

Some Pertinent Findings from MAQC Related to Reproducibility of Gene Expression

Pierre R. Bushel, Ph.D., M.S.

Peer Review of Draft NTP Approach to Genomic Dose-Response Modeling Expert Panel Meeting October 23rd -25th, 2017 NIEHS, RTP, NC

National Institutes of Health • U.S. Department of Health and Human Services

Outline

- Brief overview of MAQC/SEQC
- How to assess reproducibility?
- > A few ways MAQC explored reproducibility
 - Between sites
 - Data processing platform
 - Across platforms
 - Transcriptional response dependency
- > Take home messages

MicroArray Quality Control (MAQC) Consortium

An FDA-led community wide crowd-sourced effort to assess technical performance and application of genomics technologies (microarrays, GWAS and next-gen sequencing) in clinic and safety evaluation.

Courtesy of W. Tong

MAQC Leadership

Previously: Dr. Leming Shi, Professor Fudan University in Shanghai, China (formally with NCTR)

Currently: Dr. Weida Tong, Director Division of Bioinformatics and Biostatistics NCTR

What Do We Mean by Reproducibility?

Under the same (or close to) conditions, study design, protocols and research tools, produce the same results from a previous experiment

2016 Nature Survey on Reproducible Science

More than 70% of researchers have tried and failed to reproduce another scientist's experiments

Gene Expression Reproducibility in the Context of MAQC/Sequence Quality Control

Some Factors Evaluated in Relation to Reproducibility in a Toxicogenomics Study

- Study design
- Platform
- Between and within study sites
- Data processing/Normalization
- Treatment effect

National Institute of Environmental Health Sciences

Your Environment. Your Health.

MAQC-I: Rat Toxicogenomics Study

6-week-old Big Blue Fisher 344 male rats 12 weeks exposure

AA – Aristolochic acid; RDL – Riddelliine; CFY – Comfrey; CTR – Control

Microarrays from Applied Biosystems, Affymetrix (2 sites), Agilent, and GE Healthcare.

Results are summarized in

o Guo et al., Nat. Biotechnol. 24, 1162-1169 (2006)

o Tong et al., Nat. Biotechnol. 24, 1132-1139 (2006)

National Institutes of Health • U.S. Department of Health and Human Services

Between Sites Reproducibility - Rat TGx Study

Concordance of DEGs Between Two Study Sites

Percent of overlapping Genes (POG) = $\frac{2 \times intersect(DEGs_{Site 1}, DEGs_{Site 2})}{DEGs_{Site 1} + DEGs_{Site 2}} \times 100$

National Institutes of Health • U.S. Department of Health and Human Services

Percentage of Overlapping Genes

• FC ranking • FC + *P*<0.05 • FC + *P*<0.01

- *P* + FC >2.0
- P + FC >1.4
- P Ranking

National Institutes of Health • U.S. Department of Health and Human Services Guo L et al., Nature Biotechnology, 24(9), 1162-9 (2006).

Courtesy of W. Tong

MAQC-I: Coupling p-value with Fold Change Improved Reproducibility

- > Within site
- Between sites
- Between microarray platforms

MAQC-III/SEQC1: Let's Up the Ante Regarding Between Platforms Reproducibility

Are the DEGs detected on the microarray platform detected on the mRNA-Seq platform?

Sciences MAQC-III/SEQC1: Toxicogenomics Study Design

NTP male Sprague-Dawley rats (test articles administered at the MTD)

Study design	Training Set												
45 treatments & 18 matched controls	18	AE	<u> </u>									Bh	
15 agents with 3 animals per agent	PIR BEZ	NAF	PHE	ECO	3ME	ГЩ	NAP	CHL	Ŧ	CAR	AFL	IFO NIT	
5 MOAs with 3 agents per MOAs	PPARA		CAR PXR		AhR			Cyto- toxic			DNA Damage		

Samples: Total RNA, then poly-A selection Affy chip: Rat 230_2.0, MAS5 and RMA normalizations RNA-Seq: Illumina HiScanSQ or HiSeq2000, 100bp PE Depth of 23-25 M reads 6 Bioinformatics pipelines

Results published in Wang et al. (2014) Nature Biotechnology National Institutes of Health • U.S. Department of Health and Human Services

Agents Pirinixic acid (PIR) Bezafibrate (BEZ) Nafenopin (NAF) Phenobarbital (PHE) Methimazole (MET) Econazole (ECO) 3-Methylcholanthrene (3ME) Leflunomide (LEF) beta-Naphthoflavone (NAP) Chloroform (CHO) Thioacetamide (THI) Carbon tetrachloride (CAR) Aflatoxin B1 (AFL) Ifosfamide (IFO) N-Nitrosodimethylamine (NIT) Courtesy of W. Tong

Root Mean Squared Distance

Measures the overall gene expression distance/deviation between pairs of samples *i* and *j*

$$RMSD_{ij} = \sqrt{\frac{\sum_{g} (I_{ig} - I_{jg})^2}{N_g}}$$

 I_g is the log2 transformed expression level of gene g in the corresponding sample and N_g is the number of genes in the set

Compute the average RMSD for all pairs of replicates and compound treatments

Variability of Expressed Genes

National Institutes of Health • U.S. Department of Health and Human Services

qPCR Validation

The Chemicals Elicited a Wide Range of DEGs

limma Treated vs control, FC > |1.5| and p-value < 0.05

How does the strength of the perturbation affect the agreement between the two platforms?

National Institutes of Health • U.S. Department of Health and Human Services

Concordance Linearly Correlates with the Treatment Response

The stronger the system is perturbed, the higher the concordance

National Institutes of Health • U.S. Department of Health and Human Services

Concordance Increased at the Pathway Level

DEGs were mapped to GeneGo and IPA pathways Concordance is the percentage of enriched pathways shared by the two platforms

Take Home Messages

Use fold change threshold coupled with a p-value cut off

- Filter out low expressed genes (primarily for microarray)
- > Know your chemical's transcriptional strength (if at all possible)
- > Pathways perform better than genes individually
- It is of interest if some of these findings can be extended to other transcriptomics platforms such as Tempo-Seq

Acknowledgements

- MAQC/SEQC consortium participants
- Weida Tong for sharing some slides
- Jianying Li at NIEHS for informatics support
- Rick Paules and Scott at NIEHS for provision of samples and/or biological/toxicological insight