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Multi-Scale Modeling of
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Overview

¢ Modeling biological complexity

The modular nature of complex systems.

Leveraging modular systems models using gene expression data.
Translating gene expression data into biological understanding.
Reducing redundancy in MSigDB.

Knowing what we don’t know.

¢ Understanding Molecular Pathogenesis

Correlating expression modules with pathology.

Closing the loop from transcription factor to pathogenesis.
Predicting adaptive vs progressive responses.

Closing the loop on transcriptional control (addendum slides).

¢ Applications of WGCNA to Dose Response Analysis
« Separating injury signals from tissue stereotypic response.

« Perturbing network in culture.
* Translation to human.




Biological Systems are Modular
Across Scales of Complexity

Modularity refers to “...pattern[s] of connectedness in which
elements of a system (e.g. mMRNAS) are grouped into highly

connected subsets.” (modified from Wagner et al.t)
* Modules can be arranged in hierarchies using looser connections between modules.

Modular behavior can be captured in unsupervised network models
using coalescent properties of the system.

* Physical interactions — protein interaction networks

« Dynamic interactions — gene regulatory networks

+ Statistical interactions — individual elements connected to phenotype

Co-regulation in transcriptional networks is a coalescent property of "=
biological systems — networks self-assemble.

« Connected at level of transcriptional control, e.g. Hox gene networks, Nrf2, etc.
+ Defined/modeled statistically to yield co-expression modules.

Modeling complex systems as networks/modules has advantages:
Avoids the ‘curse of dimensionality.’
If 2X10% genes form 2X102 modules complexity is reduced by 99%.
Biological content is retained.
Network visualization applied to modular systems improves data interpretation.
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Reducing Redundancy of MSigDB
Information.

| GO and TF terms
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Predicting Adverse Responses for Adaptive vs. Progressive

Tox-Phenotypes
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Panels A and B: Average absolute eigengene score (Abs(aveEiG) for all module changes

for three dose levels of acetaminophen (A) and methylenedianaline (B) from TG-GATES
28d repeat dose rat liver studies. Note the scales for A and B differ. The TXG_MAP
outputs shown correspond to the highest dose in the upper panel at different time points
corresponding to the red circled time points.

PANELS C and D: Top-ranked modules selected for effect size >1.0 and p-adj <10-3. are
shown for any tox-phenotypes considered adverse and either concurrent (C — present at
the same time as gene expression) or predictive of adverse tox-phenotypes occurring at
any time later than 1 day (D). Discussed in detail in Fig 2 of Sutherland et al. (2017).
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The Importance of Time Series
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Perturbations Caused by Placing
Hepatocytes in Culture.

mouse liver vs. TG rat liver

MPH vs mouse liver

100 mg/kg methapyrilene @ 29 days
30 mg/kg N-nitrosodiethylamine @ 15 days
HPH vs. human liver

10 mg/kg cycloheximide @ 9 hrs

HepG2 vs. human liver

TG RPH vs. TG rat liver

DM RPH vs. DM rat liver

2337 mg/kg aminosalicylic acid @ 1 day
1 mg/kg bortezomib @ 9 hrs
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HYPOTHESIS: Probability of Human Liver Toxicity

Given Nonclinical Toxicity is a Function of Network EIG,
Preservation and Effect Size.
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in each BDH subtype (rats) from Figure 5 (top heatmap) and human samples
(bottom heatmap) available in each Gene Expression Omnibus (GEO) series,

p(hLTlrLT):f(ElG, eff Size, preservatlon) identified via their accession number.

Where:

 EiG — eigengene score (How much did it change?)

« Eff Size — Is the network associated with adverse outcomes?
 Preservation - Z-score (Is the network preserved in human?)
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