• Synthetic compound, related to organophosphate insecticides

• One of the “G-series” less persistent nerve agents discovered and synthesized in Germany in 1930s and 1940s

• Use as a chemical weapon due to extreme potency as nerve agent
 – Attacks the nervous system by blocking action of the enzyme acetylcholinesterase to prevent the break down of acetylcholine
 – Excess acetylcholine in nerve synapses leads to overstimulation (cholinergic crisis) of nerves and muscles, which can affect all organ systems
Health Effects of Sarin Exposure

- Acute effects of sarin exposure are well known
 - Most symptoms are from inhibition of acetylcholinesterase and the cholinergic syndrome of overstimulation of nerves and muscles
 - Range of symptoms from drooling or excessive sweating, to paralysis, convulsions, respiratory failure, and death

- Long-term neurological effects of exposure to sarin are not well characterized in humans

- National Academies of Sciences review (NAS 2004)
 - Sufficient evidence for ACUTE effects
 - Limited evidence for LONG-TERM effects
The CounterACT program, a trans-NIH initiative, promotes the development of medical countermeasures to prevent and treat conditions caused by potential and existing chemical threats.

CounterACT requested that NTP conduct a systematic review of the evidence for long-term neurological health effects of sarin to:

- Characterize the evidence for long-term neurological effects following acute exposure to sarin, and
- Inform the potential need to develop therapeutics to treat long-term neurological effects.
Office of Health Assessment and Translation (OHAT)

- OHAT develops literature-based evaluations to assess the evidence that environmental substances cause health effects.

- Evaluations are conducted following the OHAT Approach for Systematic Review and Evidence Integration.

- When the evidence is sufficient to support conclusions, the resulting NTP Monograph describes the methods, results, and NTP hazard conclusions.

https://ntp.niehs.nih.gov/go/ohat
Systematic Review

A predefined, multistep process to identify, select, critically assess, and synthesize data from published studies to answer a specific question.

Systematic Review Process

- Develop specific research question and protocol
- Perform comprehensive literature search
- Select relevant studies and extract data
- Assess individual study quality
- Data analysis

Evidence Integration

A process for developing hazard conclusions by integrating evidence from human and experimental animal studies with consideration of the degree of support from mechanistic data.
Systematic Review of Evidence for Long-term Neurological Effects

- **Objective**
 To evaluate the evidence for long-term neurological effects in humans and animals following acute exposure to sarin

- **Long-term effects**
 For nerve agents, defined as any effect >24 hours after exposure

- **3 post-exposure time periods**
 Evidence of effects characterized within separate time periods
 - “Initial”: >24 hours to 7 days after exposure
 - “Intermediate”: 8 days to 1 year after exposure
 - “Extended”: >1 year after exposure

https://ntp.niehs.nih.gov/go/sarin
References identified through database searches (n=8,279)

References after duplicate removal
Title-abstract screened for relevance and eligibility (n=6,837)

Full-text references assessed for relevance and eligibility (n=497)

References excluded for pre-established criteria (n=6,340)

Full-text references excluded for pre-established criteria, with reasons
• Not long-term exposure (n=104)
• Exposure not relevant (n=86)
• Outcome not relevant (n=65)
• Review (n=61)
• Other (n=96)
 • Meeting abstract only (n=64)
 • Non-English (n=24)
 • Unpublished studies (n=8)
 reviewed but not included

References included for data extraction, risk-of-bias assessment (n=85)

Human studies (n=34) Animal studies (n=51)
Extract Data and Evaluate Individual Studies

• Identifying Evidence

 Extract data into web-based project pages

• Evaluating Evidence

 Assess individual study quality or internal validity

https://hawcproject.org/assessment/302/
Consideration of Sarin Health Effects Evidence

- Integrating Evidence
 - Results were grouped according to same or similar outcomes to develop bodies of evidence

4 main health effect categories were identified:

- Visual
- Ocular
- Learning
 - Memory, and Intelligence
- Cholinesterase levels
- Nervous System
 - Morphology and Histology

Systematic Review

- Planning and Protocol
 - Identify Evidence
 - Evaluate Evidence
 - Evidence Integration
Evidence Integration: Rating Confidence in the Body of Evidence

• Rating is a measure of how confident you are that findings from a group of studies reflect the true relationship between exposure to a substance and effect

• Confidence rating developed within a GRADE framework
 Performed separately for human and animal bodies of evidence on outcome basis

Factors Increasing Confidence
• magnitude of effect
• dose response
• consistency (e.g., species)
• residual confounding
• other

Factors Decreasing Confidence
• unexplained inconsistency
• risk of bias
• indirectness/applicability
• imprecision
• publication bias

Grading of Recommendations, Assessment, Development and Evaluations (GRADE)

Experimental Animal 4-features

- Controlled exposure
- Exposure prior to outcome
- Individual outcome data
- Comparison group used

Initial confidence set based on 4-features

Initial Confidence

<table>
<thead>
<tr>
<th>Features</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very Low (+)</td>
</tr>
<tr>
<td>2</td>
<td>Low (++)</td>
</tr>
<tr>
<td>3</td>
<td>Moderate (+++)</td>
</tr>
<tr>
<td>4 or more</td>
<td>High (++++)</td>
</tr>
</tbody>
</table>

Sarin Systematic Review
Integrate Evidence to Develop Hazard Conclusions

For each time period:
Conclusions with highest level of evidence were used to reach the overall conclusions

(1) Initial Hazard Conclusion
Consider human and animal evidence together

(2) Final Hazard Conclusion
Consider impact of any relevant mechanistic data and biological plausibility of effect

Assess if there is:
- Strong support to increase hazard ID
- Strong opposition to decrease hazard ID

4-Level hazard scale
known, presumed, suspected, and *not classifiable*
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pam Factor-Litvak, PhD</td>
<td>Professor of Epidemiology, Columbia University Medical Center, New York, NY</td>
</tr>
<tr>
<td>Frédéric Baud, MD</td>
<td>Dept of Anesthesiology and Intensive Care Medicine Université Paris Diderot, Paris France</td>
</tr>
<tr>
<td>John Beard, PhD</td>
<td>Department of Public Health Brigham Young University, Provo UT</td>
</tr>
<tr>
<td>Peter Blain, MD</td>
<td>Medical Toxicology Research Centre Newcastle University, Newcastle, England</td>
</tr>
<tr>
<td>Michelle Block, PhD</td>
<td>Department of Anatomy and Cell Biology Indiana University School of Medicine, Indianapolis, IN</td>
</tr>
<tr>
<td>Arik Eisenkraft, MD</td>
<td>Adjunct Clinical Senior Lecturer in Military Medicine Hebrew University Faculty of Medicine, Tel-Mond, Israel</td>
</tr>
<tr>
<td>Lawrence Engel, PhD</td>
<td>Department of Epidemiology University of North Carolina, Chapel Hill, NC</td>
</tr>
<tr>
<td>Virginia Moser, PhD</td>
<td>U.S. Environmental Protection Agency (retired) Apex, NC</td>
</tr>
</tbody>
</table>

Peer Review Meeting at NIEHS Research Triangle Park, NC and via WebEx on Feb 4, 2019

https://ntp.niehs.nih.gov/go/meetings
Conclusion for Each Time Period

Peer Review of NTP’s Draft Conclusions

• **Initial time period:** Effects 1 to 7 days after exposure

 – *Known to be a long-term neurological hazard to humans*

 – Based on suppression of cholinesterase which results in nervous system disruption due to acetylcholine buildup

The panel agreed with the draft NTP conclusion
Peer Review of NTP’s Draft Conclusions

• **Intermediate time period**: 8 days to 1 year after exposure
 - *Suspected to be a long-term neurological hazard to humans*
 - Based on multiple effects including suppression of cholinesterase, visual and ocular effects, effects on learning and memory, and morphological and histological changes in nervous system tissue.
 - *Expert panel had lower confidence in the body of evidence for learning and memory and suggested not using it to support the hazard conclusion*

The panel agreed with the draft NTP conclusion
Peer Review of NTP’s Draft Conclusions

- **Extended time period:** >1 year after exposure
 - Suspected to be a long-term neurological hazard to humans
 - Based on multiple effects including effects on learning and memory effects and morphological and histological changes in nervous system tissue

The panel agreed with the draft NTP conclusion
The translation of the NTP Sarin Monograph into tangible impact is in process with NIH CounterACT

- Support ongoing research by HHS and DoD on the long-term effects of sarin and related compounds.
- Identify research gaps in our knowledge of the effects of sarin and potentially for similar nerve agent chemical threats.
- Identify specific health outcomes that would require medical intervention.
- Provide human and animal supportive evidence for the justification of FDA approvals of drug candidates that reduce long-term effects of sarin and related chemical threats.
Acknowledgments

• **Monograph Development**
 – The evaluation team

• **Draft and DNTP Internal Review**
 – John Bucher, NIEHS/DNTP
 – Suril Mehta, NIEHS/DNTP
 – Kyla Taylor, NIEHS/DNTP
 – Mamta Behl, NIEHS/DNTP
 – Brandy Beverly, NIEHS/DNTP
 – Kembra Howdeshell, NIEHS/DNTP
 – Vickie Walker, NIEHS/DNTP
 – Windy Boyd, NIEHS/DNTP

• **Technical Review**
 – Jonathan Newmark, US Army retired

• **Protocol Review**
 – Roberta Scherer, Johns Hopkins
 – Jonathan Newmark, US Army retired

• **Management of the Peer Review**
 – Mary Wolfe, NIEHS/DNTP
 – Elizabeth Maull, NIEHS/DNTP
 – Canden Byrd, ICF

Evaluation Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew A Rooney, PhD</td>
<td>NIEHS/DNTP. Project Lead</td>
</tr>
<tr>
<td>David Jett, PhD</td>
<td>NIH/NINDS. Project Lead</td>
</tr>
<tr>
<td>Kyla Taylor, PhD</td>
<td>NIEHS/DNTP</td>
</tr>
<tr>
<td>Vickie Walker, PhD</td>
<td>NIEHS/DNTP</td>
</tr>
<tr>
<td>Pamela Lein, PhD</td>
<td>UC Davis School of Veterinary Medicine</td>
</tr>
<tr>
<td>Alicia Livinski</td>
<td>NIH/OD/ORF</td>
</tr>
<tr>
<td>Constance McKee</td>
<td>I2 Grants Associates, LLC</td>
</tr>
<tr>
<td>Christina C. Niemeyer, PhD</td>
<td>I2 Grants Associates, LLC</td>
</tr>
<tr>
<td>Louise Assem, PhD</td>
<td>ICF</td>
</tr>
<tr>
<td>Robyn Blein, PhD</td>
<td>ICF</td>
</tr>
<tr>
<td>Natalie Banton, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Jeremy S. Frye, MLS</td>
<td>ICF</td>
</tr>
<tr>
<td>Susan Goldhaber, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Ali Goldstone, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Pamela Hartman, MEM</td>
<td>ICF</td>
</tr>
<tr>
<td>Kaedra Jones, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Courtney Lemenes</td>
<td>ICF</td>
</tr>
<tr>
<td>Camryn Lieb</td>
<td>ICF</td>
</tr>
<tr>
<td>Kristen Magnuson, MIESM</td>
<td>ICF</td>
</tr>
<tr>
<td>Maureen Malloy</td>
<td>ICF</td>
</tr>
<tr>
<td>Devon Morgan</td>
<td>ICF</td>
</tr>
<tr>
<td>Pam Ross, MSPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Johanna Rochester, PhD</td>
<td>ICF</td>
</tr>
<tr>
<td>Alessandra Schumacher</td>
<td>ICF</td>
</tr>
<tr>
<td>Robert Shin, MHS</td>
<td>ICF</td>
</tr>
<tr>
<td>Kelly Shipkowski, PhD</td>
<td>ICF</td>
</tr>
<tr>
<td>Christopher Szollosi, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Nicole Vetter, MLS</td>
<td>ICF</td>
</tr>
<tr>
<td>Ashley R. Williams, MSEE</td>
<td>ICF</td>
</tr>
</tbody>
</table>

Thank you

Questions?