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Approach Overview

= Preprocessing
» Log2 transform
» Quantile normalization

» Hypothesis-testing vs Screening

» Screening for differentially expressed genes
* Analyze only probes with at least 1.5x up/down regulation (normal space)
+ Bayesian Region of Practical Equivalence and 95% Highest Density Interval Analysis

» Hypothesis-testing

» ldentify probes associated with genes associated with adverse outcome pathway networks of
interest

« Bayesian Region of Practical Equivalence and 95% Highest Density Interval Analysis

» Point of Departure determination
» Monotonic dose-response
» GRAVEE: Good Risk Assessment Values for Environmental Exposures
» https://github.com/datasciburgoon/gravee

= Qverlay data onto Adverse Outcome Pathway Networks
» AOPXplorer: http://apps.cytoscape.org/apps/aopxplorer
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https://github.com/datasciburgoon/gravee

Bayesian Analysis to Identify Differentially
Expressed Probes/Genes
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Bayesian Analysis Basics

* Not concerned with “significance”
» \We don’t deal with p-values

» Aside: p-values tell you how well your data fit a particular
statistical model — that's it

= Bayesian statistics are focused on probability
» What is the probability of some event?
» What is the probability the data fit a model?

» What is the probability a chemical changes the expression
of a gene?
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Bayesian Statistics Without Equations

= Prior probability
» Reflects our knowledge of events

* Probability that a chemical causes Gene X to change
« Sometimes we don’t have prior knowledge

> We use uninformative prior probabilities or conjugate priors
> More weight is given to the data in this case

= Likelihood
» The data we observed

= Posterior probability
» Proportional to the Prior probability times the Likelihood

» Posterior probability is the probability of an event given
conditions using any available prior knowledge (if it exists) and
the likelihood

 The probability that a gene changes in expression given a chemical
exposure at a particular dose and time
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Bayesian Statistics Without Equations

= Posterior probabllity

» Usually we get a distribution called Posterior
Distribution

» The distribution represents our uncertainty

» Central tends (median) is typically used to represent
the most likely value

» Posterior interval represents the range where the
posterior probability is likely to exist

» 95% Posterior Interval represents the region where we have
95% probability where the posterior probability is
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Bayesian Statistics Without Equations

= 95% Highest Density Interval
» The values of the distribution from 5% and above
» This represents the 95% most likely values

= We typically couple this with decision rules...
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Bayesian 95% HDI Analysis
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How Can We Avoid Needing a
Benchmark Response??

* [nterpolate curve data

» Spline-based
metaregression

Response

= Menger Curvature

» Measures the curvature
of a curve

» We identify the point of |
the maximal Menger Dose
Curvature in the
Interpolated curve

» This point is the POD
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How Do We Get The Uncertainty

Bootstrap!

» Sample with replacement across the dose response dataset to
create a lot (let's say 1,000) dose response curves

= So now we have a lot (let’s say 1,000) dose response curves

= And now on each of these models we:
» Interpolate curve data using spline-based metaregression
» Find POD using Menger Curvature

= So now we have a lot (let’s say 1,000) of PODs
» You can do a lot with a lot (let’s say 1,000) of PODs
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Parametric vs Nonparametric Modeling

= Parametric
» We “know” the general mathematical family the data follow

» Start with predefined mathematical models
» Hill Model (a variant of a sigmoidal model)
» Exponential models
» Polynomial

» Example
« Benchmark Dose Software

= Nonparametric
» Does not start with a predefined mathematical model
» Lets the data speak for themselves

» Example
* LOESS or LOWESS commonly used in microarray normalization
 GRAVEE (Good Risk Assessment Values for Environmental Exposures)
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Uncertainty Around Our POD

GRAVEE POD TNT, in vitro

(ug/mL)

POD (5%) 0.60

POD (50%, median, most likely POD) | 3.00
POD (95%) 4.80

Uncertainty can be propagated through IVIVE and RfD/RfC calculations
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Revisiting 2,4,6-Trinitrotoluene...A Case Study
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Placing Gene Expression in Biological Context
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Placing Gene Expression in Biological Context
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o [ ] GRAVEE: Good Risk Assessment Values for Environmental Exposures

Point of Departure Results

GRAVEE calculates the distribution of predicted PODs using bootstrapping.
POD-5%: 5% of the distribution is below this value.
POD-50%: This is the median of the POD distribution (the most likely
POD value given the data)
POD-95%: 95% of the distribution is below this value.

GRAVEE

i Identifi POD-5% POD-50% POD-95%
Good Risk Assessment Values entirier 4 . .

for Environmental Exposures ACSM2B 0.6 3.1 4.8

Response

Dose

Get your PODs in 2 easy steps!

1) Choose your input data file

Data File tnt_dr_table.txt

2) Press Go!

Go!

Version 1.0, 1 September 2017

Input File Specs: ]
Contact: Lyle D. Burgoon, Ph.D. (lyle.d.burgoon@usace.army.mil)

Tab-delimited text file. Should look something like this:
Assay/Gene Name >> Dose 1>> Dose 2 >> Dose 3 >> Dose 4 >> Dose b

Assay/Gene Name >> Dose 1>> Dose 2 >> Dose 3 >> Dose 4 >> Dose b
Assay/Gene Name >> Dose 1>> Dose 2 >> Dose 3 >> Dose 4 >> Dose 5

Please see the example_data.txt file for an example (you can open and save
these in Excel)




TNT RfD Synthesis for Steatosis

External Dose
Oral Route

4.08 mg/kg-day [0.82, 6.54]

Oral Route

0.41 mg/kg-day [0.08, 0.65]

Uncertainty Factors
Human Variability

10X

In the future we will consider uncertainty at GFR
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%’ AOPXplorer

http://apps.cytoscape.org/apps/aopxplorer
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