Application of Weighted Gene Co-Expression Network Analysis (WGCNA) to Dose Response Analysis.

Improving interpretation of nonclinical results using modularity to reduce complexity without loss of biological information.

Jim Stevens Distinguished Research Fellow Lilly Research Laboratory stevens_james_I@lilly.com

Multi-Scale Modeling of Pathophysiology

Overview

Modeling biological complexity

- The modular nature of complex systems.
- Leveraging modular systems models using gene expression data.
- Translating gene expression data into biological understanding.
- Reducing redundancy in MSigDB.
- Knowing what we don't know.

Understanding Molecular Pathogenesis

- Correlating expression modules with pathology.
- Closing the loop from transcription factor to pathogenesis.
- Predicting adaptive vs progressive responses.
- Closing the loop on transcriptional control (addendum slides).

Applications of WGCNA to Dose Response Analysis

- Separating injury signals from tissue stereotypic response.
- Perturbing network in culture.
- Translation to human.

Biological Systems are Modular Across Scales of Complexity

- Modularity refers to "...pattern[s] of connectedness in which elements of a system (e.g. mRNAs) are grouped into highly connected subsets." (modified from Wagner et al.¹)
 - Modules can be arranged in hierarchies using looser connections between modules.
- Modular behavior can be captured in unsupervised network models using coalescent properties of the system.
 - Physical interactions protein interaction networks
 - Dynamic interactions gene regulatory networks
 - Statistical interactions individual elements connected to phenotype
- Co-regulation in transcriptional networks is a coalescent property of biological systems – networks self-assemble.
 - Connected at level of transcriptional control, e.g. Hox gene networks, Nrf2, etc.
 - Defined/modeled statistically to yield co-expression modules.
- Modeling complex systems as networks/modules has advantages:
 - Avoids the 'curse of dimensionality.'
 - If 2X10⁴ genes form 2X10² modules complexity is reduced by 99%.
 - Biological content is retained.
 - Network visualization applied to modular systems improves data interpretation.

WGCNA² - Form Follows Function

actin cytoskeleton

actin cytoskeleton organization

🔵 cell cycle

- condensed chromosome
- endoplasmic reticulum
- extracellular matrix
- extracellular matrix organization
- glutathione biosynthetic process
- mitotic spindle
- proteasomal protein catabolic process
- proteasome complex
- response to endoplasmic reticulum stress
- ribosome
- ribosome biogenesis
- Shape by term
- actin cytoskeleton
- 🗱 cell cycle
- condensed chromosome
- A endoplasmic reticulum
- extracellular matrix
- extracellular matrix organization
- glutathione biosynthetic process
- Transformation mitotic spindle

- + ribosome
- ribosome biogenesis

Co-expression modules (genes that respond similarly to drugs): 1 readout per module; the Eigengene (EiG).

WGCNA:85 - Atf4 nutrient depletion

- proteasome complex
 - 🔀 response to endoplasmic reticulum stress

Reducing Redundancy of MSigDB Information.

GO and	TF	terms
--------	----	-------

module	annotation ty	term ID	term	neglog_pv 🔻	number of g	URL	Filtered to at	genes in mo	Fraction of g
WGCNA Liver:8	CP:REACTOME	REACTOME_VI	Genes involved in Vif-mediated degradation of APOBEC3G	52.21	34	http://www.re	Untagged	147	0.23
WGCNA Liver:8	CP:REACTOME	REACTOME_C	Genes involved in Cross-presentation of soluble exogenous anti	51.99	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:REACTOME	REACTOME_C	Genes involved in CDK-mediated phosphorylation and removal o	51.39	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:REACTOME	REACTOME_P	Genes involved in p53-Independent G1/S DNA damage checkpoint	50.82	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:REACTOME	REACTOME_A	Genes involved in Autodegradation of the E3 ubiquitin ligase COP1	50.82	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	GO-CC	GO:0000502	proteasome complex	50.31	37		Untagged	147	0.25
WGCNA Liver:8	CP:REACTOME	REACTOME_C	Genes involved in CDT1 association with the CDC6:ORC:origin c	50.27	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:REACTOME	REACTOME_R	Genes involved in Regulation of ornithine decarboxylase (ODC)	50.27	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:REACTOME	REACTOME_D	Genes involved in Destabilization of mRNA by AUF1 (hnRNP D0)	49.75	33	http://www.re	Untagged	147	0.22
WGCNA/Liver:8	CP:REACTOME	REACTOME_S	Genes involved in SCF-beta-TrCP mediated degradation of Emi1	49.75	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:REACTOME	REACTOME_E	Genes involved in ER-Phagosome pathway	49.30	34	http://www.re	Untagged	147	0.23
WGCNA Liver:8	CP:REACTOME	REACTOME_P	Genes involved in p53-Dependent G1 DNA Damage Response	48.77	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:KEGG	KEGG_PROTE	Proteasome	48.01	31	http://www.ge	Untagged	147	0.21
WGCNA Liver:8	CP:REACTOME	REACTOME_R	Genes involved in Regulation of Apoptosis	47.85	33	http://www.re	Untagged	147	0.22
WGCNA/Liver:8	CP:REACTOME	REACTOME_A	Genes involved in Assembly of the pre-replicative complex	47.42	33	http://www.re	Untagged	147	0.22
WGCNA Liver:8	CP:REACTOME	REACTOME_S	Genes involved in SCF(Skp2)-mediated degradation of p27/p21	46.42	32	http://www.re	Untagged	147	0.22

Module annotation

term

tern ID

													Data table:
REAC	Genes involved in Cross-presentation of soluble exogenous antigens (endosomes)												module 👻
REAC	Genes involved in p53-Independent G1/S DNA damage checkpoint												
REAC	Genes involved in Regulation of ornithine decarboxylase (ODC)=												Marking:
REAC	Genes involved in ER-Phagosome pathway											-	📕 Markin 👻
REAC	Genes involved in Regulation of Apoptosis											r i	
REAC	Genes involved in Antigen processing-Cross presentation												Color by:
REAC	Genes involved in Orc1 removal from chromatin												an 🔻 🕂 💌
REAC	Genes involved in APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cd =										_		
REAC	Genes involved in Regulation of mRNA Stability by Proteins that Bind AU-rich Elements										-		CP:BIOCARTA
REAC	Genes involved in Downstream Signaling Events Of B Cell Receptor (BCR)												CP:KEGG
REAC	Genes involved in Cell Cycle Checkpoints									-			CP:REACTOME
REAC	Genes involved in Apoptosis												
REAC	Genes involved in Antigen processing: Ubiquitination & Proteasome degradation								Ŧ				GO-BP
REAC	Genes involved in HIV Infection												😑 go-cc
GO:00	proteasome accessory complex												
REAC	Genes involved in Cell Cycle, Mitotic						7						
GO:00	proteasome regulatory particle					-	_						
GO:00	protein catabolic process												
GO:00	cellular protein catabolic process			_									
GO:UU	cellular macromolecule catabolic process			- T									
GO:UU	modification-dependent protein catabolic process		_										
GO:00	macromolecular complex												
GO:00	proteasomal protein catabolic process												
			~	40	45	20	25	20	25	40	45	60	
	l	U	5	10	15	20	25	JU	35	40	45	50	
	Sum(neglog_pvalue) +	•											

Screen shot from Spotfire TXG_MAP tool for WGCNA:Liver_8, a module highly enriched in genes associated with the proteasome.

Sutherland JJ et al. The Pharmacogenomics Journal advance 2017

Overview

Modeling biological complexity

- The modular nature of complex systems.
- Leveraging modular systems models using gene expression data.
- Translating gene expression data into biological understanding.
- Reducing redundancy in MSigDB.
- Knowing what we don't know.

Understanding Molecular Pathogenesis

- Correlating expression modules with pathology.
- Closing the loop from transcription factor to pathogenesis.
- Predicting adaptive vs progressive responses.
- Closing the loop on transcriptional control (addendum slides).

Applications of WGCNA to Dose Response Analysis

- Separating injury signals from tissue stereotypic response.
- Perturbing network in culture.
- Translation to human.

Predicting Adverse Responses for Adaptive vs. Progressive Tox-Phenotypes

Adverse Concurrent

o-adjust

C.II.a

C.II.e

Adverse@29d

Panels A and B: Average absolute eigengene score (Abs(aveEiG) for all module changes for three dose levels of acetaminophen (A) and methylenedianaline (B) from TG-GATES 28d repeat dose rat liver studies. Note the scales for A and B differ. The TXG_MAP outputs shown correspond to the highest dose in the upper panel at different time points corresponding to the red circled time points.

PANELS C and D: Top-ranked modules selected for effect size >1.0 and p-adj <10⁻³. are shown for any tox-phenotypes considered adverse and either concurrent (C – present at the same time as gene expression) or predictive of adverse tox-phenotypes occurring at any time later than 1 day (D). Discussed in detail in Fig 2 of Sutherland et al. (2017).

Overview

Modeling biological complexity

- The modular nature of complex systems.
- Leveraging modular systems models using gene expression data.
- Translating gene expression data into biological understanding.
- Reducing redundancy in MSigDB.
- Knowing what we don't know.

Understanding Molecular Pathogenesis

- Correlating expression modules with pathology.
- Closing the loop from transcription factor to pathogenesis.
- Predicting adaptive vs progressive responses.
- Closing the loop on transcriptional control (addendum slides).

Applications of WGCNA to Dose Response Analysis

- Separating injury signals from tissue stereotypic response.
- Perturbing network in culture.
- Translation to human.

The Importance of Time Series

Perturbations Caused by Placing Hepatocytes in Culture.

(degree of transcriptional perturbation)

Sutherland, JJ et al. PLoS Comp Biol.

HYPOTHESIS: Probability of Human Liver Toxicity Given Nonclinical Toxicity is a Function of Network EiG, Preservation and Effect Size.

p(hLT|rLT) = f (networks)
p(hLT|rLT)= f (EiG, eff size, preservation)

Fig. 6. (Sutherland et al. 2017) Module scores are averaged across treatments in each BDH subtype (rats) from Figure 5 (top heatmap) and human samples (bottom heatmap) available in each Gene Expression Omnibus (GEO) series, identified via their accession number.

Where:

- EiG eigengene score (How much did it change?)
- Eff Size Is the network associated with adverse outcomes?
- Preservation Z-score (Is the network preserved in human?)

QUESTIONS?

REFERENCES

- 1. Wagner, G. et al., The road to modularity. Nat. Rev. Genetics 8:921-931 (2007)
- Horvath, S. et al. Weighted Gene Co-expression Network Analysis (WGCNA) <u>http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/</u>

3. Sutherland, J.J. et al. Toxicogenomic module associations with pathogenesis: a network-based approach to understanding drug toxicity. Pharmacogenomics Journal, in press (2017).