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Overview

♦ Modeling biological complexity
• The modular nature of complex systems.

• Leveraging modular systems models using gene expression data.

• Translating gene expression data into biological understanding.

• Reducing redundancy in MSigDB.

• Knowing what we don’t know.

♦ Understanding Molecular Pathogenesis
• Correlating expression modules with pathology.

• Closing the loop from transcription factor to pathogenesis.

• Predicting adaptive vs progressive responses.

• Closing the loop on transcriptional control (addendum slides).

♦ Applications of WGCNA to Dose Response Analysis
• Separating injury signals from tissue stereotypic response.

• Perturbing network in culture.

• Translation to human.
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Biological Systems are Modular 

Across Scales of Complexity

♦ Modularity refers to “…pattern[s] of connectedness in which 

elements of a system (e.g. mRNAs) are grouped into highly 

connected subsets.” (modified from Wagner et al.1)
• Modules can be arranged in hierarchies using looser connections between modules.

♦ Modular behavior can be captured in unsupervised network models 

using coalescent properties of the system.
• Physical interactions – protein interaction networks

• Dynamic interactions – gene regulatory networks

• Statistical interactions – individual elements connected to phenotype

♦ Co-regulation in transcriptional networks is a coalescent property of 

biological systems – networks self-assemble.
• Connected at level of transcriptional control, e.g. Hox gene networks, Nrf2, etc.

• Defined/modeled statistically to yield co-expression modules.

♦ Modeling complex systems as networks/modules has advantages:
• Avoids the ‘curse of dimensionality.’

• If 2X104 genes form 2X102 modules complexity is reduced by 99%. 

• Biological content is retained.

• Network visualization applied to modular systems improves data interpretation.



WGCNA2 - Form Follows Function
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Reducing Redundancy of MSigDB

Information.

Screen shot from Spotfire TXG_MAP tool for WGCNA:Liver_8, a module highly enriched in genes 

associated with the proteasome.
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Predicting Adverse Responses for Adaptive vs. Progressive 

Tox-Phenotypes

Panels A and B: Average absolute eigengene score (Abs(aveEiG) for all module changes 

for three dose levels of acetaminophen (A) and methylenedianaline (B) from TG-GATES 

28d repeat dose rat liver studies.  Note the scales for A and B differ. The TXG_MAP 

outputs shown correspond to the highest dose in the upper panel at different time points 

corresponding to the red circled time points.

PANELS C and D:  Top-ranked modules selected for effect size >1.0 and p-adj <10-3. are 

shown for any tox-phenotypes considered adverse and either concurrent (C – present at 

the same time as gene expression) or predictive of adverse tox-phenotypes occurring at 

any time later than 1 day (D). Discussed in detail in Fig 2 of Sutherland et al. (2017).
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The Importance of Time Series

r=0.51

88:cell-cell junction; intermediate filament

70:cell cycle arrest

122:Erk1/Erk2 MAPK Pathway

332:protein refolding

336:establishment of epithelial polarity:

BEST COMPARITORS:

-bortezomib r=0.7

-cycloheximide r=0.69

-N,N diemethylnitrosamine r=0.68

-phorone r=0.68

la
te

ra
l:
is

c
h
e

m
ic

@
 4

h
r

caudal:perfused @ 4hr

lateral:ischemic caudal:non-ischemic

clamp 60min

sample @ 0.17, 0.5. 1, 3, 14d

Transcripts:WGCNA

ISCHM:nonISCHM @ 4 hr r=0.51
• Lateral difference drivers relate to heat shock, cell 

cycle arrest, cell-cell junction changes

• Caudal difference drives relate to ribosomal RNA 

processing

• Evidence of distinct responses

ISCHM:nonISCHM @ 1d r=0.84
• Similarity driven by DNA replication, ribosomal 

biogenesis and tubulin formation

• Evidence of convergent pathobiology
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Perturbations Caused by Placing 

Hepatocytes in Culture.

Average module score

(degree of transcriptional perturbation)

Sutherland, JJ et al. PLoS Comp Biol.



HYPOTHESIS: Probability of Human Liver Toxicity 

Given Nonclinical Toxicity is a Function of Network EiG, 

Preservation and Effect Size.

p(hLT|rLT)

p(rLT|hLT)
rLIVER

(RL)

hLIVER
(hL)

p(hLT|rLT)

p(rLT|hLT)

p(hLT|rLT) = f (networks)

p(hLT|rLT)= f (EiG, eff size, preservation)

Where:

• EiG – eigengene score (How much did it change?)

• Eff Size – Is the network associated with adverse outcomes?

• Preservation - Z-score (Is the network preserved in human?)
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Fig. 6. (Sutherland et al. 2017) Module scores are averaged across treatments 

in each BDH subtype (rats) from Figure 5 (top heatmap) and human samples 

(bottom heatmap) available in each Gene Expression Omnibus (GEO) series, 

identified via their accession number.
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