Mechanistic and Other Relevant Data

Stan Atwood, MS, DABT
Integrated Laboratory Systems, Inc.
Contractor supporting the Office of the Report on Carcinogens (RoC)

Draft RoC Monograph on Night Shift Work and Light at Night
Peer Review Meeting
5 October 2018
Outline: Mechanistic Data

Shift work/LAN, circadian disruption and cancer

Circadian disruption

• Melatonin
• Clock genes

Biological effects

↓ Oncostatic activity
↑ Tumor promotion

Cancer

Focus: breast cancer

6.2: Melatonin & Clock genes
Outline: Mechanistic Data

Shift work/LAN, circadian disruption and cancer

Circadian disruption
- Melatonin
- Clock genes

↓ Oncostatic activity
↑ Tumor promotion

Biological effects

Cancer
Focus: breast cancer

6.2: Melatonin & Clock genes

6.3: LAN-related exposures and key events related to cancer

LAN = light at night
KC = key characteristics of carcinogens
Outline: Mechanistic Data

Shift work/LAN, circadian disruption and cancer

6.2: Melatonin & Clock genes
- Melatonin
- Clock genes
- ↓ Oncostatic activity
- ↑ Tumor promotion
- Focus: breast cancer

6.3: LAN-related exposures and key events related to cancer
- ↑ Biological effects (KC)

6.4: Other mechanisms (vitamin D, sleep, meal timing)

- Other LAN/shift work exposures
Shift work/LAN, circadian disruption and cancer

Outline: Mechanistic Data

Circadian disruption
- Melatonin
- Clock genes

Biological effects
- Oncostatic activity
- Tumor promotion

Cancer
- Focus: breast cancer

6.2: Melatonin & Clock genes
Breast Cancer and Melatonin

Is LAN a possible risk factor for breast cancer?

- Breast cancer risk has ↑ as societies industrialize
- LAN has also ↑ as societies industrialize
- Known risk factors account for <50% of cases
- LAN ↓ nocturnal melatonin production
- Melatonin inhibits breast tumor growth
- Proposed mechanism (melatonin hypothesis)

LAN → ↓ nocturnal melatonin production → ↑ estrogen → ↑ turnover epithelial stem cells → ↑ breast cancer risk
Melatonin Hypothesis

Types of evidence to evaluate the melatonin hypothesis

• Human cancer studies of night shift work (Section 3)
 – Originally thought to be a surrogate for extreme LAN

• Human cancer studies of LAN exposures (Section 3)

• Human studies of melatonin (or proxies) and cancer risk
 – Cohort studies of shift workers
 – Visually impaired/blind populations

• Experimental studies of melatonin and cancer growth

• Mechanistic studies of melatonin
Human studies: melatonin and cancer risk

• Shift workers
 – Some evidence of inverse association with breast cancer
 – Stronger evidence in post-menopausal women
 (2 independent cohorts)
 – Limited number of studies, inconsistencies
Human studies: melatonin and cancer risk

• Shift workers
 – Some evidence of inverse association with breast cancer
 – Stronger evidence in post-menopausal women (2 independent cohorts)
 – Limited number of studies, inconsistencies

• Totally blind/visually impaired
 – Melatonin is not suppressed by LAN in totally blind people
 – Melatonin rhythms: free running/abnormally entrained
 – Breast cancer: Inverse association with blindness and degree of visual impairment (6 studies)
 – Prostate cancer: lower risk (non-significant) (2 studies)
LAN, Melatonin and Cancer in Rodents

LAN suppresses melatonin and promotes tumor growth

LAN

↑ Spontaneous tumors
↑ Chemically induced tumors
↑ Tumor implants
↓ Endogenous MLT

MLT = melatonin
LAN, Melatonin and Cancer in Rodents

Exogenous melatonin suppresses tumor growth

LAN

↓ Chemically induced tumors

↓ Tumor implants

Exogenous MLT
- Oral
- Injected
- Blood a

MLT = melatonin
a = Blood collected from humans at night (no LAN) or synthetic MLT added to rat blood
LAN, Melatonin and Cancer in Rodents

Exogenous melatonin suppresses tumor growth

- cAMP
- Linoleic acid uptake
- 13-HODE
- AKT signaling
- Warburg effect
- Tumor DNA synthesis

LAN

Exogenous MLT
- Oral
- Injected
- Blood \(^a\)

↓ Chemically induced tumors
↓ Tumor implants

\(cAMP = \text{cyclic adenosine monophosphate}\)
\(13\text{-HODE} = 13\text{-hydroxyoctadecadienoic acid}\)
\(MLT = \text{melatonin}\)
\(^a = \text{Blood collected from humans at night (no LAN) or synthetic MLT added to rat blood}\)
LAN, Melatonin and Cancer in Rodents

Low MLT blood or high MLT blood + MLT receptor antagonist do not suppress tumor growth

MLT= melatonin
a = Blood collected from humans at night (no LAN) or synthetic MLT added to rat blood
Melatonin is oncostatic via multiple pathways

<table>
<thead>
<tr>
<th>Mechanism/Pathway</th>
<th>Key events and effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen receptor & enzyme modulator</td>
<td>▼ Estrogen receptor (ERα) activation & expression ▼ Estradiol</td>
</tr>
<tr>
<td>Antioxidant, oxidative stress response</td>
<td>▼ ROS, NOS ▲ GSH, SOD, catalase</td>
</tr>
<tr>
<td>Immune activation</td>
<td>▲ NK cells, leukocytes, monocytes, cytokines, IFN-γ, TNFα ▲ Immunosurveillance</td>
</tr>
<tr>
<td>Cell cycle, differentiation & apoptosis</td>
<td>▲ G1, cell cycle length, p53, p21, caspases, differentiation, apoptosis ▼ Cyclin D1, cell proliferation</td>
</tr>
<tr>
<td>Telomerase inhibition</td>
<td>▼ hTERT, estradiol-induced telomerase activity ▼ Number of neoplastic cell replication cycles</td>
</tr>
<tr>
<td>Angiogenesis inhibition</td>
<td>▼ VEGF, HIF-1α, ROS, neovascularization</td>
</tr>
<tr>
<td>Metastasis inhibition</td>
<td>▼ response to estradiol, cell invasiveness/metastasis ▲ E-cadherin, β1-integrin, MT1 receptor</td>
</tr>
<tr>
<td>Fatty acid uptake and metabolism</td>
<td>▼ Linoleic acid uptake, 13-HODE ▼ EGFR/MAPK activity</td>
</tr>
</tbody>
</table>

Source: Mediavilla et al. 2010
LAN/Shift work effects > melatonin suppression

- Core clock genes
 - Control expression of 2% -10% of the genome
 - Mutations/deregulated expression common in cancers
 - SNPs: increased risk of breast and other cancers

SNPs = single nucleotide polymorphisms
• Core clock genes
 – Control expression of 2% -10% of the genome
 – Mutations/deregulated expression common in cancers
 – SNPs: increased risk of breast and other cancers

• Desynchronizes central clock/SNS/peripheral clock
 – Disrupted cell signaling pathways and regulatory circuits
 – Loss of cell cycle control and altered metabolism
 – ↑ Cell proliferation and ↓ apoptosis
 – ↓ Tumor suppression and DNA repair

SNS = sympathetic nervous system
Mutant mice exhibit a cancer-prone phenotype and accelerated tumor growth

<table>
<thead>
<tr>
<th>Mutant gene</th>
<th>Tumors</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bmal1 or Per2</td>
<td>Lung</td>
<td>Accelerated tumor growth/progression, ↑ c-Myc, metabolic dysregulation</td>
</tr>
<tr>
<td>Bmal1 or Per2</td>
<td>Colon</td>
<td>Accelerated tumor growth in vivo/in vitro</td>
</tr>
<tr>
<td>Bmal1, Per1, Per2, Cry1, and Cry2</td>
<td>Liver, Ovarian Lymphoma</td>
<td>Increased incidence of spontaneous and radiation-induced tumors</td>
</tr>
<tr>
<td>Per2, Cry1, and Cry2</td>
<td>Liver, Bile duct</td>
<td>Developed 4-8X more tumors than WT mice</td>
</tr>
</tbody>
</table>
Shift work/LAN, circadian disruption and cancer

Outline: Mechanistic Data

6.2: Melatonin & Clock genes

Focus: breast cancer

- Melatonin
- Clock genes

↓ Oncostatic activity
↑ Tumor promotion

6.3: LAN-related exposures and key events related to cancer

LAN = light at night
KC = key characteristics of carcinogens
LAN/Shift Work: Biological Effects

LAN/Shift work are associated with KC/other effects

Human studies: Shift work

- ↓ DNA repair
- ↑ Genomic instability
- ↑ Oxidative damage
- ↑ Chronic inflammation & immune suppression
- Epigenetic alterations
- Altered cellular metabolism
- Altered hormone rhythms & signaling

KC = Key characteristics of carcinogens

Rodent studies: LAN

Rodent studies: Jet lag/Shift work
The circadian clock is regulated at the epigenetic level

LAN/Shift Work: Biological Effects

Human studies: Shift work

- ↓ DNA repair
- ↑ Genomic instability
- ↑ Oxidative damage
- ↑ Chronic inflammation & immune suppression
- Epigenetic alterations
- Altered cellular metabolism
- Altered hormone rhythms & signaling

Rodent studies: Jet lag/Shift work

- Tumors have aberrant clock gene methylation patterns
- Altered methylation patterns in shift workers (clock and genome wide)
- LAN inhibits DNA methyltransferase
- CLOCK: intrinsic histone acetylase (HAT) activity
- May account for MLT oncostatic properties

Rodent studies: LAN
LAN/Shift Work: Biological Effects

Melatonin regulates sex hormone rhythms

Human studies: Shift work

- ↓ DNA repair
- ↑ Genomic instability
- ↑ Oxidative damage
- ↑ Chronic inflammation & immune suppression
- Epigenetic alterations
- Altered cellular metabolism
- Altered hormone rhythms & signaling

Rodent studies:
- Jet lag/Shift work
- LAN

Human studies:
- ↑ Gonadotropins
- Testosterone
- Progesterone
- Estrogens
- Altered estrous function & rhythm (rodents)
- ↑ Estrogen & metabolites (shift workers)
 - Relationship to melatonin uncertain

Rodent studies:
- LAN
Shift work/LAN, circadian disruption and cancer

6.2: Melatonin & Clock genes
Focus: breast cancer

6.3: LAN-related exposures and key events related to cancer

6.4: Other mechanisms (vitamin D, sleep, meal timing)

LAN = light at night
KC = key characteristics of carcinogens
Night Shift Work: Co-exposures

Night shift work is a complex exposure scenario

- Light at Night
- Sleep Disruption
- Altered Meal Timing
- Vitamin D
Vitamin D regulates many of the same biological processes as melatonin

- 90% from sunlight exposure
- Regulates > 2000 genes
 - Metabolism
 - DNA repair
 - Antioxidant activity
 - Immune function/inflammation
 - Cell proliferation/differentiation
- Deficiency and cancer
 - Risk factor in human cancers
 - Role in breast cancer uncertain
 - VDR knockouts: ↑ preneoplasia
 - VDR SNPs: ↑ breast cancer risk

VDR = vitamin D receptor
SNPs = single nucleotide polymorphisms
The sleep/wake cycle is bidirectionally associated with the circadian system

- Misalignment with LD cycle
- Disruption affects function of multiple systems:
 - Inflammation and immune response
 - Metabolic (insulin, glucose, leptin, ghrelin)
 - Cellular (DNA damage/oxidative stress, epigenetic)
 - Neuroendocrine
- Role in breast cancer uncertain
 - Mixed results from human studies
 - Plausible mechanisms
 - More studies needed

LD = daily and seasonal light:dark cycle
Meal timing is an important non-photic zeitgeber

- Peripheral clock entrainment
- Gene expression/biomarkers
 - Glucose homeostasis & energy metabolism
 - Inflammation & immune function
 - Tyrosine kinase signaling
 - DNA damage checkpoints
 - C-reactive protein
 - Oxidative stress
- Role in cancer
 - Restricted feeding ↓ tumor growth
 - After 10:00 PM ↑ breast cancer
Night Shift Work and LAN: Mechanistic Data

Summary

• Melatonin and clock genes
 – Maintain tissue and cellular homeostasis
 – Multiple oncostatic pathways

• LAN, shift work, jet lag induce circadian disruption
 – Melatonin suppression
 – Altered clock gene and clock controlled gene expression
 – Associated with multiple key characteristics of carcinogens

• Complex exposures/interactions
 – Sunlight and vitamin D
 – Sleep disruption
 – Meal timing
Clarification questions?
Reviewer Comments

- Comment on whether the information provided in the Mechanistic and Other Relevant Data section is clear, technically correct, and objectively presented.

- Identify any information that should be added or deleted.

- Provide any scientific criticisms of NTP’s synthesis of the mechanistic data for assessing effects of night shift work and light at night.

- Comment on whether the summary captures the key information for each topic.