Fitting curves using non-parametric approaches

Keith R. Shockley, NIEHS

October 24, 2017

OUTLINE:

Parametric modeling

Non-parametric modeling

Estimating point of departure from fitted curves

Parametric modeling

Parametric models

- Pre-specified model form
 - Linear model: f(x) = mx + b
 - Hill model: $f(x) = f_0 + f_{max} * x^h / (AC_{50}^h + x^h))$
 - Cubic polynomial: $f(x) = a_3 x^3 + a_2 x^2 + a_1 x^1 + a_0$
- Contain parameters, some of which might be useful
 - Slope and y-intercept
 - AC_{50}, f_{max}, f_0, h
 - *a*₃, *a*₂, *a*₁, *a*₀

Parametric models (pros and cons)

<u>Pros</u>

- Reduce unknown (and possibly complicated) function *f(x)* to a simple form with few parameters
- Can produce consistent results when the curve fits the data well
- May have familiar and useful parameters

<u>Cons</u>

- A pre-specified parametric model may not fit the data well
- **Carry distributional assumptions (e.g., Normality)**
- Different parametric models may produce different BMD estimates, reflecting model uncertainty
- Model averaging can be helpful when true function is not on edge of model averaging space

Hill model

Data Set 1

Non-parametric modeling

Non-parametric models

- □ Flexible model form
 - Interpolation
 - LOESS (nonparametric local regression)
 - Splines (continuous piece-wise polynomials between knots)
- Parameters may not be readily interpretable
 - Interpolation estimates values that lie between data points
 - LOESS fits segments of the data at each point in the range of the data set by calculating many polynomial coefficients using weighted least squares, but doesn't estimate a single "coefficient" for a global model
 - Splines calculates many "polynomial coefficients" between intervals of data

Non-parametric models (pros and cons)

<u>Pros</u>

- $\Box \quad \text{Makes fewer assumptions about } f(x)$
- \Box Uses the data to learn about the potential shape of f(x)
- Should fit the data very well

<u>Cons</u>

- Parameters may not be readily interpretable
- Carry distributional assumptions too
- May be computationally intensive
- May not be as familiar as parametric approaches

B-spline

A basis spline (B-spline) is a piecewise polynomial function, where the pieces meet at the knots. Any spline can be expressed as a linear combination of Bsplines.

For each interval $[x_i, x_{i+1}]$:

$$B(x) = a_3 x^3 + a_2 x^2 + a_1 x^1 + a_0$$

Estimating point of departure from fitted curves

Curve Fitting and Potency Estimation (Case 1)

• Case 1: Hill equation model and AC₁₀ parameter

- 1. Fit the Hill model to the data.
- 2. AC_{10} is the point of departure.

Curve Fitting and Potency Estimation (Case 2)

- Case 1: Hill equation model and AC₁₀ parameter
- Case 2: B-spline and concentration that curve crosses a response threshold

Log Concentration (C_i)

B-spline

- 1. Fit a B-spline to the data.
- 2. The point of departure is the concentration at which the curve crosses the detection band.

Curve Fitting and Potency Estimation (Case 3)

- Case 1: Hill equation model and AC₁₀ parameter
- Case 2: B-spline and concentration that curve crosses a response threshold
- Case 3: Polynomial interpolation and entropy-based point of departure

Weighted entropy

Log Concentration (C_i)

- 1. Fit an interpolation curve to the data.
- 2. Calculate a "weighted entropy" along the curve (*Shockley, 2014*).
- 3. The *POD* is the concentration at which the change in entropy is maximal (*Shockley, 2016*).

Simulation Study

Data Set Parameters				Estimator		
True	True	True	True	AC ₁₀	C _{thresh}	POD _{WES}
RMAX	<i>AC</i> ₁₀	C _{thresh}	POD _{WES}			
5% error (15% Detection Limit)						
25	0.0001	0.001	0.003	17.51 (-2.84)	4.08 (+1.45)	1.26 (+0.11)
25	0.01	0.2	0.4	4.13 (-1.36)	2.78 (+0.31)	1.30 (-0.11)
25	1.1	15	43.9	10.64 (+0.07)	4.37 (-1.63)	1.28 (-0.27)
50	0.0001	0.0004	0.001	5.80 (-1.32)	4.46 (+1.27)	1.03 (-0.03)
50	0.01	0.04	0.2	1.34 (-0.96)	1.63 (-0.32)	1.14 (-0.27)
50	1.1	4.3	10.2	1.59 (-0.79)	3.67 (-0.98)	1.23 (-0.17)
100	0.0001	0.0002	0.0004	1.37 (-1.00)	4.68 (+0.85)	1.06 (+0.06)
100	0.01	0.02	0.07	0.61 (-0.96)	0.99 (-0.07)	1.20 (-0.17)
100	1.1	1.8	3.7	0.56 (-0.95)	3.15 (-0.65)	1.53 (-0.07)
10% error (30% Detection Limit)						
50	0.0001	0.0004	0.003	8.39 (-1.48)	4.50 (+1.77)	1.34 (+0.11)
50	0.01	0.04	0.3	1.43 (-0.97)	2.65 (-0.46)	1.30 (-0.04)
50	1.1	4.3	39.3	8.49 (-0.58)	3.91 (-1.31)	1.29 (-0.24)
100	0.0001	0.0002	0.001	1.18 (-1.01)	4.77 (+1.48)	1.00 (-0.03)
100	0.01	0.02	0.2	0.64 (-0.96)	1.38 (-0.25)	0.92 (-0.32)
100	1.1	1.8	9.1	1.17 (-0.93)	3.44 (-0.97)	0.97 (-0.16)

 Log_{10} Precision (log_{10} Bias) in 15-point concentration response data simulated from 10,000 Hill model curves, with $R_0 = 0$ and h = 1. Adapted from Shockley (2016).

Repeatability of Potency Estimates

(Tox21 Phase II BG1 estrogen receptor agonist)

adapted from Shockley, 2016

Examples: Uncertainty in *POD*_{*WES*} **(bootstrapping)**

(Tox21 Phase II BG1 estrogen receptor agonist)

Oxymetholone: CASRN 434-07-1

log₁₀conc

Examples: Uncertainty in *POD_{WES}* (bootstrapping)

(Dunnick et al., Arch. Toxicol., 2017)

5 7 Resp (RMA value) 9 σ ě 0 0 8 0.1 10 100 1000 0 1

Ptgr1: Affy Probe ID 1388102_at

log₁₀conc

Summary

- Parametric modeling requires pre-specifying the model, but is more familiar and may have interpretable parameters.
- Nonparametric modeling is more flexible, but may be less familiar and may not have readily interpretable parameters.
- Simulation studies and repeatability of experimental results can be used to evaluate the performance of proposed modeling approaches.