Toxicogenomic Dose Response Analysis to Inform Risk Assessments

Lyle D. Burgoon, Ph.D.
Leader, Bioinformatics and Computational Toxicology Group
Environmental Laboratory
Approach Overview

- **Preprocessing**
 - Log2 transform
 - Quantile normalization

- **Hypothesis-testing vs Screening**
 - Screening for differentially expressed genes
 - Analyze only probes with at least 1.5x up/down regulation (normal space)
 - Bayesian Region of Practical Equivalence and 95% Highest Density Interval Analysis
 - Hypothesis-testing
 - Identify probes associated with genes associated with adverse outcome pathway networks of interest
 - Bayesian Region of Practical Equivalence and 95% Highest Density Interval Analysis

- **Point of Departure determination**
 - Monotonic dose-response
 - GRAVEE: Good Risk Assessment Values for Environmental Exposures
 - https://github.com/datasciburgoon/gravee

- **Overlay data onto Adverse Outcome Pathway Networks**
 - AOPXplorer: http://apps.cytoscape.org/apps/aopxplorer
Bayesian Analysis to Identify Differentially Expressed Probes/Genes
Bayesian Analysis Basics

- Not concerned with “significance”
 - We don’t deal with p-values
 - Aside: p-values tell you how well your data fit a particular statistical model – that’s it

- Bayesian statistics are focused on probability
 - What is the probability of some event?
 - What is the probability the data fit a model?
 - What is the probability a chemical changes the expression of a gene?
Bayesian Statistics Without Equations

- Prior probability
 - Reflects our knowledge of events
 - Probability that a chemical causes Gene X to change
 - Sometimes we don’t have prior knowledge
 - We use uninformative prior probabilities or conjugate priors
 - More weight is given to the data in this case

- Likelihood
 - The data we observed

- Posterior probability
 - Proportional to the Prior probability times the Likelihood
 - Posterior probability is the probability of an event given conditions using any available prior knowledge (if it exists) and the likelihood
 - The probability that a gene changes in expression given a chemical exposure at a particular dose and time
Bayesian Statistics Without Equations

- Posterior probability
 - Usually we get a distribution called Posterior Distribution
 - The distribution represents our uncertainty
 - Central tendency (median) is typically used to represent the most likely value
 - Posterior interval represents the range where the posterior probability is likely to exist
 - 95% Posterior Interval represents the region where we have 95% probability where the posterior probability is
Bayesian Statistics Without Equations

- **95% Highest Density Interval**
 - The values of the distribution from 5% and above
 - This represents the 95% most likely values

- We typically couple this with decision rules...
Bayesian 95% HDI Analysis

Difference Distribution

5% Boundary

Region of Practical Equivalence (ROPE)

95% HDI

Log2(1/1.5) < x < Log2(1.5)

Significant Difference:

All of the 95% HDI is outside the ROPE
Good Risk Assessment Values for Environmental Exposures
How Can We Avoid Needing a Benchmark Response??

- Interpolate curve data
 - Spline-based metaregression

- Menger Curvature
 - Measures the curvature of a curve
 - We identify the point of the maximal Menger Curvature in the interpolated curve
 - This point is the POD
How Do We Get The Uncertainty

- **Bootstrap!**
 - Sample with replacement across the dose response dataset to create a lot (let’s say 1,000) dose response curves

- So now we have a lot (let’s say 1,000) dose response curves

- And now on each of these models we:
 - Interpolate curve data using spline-based metaregression
 - Find POD using Menger Curvature

- So now we have a lot (let’s say 1,000) of PODs
 - You can do a lot with a lot (let’s say 1,000) of PODs
Parametric vs Nonparametric Modeling

- **Parametric**
 - We “know” the general mathematical family the data follow
 - Start with predefined mathematical models
 - Hill Model (a variant of a sigmoidal model)
 - Exponential models
 - Polynomial
 - Example
 - Benchmark Dose Software

- **Nonparametric**
 - Does not start with a predefined mathematical model
 - Lets the data speak for themselves
 - Example
 - LOESS or LOWESS commonly used in microarray normalization
 - GRAVEE (Good Risk Assessment Values for Environmental Exposures)
Uncertainty Around Our POD

<table>
<thead>
<tr>
<th>GRAVEE POD</th>
<th>TNT, in vitro (ug/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POD (5%)</td>
<td>0.60</td>
</tr>
<tr>
<td>POD (50%, median, most likely POD)</td>
<td>3.00</td>
</tr>
<tr>
<td>POD (95%)</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Uncertainty can be propagated through IVIVE and RfD/Rfc calculations.
Revisiting 2,4,6-Trinitrotoluene…A Case Study
Placing Gene Expression in Biological Context

Detoxification and Oxidative Stress

AOPN: Steatosis and Primary Metabolism
Placing Gene Expression in Biological Context

AOPN: Steatosis and Primary Metabolism

Apoptotic and Oncotic Necrosis

[Diagram showing various biological pathways and gene expression-related terms]
Placing Gene Expression in Biological Context

AOPN: Steatosis and Primary Metabolism

Primary Metabolism

- Glutathione Reductase
- Endoplasmic Reticulum Stress
- Reactive Oxygen Species
- TXNRD1
- SULT2A1
- PPAR-alpha
- HMGCS2
- Acetoacetate
- Fatty Acid Beta Oxidation
- DGAT2
- Triglycerides
- Diacylglycerol
- Fatty Acid Synthetase
- Acyl-CoA
- Acyl-CoA Synthetase
- TNFSF14
- Lipase
- Steatosis
- Citric Acid Cycle
- Glucose
- Glucose-6-Phosphatase
- Glycolysis
- Acetyl-CoA
- Fatty Acid Beta Oxidation
- Steatosis
Placing Gene Expression in Biological Context

AOPN: Steatosis and Primary Metabolism

Steatosis and Ketoacidosis
Placing Gene Expression in Biological Context

AOPN:
Steatosis and Primary Metabolism

RfD Endpoint: Steatosis
Sufficient Assay Endpoint: Acyl-CoA Synthetase
Point of Departure Results
GRAVEE calculates the distribution of predicted PODs using bootstrapping.

- **POD-5%**: 5% of the distribution is below this value.
- **POD-50%**: This is the median of the POD distribution (the most likely POD value given the data).
- **POD-95%**: 95% of the distribution is below this value.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>POD-5%</th>
<th>POD-50%</th>
<th>POD-95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSM2B</td>
<td>0.6</td>
<td>3.1</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Get your PODs in 2 easy steps!

1) Choose your input data file

 Data File: tnt_dr_table.txt

2) Press Go!

Input File Specs:
Tab-delimited text file. Should look something like this:
- Assay/Gene Name >> Dose 1 >> Dose 2 >> Dose 3 >> Dose 4 >> Dose 5
- Assay/Gene Name >> Dose 1 >> Dose 2 >> Dose 3 >> Dose 4 >> Dose 5
- Assay/Gene Name >> Dose 1 >> Dose 2 >> Dose 3 >> Dose 4 >> Dose 5

Please see the example_data.txt file for an example (you can open and save these in Excel)

Version 1.0, 1 September 2017

Contact: Lyle D. Burgoon, Ph.D. (lyle.d.burgoon@usace.army.mil)
TNT RfD Synthesis for Steatosis

POD
Steatosis
3.0 ug/mL [0.6, 4.8]

External Dose
Oral Route
4.08 mg/kg-day [0.82, 6.54]

RfD
Oral Route
0.41 mg/kg-day [0.08, 0.65]

IVIVE
Fraction Unbound: 0.552
[Dan Zang, NICEATM]
Glomerular Filtration Rate: 210mL/min
[NHANES]
Liver metabolism: assume none

Uncertainty Factors
Human Variability
10X

In the future we will consider uncertainty at GFR

Innovative solutions for a safer, better world
BUILDING STRONG®
UNCLASSIFIED/DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE. DISTRIBUTION IS UNLIMITED.
Acknowledgements

- US Army Military Materials in the Environment
 - NexGen Predictive (Eco)toxicity ToolBox Focus Area
 - Big Data Driven Hazard Screening Task

- US Army ERDC
 - Dr. Ed Perkins
 - Dr. Natalia Vinas
 - Dr. Keri Donohue
 - Anne Mayo
 - Mitchell Wilbanks

- ILS (supporting NICEATM)
 - Dr. Shannon Bell
 - Dr. Dan Zang