

Draft RoC Monograph on Antimony Trioxide

Mechanistic and Other Relevant Data

Amy Wang, PhD Office of the Report on Carcinogens National Institute of Environmental Health Sciences

January 24, 2018

Scientific judgment considering all relevant information

- Antimony(III) trioxide
- Also consider compounds containing Sb(III)
 - E.g., antimony(III) trichloride, antimony potassium tartrate

• In aqueous solution, Sb(III) compounds form Sb(OH)₂⁺ Sb(OH)₃ Sb(OH)₄⁻

Questions

- Does the available mechanistic data provide supporting evidence for the cancer effects observed in experimental animals?
 - What are the major biological effects contributing to the carcinogenicity of antimony trioxide?
- Is there compelling data indicating that the agent acts through mechanisms which do not operate in humans?

Strong Evidence of 5 Characteristics for Sb^{III}

Other compounds containing Sb^{III} also

DNA repair

➡ Receptormediated effects

Antimony Compounds Are Electrophilic

- Antimony compounds can interact with proteins and nucleic acids
- Sb(III) is highly reactive to sulfhydryl groups (thiols)

Antimony Compounds Are Electrophilic

- Antimony compounds can interact with proteins and nucleic acids
- Sb(III) is highly reactive to sulfhydryl groups (thiols), especially vicinal thiol groups

FAD: riboflavin. GSSG: oxidized glutathione.

NADPH: reduced from of nicotinamide adenine dinucleotide phosphate. NADP+: nicotinamide adenine dinucleotide phosphate.

Antimony Compounds Are Electrophilic

- Antimony compounds can interact with proteins and nucleic acids
- Sb(III) is highly reactive to sulfhydryl groups (thiols), especially vicinal thiol groups

 Many enzymes involved in the redox process and DNA binding (e.g., DNA repair) have thiol or vicinal thiol groups

FAD: riboflavin. GSSG: oxidized glutathione. NADPH: reduced from of nicotinamide adenine dinucleotide phosphate. NADP+: nicotinamide adenine dinucleotide phosphate.

Sb^{III} Compound Oxidative Stress and Damage

 Sb^{III} compounds, including Sb₂O₃, decrease antioxidants (e.g., reduced form of glutathione, GSH)

Sb^{III} Compound Oxidative Stress and Damage

- Sb^{III} compounds, including Sb₂O₃, decrease antioxidants (e.g., reduced form of glutathione, GSH)
- Sb^{III} compounds directly inhibit redox enzymes

Sb^{III} Compound Oxidative Stress and Damage

 Effects likely via interaction with thiol groups of protein (enzymes) and peptide (GSH)

+ positive

- negative

Sb^{III}₂O₃ Is Clastogenic

		Sb ^{III} ₂ O ₃		
		In vitro	In vivo	
Any DNA d	amage (prokaryotes)	+	+	
Any DNA d	amage (eukaryotes)	+	+	
Chromosomal aberrations		<u>/</u> +	_a	
Micronucleus induction		+b	+	
Sister chromatid exchange		+	No data	
in cl (e	human leucocytes: hromosomal damage excluding gaps)			

+ positive

- negative

- ^a Negative in rats; uncertain in mice due to severe study limitations.
- ^b Correction from public comment version monograph

	Sb ^{III} ₂ O ₃	
	In vitro	In vivo
Any DNA damage (prokaryotes)	+	+
Any DNA damage (eukaryotes)	+	+
Chromosomal aberrations	+	_a
Micronucleus induction	/+ ^b	<u></u> +
Sister chromatid exchange	+	No data
in Chinese han V79 cells	nster	in mature mice afte inhalatior

- + positive
- ^a Negative in rats; uncertain in mice due to severe study limitations.
- negative
- ^b Correction from public comment version monograph

Sb^{III}₂O₃ Is Clastogenic

	Sb ^{III} ₂ O ₃	
	In vitro	In vivo
Any DNA damage (prokaryotes)	+	+
Any DNA damage (eukaryotes)	+	+
Chromosomal aberrations	+	_a
Micronucleus induction	+ ^b	+
Sister chromatid exchange	/+	No data
in human lymphocytes Chinese hamster V79 c	and cells	

+ positive

- ^a Negative in rats; uncertain in mice due to severe study limitations.
- negative
- ^b Correction from public comment version monograph

Sb^{III}₂O₃ Does Not Cause Base-Substitution or Frame shift Sb^{III}₂O₃

	In vitro	In vivo
Any DNA damage (prokaryotes)	+	+
Any DNA damage (eukaryotes)	+	+
Chromosomal aberrations	+	_a
Micronucleus induction	+b	+
Sister chromatid exchange	+	No data
Any mutation (prokaryotes)	-	No data
Any mutation (eukaryotes)	_	No data*

+ positive

^a Negative in rats; uncertain in mice due to severe study limitations.
^b Correction from public comment version monograph

- negative

Sb^{III}Cl₃ and Sb^{III}₂O₃ Have Similar Genotoxicity

	Sb ^{III} ₂ O ₃		Sb ^{III} Cl ₃	
	In vitro	In vivo	In vitro	In vivo
Any DNA damage (prokaryotes)	+	+	+	No data
Any DNA damage (eukaryotes)	+	+	+	No data
Chromosomal aberrations	+	_a	No data	No data
Micronucleus induction	+b	+	+	+
Sister chromatid exchange	+	No data	+	No data
Any mutation (prokaryotes)	_	No data		No data
Any mutation (eukaryotes)	_	_	No data	No data

+ positive

- negative

^a Negative in rats; uncertain in mice due to severe study limitations.

- ^b Correction from public comment version monograph
- * mutations seen in Sb_2O_3 -induced lung tumors

Strong Evidence of 5 Characteristics for Sb^{III}

Other compounds containing Sb^{III} also

- Sb^{III}Cl₃ in vitro inhibits repair of various types of **DNA damage in lesion-specific manner**
 - Nucleotide excision repair (NER) pathway, non-homologous end-joining repair (NHEJ) and homologous recombination (HR) repair pathways were affected

Nuclear excision repair

RPA: replication protein A. XPA: xeroderma pigmentosum complementation group A. XPC: xeroderma pigmentosum complementation group C. XPE: xeroderma pigmentosum complementation group E.

- Sb^{III}Cl₃ in vitro inhibits repair of various types of DNA damage in lesion-specific manner
 - Nucleotide excision repair (NER) pathway, non-homologous end-joining repair (NHEJ) and homologous recombination (HR) repair pathways were affected

RPA: replication protein A. XPA: xeroderma pigmentosum complementation group A. XPC: xeroderma pigmentosum complementation group C. XPE: xeroderma pigmentosum complementation group E.

- Sb^{III}Cl₃ in vitro inhibits repair of various types of DNA damage in lesion-specific manner
 - Nucleotide excision repair (NER) pathway, non-homologous end-joining repair (NHEJ) and homologous recombination (HR) repair pathways were affected

- Whether Sb^{III}₂O₃ inhibits DNA repair is inconclusive
 - Only available study was on unscheduled DNA synthesis, an insensitive indicator of repair, and result was negative

RPA: replication protein A. XPA: xeroderma pigmentosum complementation group A. XPC: xeroderma pigmentosum complementation group C. XPE: xeroderma pigmentosum complementation group E.

- Skin is a cancer site in mice exposed to Sb^{III}₂O₃
- Sb^{III}₂O₃ increased *Egfr* mutation in the alveolar/bronchiolar tumors of mice and rats
 - Egfr mutation was not seen in non-tumor lung tissue or in spontaneous lung tumors

 Does the available mechanistic data provide supporting evidence for the cancer effects observed in experimental animals?

Yes, mechanistic information is supportive.

– What are the major biological effects contributing to the carcinogenicity of antimony trioxide?

Some effects were seen in

- cells at cancer sites
- human cells

 Is there compelling data indicating that the agent acts through mechanisms which do not operate in humans? No.

Clarification Questions?

Mechanistic and Other Relevant Data

- Comment on whether the mechanistic data and other relevant data (Section 6: Mechanistic and Other Relevant Data, and Appendix E) presented in the cancer evaluation component antimony trioxide are clear, technically correct, and objectively presented.
- Comment on whether the mechanistic and other relevant data (Section 6 and Appendix E) are relevant for evaluating the biological plausibility of carcinogenic effects of antimony trioxide in humans.
 - Provide any scientific criticisms of the NTP's synthesis of these data for assessing effects of antimony trioxide.
 - Identify any information that should be added or deleted.