Overall Hazard Conclusions

Andrew A. Rooney, PhD

Office of Health Assessment and Translation (OHAT)
National Institute of Environmental Health Sciences
Methods for Developing NTP Monographs

Evidence Integration: Developing Hazard Conclusions

(1) **Initial Hazard Conclusion**
Consider human and animal evidence together.

(1) **Final Hazard Conclusion**
Consider impact of other relevant data such as relevant mechanistic data and biological plausibility of effect.

Assess if there is:
- Strong support to increase hazard ID
- Strong opposition to decrease hazard ID
- Or not impact the hazard ID
Hazard Conclusions for Acute Sarin Exposure

Integrate Evidence to Develop Hazard Conclusions

- Hazard conclusions developed for 3 post-exposure time periods
 - Initial (>24 hours to 7 days):
 - Intermediate (8 days to 1 year):
 - Extended (>1 year):

- Conclusions with highest level of evidence for each time period used to reach the overall conclusions
Hazard Conclusions for Acute Sarin Exposure

Integrate Evidence to Develop Hazard Conclusions

• **Initial time period**
 - >24 hours to 7 days following sarin exposure

• **Changes in cholinesterase levels**
 - Animal: Moderate level of evidence
 - Human: High level of evidence
 - Initial hazard: Known to be a neurological hazard to humans conclusion
 - Final hazard conclusion* **Known to be a neurological hazard to humans** in the initial time period >24 hours to 7 days after exposure based on suppression of cholinesterase

*after consideration of biological plausibility
Hazard Conclusions for Acute Sarin Exposure

Consideration of Other Relevant Data and Biological Plausibility

• Changes in cholinesterase
 – Well established that sarin binds to and inactivates ChE
 – Sarin-ChE complex undergoes irreversible dealkylation that permanently inhibits enzyme function
 – Build-up of the acetylcholine is associated with the cholinergic effects observed with higher exposures to sarin
 – Can take up to 3 months for the ChE to regenerate and therefore, Initial and Intermediate time periods

• Upgrade considered for potentially strong support from other relevant data for biological plausibility of effect
 – Already “Known to be hazard to humans”

Final Hazard Conclusion
Consider impact of other relevant data such as relevant mechanistic data and biological plausibility of effect

Assess if there is:
• Strong support to increase hazard
• Strong opposition to decrease hazard
• Or no impact on the hazard
Hazard Conclusions for Acute Sarin Exposure

Integrate Evidence to Develop Hazard Conclusions

- **Intermediate time period**
 - 8 days to 1 year following sarin exposure

- **Suspected to be neurological hazard to humans** based on multiple health effects
 - Suppression of cholinesterase
 - Visual and ocular effects
 - Learning and memory
 - Nervous system morphological and histological changes
Hazard Conclusions for Acute Sarin Exposure

Integrate Evidence to Develop Hazard Conclusions

• Extended time period
 – > 1 year following sarin exposure

• Suspected to be neurological hazard to humans based on multiple health effects
 – Learning and memory
 – Nervous system morphological and histological changes
• Monograph Development
 – The evaluation team

• Draft and DNTP Internal Review
 – John Bucher, NIEHS/DNTP
 – Suril Mehta, NIEHS/DNTP
 – Kyla Taylor, NIEHS/DNTP
 – Mamta Behl, NIEHS/DNTP
 – Brandy Beverly, NIEHS/DNTP
 – Kembra Howdeshell, NIEHS/DNTP
 – Vickie Walker, NIEHS/DNTP
 – Windy Boyd, NIEHS/DNTP

• Technical Review
 – Jonathan Newmark, US Army retired

• Protocol Review
 – Roberta Scherer, Johns Hopkins
 – Jonathan Newmark, US Army retired

• Management of the Peer Review
 – Mary Wolfe, NIEHS/DNTP
 – Elizabeth Maull, NIEHS/DNTP
 – Canden Byrd, ICF

Acknowledgments

Evaluation Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew A Rooney, PhD</td>
<td>NIEHS/DNTP, Project Lead</td>
</tr>
<tr>
<td>David Jett, PhD</td>
<td>NIH/NIDDK, Project Lead</td>
</tr>
<tr>
<td>Pamela Lepth, PhD</td>
<td>UC Davis School of Veterinary Medicine</td>
</tr>
<tr>
<td>Alicia Livinski</td>
<td>NIH/OD/ORS</td>
</tr>
<tr>
<td>Constance McKee</td>
<td>2 Grants Associates, LLC</td>
</tr>
<tr>
<td>Christina C Niemeyer, PhD</td>
<td>2 Grants Associates, LLC</td>
</tr>
<tr>
<td>Louise Assem, PhD</td>
<td></td>
</tr>
<tr>
<td>Robyn Blake, PhD</td>
<td>ICF</td>
</tr>
<tr>
<td>Natalie Blanton, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Jeremy S Frye, MLS</td>
<td>ICF</td>
</tr>
<tr>
<td>Susan Goldhaber, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Ali Goldstone, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Pamela Hartman, MEM</td>
<td>ICF</td>
</tr>
<tr>
<td>Kaedra Jones, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Courtney Lemons, MEM</td>
<td>ICF</td>
</tr>
<tr>
<td>Camryn Lieb</td>
<td>ICF</td>
</tr>
<tr>
<td>Kristen Magnuson, MESM</td>
<td>ICF</td>
</tr>
<tr>
<td>Maureen Malloy</td>
<td>ICF</td>
</tr>
<tr>
<td>Devon Morgan</td>
<td>ICF</td>
</tr>
<tr>
<td>Pam Ross, MSPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Johanna Rochester, PhD</td>
<td>ICF</td>
</tr>
<tr>
<td>Alessandra Schumacher</td>
<td>ICF</td>
</tr>
<tr>
<td>Robert Shin, MHS</td>
<td>ICF</td>
</tr>
<tr>
<td>Kelly Shipkowski, PhD</td>
<td>ICF</td>
</tr>
<tr>
<td>Christopher Sibrizzi, MPH</td>
<td>ICF</td>
</tr>
<tr>
<td>Nicole Vetter, MLS</td>
<td>ICF</td>
</tr>
<tr>
<td>Ashley R Williams, MSE</td>
<td>ICF</td>
</tr>
</tbody>
</table>
Questions?