Approaches

• Disease
• Model
• Pathway

Presenting options
Building on co-carcinogen research

- **Hypothesis:** Certain combinations of carcinogens will produce dose additive or greater-than-dose additive (i.e., synergistic) interactions when present jointly by targeting cooperative pathways

- **Research aim:** Identifying which causal pathway combinations are sufficient to elicit cancer
Co-carcinogen research plan

- Review of co-carcinogen research
- Map substances from co-carcinogen literature to Hallmark/Key Characteristic pathways
 - Expert judgment
- Highlight examples of mixtures studies that include multiple cancer pathways (e.g., genetic instability + immnosuppression)
- Identify promising combinations for study (indications of potential for synergy of pathways)
- Design combination studies to advance the science:
 - Moving beyond binary combinations (including 3 or more pathways)
 - Quantitative evaluation of joint effects based on pathway combinations
• Hypothesis: Non-carcinogenic chemicals that target Hallmark/Key Characteristic pathways can contribute to the development of cancer by creating optimal conditions (aka the perfect storm)

• Moving forward
 – Prioritize pathways for inclusion
 – Preference for “upstream” and “critical” pathways
 – Deprioritize pathways activated at later stages of cancer development
 – Screen environmental (non-carcinogenic) chemicals for pathway activation in battery of \textit{in vitro} assays mapped to pathways
 – Evaluate single chemicals and mixtures to explore pathway interactions in complex systems (e.g., 3D tissue and animal models)
Carcinogenic response (%)

- Pro-angiogenesis
- Metabolic disruption
- Sustained proliferation
- Immune modulation
- Genotoxic chemical (alone)

Dose

Carcinogenic response (%) 100

Non-carcinogen research plan

Immune modulation (alone)
Disease-centered approach

• Select a cancer of interest (e.g., breast cancer)
 – Ideal candidate: we know something about etiology, widespread occurrence (important public health concern)

• Identify a model that reflects the cancer type

• Identify pathways that are early stage events in the cancer type
 – For example, receptor-based pathway

• Select chemicals that target those pathways and are implicated for association with the cancer of interest (e.g., known presence in tissue)
Model-based approach

• Start with the model (e.g., rasH2 mice)

• Identify a tissue where cancer is likely to develop in that model (e.g., lung)

• Select pathways
 – Pathway 1: Sustained proliferation/evasion of cell death (human HRAS transgene)
 – Pathway 2: TBD
 – Pathway 3: TBD

• Select chemicals that hit those pathways and that will reach the tissue of interest
1. Frequency distribution of combinations of Key Characteristics exhibited by carcinogens

2. Select the most common combination set

3. Select chemicals that target those pathways

4. Select a model (and cancer type) appropriate for those pathways

Generating hypotheses via AOP networks

Increased proliferative signaling
- ERα agonism
- PCNA/Ki-67
- p53/p21 transcription
- Increased proliferation
- Hyperplasia

Decreased immune surveillance
- Inhibition of Calcineurin
- NFAT inhibition
- IL-2, INF-γ expression
- T-cell activation/proliferation
- Immune suppression

Angiogenesis
- nAChR Agonism
- MAPK, PI3K/Akt, and NFkB
- Endothelial cell proliferation
- Capillary network formation
- Pathological Angiogenesis

Oxidative stress
- Metabolic activation
- AChE Inhibition
- Production of ROS
- Lipid peroxidation
- Oxidative damage

Decreased DNA repair capacity
- unknown
- Down expression of DNA repair genes
- Increase in DNA damage

Molecular Initiating Event
- Key Event
- Key Event
- Key Event
- Adverse Outcome
- Adverse Outcome
Building a carcinogenicity toolbox

• Expert-driven approach
 – Identify assays/biomarkers that map to key characteristics of carcinogens/hallmarks of cancer

• Semi-supervised systematic review
 – Broad keyword search for all relevant scientific literature, abstract screening and tagging

• Applying HTS data
 – Prioritize environmental chemicals based on bioactivity against targets that map to KCs/HMs
 – Construct QSAR models for key characteristics

From Nicole Kleinstreuer
What technology holds the most promise?
What cancer type should we focus on?

- Recommended cancer type(s) for study:
 - Most prevalent
 - Most deadly
 - Most well-understood
 - Availability of a good animal model
 - Existence of a significant database of known carcinogens
 - Discussion of cancer clusters to identify risk factors

- Answers from poll: breast, liver, colon, lung
Developing a mixtures research plan

- Build on co-carcinogen research: 73%
- Focus on non-carcinogens: 27%
What should our starting point be?

- Disease (i.e., specific cancer type): 48%
- Animal model: 11%
- Pathways: 40%
Path forward

• Outcomes from the workshop
 – Slides posted to website
 – Workshop report in progress

• Influence on NTP programs
 – Successful dissemination of information on current relevant NTP activities (e.g., cancer HEI, development of RoC framework for incorporating mechanistic data) and engagement with stakeholders
 – Clear feedback from experts on design of a research program on mixtures and cancer
Actionable information for testing program

• Focus on combining co-carcinogens as a first priority
 – Considered to be more tractable option
 – Support for pursuing non-carcinogen research in the future

• Use a disease-centered approach

• Recommended cancer types: breast, liver, colon
 – Identify appropriate animal model(s)
 – Build AOP-based hypotheses
Acknowledgements

EPA
Dahnish Shams
Rachel Lehman
Johanna Congleton
Catherine Gibbons

ICF
Laura Thomas
Lindsey Green
Canden Byrd

Attain
Nathan Mitchiner

PISC
Amy Clippinger
Gina Hilton
Hunter Noffsinger

Workshop planning committee
Nicole Kleinstreuer
Martyn Smith
Leroy Lowe
Bill Goodson
Weihsueh Chiu
Olga Naidenko
Johanna Congleton
Lauren Zeise

Pre-workshop webinar speakers
Mark Fielden
Glenn Rice
Warren Casey

Workshop speakers

Poster presenters

Breakout session participants

Sincere thank you to all who responded to the RFI, submitted answers to our questions, and participated in the workshop via webcast or in person!