Combined Exposures and Mixtures Program

Cynthia Rider, PhD, DABT
Division of the NTP
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting
February 2, 2021
Combined Exposures and Mixtures

Program Management Team

Kembra Howdeshell
Integrative Health Assessments Branch

Jui-Hua Hsieh
Predictive Toxicology Branch

Cynthia Rider
Systems Toxicology Branch

Suramya Waidyanatha
Office of Program Operations

Nigel Walker
Systems Toxicology Branch
Challenges persist in characterizing exposure to mixtures, evaluating their toxicity and hazard, and assessing associated risk.

There is inconsistent use of available mixture methods and uncertainties in their application.

Lack of harmonized terminology and methods comparisons complicate information synthesis and impede the use of mixtures data in decision-making.
Definitions

- Defined mixture – A mixture in which all components are identified and quantified.

- Complex mixture – A mixture of many constituents with some unidentified fraction (e.g., effluent sample, diesel exhaust).

- Exposome – Totality of exposures over a lifetime.

- Whole mixture approach – Considers the complete mixture. A whole mixture can be simple (containing few constituents) or complex.

- Component-based approach – Considers the components (aka constituents) in order to understand the mixture.
Problem formulation:
Identifying mixture of interest

No quantitative assessment

Data availability and quality

Objective 1
Problem formulation: Identifying mixture of interest

Objective 2
Whole mixture approach

Sufficient similarity

Objective 3
Component-based approach

Predictive models of mixture toxicity based on defined assumptions (dose addition, response addition)

Mixture Risk Assessment Context

Data availability and quality

inadequate

No quantitative assessment

Comparison
1. Develop and apply a disease-centered systems biology approach for prioritizing mixtures for toxicological and hazard characterization to inform cumulative risk evaluation.

2. Develop and apply methods for complex mixture testing and data interpretation to inform risk assessment of whole mixtures.

3. Apply component-based approaches by experimentally evaluating defined mixtures and using predictive modeling approaches (e.g., dose addition, response addition) and compare the results with alternative whole mixture evaluation.
• Currently, chemicals are grouped based on similar mechanism of action (e.g., dioxins, organophosphates, polycyclic aromatic compounds) or co-occurrence (Superfund site) due to:
 – Legislative mandates (e.g., Food Quality Protection Act)
 – Pragmatism
 – Scientific support for the use of dose addition with chemicals that have similar mechanisms of action

• These approaches for determining which chemicals to include in mixtures risk assessments are not necessarily the most protective or the most scientifically sound.
Objective 1: Disease-Centered Systems Biology Approach

Hypothesis: Chemicals that target disparate signaling pathways contribute cumulatively to disease development, and their joint action can be estimated using mixture modeling approaches.

Approach: Develop mixtures projects focused on diseases that are priority areas of interest for DNTP

- Cancer
- Cardiovascular disease
Objective 1: Disease-Centered Systems Biology Approach

Disease-centered approach

1. Disease of interest: Colon cancer

2. Model and chemical selection; study design

3. Data analysis: Treatment comparison

Week 5: PhIP D-R
Week 6: DSS
Week 7: Atrazine + Cadmium + Bisphenol A
Week 8: PhIP + DSS + Mixture
Week 9: PhIP + DSS
Week 10: PhIP

Carcinogenic response

Termination & data collection

PhIP Dose (mg/kg)
Objective 2: Whole Mixtures

Develop and apply methods for complex mixture testing and data interpretation to inform risk assessment of whole mixtures

- Apply targeted and non-targeted chemical analyses, in vivo bioassays, and literature review methods for complex mixture testing and data interpretation to inform risk assessment.

- Develop methods for complex mixture evaluation including sufficient similarity, polypharmacokinetics, and bioassay-guided fractionation to identify toxic constituents.

- Provide DNTP research support for the Botanical Safety Consortium – a public-private partnership aimed at developing a toolbox of in vitro assays for identifying hazards associated with botanical ingredients.
Objective 2.1: Whole Mixture Testing and Analysis

Apply targeted and non-targeted chemical analyses, in vivo bioassays, and literature review methods

- Botanical testing program (e.g., *Garcinia cambogia*, black cohosh extract, *Echinacea purpurea*)
- Woodsmoke cancer hazard evaluation
- Personal care products health hazard evaluations (in coordination with Consumer Products and Therapeutics Program)
Objective 2.2: Methods – Sufficient Similarity

Chemical data

Bioactivity data

CYP2B6 (CAR)

Log$_{10}$ Relative Fold mRNA Content

Log$_{10}$ Concentration (% v/v)

Figure 2. Non-Targeted Fingerprint Chromatograms of First Set of GSE Samples (Not Hydrolyzed), BPLEC-ELSD

Objective 2.2: Methods – Bioassay-Guided Fractionation

Chemical Structure

Active extract

Extraction → Bioassay → Separation

Active fraction

Isolation/Identification

Bioassay

Black cohosh extract (Actaea racemosa)

Roberts et al., 2019. Food and Chemical Toxicology. 124: 431-438.
Objective 2.2: Methods - Polypharmacokinetics

Standard practice

- Rarely assess ADME in animal studies
- Follow ‘marker’ constituents
- Drug-botanical interactions rarely evaluated with emphasis on clinical assessment
- Animal to human dose comparisons rely on administered dose

Recommendations

- Regularly assess ADME in animal studies
- Follow toxicologically important constituents (identify active constituents) or employ polypharmacokinetics
- Leverage *in silico* and *in vitro* approaches to identify potential drug-botanical interactions
- Animal to human dose comparisons based on systemic exposure (e.g., C_{max}, AUC, PBPK modeling)
Objective 2.3: Botanical Safety Consortium

Objectives

1. Engage with a broad group of global stakeholders to leverage the best scientific approaches.
2. Establish the appropriate levels of chemical characterization for complex botanical ingredients.
3. Identify pragmatic, fit-for-purpose in vitro & in silico assays to evaluate botanical safety.
4. Evaluate the application of these tools via comparison to the currently available safety information.
5. Integrate these tools and approaches into a framework that will facilitate robust evaluation of botanical ingredients.
Objective 2.3: Botanical Safety Consortium

The Botanical Safety Consortium (BSC) was officially convened in November 2019, as the result of a Memorandum of Understanding between the US Food and Drug Administration (FDA), the National Institutes of Health’s National Institute of Environmental Health Sciences (NIEHS), and the non-profit Health and Environmental Sciences Institute (HESI).

https://botanicalsafetyconsortium

The BOTANICAL SAFETY CONSORTIUM will provide a sound scientific basis for integrating existing botanical safety & toxicity information with the latest toxicological tools.
Component-based approaches incorporate dose-response data from individual chemicals to predict mixture effects.

They represent the current default approach for mixtures risk assessment, despite notable limitations and challenges:

- Only consider a small subset of individual chemicals for which dose-response data are available
- Involve assumptions about chemical behavior, such as:
 - Joint action assumption (i.e., dose addition or response addition)
 - Lack of chemical interactions

A whole mixture approach is favored by risk assessors and should be developed and compared to the current component-based approach.
Polycyclic Aromatic Compound Mixtures Assessment Program

- Better understanding exposures
- Use of in vitro and alternative assays to characterize hazard
- Informing risk assessment
Individual chemical dose-response data

Design mixture studies
- Ray design
 - Select ratio(s) of chemicals (e.g., equipotent based on ED50)
 - Select doses of the mixture that are predicted to span 0 to 100% effect based on an assumption of dose addition

Predict mixture responses
- Dose addition
 - Relative Potency Factor
 - Other (e.g., Altenburger, Webster, Gennings, Hertzberg)
- Response addition

![Graph showing dose-response data for various chemicals](image-url)
Stakeholder Engagement

Converging on Cancer

Polycyclic aromatic compound mixtures assessment program
<table>
<thead>
<tr>
<th>Milestones</th>
<th>Short-term (0-1 year)</th>
<th>Medium-term (2-3 years)</th>
<th>Long-term (4-5 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-based systems biology projects on cancer and cardiovascular disease</td>
<td>Project development</td>
<td>Hypothesis testing</td>
<td>Evaluation and communication</td>
</tr>
<tr>
<td>Botanical testing program</td>
<td>Data analysis</td>
<td>Reporting</td>
<td>Evaluation (state-of-the-science)</td>
</tr>
<tr>
<td>Complex mixture methods development</td>
<td>Complete existing case studies</td>
<td>Toolbox recommendations</td>
<td></td>
</tr>
<tr>
<td>Botanical Safety Consortium</td>
<td>Botanical library and assays</td>
<td>Testing</td>
<td>Framework</td>
</tr>
<tr>
<td>Component-based approach (Polycyclic Aromatic Compound Mixtures Assessment Program)</td>
<td>Component-based studies</td>
<td>Reporting and whole mixture</td>
<td>Evaluation (state-of-the-science)</td>
</tr>
</tbody>
</table>
Acknowledgements

Workshop Steering Committee
Nicole Kleinstreuer (NTP/NIEHS; Co-chair)
Martyn Smith (UC Berkeley)
Leroy Lowe (Getting to Know Cancer)
Lauren Zeise (CalEPA)
Weihsueh Chiu (Texas A&M)
Bill Goodson (CPMCRI)
Stephen Ferguson
Jean Harry
Troy Hubbard
Esra Mutlu
Sreenivasa Ramaiahgari
Julie Rice
Georgia Roberts
Kristen Ryan
Kelly Shipkowski
Stephanie Smith-Roe
Vicki Sutherland
Suramya Waidyanatha
Kristine Witt

Botanical Safety Consortium
Joe Dever (Amway)
Michelle Embry (HESI)
Stefan Gafner (ABC)
Jim Griffiths (CRN)
Dan Marsman (P&G)
Connie Mitchell (HESI)
Cara Welch (FDA)

Contract Labs
Battelle
MRIGlobal
RTI International

Botanical program

DNTP
Scott Auerbach
Mamta Behl
Brad Collins
Paul Dunlap
Esra Mutlu
Sreenivasa Ramaiahgari
Julie Rice
Georgia Roberts
Kristen Ryan
Kelly Shipkowski
Stephanie Smith-Roe
Vicki Sutherland
Suramya Waidyanatha
Kristine Witt

PAC-MAP

DNTP
Scott Auerbach
Matthew Bell
Susan Elmore
Stephen Ferguson
Dori Germolec
Jui-Hua Hsieh
Katelyn Lavrich
Scott Masten
Esra Mutlu
Keith Shockley
Erik Tokar

DIR
Doug Bell
Oswaldo Lozoya
David Umbach

Texas A&M
Ivan Rusyn
Weihsueh Chiu

Contract Labs
Battelle
Burleson

Health Canada
Paul White

ILS
Cynthia Willson

DLH
Gregg Dinse
Sandra McBride
Mike Easterling
Shawn Harris
Thank you!