Draft RoC Monograph on Pentachlorophenol and By-Products on its Synthesis

National Institute of Environmental Health Sciences

Jennifer M. Ratcliffe, M.Sc., Ph.D.
ILS, Inc.

NTP Peer Review Meeting
October 7-8, 2013
Draft RoC monograph on pentachlorophenol and by-products of its synthesis

Human cancer studies
Cancer studies in humans

• Key Questions
 – What is the level of evidence of carcinogenicity from studies in humans?
 • What are the potential confounders?
 • Can any observed association between pentachlorophenol and cancer be explained by chance, bias or confounding?

• Methods: Protocol posted on the RoC website
 – Literature search strategy (3.1)
 – Description of studies (3.2)
 – Evaluation of study quality (3.3)
 – Cancer assessment: individual studies, integration of evidence across studies (3.4, 3.5)
 – Preliminary level of evidence conclusion (3.6)
Identification and selection of literature

- Literature search strategy (Appendix A, protocol)
- Excluded studies
 - Studies of mixed chlorophenols/pesticides/jobs (no specific information on PCP)
 - No risk estimates for PCP
 - Not externally peer reviewed
Studies identified from literature search

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Industry/exposure</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies specific for PCP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Historical cohort | US producers (2)
 Canadian sawmill workers (1) | Multiple |
| Nested case-control | Dioxin exposures (IARC registry) (1) | NHL, STS |
| Population based case-control studies | Occupational: Swedish series (3)
 Occupational: US (1)
 Environmental: US (1) | NHL, STS, Glioma, Childhood ALL |
| Ecological | Environment (1) | Multiple |
| Studies with limited information on PCP | | |
| Nested case-control | Occupational (parental): sawmill (1) | Childhood cancer |
| Population-based case-control | Occupational: New Zealand series (3)
 Occupational: Australian study (1) | NHL, MM, STS Lymphoma, STS |

Cancer endpoints of concern: non-Hodgkin lymphoma (NHL), multiple myeloma (MM), soft tissue sarcoma (STS), kidney cancer, liver cancer, lung cancer, and all cancers combined

PCP = pentachlorophenol; ALL = acute lymphocytic leukemia
Methods for evaluating study quality: Potential for biases, confounding and utility of studies

- Questions and guidelines in protocol used to reach conclusions for the potential (both differential, non-differential) for selection and information bias (Section 3.3.1/Appendix C)
 - Potential for a bias does not always mean the study was biased
 - Consideration of whether there was information to determine the direction of the bias
- Adequacy of statistical methods, statistical power and other factors also evaluated
- When possible, guidelines are specific for endpoint
- Evaluation of methods (or other information) for potential confounding (Section 3.3.2)
- Identification of most informative studies (Section 3.3.3)
 - Inadequate: Chinese ecological study (Zheng et al. 2013)
 - Less informative: Studies with limited information on PCP exposure
Non-Hodgkin lymphoma

- Incidence data more informative than mortality
 - High survival
 - ICD codes have changed over time
- Potential (limited evidence) occupational risk factors for NHL
 - Co-exposures in PCP studies: 2,3,7,8-TCDD, phenoxy herbicides, mixed polychlorinated phenols, styrene (Cogliano 2011, NTP 2011)
 - Other substances: benzene, tetrachloroethylene, trichloroethylene, ionizing radiation
- Potential (limited evidence or suspected) non-occupational risk factors for NHL
 - Radiation, immunosuppressive disorders and drugs, chemotherapy drugs, viral infections
 - No clear evidence that tobacco smoking is a risk factor
Non-Hodgkin lymphoma: Most informative studies
Human studies

<table>
<thead>
<tr>
<th>Study (№ of subjects or cases/controls)</th>
<th>Exposure assessment</th>
<th>Analysis and treatment of confounders</th>
</tr>
</thead>
</table>
| Canadian sawmill workers (> 27,000) (Demers 2006) | Work history, industrial hygiene data
Estimated cumulative dermal exposure to PCP and TeCP
Validation of dermal exposure based on urine analysis, expert assessment, work history | Mortality/incidence:
SMR, SIR, RR by lagged and unlagged exposure
Separate RR analyses for TeCP
Adjusted for age and time period |
| PCP MI producers (770;773) (Ramlow 1996, Collins 2009a) | Industrial hygiene data (including quantitative data), work history
Some workers co-exposed to TCP
Cumulative exposure to PCP, PCP dioxin byproducts and total TEQ dioxins | Mortality:
SMR, RR by lagged and unlagged cumulative exposure and dioxin congeners
Separate SMR analysis for PCP+TCP-exposed workers
Adjusted for age, hire year, birth year |

TCP = trichlorophenol, TeCP = tetrachlorophenol
Non-Hodgkin lymphoma: Other human studies

<table>
<thead>
<tr>
<th>Study (# of subjects or cases/controls)</th>
<th>Exposure assessment</th>
<th>Analysis and treatment of confounders</th>
</tr>
</thead>
</table>
| PCP NIOSH producers (2122) (Ruder and Yiin 2011) | 4 plants with work history, industrial hygiene
Duration of employment in PCP dept.
Includes MI PCP-exposed workers; different assessment of combined PCP and TCP exposure | Mortality:
SMR, SRR by duration
Separate SMR analysis for PCP+TCP-exposed workers
Adjusted for age, sex, calendar year |
| Nested (IARC registry) case-control study (32/153) (Kogevinas 1995) | Individual exposure assessment
Cumulative exposure | Mortality:
OR by ever, low, med, high exposure
No control for potential confounders except for age, sex, and county of residence
PCP production plant did not make other herbicides/pesticides |
| Swedish case-control studies (105/335; 515/1141) (Hardell 1994, 2002) | Questionnaire/work history | Incidence:
2002: OR by time since first exposure
1994: adjusted for occupational co-exposures, age, vital status |

TCP = trichlorophenol
Michigan PCP producers and NHL: Comparison between Collins (2009a) and Ruder and Yiin (2011)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Collins et al. 2009a</th>
<th>Ruder and Yiin 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PCP Workers (PCP ± TCP workers)</td>
<td>773 (1937-1980)</td>
<td>788 (1936-1980)</td>
</tr>
<tr>
<td></td>
<td>SMR = 2.4 (1.0 to 4.7); 8</td>
<td>SMR = 2.18 (0.94-4.30); 8</td>
</tr>
<tr>
<td>PCP, no TCP</td>
<td>577</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>SMR = 2.8 (1.1 to 5.7)</td>
<td>SMR = not reported</td>
</tr>
<tr>
<td></td>
<td>Serum profile: Elevated levels of higher chlorinated dioxins</td>
<td></td>
</tr>
<tr>
<td>PCP + TCP</td>
<td>196</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>Serum profile: Elevated levels of higher chlorinated dioxins and 2,3,7,8-TCDD</td>
<td></td>
</tr>
<tr>
<td>TCP exposure characterization</td>
<td>Workers who worked in both TCP departments & PCP departments; did not consider any dept. to have exposure to both TCP & PCP*</td>
<td>Working directly in TCP process and/or in buildings where TCP processes were co-located*</td>
</tr>
</tbody>
</table>

Personal communication, study authors
Strongest evidence of an association with exposure to pentachlorophenol is for NHL

- Increased risks of NHL found in all studies; however, strength of findings varies across studies
 - Strongest evidence from Canadian sawmill worker cohort (Demers 2006)
 - Supported by MI pentachlorophenol producers cohort study (Ramlow 1996, Collins 2009a)
 - Evidence from other studies is more limited but as a group support the findings from the more informative studies

- Exposure-response relationship in most informative study
 - No exposure-response observed in PCP producer studies

- Highest risk observed among PCP producers with the highest level of PCP by-products of synthesis (Collins et al. 2009a)
Increased risk of NHL across studies

Ever vs. never exposed

- Sawmill workers cohort incidence
- MI PCP producers cohort mortality
- NIOSH PCP producers cohort mortality
- IARC registry nested case-control study
- Swedish 1994 case-control study
- Swedish 2002 pooled case-control study

Highest exposure to PCP

- PCP exposure
- OCDD

SIR and RR for Canadian sawmill cohort; SMR for PCP producers; OR for nested case-control and 2 Swedish case-control studies

- ◆ = cohort or nested case-control study; ◇ = case-control study
Positive exposure-response relationship with PCP exposure and NHL: Canadian sawmill worker cohort

- Follow-up 20+ years
- 92 cases/49 deaths NHL
- Cumulative dermal exposure assessment
- Exposure-response analysis for PCP (unlagged, lagged):

<table>
<thead>
<tr>
<th>Endpoint/lag (yr)</th>
<th>P_{trend}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality/0</td>
<td>0.06</td>
</tr>
<tr>
<td>Incidence/0</td>
<td>0.03</td>
</tr>
<tr>
<td>Incidence/10</td>
<td>0.03</td>
</tr>
<tr>
<td>Incidence/20</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Little evidence of exposure-response relationship for tetrachlorophenol
NHL risk is increased among PCP production workers with the highest levels of PCP by-products of synthesis

<table>
<thead>
<tr>
<th>PCP by-product (dioxin congener)</th>
<th>Cumulative level of congener SMR (95% CI); # of exposed deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>HxCDD</td>
<td>2.5 (0.5-7.4); 3</td>
</tr>
<tr>
<td>HpCDD</td>
<td>1.8 (0.2-6.4); 2</td>
</tr>
<tr>
<td>OCDD</td>
<td>1.7 (0.2-6.2); 2</td>
</tr>
</tbody>
</table>

Ref: Collins 2009a

• Highest risk (4-5-fold) observed for highest PCP dioxin by-product (HxCDD, HpCDD, OCDD) exposure category
 – No monotonic exposure-response relationship was observed in this analysis; however, there was potential potential misclassification of exposure in lower exposure groups (low and medium) due to dioxin modeling
 – Highest exposure group is a reasonable surrogate for past exposure to PCP
 – Internal analyses not conducted for PCP by-products

• No exposure-response relationship observed in internal or external analysis for total toxic equivalent (TEQ), which included 2,3,7,8-TCDD

• “Dioxin-like” activity of PCP by-products may contribute to increased risk
Can biases or potential confounding explain observed associations between pentachlorophenol and NHL?

Potential for biases:

- Associations unlikely to be explained by selection or information bias in cohort or nested case-control studies
 - industrial hygiene and work histories used
- Potential for non-differential misclassification in case-control studies, but detailed questionnaire or expert assessment helps to mitigate concern

Potential for confounding: non-occupational risk factors

- No evidence that smoking is associated with NHL in the case-control studies or that there are more smokers in the Canadian sawmill workers cohort study than the general population
- Smoking is not considered to be an established risk factor for NHL
- Other NHL risk factors unlikely to be related to exposure to pentachlorophenol
Can biases or potential confounding explain observed associations between pentachlorophenol and NHL?

Potential for biases:

• Associations unlikely to be explained by selection or information bias in cohort or nested case-control studies
 – industrial hygiene and work histories used
• Potential for non-differential misclassification in case-control studies, but detailed questionnaire or expert assessment helps to mitigates concern

Potential for confounding: non-occupational risk factors

– No evidence that smoking is associated with NHL in the case-control studies or that there are more smokers in the Canadian sawmill workers cohort study than the general population
– Smoking is not considered to be an established risk factor for NHL
– Other NHL risk factors unlikely to be related to exposure to pentachlorophenol
Can occupational co-exposures explain the association between exposure to pentachlorophenol and NHL?

- **Sawmill workers**
 - No clear exposure-response for NHL and TeCP; no independent evidence to evaluate TeCP carcinogenicity
 - Creosote and copper chromate arsenate were not used regularly in the sawmills in this study
 - Other potential co-exposures (e.g., wood dust) are not known risk factors for NHL

- **PCP producers**
 - No association was observed between cumulative exposure to 2,3,7,8-TCDD and NHL among all TCP workers in the MI plant (Collins et al. 2009b)
 - Other exposures present but unknown whether they correlated with PCP exposure; no known risk factors for NHL

- Potential confounding possible in case-control studies
- Co-exposures vary across studies
Other Cancers

- Multiple myeloma and kidney cancer (some evidence)
 - Significant exposure-response relationships observed among Canadian sawmill workers for both cancers (Demers et al. 2006)
 - Elevated SMRs (statistically non-significant) from other cohort studies (Collins et al. 2009a – kidney cancer; Ruder and Yiin 2011 – multiple myeloma)

- Soft tissue sarcoma (conflicting evidence)
 - Increased risk in pooled case-control study (Hardell et al. 1995)
 - No evidence of association in Canadian sawmill workers (Demers et al. 2006)

- Liver and lung cancer (little to no evidence)
 - No evidence of an association for lung cancer in any cohort study.
 - Elevated SMR of liver cancer in the NIOSH study but co-exposure to other animal liver carcinogens; no evidence of an association in the other cohort studies

- All cancers combined
 - Elevated risks in the NIOSH study; no exposure-response analysis was conducted in the Canadian sawmill study
Preliminary level of evidence conclusion: Vote

Sufficient evidence for the carcinogenicity of pentachlorophenol and by-products of its synthesis from studies in humans, based on:

• Consistent evidence of an association between PCP and its by-products of synthesis and non-Hodgkin lymphoma across studies
 – Different populations, geographical areas and study designs
 – Strength of the association varied across studies
• High risk among those with the highest exposure
 – Exposure response relationship observed with cumulative dermal exposure in most informative study
 – Higher risk observed among PCP producers with the highest level of PCP by-products
• Not reasonably explained by chance, bias or confounding
• “Dioxin-like activity” of PCP by-products of synthesis may contribute to the carcinogenicity