

Draft Monograph on Cobalt and Certain Cobalt Compounds

Mechanistic and Other Relevant Data

Stan Atwood, MS, DABT Integrated Laboratory Systems, Inc. Contractor supporting the ORoC

National Institute of Environmental Health Sciences July 22, 2015

Outline

Disposition and Toxicokinetics

Mechanistic and Other Relevant Data

- Cobalt toxicity: particles versus ions
- Proposed modes of action
- Cobalt and certain cobalt compounds as a class

Diet and inhalation are important exposure pathways

Diet

Absorption from the GI tract is highly variable (5% to > 90%)

- Aqueous (20% to 45%)
- Solid (10% to 25%)
- Women 2X > men

Inhalation Exposure

Soluble compounds/particles are rapidly absorbed

Inhalation Exposure

Large particles cleared by mucociliary action

Inhalation Exposure

Smaller particles reach the lower airways

- Enter lung cells via endocytosis
- Nanoparticles may translocate directly to blood and lymph

Absorbed cobalt rapidly distributes to all tissues

- Highest in liver, kidney, heart, spleen
 - Stored body Co does not significantly accumulate with age
- Free fraction in blood (5% to 12%)
- Insoluble particles/compounds may be retained in the lungs

Much of absorbed cobalt is excreted within the first week

Clarifications?

Reviewer Comments

- Comment on whether the information on disposition and toxicokinetics is clear, technically correct, and objectively presented.
- Identify any information that should be added or deleted.

Outline

Disposition and Toxicokinetics

Mechanistic and Other Relevant Data

- Cobalt toxicity: particles versus ions
- Proposed modes of action
- Cobalt and certain cobalt compounds as a class

Cobalt and cobalt compounds affect similar pathways associated with carcinogenesis

Cobalt particles and ions have similar biological effects in vitro and in vivo

- Cytotoxicity/Inflammation
 - Nanoparticles > microparticles
 - Relatively soluble particles > ions > poorly soluble particles

• ROS

- Nano- and microparticles > ions
- Nanoparticles activate neutrophils: ROS/proinflammatory cytokines
- For particles, direct cell contact was necessary to induce effects
- Co²⁺ ions responsible for effects, differences partially explained by cellular uptake mechanisms

Cellular Uptake of Cobalt Ions and Particles

Poorly soluble cobalt particles dissolve in the lysosomes

Cobalt and cobalt compounds affect similar pathways associated with carcinogenesis

Cobalt and cobalt compounds induced a similar spectrum of genotoxic and related effects

- In vitro studies generally consistent for all forms tested
 - Bacteria: mostly negative
 - Human and rodent cells
 - Clastogenic (CA, MN, SCE, aneuploidy)
 - DNA damage/strand breaks
 - Mutations (mixed results)
 - Cell transformation
- *In vivo* (few studies)
 - Mixed: Some evidence DNA/chromosome damage in rodents
 - Humans (inadequate data)

Cobalt inhibits DNA repair

- Inhibits nucleotide excision repair (NER)
 - Inhibits incision and polymerization steps of NER
 - Increased DNA damage from UV exposure
- Substitute for Zn(II) in zinc finger domains of DNArepair proteins and transcription factors
 - p53 (repair of oxidative damage)
 - Xeroderma pigmentosum group A (XPA)
 - Poly(ADP-ribose)polymerase (PARP)
- Competition with Mg(II) for binding to DNA polymerases

Oxidative Stress

Cobalt is a redox-active metal

(1)
$$\operatorname{Co}(0) + \operatorname{O}_2 \longrightarrow \operatorname{Co}(I) + \operatorname{O}_2^{\bullet} \longrightarrow \operatorname{Co}(I) - \operatorname{OO}^{\bullet}$$

- (2) $Co(I)-OO^{\bullet} \xrightarrow{SOD} Co(I) + H_2O_2$
- (3) $Co(I) + H_2O_2 \longrightarrow Co(II) + \cdot OH + OH^-$

(4) [Co(II)-chelate] + $H_2O_2 \longrightarrow Co(II) + OH + OH^-$

Sources: Lee et al. 2012, Jomova and Valko 2011, Leonard et al. 1998

ROS activate redox transcription factors

- NF-кВ
 - Activation is linked to cancer
 - Binds DNA: regulates cell growth & survival, differentiation, cytokine production, inflammation, angiogenesis
- Activator protein-1 (AP-1)
 - Participates in oncogenic transformation
 - Regulates cell proliferation, apoptosis
- Promotes tumor growth by dysregulation of cell growth, proliferation, and survival

Cobalt and cobalt compounds cause oxidative stress/damage

- Cobalt salts (inorganic and organic) strongly active in Nrf2/ARE assay (Tox21)
- Increased sensitivity of 8-oxoguanine-DNA glycosylase (*Ogg*) knockout mouse embryo fibroblasts
- Cobalt particles induced dose-dependent increase in ROS in human and animal cells *in vitro*
- Evidence of oxidative damage *in vivo* in rodents (lung, liver, kidney)
- Lung tumors in rodents induced by cobalt sulfate and cobalt metal had increased frequency of G to T transversion mutations in K-ras

Cobalt and cobalt compounds stabilize HIF-1α

- Cobalt well known to mimic hypoxia in vitro and in vivo
 - Soluble cobalt salts (CoCl₂ and CoSO₄)
 - Cobalt metal nanoparticles
 - Poorly soluble cobalt oxide (Co_3O_4)
- Possible mechanism(s)
 - Cobalt replaces iron in regulatory oxygenases, prevents hydroxylation of HIF and subsequent ubiquitination and degradation
 - Depletes intracellular ascorbate, deactivates prolyl hydrolase activity, prevents hydroxylation of HIF

Cellular effects of HIF-1α stabilization

- Regulates > 100 hypoxia-responsive genes
 - VEGF, other angiogenic growth factors
 - Erythrocytosis
 - Inflammatory factors
 - Cell proliferation
 - Apoptosis
- Major role in adaption of cancer cells to hypoxia
- Overexpression/stabilization in more that 70% of human cancers and associated with poor clinical outcome.

Rationale for evaluating cobalt and certain cobalt compounds as a class

- Toxicity for all cobalt forms tested attributed primarily to the cobalt ion
- Cobalt metal and water soluble and poorly water soluble cobalt compounds release cobalt ions in biological fluids and have similar biological effects

Similar properties and biological effects

	Soluble cobalt salts		Cobalt metal	Poorly soluble cobalt compounds				
Endpoint	CoCl ₂	CoSO ₄	Particles	CoO or Co ₃ O ₄				
Bioacessibility								
Lysosome*	+	+	+	+				
Gastric	+	+	+	+				
Cellular uptake	+	+	+	+				
Cytotoxicity	+	+	+	+				
ROS	+	ND	+	+				
HIF-1 α stabilization	+	+	+	+				
DNA repair inhibition	+	ND	+	ND				
Genotoxicity in vitro	+	+	+	+				
Genotoxicity in vivo	+	ND	_	ND				

ND = no data

* Dissolution of cobalt particles in lysosomal fluid is a key component for the proposed mechanisms

In vivo studies of cobalt sulfate and cobalt metal support common underlying mechanisms

© User:Adam Rędzikowski / Wikimedia Commons / <u>CC-BY-SA-4.0 Int.</u>

- Carcinogenic to lung and adrenal gland
- K-ras mutation spectra in lung tumors
- Spectrum of inflammatory lesions in lung and extrapulmonary effects in rats
- Similar clinical findings (erythrocytosis)

Cobalt metal

Cobalt and cobalt compounds induced similar carcinogenic effects in rodents

	Soluble co	balt salts	Cobalt metal*	Poorly soluble cobalt compounds
Animal Neoplasms	CoCl ₂	CoSO ₄	particles	CoO
Lung	ND	+	+	+
Adrenal gland	ND	+	+	ND
Injection site	+	ND	+	+

ND = no data

* Cobalt metal

- Pancreatic islet tumors (exposure related)
- Mononuclear cell leukemia (exposure related)
- Kidney tumors (equivocal)

Clarifications?

Reviewer Comments

- Comment on whether the mechanistic and other relevant data are clear, technically correct, and objectively presented.
- Comment on whether the mechanistic and other relevant data are appropriate for evaluating the biological plausibility of carcinogenic effects of cobalt and certain cobalt compounds in humans.
- Comment on whether the rationale for evaluating cobalt and certain cobalt compounds as a class is clear and scientifically sound.
- Identify any information that should be added or deleted.