

Draft RoC Monograph on Haloacetic Acids Found as Water Disinfection By-Products

Overall Cancer Evaluation

Gloria D. Jahnke DVM, DABT Office of the Report on Carcinogens

National Institute of Environmental Health Sciences
July 24, 2017

Overall Cancer Evaluation

Outline

- Human cancer studies
 - VOTE on level of evidence
- Animal cancer results
 - VOTE on level of evidence
- Metabolism and other relevant data
- Apply RoC listing criteria
 - VOTE on preliminary listing recommendations

Human Cancer Studies

Inadequate evidence to evaluate

- One cohort study evaluated the association between exposure to HAAs and kidney cancer risk (Jones et al. 2017).
 - HAA5 (MCA, MBA, DBA, DCA, TCA), TCA, BCA, DCA.
 - No increased risks were observed.
- Exposure to HAAs occurs as a mixture.
 - Several case-control studies found that exposure to chlorinated water (or surrogates, e.g., THMs) was associated with an increased risk of urinary bladder cancer (reviewed by IARC).
 - One study showed that the association varied by genetic polymorphisms in CYP and GST genes (Cantor et al. 2010).
 - These studies cannot distinguish between HAA exposure and other disinfection by-products.

Human Cancer Studies

Level of Evidence from Human Cancer Studies - VOTE

Reviewer Questions

- Level of evidence from human cancer studies (Sections 5, 8)
 - Comment on whether the information from studies in humans (Section 5) is clear, technically correct, and objectively presented.
 - Provide your preliminary vote on whether the scientific information presented from the human cancer study for haloacetic acids found as water disinfection by-products supports the NTP's level of evidence conclusion that the available data from epidemiological studies are inadequate to evaluate the relationship between human cancer risk and exposure specifically to haloacetic acids (either as a class or individual haloacetic acids).

– VOTE

Drinking water exposure to haloacetic acids causes cancer in experimental animals*

	DCA			DBA			ВСА			TCA			BDCA							
	Ra	ats	 Mi	ice	Ra	ats	Mi	се	Ra	ıts	 Mi	се	Ra	ıts	Mi	ce	Ra	ats	 Mi	ce
Neoplasm or tissue	М	F	М	F	М	F	М	F	М	F	М	F	М	L	М	F	М	F	М	F
Liver	Х		Х	х			Х	X			Х	X			X	Х			Х	X
Mononuclear-cell leukemia						X														
Malignant mesothelioma					X				Х								х			
Mammary gland										Х								Х		
Lung							X													
Skin																	Х			
Harderian gland																			Х	
Large intestine									Х	Х										

^{*}Monochloroacetic acid (MCA) exposure did not produce tumors in experimental animals.

Level of Evidence of Animal Cancer Studies - VOTE

Water disinfection by- product	NTP's Level of Evidence	Rationale
Bromochloroacetic acid	Sufficient	Tumors in two species (R, M); multiple sites in one species (R)*.
Bromodichloroacetic acid	Sufficient	Tumors in two species (R, M)* at multiple sites.
Dibromoacetic acid	Sufficient	Tumors in two species (R, M)* at multiple sites.
Chloroacetic acid	Not sufficient	No tumors reported.
Dichloroacetic acid	Sufficient	Tumors in two species (R, M) at one site (liver).
Trichloroacetic acid	Not sufficient	Tumors in one species (M)* at one tumor site (liver).

^{*}Mechanistic evidence of oxidative stress and DNA damage; R = rat; M = mouse

Summary of NTP's Preliminary Conclusions

- A significant number of people living in the United States are or have been exposed to haloacetic acids found as water disinfection by-products.
- Data available from studies in humans are inadequate to evaluate the relationship between human cancer and exposure to individual haloacetic acids.
- There is sufficient evidence of carcinogenicity for four haloacetic acids from cancer studies in experimental animals.
- There is other relevant information (metabolism and properties) that support the evidence of carcinogenicity for two additional haloacetic acids-tribromoacetic acid and chlorodibromoacetic acid.

Chlorodibromoacetic Acid (CDBA)

- Convincing evidence that CDBA is metabolized to BCA.
 - Evidence of metabolism to BCA with rat or human liver microsomes under liver oxygen tension conditions (Saghir et al. 2011).
 - Oral exposure in rats results in non-renal clearance at 62.6% of total clearance, suggesting metabolism (Schultz et al. 1999).
- Sufficient evidence for the carcinogenicity of BCA.
 - Tumors in two species and at multiple sites in one species.
- Supporting mechanistic evidence demonstrating biological plausibility for humans.
 - Oxidative stress.
 - DNA damage.

Tribromoacetic Acid (TBA)

- Convincing evidence that TBA is metabolized to DBA.
 - Evidence of metabolism to DBA with rat liver microsomes under liver oxygen tension conditions (Saghir et al. 2011).
 - Oral exposure in rats results in non-renal clearance at 77.2% of total clearance, suggesting metabolism (Schultz et al. 1999).
- Sufficient evidence for the carcinogenicity of DBA.
 - Tumors in two species at multiple sites.
- Supporting mechanistic evidence demonstrating biological plausibility for humans.
 - Oxidative stress.
 - DNA damage.

Preliminary Listing Recommendation - VOTE

Water disinfection by- product	NTP's Listing Recommendation	Rationale			
Dichloroacetic acid	RAHC				
Dibromoacetic acid	RAHC	Sufficient evidence in experimental animals and supporting mechanistic data.			
Bromochloroacetic acid	RAHC				
Bromodichloroacetic acid	RAHC				
Chlorodibromoacetic acid	RAHC	Metabolism of each to a rodent carcinogen and supporting mechanistic data.			
Tribromoacetic acid	RAHC				

RAHC = Reasonably Anticipated to be a Human Carcinogen