Draft RoC Monograph
Kaposi Sarcoma Herpesvirus

Stan Atwood, MS, DABT
Integrated Laboratory Systems, Inc.
Contract support to the ORoC

NTP Peer Review Meeting
December 17, 2015
Kaposi Sarcoma Herpesvirus (KSHV)

Outline

Properties and detection
Prevalence and transmission
Mechanistic data
Human cancer studies
Preliminary level of evidence summary
KSHV Properties

- **Rhadinovirus**
 - γ-2 herpesvirus (HHV-8)
 - 1st human member
- **100 to 150 nm**
- **Linear ds DNA**
 - ~165 kbp
 - 87 ORFs
 - >80 viral proteins
 - 17 miRNAs
KSHV infects many cell types

- Viral DNA
- Viral proteins
- Anti-KSHV antibodies
 - Latency-associated nuclear antigen (LANA)
 - Lytically expressed capsid antigen K8.1
Prevalence and transmission

• Prevalence
 - High endemic; sub-Saharan Africa (30%-70%)
 - Low endemic; Mediterranean (10%-25%)
 - Non-endemic, general population (<10%)
 - United States (0.5%-7%)
 - HIV+ men (30%-60%)
 - HIV negative men that have sex with men (MSM) (20%-30%)

• Transmission
 - Saliva (major)
 - Blood
 - Organ transplant
 - Sexual activity (higher risk in MSM regardless of HIV status)
KSHV Latent Infection and Replication

Maintained as episome

Characteristics

• No new virions produced
• CD19+ B cells long-term reservoir
• Low copy number
• Latent genes
 – LANA
 – vCyclin
 – vFLIP
 – Kaposins A and B
 – miRNAs

LANA = latency associated nuclear antigen, vFLIP = viral FLICE-inhibitory protein, miRNAs = micro RNAs
KSHV Lytic Reactivation and Replication

New virions produced

- Induced by cell stressors
- Produces new virions
- Infects new cells
- All genes expressed
 - RTA
 - K1, K15
 - vIRFs
 - vIL-6
 - vCCLs
 - vGPCR

RTA = replication and transcription activator, vIRFs = viral interferon response factors, vIL-6 = viral interleukin-6, vCCLs = viral-encoded chemokines, vGPCR = viral G-protein coupled receptor
Latent and Lytic Genes Role in Malignancy

Inadvertent consequence of viral survival mechanisms

- **Mechanisms**
 - Evading immune response (e.g., vFLIP, K3, K5, vIRFs)
 - Dysregulated cell-cycle progression (e.g., vCyclin, LANA)
 - Evading apoptosis (e.g., LANA, K1, K15, vFLIP, vBCL-2)
 - Angiogenesis (e.g., LANA, K1, vCCL, vIL-6, vGPCR)
 - Cell transformation (e.g., LANA, Kaposins, K1, vGPCR, RTA)

- **Immune-compromised host**
 - Lytic infection escapes immunosurveillance
 - Abortive lytic/paracrine mechanisms promote oncogenesis
 - Early lytic genes expressed without full execution of lytic cycle and are transformed back to less immunogenic latent form
 - Subset of cells express early lytic genes and paracrine-acting growth factors (VEGF, PDGF, IL-6) drive cell proliferation, angiogenesis, inflammation, support immune escape

vBCL2 = viral B-cell lymphoma 2, VEGF = vascular endothelial growth factor, PDGF = platelet-derived growth factor
Endpoints with sufficient or limited evidence

- **Kaposi sarcoma**
 - Epidemic (HIV/AIDS-related)
 - Iatrogenic (organ transplant recipients)
 - Classic (older males, Mediterranean, E. European Jews)
 - Endemic (adults and children, sub-Saharan Africa)

- **Primary effusion lymphoma**

- **Multicentric Castleman disease**
KSHV and Kaposi Sarcoma (KS)

Sufficient level of evidence from human studies

<table>
<thead>
<tr>
<th>Data source</th>
<th>Results</th>
</tr>
</thead>
</table>
| Epidemiology | 38/39 case-control\(^a\) and all 16 cohort/nested case-control; ORs/RRs – mostly significant and some very high (10- to >100-fold)
Elevated RR in both HIV- and HIV+ populations and in all subtypes of Kaposi sarcoma
Dose-response in several studies |
| Human tissue | |
| Clonality | Oligoclonal, monoclonal in subset of advanced lesions |
| % KSHV-infected tumors | >99% (H1 copy/cell) |
| KSHV protein expression | |
| Latent | LANA-1, vCyclin, vFLIP, Kaposin A and B |
| Lytic\(^b\) | RTA, K1, vIRFs, vIL-6, vGPCR, vCCLs, K15 |
| Other | Infection precedes KS onset, antiherpesvirus drug protected AIDs patients from new occurrence, KS incidence mirrors KSHV seroprevalence |

\(^a\) studies reporting risk estimate
\(^b\) Expressed by small proportion of cells in KS lesions

OR = odds ratio, RR = relative risk, LANA = latency–associated nuclear antigen, vFLIP = viral FLICE-inhibitory protein, RTA = replication and transcription activator, vIRFs = viral interferon response factors, vIL-6 = viral interleukin 6, vGPCR = viral G-protein-coupled receptor, VCCLs = viral encoded chemokines
KSHV and Primary Effusion Lymphoma (PEL)

Sufficient level of evidence from human studies

<table>
<thead>
<tr>
<th>Data source</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology</td>
<td>Found in 109 cases; 76 individual case reports & 31 cases in three case-series & two comparison studies. Found mostly in HIV+ cases but also in HIV – cases. 50% cases develop Kaposi sarcoma.</td>
</tr>
<tr>
<td>Studies with positive associations</td>
<td></td>
</tr>
<tr>
<td>Human tissue</td>
<td></td>
</tr>
<tr>
<td>Clonality</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>% KSHV-infected tumors</td>
<td>100% (50-100 copies/cell)</td>
</tr>
<tr>
<td>KSHV protein expression</td>
<td>Similar to Kaposi sarcoma</td>
</tr>
<tr>
<td>Other</td>
<td>KSHV is part of diagnostic criteria, previous Kaposi sarcoma diagnosis associated with increased risk of PEL, expression of KSHV viral genes required for survival of PEL cells in culture.</td>
</tr>
</tbody>
</table>
Limited level of evidence from human studies

<table>
<thead>
<tr>
<th>Data source</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology</td>
<td>4/4 case comparisons studies; very high ORs</td>
</tr>
<tr>
<td>Positive associations</td>
<td></td>
</tr>
<tr>
<td>Human tissue</td>
<td></td>
</tr>
<tr>
<td>Clonality</td>
<td>Typically polyclonal, monoclonal B-cell expansions</td>
</tr>
<tr>
<td>% KSHV-infected tumors</td>
<td>~100% HIV-1+ and <50% HIV-1-</td>
</tr>
<tr>
<td>KSHV protein expression</td>
<td>LANA-1, vlL-6, KSHV lytic phase</td>
</tr>
<tr>
<td>Other</td>
<td>Frequently found with KS and/or PEL; KSHV inhibitors show some therapeutic success</td>
</tr>
</tbody>
</table>

OR = odds ratio
KSHV and Cancer Risk Cofactors

• Immunosuppression
 – HIV-1 (all clinical subtypes)
 – Organ transplant recipients (liver and kidney)
 – Immunosenescence (elderly, classic subtype)

• Risk factors with limited evidence
 – Co-infection with other viruses (e.g., EBV, HPV)
 – Diabetes, oral corticosteroids (classic subtype, HIV negative)
KSHV Preliminary Level of Evidence Summary

- Cancer sites with sufficient evidence
 - Kaposi sarcoma
 - Primary effusion lymphoma
- Cancer sites with limited evidence
 - Multicentric Castleman disease
- Immunosuppression is an important cofactor
- Role of viral transcripts
 - Latent transcripts promote host cell proliferation, maintain latency and inhibit apoptosis
 - Lytic transcripts dysregulate cell signaling pathways and contribute to the angiogenic and inflammatory oncogenic phenotype via paracrine mechanisms
Clarifications?
Peer Reviewer Comments

All sections: Comment on whether the information is clear and technically accurate and identify any information that should be added or deleted,

Properties, Detection and Human Exposure

– and whether adequate information is presented to document past and/or current human exposure.

Human Cancer Studies

– and provide any scientific criticisms of NTP’s cancer assessment of the epidemiologic studies of exposure to the virus.

Mechanistic and Other Relevant Data

– and provide any scientific criticisms of the NTP’s synthesis of these data assessing effects of the virus.
KSHV is known to be a human carcinogen based on sufficient evidence in humans.

- Cancer sites with sufficient evidence
 - Kaposi sarcoma
 - primary effusion lymphoma
- Cancer sites with limited evidence
 - multicentric Castleman disease
Kaposi sarcoma herpesvirus (KSHV) is known to be a human carcinogen based on sufficient evidence from studies in humans.

This conclusion is based on evidence from epidemiological and molecular studies, which show that KSHV causes Kaposi sarcoma and primary effusion lymphoma, and on supporting mechanistic data.

There is also limited evidence for a causal association between KSHV infection and multicentric Castleman disease.
Draft Substance Profile

- Contains NTP’s preliminary recommendation of the listing status of the substance.
- Summarizes the scientific information that is key to reaching a recommendation.
- Provides information on properties, use, production and exposure.
- Provides information on existing federal regulations and guidelines.
Peer Reviewer Comments

• Provide any new comments (e.g., not previously provided on the same facts or issues in the cancer hazard evaluation section) on whether the information on properties and detection, human exposure, cancer studies in humans and mechanistic data is clear and technically accurate.

• Comment on whether the substance profile highlights the information on cancer studies in humans and mechanistic data that are considered key to reaching the listing recommendation.