

Looking Forward: Innovation in the NIEHS Division of the National Toxicology Program

Brian R. Berridge, DVM, PhD, DACVP Division of the NTP National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting December 8, 2021

National Institutes of Health • U.S. Department of Health and Human Services

Innovation as a Theme

"Lead the transformation of toxicology through the development and application of innovative tools and strategies."

Translational Toxicology Pipeline

It's not just about having the tools but also how you use them!

Concept introduced in 2018

Fundamental changes

- purposeful integration
- iterative learning ۲
- informed progression
- hypothesis-driven

National Institute of Environmental Health Sciences

Division of the National Toxicology Program

Translational Toxicology Pipeline 2021

Innovating the Translational Toxicology Pipeline

Incremental --> Disruptive

Advances in Evidence Informatics

- Leveraging informatics to support evidence-based decisions
 - Identify, adapt, and develop a toolbox of informatics approaches to advance our ability to turn data into knowledge for understanding health effects from environmental exposures
 - Improve workflow, reduce manual workload, identify tools for the range of DNTP users
 - Support synthesis through identification and categorization to better link mechanism to experimental and epidemiological data

Systems-based HTP Screening

Tox21- 10K chemicals, 70+ assays

CV-relevant Bioactivity Targets

Defined biological framework

Literature mining

Slice	Target name	Effect		Reference	Slice Color
ADORA	Adenosine Receptor	Vasodialation, alterations in BP		Bowes et al., 2012	
ADR	Adrenergic Receptor	Arrhythmia, Alterations in BP		Bowes et al., 2012	
CHRM	Muscarinic Acetylcholine Receptor	Alterations in BP and HR, tachycardia		Bowes et al., 2012	
DRD	Dopamine Receptor	Alterations in BP and HR, Vascular relaxation		Bowes et al., 2012	
EDNR	Endothelin Receptor	Alterations in BP, Can exert adverse effects	during	Bowes et al., 2012	
HTR	Serotonine Receptor	Alterations in BP. Potential cardiac valvulopathy		Bowes et al., 2012	
AVPR	Vasopressin Receptor	Alterations in BP and HR. Cardiac hypertrophy		Bowes et al., 2012	_
HRH	Histamine Receptor	Positive inotropy		Bowes et al. 2012	
OPR	Opioid Receptor	Alterations in BP and Cardiac contritility		Bowes et al. 2013	
CHRNA	Cholinergic receptor	Alterations in BP and HR		Bowes et al., 2012	
SCN1A	Voltage-gated Sodium Channel	Slowed cardiac conduction: prolonged ORS interval		Bowes et al. 2012	
	Voltage-Gated Calcium Channel	Alterations in BP OT prolongation Arrbyth	mia	Bowes et al. 2012	
KCNH2	Potassium Voltage Gated Channel	OT prolongation		Bowes et al. 2012	
VEGE	Vascular Endothelial Growth Factor	Alterations in P.P. Cardina Isohomia		Tours & Herrmann 2018	
VascularTissuo	Vascular Tissue	Myocardial ischamia, cardiac Arrhythmias			
OxidativeStreet	Oxidative Stress	Cellular Hypertrophy: Cardiac Cell Death		Takimoto & Kass 2007	
MtDysfunction	Mitochondrial Dysfunction	Cardiac dustunction: Cardiomyonathy		Marin-Garcia 2003	
TissueFeeter	Tissue Faster	Alterations in PB and ventricular hypothemetron		Rede & Maskman 2015	
PDE	Phose hadiostarase	Alterations in or and ventricular hypertrophy		Bode & Mackman, 2013	_
	Menosphodiesterase	Alterations in cardiac contractility, HK and BP		Bowes et al., 2012	
	Nonoamine Oxidase	Alterations in BP		Bowes et al., 2012	
	c-Jun N-terminal kinase	Alterations in P.D. IV dysfunction, conduction abnormalities		Ismara Kabukan Datara 8	_
Turkinger	Turnesine Kinese	Alterations in BP, LV dystalletion, conduction	autormaticies,	Lamore, Konnken, Peters, &	
AreBre	Arematase Protein			Kolaja, 2020	_
Aropro	Aromatase Protein	ischemic heart disease		Knosrow-Knavar et al., 201	/
ACHE	Acetylcholinesterase	nesterase Alterations in BP and HR		Bowes et al., 2012	_
COV	Myocardial infarction; Alteration in BP; Ischaemic		nić stroke;	Developed at al. 2012	
COX	Cyclooxygenase	Atherothrombosis		Bowes et al., 2012	
FRAInha	Estrogon recentor Alpha	Abusernal seveling severe stilling seveling hypertraphy		Langer & Leinwand 2016	
NP3C1	Glucocorticoid recentor	Alterations in BP: Arrhythmia		Bowes et al 2012	
	Peroxisome Proliferator	xisome Proliferator Alterations in BP; Arrnythmia		Dowes et al., 2012	
PPARG	Activated Receptor Gamma	Cardiac hypertrophy . Atherosclerosis		Das & Chakrabarti, 2006	
AHR	Aryl hydrocarbon receptor	Endothelial dysfunction, Atherosclerosis		Wu et al.,2011	
AP1	Activator protein1	Atherosclerosis		Meijer et al., 2012	
HIF1A	Hypoxia Inducible Factor1Alpha	Ischaemia disease		Semenza, 2014	
NFKB	NF Kappa B	Atherosclerosis		Fiordelisi et al, 2019	
TP53	Tumor Protein p53	Alteration in cardiac function		Mercer & Bennett, 2006	
ICAM-1	Intercellular adhesion molecule-1	Markers of endothelial dysfunction		Boyd et al., 2008	
ILG	Interleukin 6	Markers of inflammation and oxidative stress		Chu et al., 2020	
t-PA	Tissue Type plasminogen activator	Markers of endothelial dysfunction		Mason, 2017	
PAI -1	Plasminogen activator inhibitor	Markers of endothelial dysfunction		Mason, 2017	
		Release in response to elevation in LV filling pressure and			
NPA	Natriuretic peptide A	wall stross		0	01
		Direct promotion of vascular dysfunction throu	Krishna,	S., et al (2020).	Chemica
SAA1	Serum amyloid A1	vascular tissues	Researc	h in Toxicology	
		Pulmonary Hypertension, Cardiac Arrhythr			
SICEA	Seratonin transporter	Valve Abnormalities		Bowes et al 2012	
JUGON	our of other management			201103 01 01., 2012	

e.g., Tributyltin Chloride Bioactivity

Uses: marine anti-fouling paints, antifungal, plastics stabilizer

National Institute of Environmental Health Sciences

Division of the National Toxicology Program

Complex In Vitro Systems

Human Microphysiological System Exploration & Qualification

Assays & Analytics

- Cardiovascular injury
- Cellular & molecular mechanisms
 of pathophysiological response
- Human translation

- Metabolic activation of toxicity
- Hepatic filtration & metabolism
- Cellular & molecular mechanisms
 of pathophysiological response
- Human translation

- Renal toxicity of the proximal tubule
- Proximal tubule
 transport & metabolism
- Renal clearance & bioaccumulation
- Human translation

In Vitro Models of Human Disease

healthy heart

obesity heart

- Disease state susceptibility (Hypertrophic Cardiomyopathy, Long QT syndrome, dilated cardiomyopathy etc.)
- Inflammation
- Fibrosis
- Hypoxia, I/R injury

- Hepatocellular carcinoma (HCC)
- Susceptibility from non-alcoholic fatty liver disease, hyperglycemia
- Fibrosis
- Genetic disorders & metabolism
- Interindividual susceptibility

- Renal proximal tubule
 - Chronic hyperglycemia
 - Hypoxia
 - Dehydration & CKDu
 - Fibrosis
- Renal cell carcinoma (RCC)
- Genetic disorders

Multiscale Modeling

Data Integration and Modeling

Genome-Scale

Translation

•

Prediction • Kinetic

٠

- Sex as a biological variable
- Population variability and susceptibility

CV Hazards of HIV Therapeutics

CV Hazards of HIV Therapeutics

Genetic Susceptibility

- Tox21 partner project testing an *in vitro* DO panel of unique neural progenitor cell lines for determining empirically based toxicodynamic variability factors.
 - Variability in cytotoxicity data, was comparable to that seen with human cells lines
 - Current work using cell painting data in over 100 DO cell lines to investigate sub-cytotoxic effects that can be quantified using high content imaging.
- Utility of DO to assess population variability *in vivo* for select agents for hazard ID, characterization and doseresponse
 - JAX collaboration for short term toxicity studies in DO mice

Chamical	TDVF05 (90% CI)					
Chemical	DO Mouse NPCs	Human LCLs ¹				
IPP	1.71 (1.60, 1.86)	-				
Estradiol	1.82 (1.66, 2.05)	_				
BDE 99	2.39 (2.00, 2.96) -					
Dieldrin	2.80 (2.42, 3.33)	3.76				
	Default factor = 3.16					
Rotenone	11.2 (7.51, 19.1)	-				
MeHgCl	26.9 (10.3, 109)	16.03				

Animal study outcomes can be significantly improved by contextualizing mechanistic outcomes in a dynamic and continuous assessment of physiology and behavior

- Utilizing a holistic approach that is
 - Integrative
 - Expanded focus beyond a single organ system
 - Translational
 - Focused on translational clinically relevant endpoints
 - Continuous and automated
 - · Leveraging emerging technologies to collect more data in an automated way
- Collaboration with DIR investigators and other ICs
 - Establishment of a dedicated animal research core at NIEHS

Artificial Intelligence in Toxicologic Pathology

- Artificial Intelligence (AI) now routinely used in diagnostic toxicologic pathology
- Automated, faster, reduce costs, improve diagnostic accuracy, consistency, and workflow
- Being used to screen, detect, and diagnose histopathological lesions
- Establishing an AI Core in CMPB to use this innovative technology for DNTP/NIEHS
 - PhD contractor scientist hired to provide expertise
 - Initiated a continuing education seminar series in AI in summer 2021
- Completed a study developing and training an AI algorithm to diagnose mouse lung tumors

Translational Human Research

Linking Exposures to Disease

- There is a long history of innovation at DNTP where we've actively and continuously refined our organizational processes and structure as well as been leaders in developing novel approaches to environmental hazard assessment.
- Despite the innumerable distractions of the last few years, we've significantly increased our efforts to innovate the way toxicology is applied in hazard identification and characterization.
 - We've embraced our intent to be more predictive and translational.
- All of our efforts to innovate the way we operate and execute our science are aligned to contemporary problems we're trying to solve.
- We look forward to sharing the outcomes of these efforts as we share the progress and outcomes of our strategic and prioritized portfolio.

Thank you!

Questions?