NTP’s Proposed Approach to Study Design for Genomic Dose-Response Modeling

Scott S. Auerbach Ph.D., DABT
Biomolecular Screening Branch
National Institute of Environmental Health Science

Expert Panel Meeting on the Peer Review of Draft NTP Approach to Genomic Dose-Response Modeling
October 25, 2017
• Traditional toxicity assessments are designed/powered for pairwise statistical analysis with the goal of identifying No Observed Effect Levels
 – Example design: 3 dose levels and control, 10 biological replicates/dose group

• This approach is often not conducive to applying a Dose-Response modeling approach such as Benchmark Dose
 – Not enough dose levels to estimate an acceptable curve fit, particularly when there is little prior knowledge of the dose-response relationship

• For GDRS studies NTP proposes to use a BMD focused study design
 – More dose levels fewer biological replicates
 – Example design: 10-12 dose levels, 3 biological replicates/dose group
 – Will allow for better coverage of the numerous dose-response relationships in each study, more confident fits of the data and greater certainty in the BMD estimates for the features
Sex/Strain/Species: Male Sprague Dawley Rat

- Historical precedent, Legacy data that will help with interpretation

Duration: 5 Days (5 doses, 1 per day, Euthanize 24 hours after last dose)

- Thomas *et. al*, 2013, showed transcriptional POD from 5 days approximated PODs from apical endpoints including cancer

Target Organ Selection: Liver and expert selected targets

- Most studies will be done by the oral route
- Liver is common target organ and often responds to effects in other organs/tissues
- Other organs selected based on expert review of available data

Top dose selection: 5 day Maximum Tolerated Dose

- To ensure clear response at the top dose level and ensure the identification of responsive features and improved model fitting
In Vitro Study Design Parameters

- **Species**: Human
 - Tox21 is focused on modeling human responses
- **Sex**: Determined by availability
- **Duration**: Expert determination
 - Goal: Employ timepoint that maximizes response to test article
- **Cell Type(s)**: Organotypic, Commonly Used, Broad Query Biological Space
 - Better modeling of target tissue responses, link/leverage existing data, diversity of response
- **Top dose selection**: LC20 (where feasible)
 - Allows more effective identification of responsive features which can then be modeled more accurately in the lower dose range
• BMD-centric design

• In vivo parameters
 – Male rats, 6-8 weeks of age
 – 5 day repeat dose
 – Liver and other expert selected organs
 – Use of a 5 day maximum tolerated dose

• In vitro parameters
 – Organotypic culture
 – Top dose selection: LC20

• Other variables to consider
 – More time points?
 – Identifying response maximum?
 – Link cause and effect?
 – Phenotypic anchoring?