Fitting curves using non-parametric approaches

Keith R. Shockley, NIEHS

October 24, 2017
OUTLINE:

Parametric modeling

Non-parametric modeling

Estimating point of departure from fitted curves
Parametric modeling
Parametric models

- Pre-specified model form
 - Linear model: \(f(x) = mx + b \)
 - Hill model: \(f(x) = f_0 + f_{\text{max}} \frac{x^h}{(AC_{50}^h + x^h)} \)
 - Cubic polynomial: \(f(x) = a_3x^3 + a_2x^2 + a_1x + a_0 \)

- Contain parameters, some of which might be useful
 - Slope and y-intercept
 - \(AC_{50}, f_{\text{max}}, f_0, h \)
 - \(a_3, a_2, a_1, a_0 \)
Parametric models (pros and cons)

Pros
- Reduce unknown (and possibly complicated) function $f(x)$ to a simple form with few parameters
- Can produce consistent results when the curve fits the data well
- May have familiar and useful parameters

Cons
- A pre-specified parametric model may not fit the data well
- Carry distributional assumptions (e.g., Normality)
- Different parametric models may produce different BMD estimates, reflecting model uncertainty
- Model averaging can be helpful when true function is not on edge of model averaging space
Hill model

Hill equation

\[R = R_0 + \frac{R_{max} C^h}{AC_{50}^h + C^h} \]

Response \(R \) vs. Log Concentration \(C \)

Data Set 1

Data Set 2
Non-parametric modeling
Non-parametric models

- Flexible model form
 - Interpolation
 - LOESS (nonparametric local regression)
 - Splines (continuous piece-wise polynomials between knots)

- Parameters may not be readily interpretable
 - Interpolation – estimates values that lie between data points
 - LOESS – fits segments of the data at each point in the range of the data set by calculating many polynomial coefficients using weighted least squares, but doesn’t estimate a single “coefficient” for a global model
 - Splines – calculates many “polynomial coefficients” between intervals of data
Non-parametric models (pros and cons)

Pros
- Makes fewer assumptions about $f(x)$
- Uses the data to learn about the potential shape of $f(x)$
- Should fit the data very well

Cons
- Parameters may not be readily interpretable
- Carry distributional assumptions too
- May be computationally intensive
- May not be as familiar as parametric approaches
B-spline

A basis spline (B-spline) is a piecewise polynomial function, where the pieces meet at the knots. Any spline can be expressed as a linear combination of B-splines.

For each interval \([x_i, x_{i+1}]\):

\[B(x) = a_3x^3 + a_2x^2 + a_1x + a_0 \]
Estimating point of departure from fitted curves
Curve Fitting and Potency Estimation (Case 1)

- Case 1: Hill equation model and AC_{10} parameter

1. Fit the Hill model to the data.
2. AC_{10} is the point of departure.
Curve Fitting and Potency Estimation (Case 2)

- Case 1: Hill equation model and AC_{10} parameter
- Case 2: B-spline and concentration that curve crosses a response threshold

![B-spline](image)

1. Fit a B-spline to the data.
2. The point of departure is the concentration at which the curve crosses the detection band.
Curve Fitting and Potency Estimation (Case 3)

- Case 1: Hill equation model and AC_{10} parameter
- Case 2: B-spline and concentration that curve crosses a response threshold
- Case 3: Polynomial interpolation and entropy-based point of departure

1. Fit an interpolation curve to the data.
2. Calculate a “weighted entropy” along the curve (Shockley, 2014).
3. The POD is the concentration at which the change in entropy is maximal (Shockley, 2016).

Weighted entropy

Response (R_i) vs. Log Concentration (C_i)
Simulation Study

Data Set Parameters

<table>
<thead>
<tr>
<th>True</th>
<th>True</th>
<th>True</th>
<th>AC<sub>10</sub></th>
<th>C<sub>thresh</sub></th>
<th>POD<sub>WES</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMAX</td>
<td>AC<sub>10</sub></td>
<td>C<sub>thresh</sub></td>
<td>POD<sub>WES</sub></td>
<td></td>
</tr>
</tbody>
</table>

5% error (15% Detection Limit)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.003</td>
<td>17.51 (-2.84)</td>
<td>4.08 (+1.45)</td>
</tr>
<tr>
<td>25</td>
<td>0.01</td>
<td>0.2</td>
<td>0.4</td>
<td>4.13 (-1.36)</td>
<td>2.78 (+0.31)</td>
</tr>
<tr>
<td>25</td>
<td>1.1</td>
<td>15</td>
<td>43.9</td>
<td>10.64 (+0.07)</td>
<td>4.37 (-1.63)</td>
</tr>
<tr>
<td>50</td>
<td>0.0001</td>
<td>0.0004</td>
<td>0.001</td>
<td>5.80 (-1.32)</td>
<td>4.46 (+1.27)</td>
</tr>
<tr>
<td>50</td>
<td>0.01</td>
<td>0.04</td>
<td>0.2</td>
<td>1.34 (-0.96)</td>
<td>1.63 (-0.32)</td>
</tr>
<tr>
<td>50</td>
<td>1.1</td>
<td>4.3</td>
<td>10.2</td>
<td>1.59 (-0.79)</td>
<td>3.67 (-0.98)</td>
</tr>
<tr>
<td>100</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0004</td>
<td>1.37 (-1.00)</td>
<td>4.68 (+0.85)</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>0.02</td>
<td>0.07</td>
<td>0.61 (-0.96)</td>
<td>0.99 (-0.07)</td>
</tr>
<tr>
<td>100</td>
<td>1.1</td>
<td>1.8</td>
<td>3.7</td>
<td>0.56 (-0.95)</td>
<td>3.15 (-0.65)</td>
</tr>
</tbody>
</table>

10% error (30% Detection Limit)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.0001</td>
<td>0.0004</td>
<td>0.003</td>
<td>8.39 (-1.48)</td>
<td>4.50 (+1.77)</td>
</tr>
<tr>
<td>50</td>
<td>0.01</td>
<td>0.04</td>
<td>0.3</td>
<td>1.43 (-0.97)</td>
<td>2.65 (-0.46)</td>
</tr>
<tr>
<td>50</td>
<td>1.1</td>
<td>4.3</td>
<td>39.3</td>
<td>8.49 (-0.58)</td>
<td>3.91 (-1.31)</td>
</tr>
<tr>
<td>100</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.001</td>
<td>1.18 (-1.01)</td>
<td>4.77 (+1.48)</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>0.02</td>
<td>0.2</td>
<td>0.64 (-0.96)</td>
<td>1.38 (-0.25)</td>
</tr>
<tr>
<td>100</td>
<td>1.1</td>
<td>1.8</td>
<td>9.1</td>
<td>1.17 (-0.93)</td>
<td>3.44 (-0.97)</td>
</tr>
</tbody>
</table>

Log₁₀Precision (log₁₀Bias) in 15-point concentration response data simulated from 10,000 Hill model curves, with $R_0 = 0$ and $h = 1$. *Adapted from Shockley (2016).*
Repeatability of Potency Estimates
(Tox21 Phase II BG1 estrogen receptor agonist)

adapted from Shockley, 2016
Examples: Uncertainty in POD_{WES} (bootstrapping)
(Tox21 Phase II BG1 estrogen receptor agonist)

Oxymetholone: CASRN 434-07-1
Examples: Uncertainty in POD_{WES} (bootstrapping) (Dunnick et al., *Arch. Toxicol.*, 2017)

$Ptgr1$: Affy Probe ID 1388102_at
Summary

- Parametric modeling requires pre-specifying the model, but is more familiar and may have interpretable parameters.

- Nonparametric modeling is more flexible, but may be less familiar and may not have readily interpretable parameters.

- Simulation studies and repeatability of experimental results can be used to evaluate the performance of proposed modeling approaches.