Draft Report on Carcinogens Monographs for Pentachlorophenol and By-Products of Its Synthesis

Comments on Behalf of Pentachlorophenol Task Force

Robert Golden, Ph.D.
ToxLogic LC
Gaithersburg, MD
October 7-8, 2013

Conclusions in RoC PCP Listing Document

- PCP & by-products of its synthesis should be considered as "known" to cause cancer in humans (i.e., specifically non-Hodgkin's lymphoma; NHL).
- "... by-products of..synthesis.. from biomonitoring studies
 - hexachlorodibenzo-p-dioxin
 - heptachlorodibenzo-p-dioxin
 - octachlorodibenzo-p-dioxin
 - not TCDD, which is not a by-product of PCP synthetic process used in the United States.

PCP & Synthesis By-Products

- Potential confounding from TCDD a concern for studies from Europe, New Zealand & U.S.*
- TCDD listed in 12th RoC as Known Human
 Carcinogen for all cancer with emphasis on NHL
- TCDD listed by IARC as Known Human Carcinogen for all cancer with emphasis on NHL
- Validity of basing RoC NHL listing for PCP when a contaminant Known to have similar effects already listed?

PCP & Synthesis By-Products

- NHL major cancer site of interest
 - Other sites of interest: multiple myeloma, soft-tissue sarcoma
- Human studies on NHL
 - Cohort studies
 - Demers et al. (2006), Collins et al. (2009), Ruder & Liin (2011)
 - Case-control studies
 - Kogevinas et al. (1995), Hardell et al. (1994, 1999, 2002)

NTP/RoC Listing Criteria

- Known To Be a Human Carcinogen
 - Sufficient evidence of carcinogenicity in humans which indicates a causal relationship between exposure to the agent...and human cancer
- What constitutes "sufficient evidence" or a "causal relationship"?
 - 1 study? 2 studies? Corroboration/consistency?
 - Findings statistically significant?
 - Is dose-response a consideration?
 - Is biologically plausibility a consideration?

NTP/RoC Listing Criteria

- Reasonably Anticipated to be Human Carcinogen
 - Limited evidence of carcinogenicity from human studies.. which indicates causal interpretation is credible but alternative explanations such as chance, bias or confounding could not be adequately excluded
- What constitutes "limited evidence," "causal interpretation" or "adequately excluded"?
 - Inadequate a synonym for limited?
 - Does "causal interpretation" = causal relationship?
 - If not, what are criteria for "causal interpretation"?
 - How are chance, bias or confounding "adequately excluded?"

NTP/RoC Listing Criteria

- "Listing Criteria" silent on how a body of data should be explicitly & transparently evaluated
- Numerous RoC chemicals Reasonably Anticipated Human Carcinogens based solely on positive animal data
- Multiple human studies should be primary basis for assessing potential PCP carcinogenicity
- Lacking any cogent guidance recent NTP/OHAT*
 Guidelines provide only relevant causal framework

*Office of Health Assessment and Translation (OHAT) Draft OHAT Approach For Systematic Review And Evidence Integration For Literature-Based Health Assessments (2013)

- Preferred basis for evaluation of PCP & synthesis by products for potential carcinogenicity
- Explicitly embrace established evidence-based causation criteria
- Contrary to current RoC ad hoc criteria, i.e., "sufficient evidence," "reasonably anticipated" or "limited evidence"
- Similar (but improved) to EPA (2005) Cancer Risk Assessment Guidelines

- Levels of confidence in the body of evidence
 - High
 - Moderate
 - Low
 - Very low
- "Conclusions developed in.. subsequent steps of the approach are based on the evidence with the highest confidence."

- "Unexplained inconsistency: Inconsistency, or large variability in the magnitude or direction of estimates of effect, that cannot be explained, reduces confidence in the body of evidence."
- Upgrade confidence rating
 - large magnitude of effect
 - dose-response
 - all plausible confounding
 - cross-species/population/study consistency

- "Aspects of the Hill considerations on causality within the OHAT Approach"
 - Strength of association
 - Consistency of association
 - Temporality
 - Biological gradient (i.e., exposure-response)
 - Biological plausibility
 - Experimental evidence
- Levels of Evidence for Health Effects Descriptors
 - High
 - Moderate
 - Low

- Four hazard identification conclusion categories are:
 - Known to be a hazard to humans
 - Presumed to be a hazard to humans
 - Suspected to be a hazard to humans
 - Not classifiable or not identified to be a hazard to humans
- If human evidence conclusion high, hazard ID conclusion "known" based on the human data alone.
- If human evidence conclusion moderate, hazard ID depends on strength of non-human animal evidence.

Overview of Key Studies of NHL

Study/Type	Potential PCP causation confounders
Ruder & Yiin 2011 Cohort	2122 U.S. PCP production workers (788 from plant studied by Collins et al. 2009); 1402 with presumed minimal TCDD exposure; 720 potentially exposed to TCDD through work in TCP operations (675 from plant studied by Collins et al.)
Collins et al. 2009 Cohort	773 PCP workers at 1 plant; 577 with presumed minimal TCDD exposure; 196 potentially exposed to TCDD through work in TCP operations
Demers et al. 2006 Cohort	27,464 Canadian saw-mill workers; PCP exposed sub-cohort; all with presumed minimal TCDD exposure
Kogevinas et al. 1995 Nested Case-control	32 NHL cases and 158 controls among 21,183 workers exposed to phenoxy herbicides, chlorophenols and dioxins (including TCDD)
Hardell et al. 1994 Case-control	105 NHL cases and 335 controls; possible exposure to phenoxyacetic acids, TCDD and other chemicals
Hardell et al. 1999 Case-control	442 NHL cases and 741 controls; possible exposure to phenoxyacetic acids, TCDD and other chemicals

Strength & Consistency of Association with NHL

Study	SMR	95% CI	Comments
Ruder and Yiin	1.41	0.64-2.67	9 observed and 6.4 expected NHL deaths among 1402 workers not exposed to TCP (presumably, most NHL deaths included in Collins et al.)
Collins et al.	2.8	1.1-5.7	7 observed and 2.5 expected NHL deaths among 577 workers not exposed to TCP
Demers et al.	1.02 0.99	0.75-1.34 0.81-1.21	49 observed and 48 expected NHL deaths 92 observed and 93 expected NHL cases
Kogevinas et al. ^a	2.75 (OR)	0.45-17.0	3 (9.4%) NHL cases and 9 (5.7%) controls exposed
Hardell et al. ^a 1994	8.8 (OR)	3.4-24	15 (14.3%) NHL cases and 9 (2.7%) controls with "high" exposure (>1 week of continuous exposure or >1 month of total exposure to PCP)
Hardell & Eriksson ^a	1.2 (OR)	0.7-1.8	55 (13.6%) NHL cases and 87 (11.7%) controls exposed; any exposure

Exposure-Response for NHL

Study	SMR/SRR/RR/OR (95% confidence interval)	Trend <i>p</i> or slope	Exposure variable & comments
Ruder & Yiin	SMR: 2.45 (0.90-5.34), 1.56 (0.42-3.99), 1.63 (0.45-4.18), 1.42 (0.29-4.14) SRR: 1.0 (referent), 0.55 (0.15-1.97), 0.63 (0.18-2.28), 0.62 (0.15-2.55)	Not reported Slope (se): -3.744e ⁻⁸ (9.095e ⁻⁸)	Days worked in PCP departments (≤57, 58-<182, 182-<650, ≥650); total cohort; no trend
Collins et al.	SMR: 2.4 (0.5-7.1), 0.8 (0.0-4.7), 4.5 (1.2-11.5)	p=0.61	Categories of toxic equivalent summary dioxin cumulative exposure; total cohort; no trend
Demers et al.	RR (incidence): 1.0 (referent), 1.83 (0.95-3.50), 2.05 (1.14-3.68), 1.98 (0.97-4.06)	p=0.02	Exposure-years (<1, 1-2, 2-5, 5+), 20-yr lag; trend, but not monotonic: statistical significance reflects unexplained difference between lowest exposure group and all higher exposure groups
Kogevinas et al.	OR: 1.0 (referent), 4.19 (0.59-29.59)	Not reported	High cumulative exposure score compared to medium, low and no exposure, combined; trend not able to be evaluated due to sparse data
Hardel et al.	Not Analyzed	Not reported	
Hardell & Eriksson	OR: 1.0 (0.3-2.9), 2.0 (0.7-5.3), 1.1 (0.7-1.8)	Not reported	Years from first exposure (>10-20, >20-30, >30); no apparent trend

Biological Plausibility

- ...causality tends to be strengthened by consistency with data...demonstrating plausible biological mechanisms.*
- ...consideration of both exposure-related factors & toxicological evidence relevant to identification of potential modes of action (MOAs)*, e.g.,
 - Early mutation → tumor formation
 - Cytotoxicity-induced events → tumor formation

^{*}EPA 2005. Guidelines for Carcinogen Risk Assessment

Biological Plausibility

- Little in vivo evidence of PCP-induced mutagenicity/genotoxicity
 - "...standard mutagenicity assays have produced weak or equivocal evidence for PCP" *
- High dose PCP cytotoxicity-induced events likely involved in animal carcinogenesis*
 - Oxidative stress (ROS)
 - ROS-induced DNA damage/mutation
 - GJIC inhibition
 - Chronic inflammation

Biological Plausibility

- 2-Year rat study with >99% PCP most relevant for potential effects in humans
 - No PCP-related tumors in males or females in full study at any dose
- 2-Year dermal exposure study with hexachloro dioxins (NCI 1980)*
 - No evidence of carcinogenicity in male or female mice
- With TEFs of 0.1, 0.01 and 0.0003 for hexa, hepta,
 & octadioxins, no basis to suspect hepta- or octacompounds of carcinogenic activity

^{*}Not cited/discussed in Draft NTP Listing Document

Final Conclusions

- No significant finding in any study corroborated in a different study
- Neither of RoC Listing Criteria, i.e., Known or Reasonably
 Anticipated to be a Human Carcinogen satisfied by
 available human & animal data for PCP
- Based on Key Scientific Questions Relevant for Cancer
 Evaluation the level of evidence from human studies for the carcinogenicity of PCP is limited
- Based on NTP/OHAT Approach for Systematic Review & Evidence Integration the totality of evidence from human & animal studies for PCP carcinogenicity is Suspected of Carcinogenic Potential.