

Combined Exposures and Mixtures Program

Cynthia Rider, PhD, DABT Division of the NTP National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting February 2, 2021

Combined Exposures and Mixtures

Program Management Team

Kembra Howdeshell Integrative Health Assessments Branch

Jui-Hua Hsieh Predictive Toxicology Branch

Cynthia Rider Systems Toxicology Branch

Nigel Walker Systems Toxicology Branch

Combined Exposures and Mixtures

Problem statement

- Challenges persist in characterizing exposure to mixtures, evaluating their toxicity and hazard, and assessing associated risk.
- There is inconsistent use of available mixture methods and uncertainties in their application.
- Lack of harmonized terminology and methods comparisons complicate information synthesis and impede the use of mixtures data in decision-making.

Definitions

- Defined mixture A mixture in which all components are identified and quantified.
- Complex mixture A mixture of many constituents with some unidentified fraction (e.g., effluent sample, diesel exhaust).
- Exposome Totality of exposures over a lifetime.
- Whole mixture approach Considers the complete mixture. A whole mixture can be simple (containing few constituents) or complex.
- Component-based approach Considers the components (aka constituents) in order to understand the mixture.

Historical Perspective

Mixture Risk Assessment Context

- 1. Develop and apply a disease-centered systems biology approach for prioritizing mixtures for toxicological and hazard characterization to inform cumulative risk evaluation.
- 2. Develop and apply methods for complex mixture testing and data interpretation to inform risk assessment of whole mixtures.
- 3. Apply component-based approaches by experimentally evaluating defined mixtures and using predictive modeling approaches (e.g., dose addition, response addition) and compare the results with alternative whole mixture evaluation.

- Currently, chemicals are grouped based on similar mechanism of action (e.g., dioxins, organophosphates, polycyclic aromatic compounds) or co-occurrence (Superfund site) due to:
 - Legislative mandates (e.g., Food Quality Protection Act)
 - Pragmatism
 - Scientific support for the use of dose addition with chemicals that have similar mechanisms
 of action
- These approaches for determining which chemicals to include in mixtures risk assessments are not necessarily the most protective or the most scientifically sound.

FACTORS INFLUENCING THE RISK OF CVD:

Developed by C. Menzie for EPA Cumulative Risk Assessment Workshop

Hypothesis: Chemicals that target disparate signaling pathways contribute cumulatively to disease development, and their joint action can be estimated using mixture modeling approaches.

Approach: Develop mixtures projects focused on diseases that are priority areas of interest for DNTP

- Cancer
- Cardiovascular disease

Disease-centered approach

Develop and apply methods for complex mixture testing and data interpretation to inform risk assessment of whole mixtures

- Apply targeted and non-targeted chemical analyses, in vivo bioassays, and literature review methods for complex mixture testing and data interpretation to inform risk assessment.
- Develop methods for complex mixture evaluation including sufficient similarity, polypharmacokinetics, and bioassay-guided fractionation to identify toxic constituents.
- Provide DNTP research support for the Botanical Safety Consortium a public-private partnership aimed at developing a toolbox of in vitro assays for identifying hazards associated with botanical ingredients.

Apply targeted and non-targeted chemical analyses, in vivo bioassays, and literature review methods

- Botanical testing program (e.g., Garcinia cambogia, black cohosh extract, Echinacea purpurea)
- Woodsmoke cancer hazard evaluation
- Personal care products health hazard evaluations (in coordination with Consumer Products and Therapeutics Program)

Chemical data ~ 60 mg/mL GbE in 80:20 Ethanol:Water (v/v) Suspected Peak Used for RRT Ginkgolide B Flavonol Glycosides **Terpene Lactones** **System stopped after this injection. System Rutir was restarted the following day and a slight shift in retention times was noted. Flavonol Ginkgolic Acids Aglycones GbE J #10 GbE I GbE H GbE G GbE F GbE E GbE D GbE C GbE B GbE A GbE U Figure 2. Non-Targeted Fingerprint Chromatograms of First Set of GbE Samples (Not Hydrolyzed), HPLC-ELSD

ΖU

1F

| T | L

XWV

Similar

0

KD

R

Q

Ν

J

Ρ

Ε S

Catlin NR, et al. Food Chem Toxicol. 2018; 118:328-339

Objective 2.2: Methods – Bioassay-Guided Fractionation

Roberts et al., 2019. Food and Chemical Toxicology. 124: 431-438. Smith-Roe et al., 2018. Environmental and Molecular Mutagenesis 59:416-426.

Standard practice

- Rarely assess ADME in animal studies
- Follow 'marker' constituents

- Drug-botanical interactions rarely evaluated with emphasis on clinical assessment
- Animal to human dose comparisons rely on administered dose

Recommendations

- Regularly assess ADME in animal studies
- Follow toxicologically important constituents (identify active constituents) or employ polypharmacokinetics
- Leverage in silico and in vitro approaches to identify potential drug-botanical interactions
- Animal to human dose comparisons based on systemic exposure (e.g., C_{max}, AUC, PBPK modeling)

Objective 2.3: Botanical Safety Consortium

About Us Partner with Us News & Events Contact Us Resources Q

A public-private partnership to improve botanical safety

BOTANICAL SAFETY CONSORTIUM

The Botanical Safety Consortium (BSC) was officially convened in November 2019, as the result of a Memorandum of Understanding between the US Food and Drug Administration (FDA), the National Institutes of Health's National Institute of Environmental Health Sciences (NIEHS), and the non-profit Health and Environmental Sciences Institute (HESI).

https://botanicalsafetyconsortium

The **BOTANICAL SAFETY CONSORTIUM** will provide a sound scientific basis for integrating existing botanical safety & toxicity information with the latest toxicological tools.

- Component-based approaches incorporate dose-response data from individual chemicals to predict mixture effects.
- They represent the current default approach for mixtures risk assessment, despite notable limitations and challenges:
 - Only consider a small subset of individual chemicals for which dose-response data are available
 - Involve assumptions about chemical behavior, such as:
 - Joint action assumption (i.e., dose addition or response addition)
 - Lack of chemical interactions
- A whole mixture approach is favored by risk assessors and should be developed and compared to the current component-based approach

Better understanding exposures

Use of in vitro and alternative assays to characterize hazard Informing risk assessment

Individual chemical dose-response data

Stakeholder Engagement

Short-term (0-1 year)	Medium-term (2-3 years)	Long-term (4-5 years)
Disease-based systems biolo	gy projects on cancer and cardiovascula	ar disease
Project development	Hypothesis testing	Evaluation and communication
Botanical testing program		
Data analysis	Reporting	Evaluation (state-of-the-science)
Data analysis Complex mixture methods de	Reporting velopment	Evaluation (state-of-the-science)
Data analysis Complex mixture methods de Complete existing case studies	Reporting velopment Toolbox recommendations	Evaluation (state-of-the-science)
Data analysis Complex mixture methods de Complete existing case studies Botanical Safety Consortium	Reporting velopment Toolbox recommendations	Evaluation (state-of-the-science)
Data analysis Complex mixture methods de Complete existing case studies Botanical Safety Consortium Botanical library and assays	Reporting velopment Toolbox recommendations Testing	Evaluation (state-of-the-science) Framework

Component-based approach (Polycyclic Aromatic Compound Mixtures Assessment Program)

Component-based studies

Reporting and whole mixture

Evaluation (state-of-the-science)

Worksho Committ

Converging on Cancer

DNTP

Brian Berridge Chad Blystone Warren Casey Darlene Dixon June Dunnick Sue Fenton Scott Masten Mark Miller Amy Wang Kembra Howdeshell Matt Stout Nigel Walker Vickie Walker Mary Wolfe

Workshop Steering Committee

Nicole Kleinstreuer (NTP/NIEHS; Co-chair) Martyn Smith (UC Berkeley) Leroy Lowe (Getting to Know Cancer) Lauren Zeise (CalEPA) Weihsueh Chiu (Texas A&M) Bill Goodson (CPMCRI) Olga Naidenko (EWG) Johanna Congleton (EPA) Danielle Carlin (NIEHS)

Berkeley Mixtures Meeting Hypothesis and Design Group

Cliona McHale (UC Berkeley) Tom Webster (Univ Boston)

DNTP

Scott Auerbach Mamta Behl **Brad Collins** Paul Dunlap Stephen Ferguson Jean Harry Troy Hubbard Esra Mutlu Sreenivasa Ramaiahgari Julie Rice Georgia Roberts Kristen Ryan Kelly Shipkowski **Stephanie Smith-Roe** Vicki Sutherland Suramya Waidyanatha Kristine Witt

Acknowledgements

PAC-MAP

Botanical Safety Consortium

Joe Dever (Amway) Michelle Embry (HESI) Stefan Gafner (ABC) Jim Griffiths (CRN) Dan Marsman (P&G) Connie Mitchell (HESI) Cara Welch (FDA)

Contract Labs

Battelle MRIGlobal RTI International

Susan Elmore Stephen Ferguson Dori Germolec Jui-Hua Hsieh Katelyn Lavrich Scott Masten Esra Mutlu

Scott Auerbach

Matthew Bell

DNTP

Keith Shockley Erik Tokar

DIR

Doug Bell Oswaldo Lozoya David Umbach

ILS

Cynthia Willson

DLH

Gregg Dinse Sandra McBride Mike Easterling Shawn Harris

Texas A&M

Ivan Rusyn Weihsueh Chiu

Contract Labs

Battelle Burleson

Health Canada

Paul White

24

