

NTP Monograph on the

Systematic Review of Long-term Neurological Effects Following Acute Exposure to Sarin

Andrew Rooney, PhD

Office of Health Assessment and Translation
Division of the National Toxicology Program
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting June 18, 2019

- Synthetic compound, related to organophosphate insecticides
- One of the "G-series" less persistent nerve agents discovered and synthesized in Germany in 1930s and 1940s
- Use as a chemical weapon due to extreme potency as nerve agent
 - Attacks the nervous system by blocking action of the enzyme acetylcholinesterase to prevent the break down of acetylcholine
 - Excess acetylcholine in nerve synapses leads to overstimulation (cholinergic crisis) of nerves and muscles, which can affect all organ systems

Health Effects of Sarin Exposure

- Acute effects of sarin exposure are well known
 - Most symptoms are from inhibition of acetylcholinesterase and the cholinergic syndrome of overstimulation of nerves and muscles
 - Range of symptoms from drooling or excessive sweating, to paralysis, convulsions, respiratory failure, and death
- Long-term neurological effects of exposure to sarin are not well characterized in humans
- National Academies of Sciences review (NAS 2004)
 - Sufficient evidence for ACUTE effects
 - Limited evidence for LONG-TERM effects

Countermeasures Against Chemical Threats Program

- The CounterACT program, a trans-NIH initiative, promotes the development of medical countermeasures to prevent and treat conditions caused by potential and existing chemical threats
- CounterACT requested that NTP conduct a systematic review of the evidence for long-term neurological health effects of sarin to
 - Characterize the evidence for long-term neurological effects following acute exposure to sarin, and
 - Inform the potential need to develop therapeutics to treat long-term neurological effects

NTP Monographs

Office of Health Assessment and Translation (OHAT)

 OHAT develops literature-based evaluations to assess the evidence that environmental substances cause health effects

 Evaluations are conducted following the OHAT Approach for Systematic Review and Evidence Integration

 When the evidence is sufficient to support conclusions, the resulting NTP Monograph describes the methods, results, and NTP hazard conclusions

Systematic Review and Evidence Integration

Systematic Review

A predefined, multistep process to identify, select, critically assess, and synthesize data from published studies to answer a specific question

Systematic Review Process

- Develop specific research question and protocol
- Perform comprehensive literature search
- Select relevant studies and extract data
- Assess individual study quality
- Data analysis

Evidence Integration

A process for developing hazard conclusions by integrating evidence from human and experimental animal studies with consideration of the degree of support from mechanistic data

NTP Monograph on Sarin

Systematic Review of Evidence for Long-term Neurological Effects

Objective

To evaluate the evidence for long-term neurological effects in humans and animals following acute exposure to sarin

Long-term effects
 For nerve agents, defined as any effect >24 hours after exposure

- 3 post-exposure time periods
 Evidence of effects characterized within separate time periods
 - "Initial": >24 hours to 7 days after exposure
 - "Intermediate": 8 days to 1 year after exposure
 - "Extended": >1 year after exposure

Literature Search and Screening

Extract Data and Evaluate Individual Studies

- Identifying Evidence
- Extract data into web-based project pages

Evaluating Evidence

Assess individual study quality or internal validity

Results

Consideration of Sarin Health Effects Evidence

- Integrating Evidence
 - Results were grouped according to same or similar outcomes to develop bodies of evidence

4 main health effect categories were identified

Evidence Integration: Rating Confidence in the Body of Evidence

 Rating is a measure of how confident you are that findings from a group of studies reflect the true relationship between exposure to a substance and effect

Methods for Developing NTP Monographs

Integrate Evidence to Develop Hazard Conclusions

For each time period:

Conclusions with highest level of evidence were used to reach the overall conclusions

(1) Initial Hazard Conclusion

Consider human and animal evidence together

(2) Final Hazard Conclusion

Consider impact of any relevant mechanistic data and biological plausibility of effect

Assess if there is:

- Strong support to increase hazard ID
- Strong opposition to decrease hazard ID

4-Level hazard scale

known, presumed, suspected, and not classifiable

Peer Review of Draft NTP Monograph

Pam Factor-Litvak, PhD
 Professor of Epidemiology,

Columbia University Medical Center, New York, NY

Frédéric Baud, MD
 Dept of Anesthesiology and Intensive Care Medicine

Université Paris Diderot, Paris France

John Beard, PhD
 Department of Public Health

Brigham Young University, Provo UT

Peter Blain, MD
 Medical Toxicology Research Centre

Newcastle University, Newcastle, England

Michelle Block, PhD
 Department of Anatomy and Cell Biology

Indiana University School of Medicine, Indianapolis, IN

Arik Eisenkraft, MD
 Adjunct Clinical Senior Lecturer in Military Medicine

Hebrew University Faculty of Medicine, Tel-Mond, Israel

Lawrence Engel, PhD
 Department of Epidemiology

University of North Carolina, Chapel Hill, NC

Virginia Moser, PhD U.S. Environmental Protection Agency (retired)

Apex, NC

Pam Factor-Litvak, PhD Chair

Conclusion for Each Time Period

Peer Review of NTP's Draft Conclusions

- Initial time period: Effects 1 to 7 days after exposure
 - Known to be a long-term neurological hazard to humans
 - Based on suppression of cholinesterase which results in nervous system disruption due to acetylcholine buildup

The panel agreed with the draft NTP conclusion

Conclusion for Each Time Period

Peer Review of NTP's Draft Conclusions

- Intermediate time period: 8 days to 1 year after exposure
 - Suspected to be a long-term neurological hazard to humans
 - Based on multiple effects including suppression of cholinesterase, visual and ocular effects, effects on learning and memory, and morphological and histological changes in nervous system tissue
 - Expert panel had lower confidence in the body of evidence for learning and memory and suggested not using it to support the hazard conclusion

The panel agreed with the draft NTP conclusion

Conclusion for Each Time Period

Peer Review of NTP's Draft Conclusions

- Extended time period: >1 year after exposure
 - Suspected to be a long-term neurological hazard to humans
 - Based on multiple effects including effects on learning and memory effects and morphological and histological changes in nervous system tissue

The panel agreed with the draft NTP conclusion

Looping Back to NIH CounterACT in the Pipeline

The translation of the NTP Sarin Monograph into tangible impact is in process with NIH CounterACT

- Support ongoing research by HHS and DoD on the long-term effects of sarin and related compounds.
- Identify research gaps in our knowledge of the effects of sarin and potentially for similar nerve agent chemical threats.
- Identify specific health outcomes that would require medical intervention.
- Provide human and animal supportive evidence for the justification of FDA approvals of drug candidates that reduce long-term effects of sarin and related chemical threats.

Acknowledgments

Monograph Development

The evaluation team

Draft and DNTP Internal Review

- John Bucher, NIEHS/DNTP
- Suril Mehta, NIEHS/DNTP
- Kyla Taylor, NIEHS/DNTP
- Mamta Behl, NIEHS/DNTP
- Brandy Beverly, NIEHS/DNTP
- Kembra Howdeshell, NIEHS/DNTP
- Vickie Walker, NIEHS/DNTP
- Windy Boyd, NIEHS/DNTP

Technical Review

Jonathan Newmark, US Army retired

Protocol Review

- Roberta Scherer, Johns Hopkins
- Jonathan Newmark, US Army retired

Management of the Peer Review

- Mary Wolfe, NIEHS/DNTP
- Elizabeth Maull, NIEHS/DNTP
- Canden Byrd, ICF

Evaluation Team

Name	Affiliation
Andrew A Rooney, PhD	NIEHS/DNTP, Project Lead
David Jett, PhD	NIH/NINDS, Project Lead
Kyla Taylor, PHD	NIEHS/DNTP
Vickie Walker	NIEHS/DNTP
Pamela Lein, PhD	UC Davis School of Veterinary Medicine
Alicia Livinski	NIH/OD/ORS
Constance McKee	i2 Grants Associates, LLC
Christina C. Niemeyer, PhD	i2 Grants Associates, LLC
Louise Assem, PhD	ICF a
Robyn Blain, PhD	ICF abdef
Natalie Blanton, MPH	ICF a
Jeremy S. Frye, MLS	ICF a
Susan Goldhaber, MPH	ICF de
Ali Goldstone, MPH	ICF ^f
Pamela Hartman, MEM	ICF abce
Kaedra Jones, MPH	ICF ^e
Courtney Lemeris	ICF ^d
Camryn Lieb	ICF a
Kristen Magnuson, MESM	ICF ^{df}
Maureen Malloy	ICF ^e
Devon Morgan	ICF ^a
Pam Ross, MSPH	ICF de
Johanna Rochester, PhD	ICF ^d
Alessandria Schumacher	ICF a
Robert Shin, MHS	ICF ae
Kelly Shipkowski, PhD	ICF d
Christopher Sibrizzi, MPH	ICF abdef
Nicole Vetter, MLS	ICF ^a
Ashley R. Williams, MSEE	ICF d

Thank you

Questions?