

Evaluation of HAAs as a Class or Subclass(es)

Stan Atwood, MS, DABT

Integrated Laboratory Systems, Inc.

Contractor supporting the Office of the Report on Carcinogens

National Institute of Environmental Health Sciences July 24, 2017

Outline

Approach and methods

- Conduct read across-like analysis
 - Informed by previous sections of the monograph
 - Compared potency values for biological effects
- Evaluate published QSARs for biological effects
- Evaluate QSAR modeling to predict carcinogenicity

Biological effects varied with number and type of halogens

Endpoint	Mono- HAAs	Di- HAAs	Tri- HAAs	 Potency of biological effects increased (<i>in vitro</i>)* with decreasing number of 		
Properties (reactivity)	Electrophilio	city (E _{LUMC}), pKa	 halogens with increasing halogen size these trends are related to 		
Metabolism & Toxicokinetics	Comparativ	e data		chemical properties		
Mechanistic data	Comparativ	e data: po	otency	 Limitations/challenges no well defined mechanism 		
Animal cancer data	Br-HAAs me than CI-HAA TD ₅₀ and Bl quantitative	As MDLs for		for HAA carcinogenicity cancer potency metric 		

* Graphical representation (Table 7-1) in the Monograph captures all data evaluated

Published QSAR models successfully predicted effects related to the characteristics of carcinogens

- Predicted potency for oxidative stress and genetic damage in cultured mammalian cells for 12 HAAs
- Predicted potency of neural tube defects in mouse embryo cultures (*ex vivo*) for 10 HAAs
- These models were based on pKa and $\mathsf{E}_{\mathsf{LUMO}}$
 - pKa relates to bioavailability/transport
 - E_{LUMO} relates to intrinsic activity/covalent interaction with macromolecules

Published QSAR models successfully predicted effects related to the characteristics of carcinogens

- Predicted potency for oxidative stress and genetic damage in cultured mammalian cells for 12 HAAs
- Predicted potency of neural tube defects in mouse embryo cultures (*ex vivo*) for 10 HAAs
- These models were based on pKa and $\mathsf{E}_{\mathsf{LUMO}}$
 - pKa relates to bioavailability/transport
 - E_{LUMO} relates to intrinsic activity/covalent interaction with macromolecules

Could we develop a similar QSAR model to predict carcinogenicity?

Evaluate QSAR Modeling for Carcinogenicity

QSAR approach failed to predict animal carcinogenicity

- Empirical animal data results
 - Br-HAAs were associated with more cancer sites than CI-HAAs
 - MCA was not carcinogenic
- Modeled cancer potency estimates did not show the expected trends
 - Published Benchmark Dose Low (BMDL, mg/kg/day)
 - Predicted Toxic Dose 50 (TD₅₀, mg/kg/day)
 - MCA was predicted to be carcinogenic

Outline

Approach and Methods

- Same general approach as with all 13 HAAs
- Considered 7 smaller groups based on number and type of halogens
 - Subclasses include tested and non-tested chemicals for animal carcinogenicity
 - Evaluate the confidence for read across
 - Are there testing data for at least one member of the subclass?
 - Are there testing data for HAAs containing the principal halogen(s) within the subclass?
 - Does the subclass contain any HAAs tested in animals and found not to cause tumors?
 - Are there other similarity criteria (e.g., metabolism, chemical, biological)?

Conduct Read-Across Analysis for Subclasses

Data were insufficient to support read across for subclasses

Subclass	Members*	Confidence as a potential category for read across
Mono-HAAs	MCA, MBA, MIA	No
Di-HAAs	<mark>DCA, DBA, BCA,</mark> DIA, CIA, BIA	Low
Tri-HAAs	<mark>TCA, BDCA</mark> , CDBA, TBA	Low
CI-HAAs	MCA, DCA, BCA, CIA, TCA	No
Br-HAAs	BA, <mark>DBA, BCA,</mark> BIA, TBA, <mark>BDCA</mark> , CDBA	Low/moderate
I-HAAs	IA, DIA, CIA, BIA	No
Br-Di-/Tri-HAAs	<mark>DBA, BCA,</mark> BIA, <mark>BDCA</mark> , CDBA, TBA	Moderate

* Red = rodent carcinogens, blue = not carcinogenic, black = no animal carcinogenicity data

Example evaluation

Subclass	Members*	Confidence as a potential category for read across
Br-Di-/Tri-HAAs	<mark>DBA, BCA,</mark> BIA, <mark>BDCA</mark> , CDBA, TBA	Moderate

- Testing data for 3 members: DBA, BCA, BDCA
- No testing data for any iodinated HAAs
- CDBA and TBA are metabolized to tested HAAs
- Two untested chemicals (CDBA, TBA) have similar properties as tested chemical (BDCA)

Conclusion: Read across to BIA is too uncertain without a defined mechanism of action and/or animal carcinogenicity data for an iodinated HAA.

Outline

Subclass evaluation informed potential "read-across" for two tri-HAAs without cancer data (CDBA and TBA)

- Metabolism data and analogue approach
- Metabolites and analogues are known animal carcinogens
- Supporting mechanistic data

- Tri-HAAs with both CI and Br always lose a Br
- Br loss from Tri-HAA corresponds 1:1 to Di-HAA formation
- Br substitution for Cl enhances metabolism
- TBA and CDBA: no animal cancer data but are metabolized to animal carcinogens
- No other microsomal metabolites identified

No. of Bromines	Parent	Relative extent of metabolism	Metabolite
0	ТСА	\longrightarrow	DCA
1	BDCA	\longrightarrow	DCA
2	CDBA		BCA
3	TBA		DBA

Species/	Tes	ted chemic	cals	Untested chemicals	
Tumor type	BCA	DBA	BDCA	CDBA	TBA
Rats	\checkmark	\checkmark	\checkmark		
MCL	_	\checkmark	_		
Mesothelioma	\checkmark	\checkmark	\checkmark		
Mammary	\checkmark	_	\checkmark		
Skin	_	_	\checkmark		
Mice	\checkmark	\checkmark	\checkmark		
Liver	\checkmark	\checkmark	\checkmark		
Lung	_	\checkmark	_		
Harderian gland	_	_	\checkmark		

CDBA and **TBA** are metabolized to rodent carcinogens

Species/	Tested chemicals			Untested chemicals	
Tumor type	BCA	DBA	BDCA	CDBA	ТВА
Rats	\checkmark	\checkmark	\checkmark		
MCL	_	\checkmark	_		
Mesothelioma	\checkmark	\checkmark	\checkmark		
Mammary	\checkmark	_	\checkmark		
Skin	_	_	\checkmark		
Mice	\checkmark	\checkmark	\checkmark		
Liver	\checkmark	\checkmark	\checkmark		
Lung	_	\checkmark	_		
Harderian gland	_	_	\checkmark		

CDBA and TBA are similar (properties/effects) to BDCA

Species/	Tes	ted chemic	als	Untested chemicals	
Tumor type	BCA	DBA	BDCA	CDBA TBA	
Rats	\checkmark	\checkmark	\checkmark		
MCL	_	\checkmark	-		
Mesothelioma	\checkmark	\checkmark	✓		
Mammary	\checkmark	_	✓		
Skin	_	_	\checkmark		
Mice	\checkmark	\checkmark	✓		
Liver	\checkmark	\checkmark	✓		
Lung	_	\checkmark	-		
Harderian gland	_	_	\checkmark		

CDBA and **TBA** are predicted to be rodent carcinogens

Species/	Tested chemicals			Untested chemicals	
Tumor type	BCA	DBA	BDCA	CDBA	TBA
Rats	\checkmark	\checkmark	\checkmark	Predicted	Predicted
MCL	_	\checkmark	_		
Mesothelioma	\checkmark	\checkmark	\checkmark	Likely site	Likely site
Mammary	\checkmark	_	\checkmark		
Skin	_	_	\checkmark		
Mice	\checkmark	\checkmark	\checkmark	Predicted	Predicted
Liver	\checkmark	\checkmark	\checkmark	Very likely site	Very likely site
Lung	_	\checkmark	_		
Harderian gland	_	_	\checkmark		

- CDBA and TBA have chemical properties and biological effects similar to that of BDCA that caused cancer in experimental animals
 - Electrophiles
 - Oxidative stress
 - DNA damage
- These properties and effects are relevant to humans

Summary

HAAs as a Class or Subclass(es)

Questions?

Reviewer Questions

- Comment on the methods and approaches for evaluating haloacetic acids as a class or subclass.
- Comment on the assessment and NTP's conclusion that the available data are inadequate to evaluate haloacetic acids as a class.
- Comment on the assessment and NTP's conclusion that the available data are inadequate to evaluate haloacetic acids as a subclass or subclasses (based on number or type of halogen substitutions).
- Comment on the assessment and NTP's conclusion that metabolism data and read across principles can be applied to two haloacetic acids (CDBA and TBA) without cancer data.