

Human Breast Cancer

Pam Schwingl, PhD

Integrated Laboratory Systems, Inc.

(Contractor supporting the Office of the Report on Carcinogens (RoC))

Draft RoC Monograph on Night Shift Work and Light at Night
Peer Review Meeting
5 October 2018

Human Breast Cancer

Outline

Background

- Overview of breast cancer
- Overview of methods

Night shift work

- Utility of breast cancer studies
- Assessment of findings
- Preliminary level of evidence conclusions

Light at night

- Assessment of findings
- Preliminary level of evidence conclusions

Transmeridian travel

- Assessment of findings
- Preliminary level of evidence conclusions

Female Breast Cancer - Background

Breast cancer incidence, trends, mortality and survival

- Incidence is high (126/100,000/yr) and rising (0.3%/yr for last 10 yrs)*
- Mortality is low (20.9/100,000/yr) and 5year survival high (89.7%)*

Breast cancer subtypes and etiology

- ~2 out of 3 breast cancers are ER+ or PR+ (estrogen or progesterone positive). For hormone positive tumor subtypes, high estrogen levels promote cancer growth and spread
- Breast tissue more susceptible before first full-term pregnancy or at younger ages when breast cells are dividing

RoC Systematic Review Methods

Study quality evaluation

Potential biases

- Selection
- Exposure
- Outcome
- Confounding
- Analysis & reporting

Sensitivity

Study findings interpretation

Biases + Results

Confidence

- Moderate/ strong evidence
- Some evidence
- Null
- Inconclusive

Synthesis across studies

Consistency

Metrics

Age

Tumor subtype

Evaluate confounding

Level of Evidence*

Sufficient

Limited

Inadequate

*Applying RoC Listing Criteria

RoC Systematic Review Methods

Study quality evaluation

Potential biases

- Selection
- Exposure
- Outcome
- Confounding
- Analysis & reporting

Sensitivity

Study findings interpretation

Biases + Results

Confidence

- Moderate/ strong evidence
- Some evidence
- Null
- Inconclusive

Synthesis across studies

Consistency

Metrics

Age

Tumor subtype

Evaluate confounding

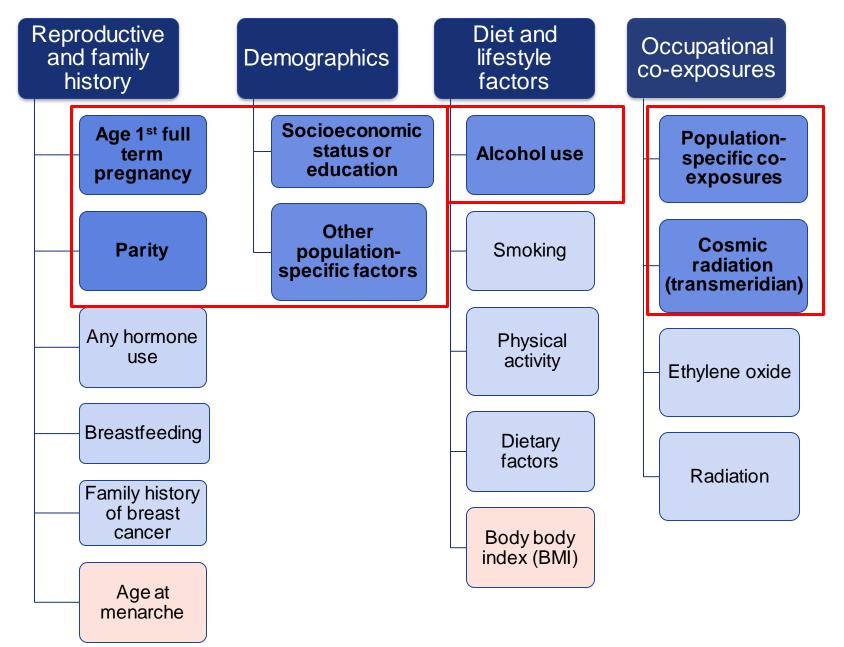
Level of Evidence*

Sufficient

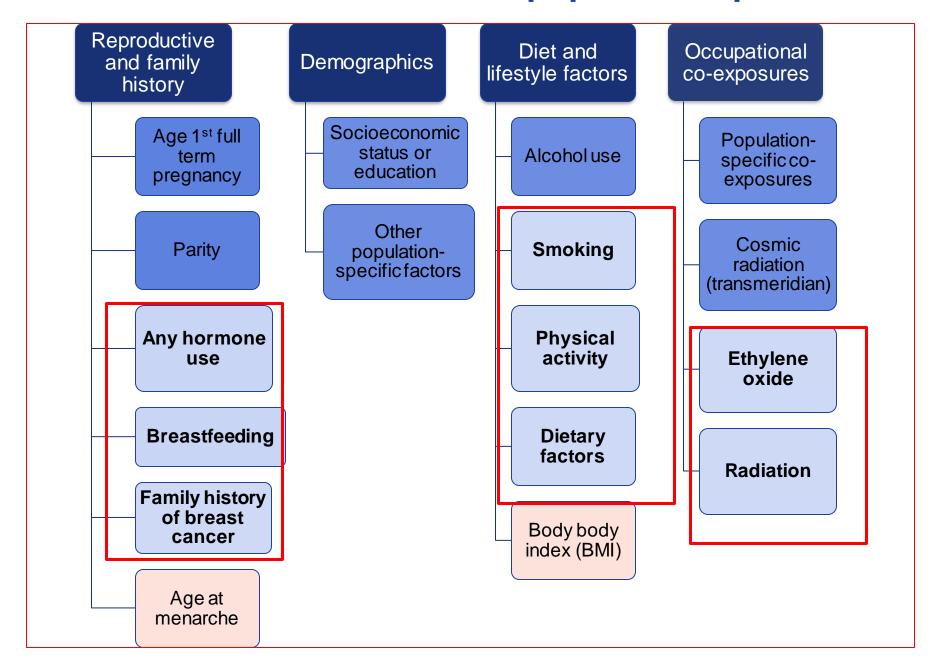
Limited

Inadequate

*Applying RoC Listing Criteria



RoC Methods: Assessing Study Quality


Key issues and challenges

- No direct measure of circadian disruption included
 - We looked at metrics of long duration, high frequency, and age of the populations as potential measures of circadian disruption
- Variety of exposure definitions of night work
 - e.g., 3 nights/month, 1 night/week, "usually", etc.
 - e.g., 3 hours between midnight and 6pm, 11pm to 7am; evenings and/or nights, etc.
- Older cohorts and left truncation bias
- Several potential effect modifiers
 - Chronotype
 - Menopausal status
 - Age began shift work; age since shift work ended
- Breast cancer subtypes
- No meta-analysis

Potential confounders: Key

Potential confounders: Weak or population specific

Potential confounders: Causal Pathway

Utility of Cohort Studies of Night Shift Work

Author, Date	Utility rationale	Utility	
Wegrzyn 2017, U.S.	 Good exposure assessment Multiple metrics Moderate or high sensitivity Minimal chance of selection or confounding bias 	High +++	
Knutsson 2013, Sweden Li 2015, Shanghai Vistisen 2017, Denmark	 Moderate exposure assessment Varying sensitivity (high to low) Low risk of other bias 	Moderate ++	
Äkerstedt 2015, Sweden Pronk 2010, Shanghai Travis 2016, Million Women, U.K. Travis 2016, EPIC Oxford, U.K. Tynes 1996, Norway	Low exposure assessmentPotential selection biasLow sensitivity	Low +	
Jorgensen 2017, Denmark Koppes 2014, Netherlands Schwartzbaum 2007, Sweden Travis 2016, U.K.	 Mortality study Only current exposure to night work Credibility of night work rates in question 	Inadequate 0	

Utility of Case-Control Studies of Night Shift Work

Population, Author, Date	Utility Rationale	Utility		
Fritschi 2013, Western Australia				
Hansen & Lassen 2012, Denmark	Good exposure assessmentMultiple metrics			
Hansen & Stevens 2012, Denmark	Moderate or high sensitivity	High +++		
Menegaux 2013, France	Minimal chance of selection or confounding bias			
Papantoniou 2015, Spain	Cornounding blas			
Grundy 2013, Canada	NA de la constanta de la const			
Lie 2011, Norway	Moderate exposure assessmentVarying sensitivity (high to low)	Moderate ++		
Pesch 2010, Germany	• Low risk of other bias	Woderate 11		
Davis 2001, Seattle, WA	LOW HISK OF OTHER DIAS			
Wang 2015, Guangzhou, China	Low exposure assessment			
O'Leary 2006, Long Island NY	Potential selection bias	Low +		
Hansen 2001, Denmark	Low sensitivity			

Study quality evaluation

Potential biases

- Selection
- Exposure
- Outcome
- Confounding
- Analysis & reporting

Sensitivity

Study findings interpretation

Biases + Results

Confidence

- Moderate/ strong evidence
- Some evidence
- Null
- Inconclusive

Synthesis across studies

Consistency

Metrics

Age

Tumor subtype

Evaluate confounding

Level of Evidence*

Sufficient

Limited

Inadequate

*Applying RoC Listing Criteria

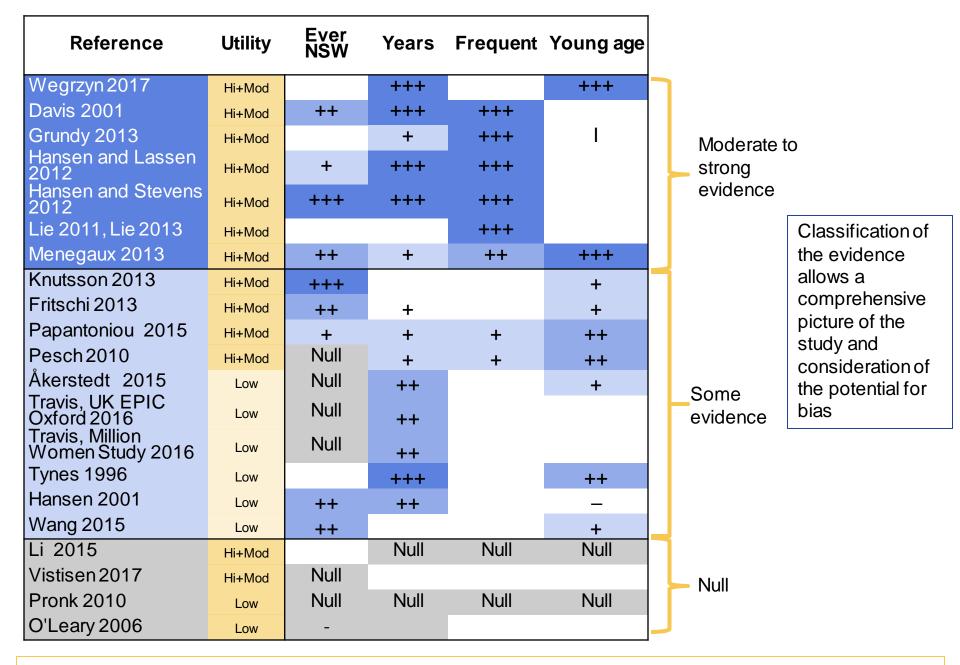
Human Breast Cancer

Confidence in each study's findings

Moderate to strong evidence

- RR ≥ 1 for several exposure metrics or effect modification
- Most RRs are statistically significant or have a positive exposure response relationship
- Moderate to high quality studies

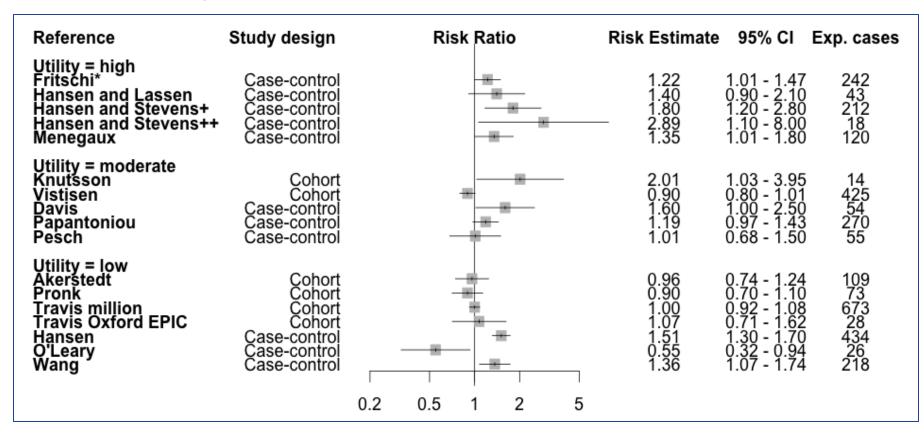
Some evidence


- Significant RR ≥ 1 for at least one exposure metric or weaker patterns of effect for several metrics
- Moderate or high quality studies; low quality studies with bias towards the null

Null

- RR ≤ 1.0
- Study quality vary

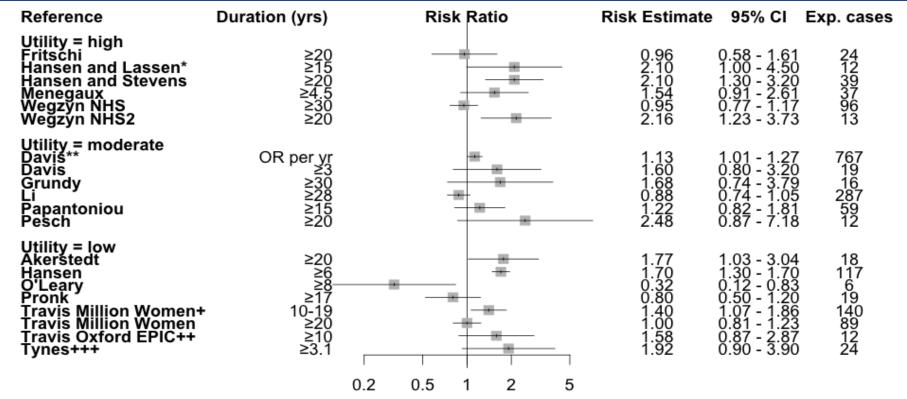
Inconclusive


- RRs vary
- Unknown direction of bias or potential confounding
- Low precision

Hi+Mod = informative (dark yellow); Low = low utility (light yellow); strength of association increases with number of + and darker shade of blue

Excess risk of breast cancer with ever night shift work in high and moderate utility studies

Plotted points are based on calculated estimates (R statistical package) and may differ slightly from published estimates.

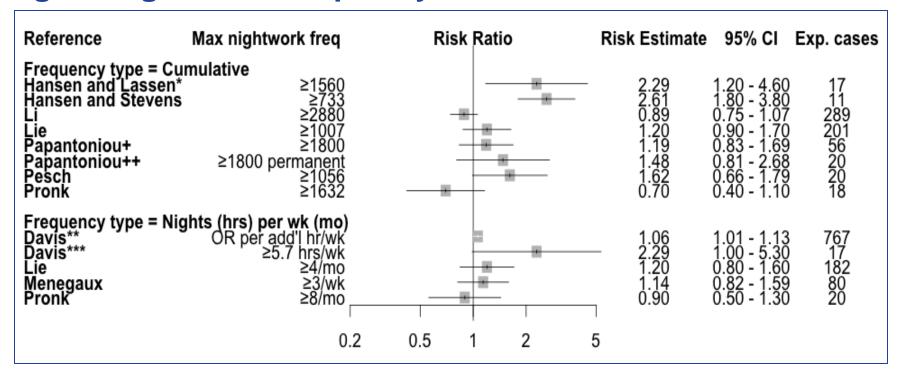

^{*}Trend P = 0.04 for phase shift.

⁺Rotating night shift without permanent nightwork.

⁺⁺Rotating night shifts with permanent nightwork.

Longer duration increases breast cancer risk

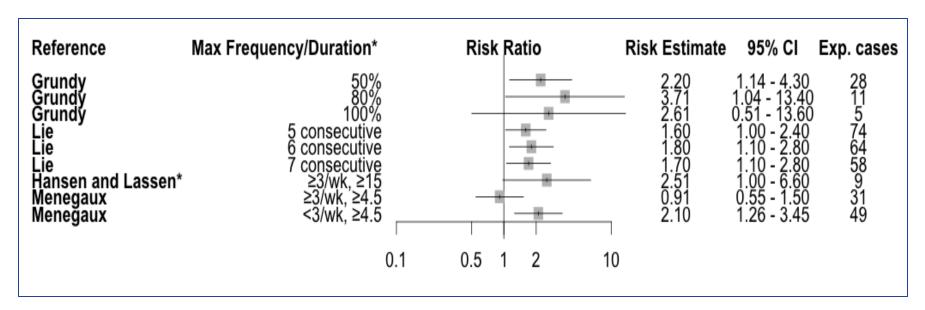
Plotted points are based on calculated estimates (R statistical package) and may differ slightly from published estimates * Trend is P = 0.03.


^{**} Trend is P = 0.04 for continuous duration.

⁺Travis Million Women study OR = total years worked among women last working nights in past 10 years ++Travis Oxford EPIC study OR = combined categories of 10-19 and 20+ yrs by a fixed-effects model (NTP)

⁺⁺⁺ Combined estimate for duration for all women in the Tynes et al. study was calculated using reported frequencies for women < 50 and ≥ 50 years of age (NTP)

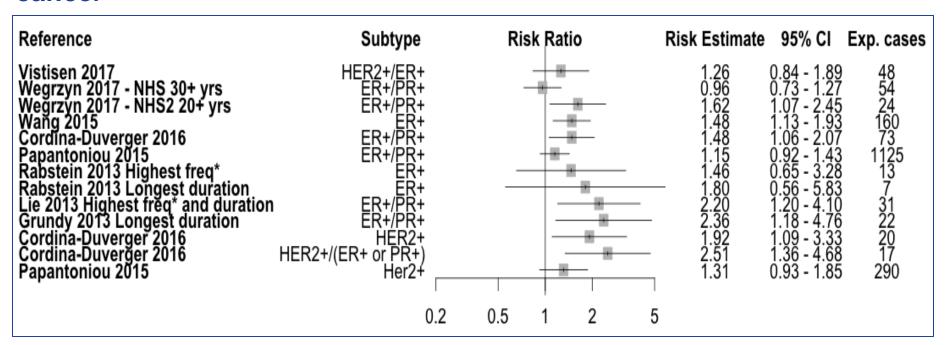
Higher night work frequency increases risk of breast


Plotted points are based on calculated estimates (R statistical package) and may differ slightly from published estimates

- *Trend is P = 0.02.
- **Trend is P = 0.03.
- ***Trend is P = 0.04.
- +Refers to cumulative number of all night shifts.
- ++Refers to cumulative number of permanent night shifts only.

Pronk et al. only low utility study

Persistent exposures increase breast cancer risk*



Plotted points are based on calculated estimates (R statistical package) and may differ slightly from published estimates

^{*}Highest frequency and longest duration in high and moderate utility studies

Night shift work is related to receptor positive and HER2 neu+ breast cancer*

^{*} Freq = frequency
Only high and moderate utility studies

Long duration, high frequency at younger ages increases risk of breast cancer

Exposure group	HR (95% CI)	Exposure group	OR (95% CI)
	HS2 cohorts et al. 2017		lysis of 5 studies+ overger <i>et al.</i> 2018
NHS2 ((younger)	Pre-	menopausal
Duration (yr)* & follow up (FU) ≥ 20 (all) ≥ 20 and ≤10 FU	2.15 (1.23 - 3.73) 2.35 (1.04-5.31)	≥ 3 nights/wk & ≥ 10 yrs ≥ 10 hr shift ≤ 2 yrs**	2.55 (1.03 – 6.30) 2.15 (1.21 – 3.84) 2.21 (1.30 – 3.76)
NHS	(older)	Pos	st-menopausal
Duration (yr)* & follow up (FU) ≥ 30 (all) ≥ 30 and ≤10 FU	0.95 (0.77 - 1.17) 1.26 (0.97 - 1.64)	≥ 3 nights/wk & ≥ 10 yrs ≥ 10 hr shift ≤ 2 yrs**	1.00 (0.56–1.77) 0.90 (0.55–1.48) 1.58 (0.68–3.64)

^{*}Since baseline,

^{**} Since last exposure

⁺Includes studies by Pesch et al. 2010, Fritschi et al. 2013, Grundy et al. 2013, Menegaux et al. 2013, Papantoniou et al. 2015.

RoC Systematic Review Methods

Study quality evaluation

Potential biases

- Selection
- Exposure
- Outcome
- Confounding
- Analysis & reporting

Sensitivity

Study findings interpretation

Biases + Results

Confidence

- Moderate/ strong evidence
- Some evidence
- Null
- Inconclusive

Synthesis across studies

Consistency

Metrics

Age

Tumor subtype

Evaluate confounding

Level of Evidence*

Sufficient

Limited

Inadequate

*Applying RoC Listing Criteria

Limited evidence: Strong

Strengths

- Large database of informative studies
- Consistent findings across studies for persistent night shift work across different occupations and populations
- Potential confounding from lifestyle factors unlikely
- Stronger association with receptor positive breast cancer subtypes

Limitations

- Low sensitivity of most cohort studies
- Low possibility of differential recall biases in case-control studies
- Possibility of co-exposure to other carcinogens in the occupational cohorts of nurses or in other populations.
- Two informative studies were null (<u>Li et al. 2015</u>, <u>Vistisen et al. 2017</u>).

Limited evidence: Strong but not sufficient

Strengths

- Large database of informative studies
- Consistent findings across studies for persistent night shift work across different occupations and populations
- Potential confounding from lifestyle factors unlikely
- Stronger association with receptor positive breast cancer subtypes

Limitations

- Low sensitivity of most cohort studies
- Low possibility of differential recall biases in case-control studies
- Possibility of co-exposure to other carcinogens in the occupational cohorts of nurses or in other populations.
- Two informative studies were null (<u>Li et al. 2015</u>, <u>Vistisen et al. 2017</u>).

Clarification questions?

Breast Cancer Studies: Night Shift Work

Reviewer comments

Breast cancer epidemiology

 Comment on whether the scientific information is clear, technically correct, and objectively presented and identify any information that should be added or deleted

Night shift work

- Comment on whether the scientific information is clear, technically correct, and objectively presented and identify any information that should be added or deleted.
- 2. Comment on whether the study quality evaluation (risk of bias and sensitivity to detect an effect) is systematic, transparent, objective, and clearly presented.
- 3. Provide any scientific criticisms of NTP's cancer hazard assessment of the epidemiologic studies.

NTP Preliminary Level of Evidence Conclusion: Vote

Limited evidence of breast cancer carcinogenicity for persistent night shift work from human epidemiology studies

- Strong but not sufficient
- Persistent defined as long-term, frequent and starting night shift work in young adulthood

Breast Cancer and Light at Night

Outdoor light

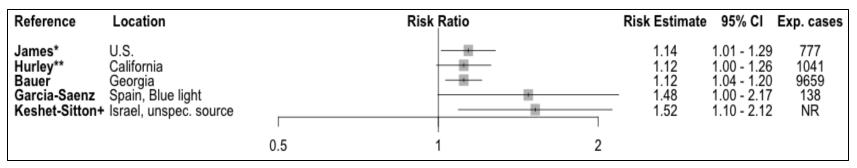
Indoor light - in the sleeping area

Breast Cancer and Outdoor Light at Night

Outdoor light – studies and metrics

Outdoor light

- 3 studies used satellite images from DMSP*
- 1 study used space station photos** to develop a Melatonin Suppression Index from blue light
- 1 study used self-report of strong LAN source outside residence


^{*}U.S. Defense Meteorological Satellite Program

^{**} International Space Station (ISS) (Earth Science and Remote Sensing Unit, NASA Johnson Space Center (https://eol.jsc.nasa.gov).

Breast Cancer and Outdoor Light at Night

Metrics for outdoor LAN and results

^{*}Trend test P = 0.02; **Trend test P = 0.06. +Unspecified outdoor source of LAN; Bauer - low utility study.

- DMSP* images of LAN (3 studies)
 - higher risk among premenopausal women
 - no excess risk among post-menopausal women
- Circadian-effective metric (melatonin suppression index**) (1 study)
- Self-reported strong LAN source near residence (1 study)
- Mixed results for hormone receptor status
- 7 ecological studies report excess risk of breast cancer with high LAN

^{*}U.S. Defense Meteorological Satellite Program (or DMSP NOAA 2015)

^{**}International Space Station (ISS) (Earth Science and Remote Sensing Unit, NASA Johnson Space Center (https://eol.jsc.nasa.gov).

Breast Cancer and Outdoor Light at Night

Limited evidence of carcinogenicity

- Consistently elevated risks with higher LAN levels from moderate and high utility studies
- However,
 - Only one informative study using measure of circadian effective light reported elevated risks
 - Exposure assessment in 3 studies using satellite imagery data may not be appropriate surrogate for exposure to light that causes circadian disruption

Breast Cancer and Indoor Light at Night

Indoor light – Studies and metrics

Indoor light - in the sleeping area

- 10 studies with varied metrics of light in the sleeping area
- Metrics used were not specific for lux levels making comparability across studies difficult
- Limited to light while sleeping

Breast Cancer and Indoor Light at Night

Variation in metrics across studies with results

Indoor LAN metrics	Davis	Fritschi,	Garcia-Saenz	Hurley	Keshet-Sitton	Kloog	Johns	ت: ا wo	O,Feary	White
High exposure	Moderate Utility Low				•y					
Daytime sleeping Subjective light: low to high High ambient light levels	↑ ↑	<u> </u>	null	<u> </u>	↑ null	↑	null	<u></u>		null
Frequency of non-peak sleep	1								null	
Low to medium exposure										
Medium (20-100)	null	null		null	null		null			null
Low (5-80 lux)	null	null		↑	↑	null	null	null		null
Unclear level of exposure	Nı	•	(1) ris outsid		_	ht	Nu whe	ıll or ↑ en wak outside	risk - lig light (1)	ght , or)

Breast Cancer and Indoor Light at Night

Inadequate database

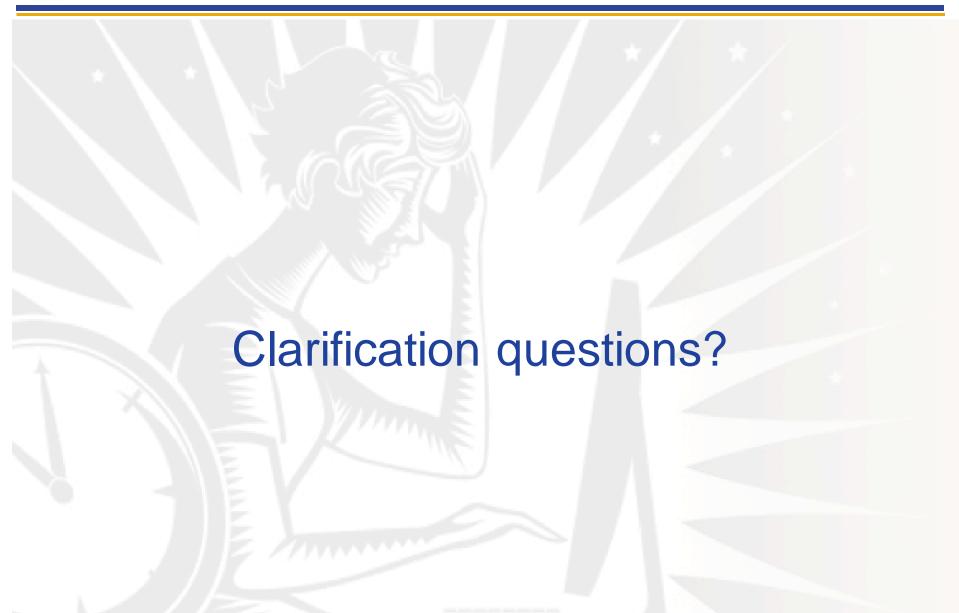
- Some studies found increased risks of breast cancer in the range of 22-70% with highest exposure in moderate utility studies
- Inconsistent results across studies
- Wide variation in metrics used to capture LAN
- Self-reported light levels subject to misclassification
- Lack of specificity of metrics

Key Issues in studies of transmeridian travel

- Small number of studies
 - 4 cohorts (5 studies) of female flight attendants with exposure data quantifying time zones crossed or international flights
- Exposure assessment challenging
 - Flight records typically do not include time zones crossed
 - Need to apply algorithms to block hours to translate to time zones crossed
 - "Flying international flights" not specific for east-west flights
 - Self-reported number of time zones crossed likely to be misclassified.
- Potential co-exposures, such as cosmic radiation, are usually highly correlated with time zones crossed
- Low sensitivity to differentiate levels of exposure which decreases study utility

Study quality and results

- In three moderate utility studies (2 in same cohort)
 - Exposure-response trend for # time zones crossed in a subgroup of women ≥3 children
- In two low utility studies, increased risks reported among women
 - Regularly flying international flights
 - Working as flight attendants for ≥15 years
 - Working as a flight attendant <25 years of age
 - Flying on high-altitude long distance flights
 - Flying more than 5,000 block hours in high-altitude long-distance flights



Inadequate database

- Moderate to strong and some evidence of increased risk of breast cancer 3 of 4 cohorts
- Small number of informative studies
- Exposure assessment challenging
- Co-exposures highly correlated with time zones crossed

Breast Cancer Studies of Night Shift Work, Light at Night and Transmeridian Travel

Breast Cancer Studies: Light at Night and Transmeridian Travel

Reviewer comments

Light at night

- Comment on whether the scientific information is clear, technically correct, and objectively presented and identify any information that should be added or deleted.
- 2. Comment on whether the study quality evaluation (risk of bias and sensitivity to detect an effect) is systematic, transparent, objective, and clearly presented.
- 3. Provide any scientific criticisms of NTP's cancer hazard assessment of the epidemiologic studies.

Transmeridian travel

- Comment on whether the scientific information is clear, technically correct, and objectively presented and identify any information that should be added or deleted.
- 2. Comment on whether the study quality evaluation (risk of bias and sensitivity to detect an effect) is systematic, transparent, objective, and clearly presented.
- Provide any scientific criticisms of NTP's cancer hazard assessment of the epidemiologic studies.

NTP Preliminary Listing Recommendations

- Limited evidence of the carcinogenicity of outdoor LAN from human cancer epidemiology studies
 - Consistent findings of an increased risk of breast cancer in sand high exposure to outdoor LAN in studies with different designs and different populations
 - Limited number of studies and some uncertainty of exposure proxy
- Inadequate for evaluating the relationship between human breast cancer and exposure to indoor LAN
 - Inconsistent findings across studies
- Inadequate for evaluating the relationship between human breast cancer and exposure and transmeridian travel
 - Small number of studies
 - Potential confounding