
Deriving Points of Departure using Toxicogenomics for Chemical Risk Assessment

Andrew Williams Environmental Health Science and Research Bureau Health Canada Oct 24th 2017 TOXICOLOGICAL SCIENCES 134(1), 180–194 2013 doi:10.1093/toxsci/kft094 Advance Access publication April 17, 2013

Temporal Concordance Between Apical and Transcriptional Points of Departure for Chemical Risk Assessment

Russell S. Thomas,*¹ Scott C. Wesselkamper,† Nina Ching Y. Wang,† Q. Jay Zhao,† Dan D. Petersen,† Jason C. Lambert,† Ila Cote,‡ Longlong Yang,* Eric Healy,* Michael B. Black,* Harvey J. Clewell III,* Bruce C. Allen,§ and Melvin E. Andersen*

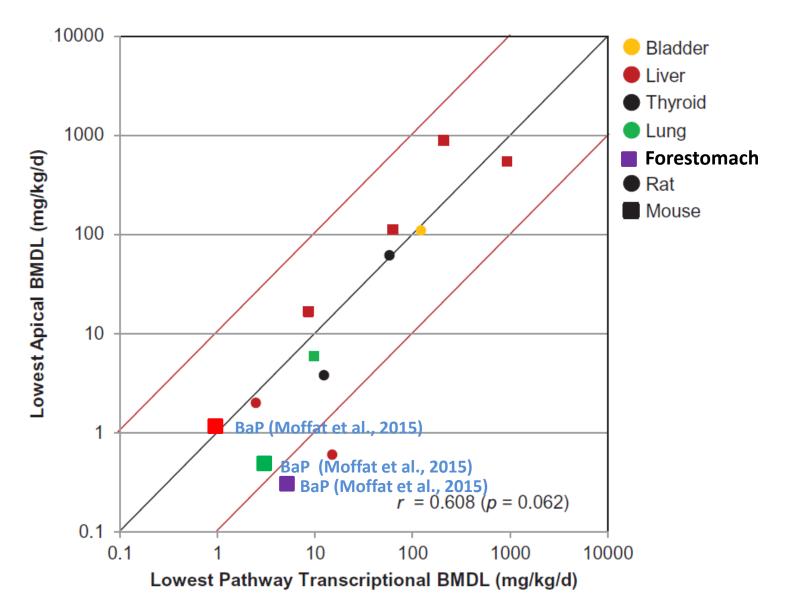
Data at 13 weeks of exposure when combined with data from a previous study (Thomas et al., 2012).

Gene Expression Omnibus

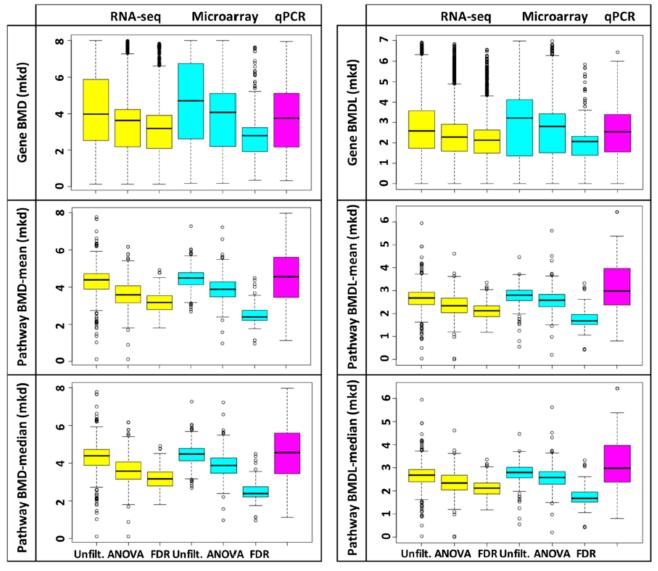
GSE45892

- Affymetrix Arrays
- Time Points (5 days and 2, 4 and 13 weeks)
- 5 Doses per Chemical
- RMA Normalization with a log2 transformation
- BMDExpress (Version 1.41)
 - Linear
 - 2° & 3° Polynomial
 - Power
- Benchmark response (BMR)
 - 1.349 multiplied by the SD in the controls
- Model Selection
 - LRT and AIC
- Filtering
 - BMDs > Highest Dose
 - Goodness-of-fit p value < 0.1
- Gene Sets
 - GeneGo Metacore database (744 Gene Sets)
 - Gene Sets with fewer than 5 genes with BMD values were removed
- Median BMD and BMDL values were used to summarize each pathway.

Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water


Ivy Moffat^{#1,2}, Nikolai Chepelev^{#2}, Sarah Labib², Julie Bourdon-Lacombe^{1,2}, Byron Kuo², Julie K. Buick², France Lemieux¹, Andrew Williams², Sabina Halappanavar², Amal Malik², Mirjam Luijten³, Jiri Aubrecht⁴, Daniel R. Hyduke⁵, Albert J. Fornace Jr.⁶, Carol D. Swartz⁷, Leslie Recio⁷, and Carole L. Yauk²

Crit Rev Toxicol. 2015 January ; 45(1): 1-43.

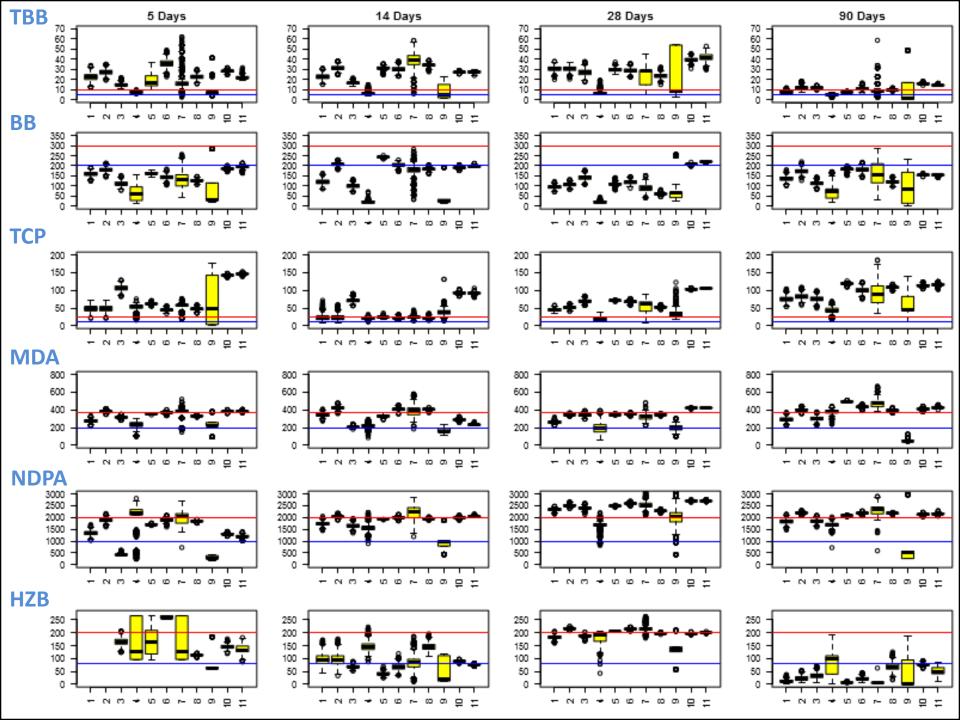

Approach	Liver BMD/BMDL Response		Lung BMD/BMDL Response		Forestomach BMD/BMDL Response	
Traditional	1.8/1.2	tumors	0.8*	tumors	0.8/0.5	tumors
Mutations	7.2/4.8	mutations	2.2/1.4	mutations	0.5/0.3	mutations
<u>Toxicogenomics</u>						
Key Event preceding the committed step	8.1/1	DNA damage	14.8/3.7	DNA damage	11.4/7.4	p53 signaling
Lowest MOA associated pathway	8.1/1	DNA damage	14.8/3.7	DNA damage	11.4/7.4	p53 signaling
<u>10th Percentile BMD</u> Pathway	0.3/0.2	notch signaling	15.7/2.1	cellular effects of sildenafil	16.1/4.5	phenylalanine degradation IV

"PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kgbw/day; lung 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day)"

Temporal Concordance of Apical and Transcriptional PODs

Impact of Filtering Genes and/or Pathways following Furan Exposure

Webster et al. (2015). Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD). PLoS One. 2015 Aug 27;10(8)


REGULATORY TOXICOLOGY

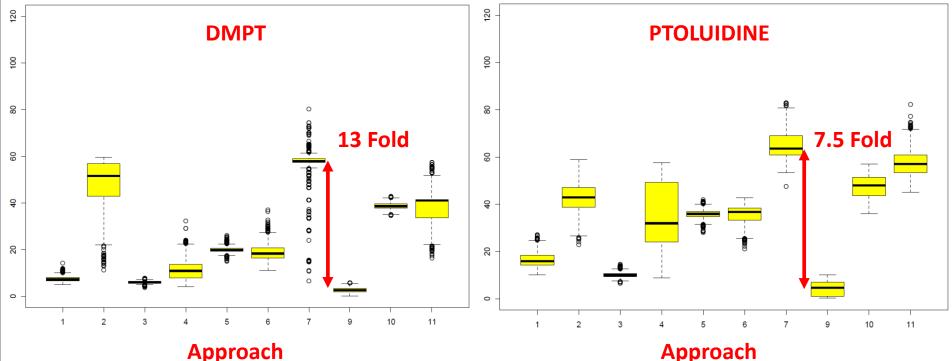
Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment

Reza Farmahin¹ · Andrew Williams¹ · Byron Kuo¹ · Nikolai L. Chepelev¹ · Russell S. Thomas² · Tara S. Barton-Maclaren³ · Ivan H. Curran⁴ · Andy Nong¹ · Michael G. Wade¹ · Carole L. Yauk¹

- 1. The 20 significantly enriched pathways with the lowest BMDs.
- 2. The 20 most statistically significantly enriched pathways.
- 3. The 20 lowest pathway BMDs.
- 4. The 20 genes with the largest fold changes relative to controls.
- 5. Genes with BMDs within the 25th–75th percentile.
- 6. The 20 pathways with the greatest number of shared genes.
- 7. The 20 genes that contribute to the greatest number of enriched pathways.
- 8. The BMDs of genes that are regulated by the 20 most significant upstream regulators.
- 9. The significantly enriched pathway with the lowest BMD (i.e., most sensitive pathway).
- **10.** The mean of gene BMDs across all pathways.
- **11. The median gene BMD across all pathways.**

Hepatic transcriptomic alterations for *N*,*N*-dimethyl-*p*-toluidine (DMPT) and *p*-toluidine after 5-day exposure in rats

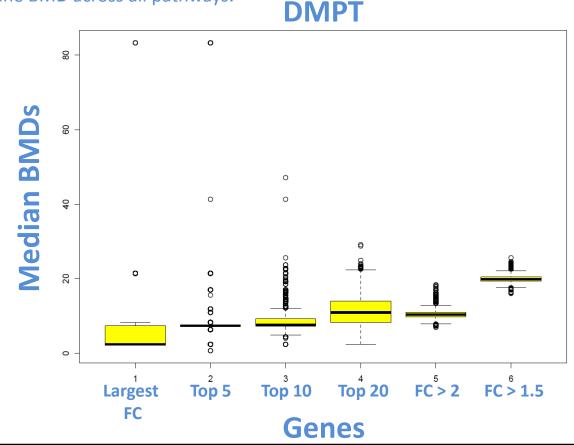
June K. Dunnick¹ · Keith R. Shockley² · Daniel L. Morgan³ · Amy Brix⁴ · Gregory S. Travlos⁵ · Kevin Gerrish⁶ · J. Michael Sanders⁷ · T. V. Ton⁵ · Arun R. Pandiri⁵


Arch Toxicol (2017) 91:1685–1696

Experimental Design

- Tissue: Liver
- Platform: Affymetrix Arrays
- Exposure: Orally for 5 Days
- Doses: 6 Doses per Chemical Microarray Results
- DEGs
 - DMPT: 2, 28, 176, 125 and 454
 - p-toluidine: 2, 11, 41, 81 and 305

BMDExpress


- GO Biological Process Category Pathways (2882)
- Filtering: ANOVA FDR p-value < 0.05,
- BMDLs
 - **Regulation of Fatty Acid Transport**
 - DMPT: 2 mg/kg/day
 - p-toluidine: 7 mg/kg/day
 - Prostanoid or Prostaglandin metabolic process
 - DMPT: 0.5 mg/kg.

- 1. The 20 significantly enriched pathways with the lowest BMDs.
- 2. The 20 most statistically significantly enriched pathways.
- 3. The 20 lowest pathway BMDs.

4. The 20 genes with the largest fold changes relative to controls.

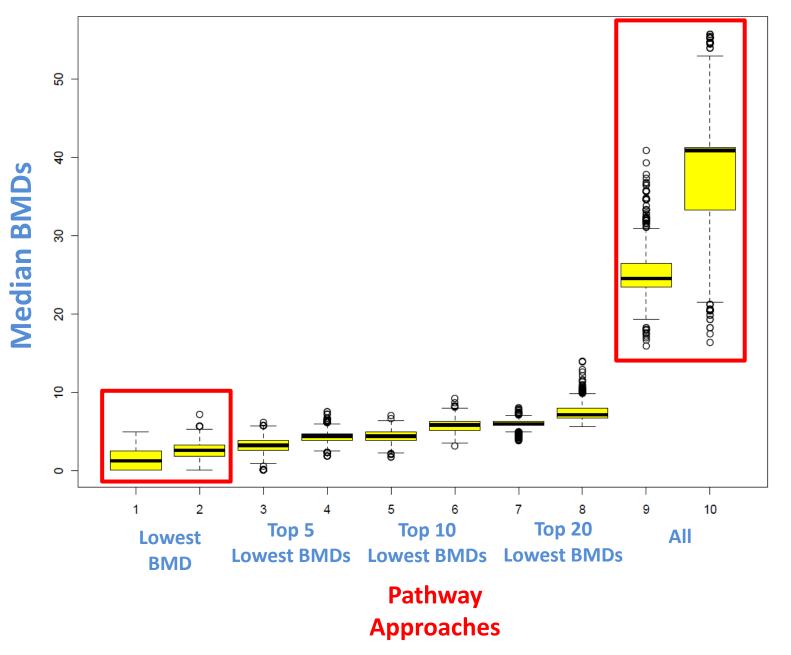
- 5. Genes with BMDs within the 25th–75th percentile.
- 6. The 20 pathways with the greatest number of shared genes.
- 7. The 20 genes that contribute to the greatest number of enriched pathways.
- 8. The BMDs of genes that are regulated by the 20 most significant upstream regulators.
- 9. The significantly enriched pathway with the lowest BMD.
- 10. The mean of gene BMDs across all pathways.
- 11. The median gene BMD across all pathways.

Pathway Approaches

1. The **20** significantly enriched pathways with the lowest BMDs.

2. The 20 most statistically significantly enriched pathways.

3. The 20 lowest pathway BMDs.


- 4. The 20 genes with the largest fold changes relative to controls.
- 5. Genes with BMDs within the 25th–75th percentile.
- 6. The 20 pathways with the greatest number of shared genes.
- 7. The 20 genes that contribute to the greatest number of enriched pathways.
- 8. The BMDs of genes that are regulated by the 20 most significant upstream regulators.

9. The significantly enriched pathway with the lowest BMD.

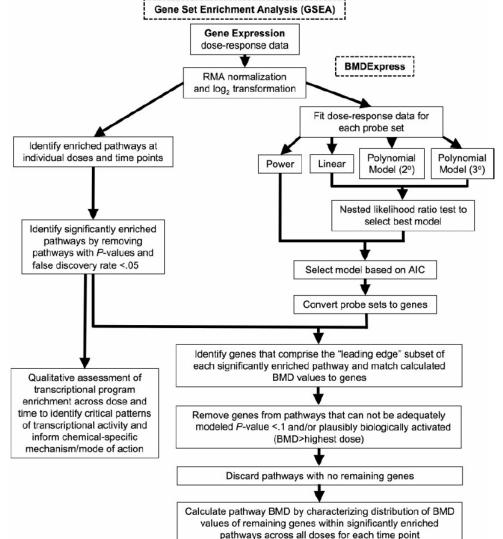
10. The mean of gene BMDs across all pathways.

11.The median gene BMD across all pathways.

DMPT

Application of Gene Set Enrichment Analysis for Identification of Chemically Induced, Biologically Relevant Transcriptomic Networks and Potential Utilization in Human Health Risk Assessment

Jeffry L. Dean,^{*,1} Q. Jay Zhao,^{*} Jason C. Lambert,^{*} Belinda S. Hawkins,^{*} Russell S. Thomas,[†] and Scott C. Wesselkamper^{*} TOXICOLOGICAL SCIENCES, 157(1), 2017, 85–99

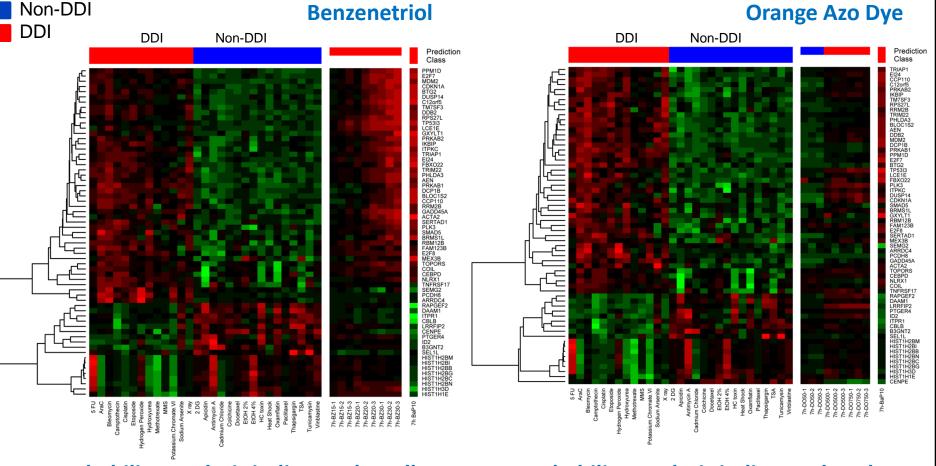

"BMD values from GSEA identified genes and most sensitive biologically enriched pathways were shown to be good predictors of the most sensitive apical response BMD values."

Gene Sets: MSigDB version 5.1

Hallmark Gene Set Definitions

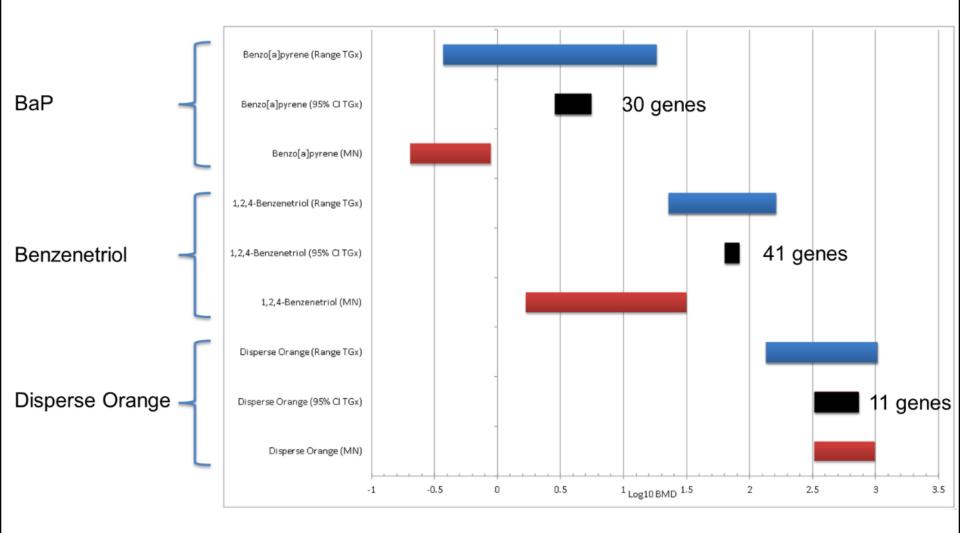
GSEA

- Unfiltered Gene Lists
- Normalized Enrichment Score (Subramanian et al., 2005)
- p-values were FDR corrected

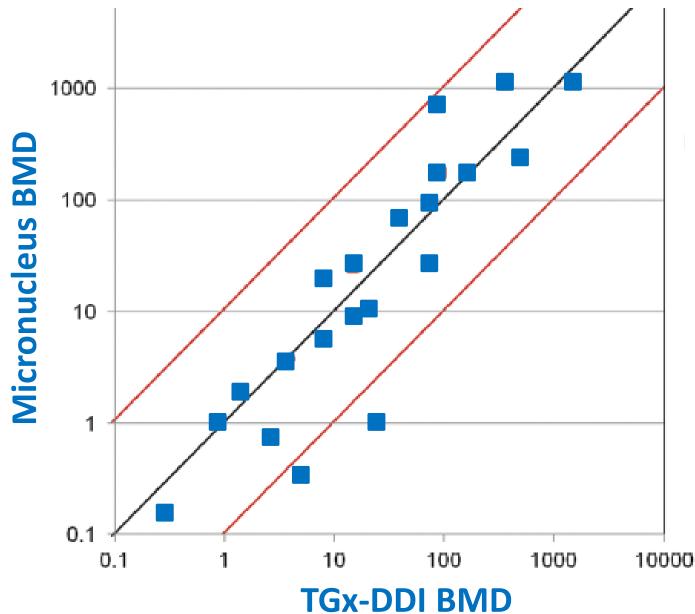

DMPT BMDL: 2.18 mg/kg/d Pathway: G1 PHASE GSEA FDR p-value = 0.0003 1000 Lowest Apical BMDL (mg/kg/d) 100 10 **Bile Duct Fibrosis** r = 0.608 (p = 0.062)0.1 10 100 0 1000 0.1 10000

Lowest Pathway Transcriptional BMDL (mg/kg/d)

Integration of the TGx-DDI genomic biomarker with the flow cytometry micronucleus test to assess the genotoxicity of disperse orange and 1,2,4-benzenetriol in human TK6 cells


Julie K. Buick^a, Andrew Williams^a, Byron Kuo^a, John W. Wills^a, Carol D. Swartz^b, Leslie Recio^b, Heng-Hong Li^c, Albert J. Fornace Jr.^c, Jiri Aubrecht^d, Carole L. Yauk^{a,*}

Mutat Res Fund Mol Mech Mutagen 806 (2017) 51-62



Probability Analysis indicates that all the concentrations are DDI Probability Analysis indicates that the top two concentrations are DDI

BMD potency comparison for all endpoints are consistent: BaP > Benzenetriol > Disperse Orange

Micronucleus vs TGx-DDI BMDs We need to Populate the Plot

Recommendations:

We like the NTP Approach to Genomic Dose-Response Modeling

- 1. "Genes don't act alone..." Significant Gene Sets, Pathways and/or Signatures over individual genes
- 2. Modelling Composite Scores
 - Modelling the GSEA Score
 - First Principle Component
 - Cumulative Expression Differences (Parfett et al., 2013; Moser, 1991; Coffee et al., 2007)
- 3. Filtering
 - Significant Gene Sets, Pathways and/or Signatures
 - MAQC (unadjusted p-value < 0.05 & 1.5 fold change cut-off)

Acknowledgements

Health Canada: Dr. Carole Yauk Julie Buick Dr. Reza Farmahin Dr. Francina Webster

NTP:

Dr. Scott Auerbach Anna Stamatogiannakis