Disposition and Toxicokinetics

Sanford Garner, PhD
Integrated Laboratory Systems, Inc.
Contractor supporting the Office of the Report on Carcinogens
National Institute of Environmental Health Sciences

January 24, 2018
Antimony Disposition & Toxicokinetics

The following topics will be addressed for ADMET of antimony from antimony trioxide:

Metabolism: Transformation of antimony in the body

Absorption: Entry of antimony into the body

Excretion: Elimination from the body as evidence for absorption

Distribution: Tissues where antimony is present in the body

Toxicokinetics: Effects of antimony accumulation
The chemical form of antimony trioxide changes once it dissolves in bodily fluids, where it forms the hydroxides, $\text{Sb}^{\text{III}}(\text{OH})_3$ and $\text{Sb}^{\text{V}}(\text{OH}_6^-)$, which have limited solubility. Antimony’s ability to cross cell membranes varies with its valence. Reduction of Sb(V) to Sb(III) in the presence of thiols has been demonstrated in vitro. Valence also impacts tissue distribution and excretion.
Absorption of Antimony

- Oral absorption (~1%)
- Inhalation (5%-10%) (Mucociliary transport)
- Small intestine
- Lung
- Blood

- Dermal absorption also occurs, particularly for workers and consumers through contact with fire retardant treated materials.
- Absorption of antimony trioxide is greater with inhalation than with oral ingestion for both valences, but mucociliary transport can result in oral absorption for some inhaled antimony trioxide.
Inhalation Exposure Results in Excretion

<table>
<thead>
<tr>
<th>Exposure to Sb$_2$O$_3$ (Reference)</th>
<th>N</th>
<th>Air Sb Levels ($\mu g/m^3$)</th>
<th>Urine Sb Levels ($\mu g/g$ creatinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead battery production (Kentner et al. 1995)</td>
<td>7</td>
<td>4.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Antimony(III) trioxide production (Kim et al. 1999)</td>
<td>12</td>
<td>766a</td>
<td>419.8 (µg/L)</td>
</tr>
</tbody>
</table>

aExceeds ACGIH TLV of 500 µg/m3

- Workers exposed to antimony trioxide by inhalation excrete more antimony in the urine, confirming human absorption from these exposures.
Excretion of Antimony

- Excretion of antimony in the urine further confirms its absorption and distribution throughout the body after exposure to antimony trioxide.

- Pentavalent antimony is excreted mainly in the urine while trivalent antimony is more likely to be excreted via the feces.
Antimony distributes to multiple tissues.
Antimony Tissue Distribution

Source: TNO Quality of Life 2005 (as reported in EU 2008)
Antimony accumulates to higher levels in tissues after oral exposure to antimony trioxide but increases in blood and lung are much greater after exposure.

Source: TNO Quality of Life 2005 (as reported in EU 2008)
Antimony Tissue Distribution

- Antimony is generally highest in tissues with reticuloendothelial cells.

Source: TNO Quality of Life 2005 (as reported in EU 2008)
Toxicokinetics: Blood Antimony Levels

Mice

[Sb$_2$O$_3$ concentration](#)

Rats

[Sb blood concentration (μg Sb/g blood)](#)

Toxicokinetics: Blood Antimony Levels

Mice

![Graph showing Sb$_2$O$_3$ concentration in mice over time for different concentrations (0 mg/m3, 3 mg/m3, 10 mg/m3, 30 mg/m3)].

Rats

![Graph showing Sb blood concentration in rats over time for different concentrations (0 mg/m3, 3 mg/m3, 10 mg/m3, 30 mg/m3)].

Toxicokinetics: Blood Antimony Levels

- Blood levels increased in female mice with dose, but only slightly with time.
- Blood levels of antimony in female rats increased with both exposure time and dose.
- At the highest dose and duration, mouse blood concentration was 0.002% of lung concentration compared with 7% in rats.

Toxicokinetics: Lung Burdens in Female Mice

- Antimony accumulated in the lung in female mice, but the fit to the model is poor.
- Day 551 lung burdens were considerably higher than the calculated curves and are not shown here.

Toxicokinetics: Lung Burdens in Female Rats

- A better fit to the model was obtained for data from female rats.
- Rats exposed to 3 or 10, but not 30 mg/m3, approached steady state.
- Reduced pulmonary clearance is likely associated with lung overload at the higher doses.

Lung Overload in Rats and Mice

- Similar results were seen for lung overload based on particle surface area in both species.

• The most common metabolic change *in vivo* is the reduction of Sb(V) to Sb(III) in the presence of intracellular thiol groups.

• Antimony(III) trioxide has low solubility in water, but absorption and distribution results in increased excretion with higher levels of exposure by inhalation in workers and by distribution to tissues in animals, particularly to organs rich in reticuloendothelial cells, e.g., spleen, liver, bone marrow.

• The 2-year bioassay data on lung burden with inhalation exposure to antimony(III) trioxide indicate that both rats and mice were exposed to concentrations that resulted in the absence as well as the presence of lung overload.
Disposition and Toxicokinetics

- Comment on whether the information on Disposition and Toxicokinetics (Section 3 and Appendix B) is clear, technically correct, and objectively presented.
 - Identify any information that should be added or deleted.
Disposition of Antimony

Absorption

Sb\textsubscript{2}O\textsubscript{3}

Inhalation (5\%-10\%)

Mucociliary transport (extent depends on particle size)

Oral (~1\%)

Blood

Lung

Small intestine

Liver

Bone marrow

Thyroid

Spleen

Excretion

Kidney

Urine

Feces

Sb + GSH (Bile)