UNITED STATES ICCVAM Advancing Alternatives to Animal Testing Interagency Coordinating Committee on the Validation of Alternative Methods

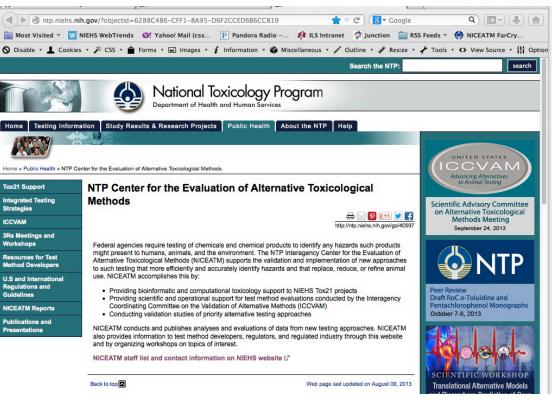
Update on NICEATM Activities

Warren M. Casey, Ph.D., D.A.B.T Acting Director, NICEATM Acting Administrative Director, ICCVAM

Agency for Toxic Substances and Disease Registry • Consumer Product Safety Commission • Department of Agriculture Department of Defense • Department of Energy • Department of the Interior • Department of Transportation Environmental Protection Agency • Food and Drug Administration • National Institute for Occupational Safety and Health National Institutes of Health • National Cancer Institute • National Institute of Environmental Health Sciences National Library of Medicine • Occupational Safety and Health Administration

 Provides scientific and operational support for ICCVAM, the NTP, and Tox21

- Provides scientific and operational support for ICCVAM, the NTP, and Tox21
- Two Federal employees, 12 Contract Staff (ILS, Inc.)


- Provides scientific and operational support for ICCVAM, the NTP, and Tox21
- Two Federal employees, 12 Contract Staff (ILS, Inc.)
- Core competencies in validation study design and data analysis

- Provides scientific and operational support for ICCVAM, the NTP, and Tox21
- Two Federal employees, 12 Contract Staff (ILS, Inc.)
- Core competencies in validation study design and data analysis
- Added expertise in Computational Toxicology, Cheminformatics, Data Management

New NICEATM Website

 Available mid-October: announcement will be on NTP web site and sent via ICCVAM-all listserv

New NICEATM Website

- Streamlined and reorganized for better navigation
- ICCVAM section will contain:
 - Consolidated 3R activities in federal agencies
 - "Ask ICCVAM", with posted Q&A
 - Funding opportunities
 - ICATM Updates
 - OECD Updates

National Toxicology Program U.S. Department of Health and Human Services

Scientific Workshop Translational Alternative Models and Biomarkers Predictive of Drug or Chemical Cardiovascular Risk

October 10-11, 2013

Rodbell Auditorium, Building 101 National Institute of Environmental Health Sciences Research Triangle Park, North Carolina, USA

Presented by: The National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) and the U.S. Environmental Protection Agency

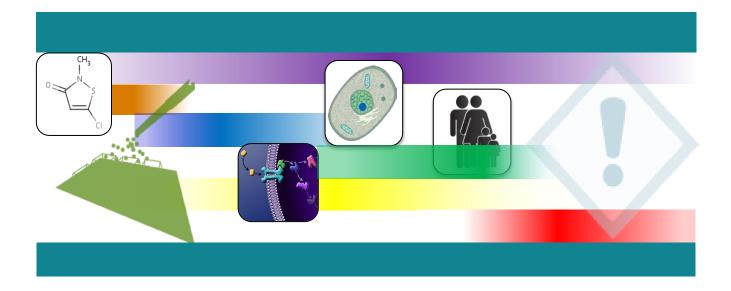
For more information and to register, visit the workshop Web page at http://tools.niehs.nih.gov/conference/cardiovascular_toxicity/index.cfm or contact NICEATM at 919-541-3398 or niceatm@niehs.nih.gov

Individuals with disabilities who need accommodation to participate in this event should contact Linda Litchfield at 919-541-3398 or litchfi@niehs.nih.gov. TTY users should contact the Federal TTY Relay Service at 800-877-8339. Requests should be made at least 5 days in advance of the event.

- In Vitro Approaches to Assessing Risk of Cardiovascular Toxicity
- In Silico Approaches to Cardiovascular Toxicity Risk
- Modeling Sensitive or Susceptible Individuals and Populations

A collaborative workshop on Aquatic models and 21st century toxicology, Spring 2014

- Leveraging small aquarium fishes to advance understanding of environmentally influenced human disorders and diseases
- Co-sponsored and hosted by *North Carolina State University*



The James B. Hunt Jr. Library, NCSU

Regulatory Applications of Adverse Outcome Pathways (AOPs)

- Co-hosted with American Society for Cellular and Computational Toxicology (ASCTT)
- September, 2014, NIH Campus, Bethesda MD

Validation Study Support

UNITED STATES ICCVAM Advancing Alternatives to Animal Testing

Validation Study Support

- Lebrun Labs LLC nominated the OptiSafe test method, an *in vitro* bottom up approach to predict non-surfactant ocular irritants
- NTP provided 34 blind coded samples (Sep 2013) selected by NICEATM staff

Lebrun Labs LLC

SBIR/STTR: Three Phase Program

<u>PHASE I</u>

Ü Feasibility Study

Ü \$150K and 6- 12 month

<u>PHASE II</u>

- Ü Full Research/R&D
- Ü \$1 M and 2-year Award

PHASE IIb (Bridge to Commercialization)

Ü Validation and Commercialization Steps
Ü \$1 M/year for 3 years

Phase IIb (~\$1M/yr, 3 yrs)

This mechanism allows small businesses with Phase II grants to apply for up to 3 years of support for developing products that require approval of a regulatory agency. NIEHS is considering using this mechanism to support validation studies of promising technologies that may need additional time and support prior to acceptance by end-users and/or regulatory agencies.

Phase IIb (~\$1M/yr, 3 yrs)

This mechanism allows small businesses with Phase II grants to apply for up to 3 years of support for developing products that require approval of a regulatory agency. NIEHS is considering using this mechanism to support validation studies of promising technologies that may need additional time and support prior to acceptance by end-users and/or regulatory agencies.

No matching fund requirement

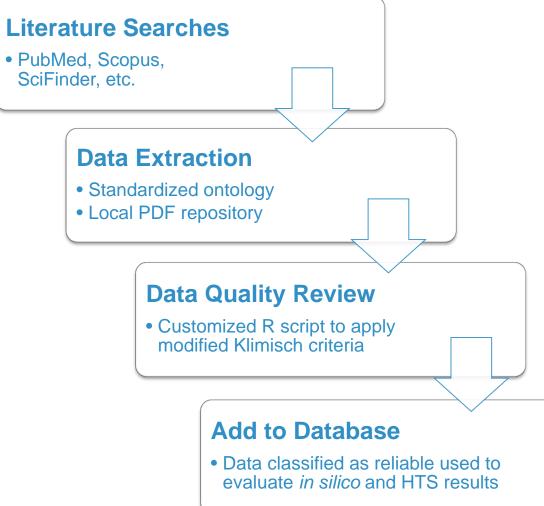
Phase IIb (~\$1M/yr, 3 yrs)

This mechanism allows small businesses with Phase II grants to apply for up to 3 years of support for developing products that require approval of a regulatory agency. NIEHS is considering using this mechanism to support validation studies of promising technologies that may need additional time and support prior to acceptance by end-users and/or regulatory agencies.

No matching fund requirement

Companies required to coordinate studies through NICEATM

New NICEATM Focus Areas


- High Quality *in vivo* Reference Data
- Tox21 Validation support
- Computational Approaches

Database of Reference Chemicals for Assessing Estrogenic Activity

- Database of Reference In Vivo Data
 - Comprehensive review, starting with reference chemicals (chosen by NICEATM, EPA, NTP)
 - High quality in vivo data
 - Use to validate chemical prioritization models
 - Use results to better inform and target *in vivo* screening assays

Develop Database of Existing In Vivo Data

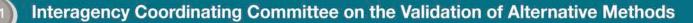
In Vivo data including:

- Uterotrophic
- Fish reproductive
- Zebrafish
- Pubertal
- Multigenerational

Develop Database of Existing In Vivo Data

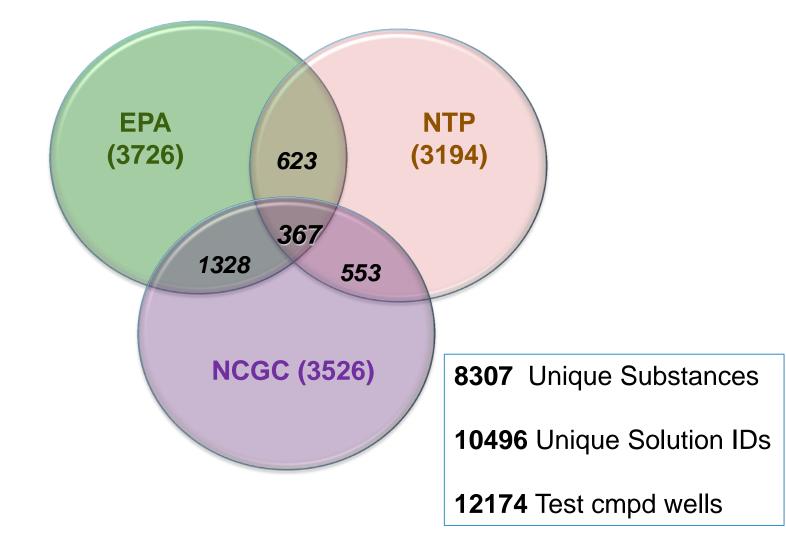
 Developed by Klimisch and published in 1997, a systematic approach was developed to classify the reliability of published data.
ToxRTool (ECVAM) uses 21 criteria to classify *in vivo* studies.

- 1 Reliable without restriction
- 2 Reliable with restrictions
- 3 Not reliable
- 4 Not assignable



											Addition				
									Cell_Typ		al_Assay				
PMID 💌	Autho 💌	Year 🔄 Clas	ss 💌	Study_Type	-	Assay_Typ 💌	Species 🔻	Strain 💌	e 🔻	Target 💌	_Info 💌	Source_Na	ame_SID	-	NAME
22348781	Aoyama	2012 E	-	Two-gen repr	o	Histology	Rat	SPF SD	NA	Uterus	Endomet	ial stromal	polyp, F1		Methoxychlor
22348781	Aoyama	2012 E	-	Two-gen repr	o	Serum Levels	Rat	SPF SD	NA	FSH	F0 expose	ed in feed f	rom GD 0 fo	or 1	Methoxychlor
22348781	Aoyama	2012 E	-	Two-gen repr	o	Serum Levels	Rat	SPF SD	NA	LH	F0 expose	ed in feed f	rom GD 0 fo	or 1	Methoxychlor
22348781	Aoyama	2012 E	-	Two-gen repr	o	Serum Levels	Rat	SPF SD	NA	Prolactin	F0 expose	ed in feed f	rom GD 0 fo	or 1	Methoxychlor
22348781	Aoyama	2012 E	-	Two-gen repr	o	Serum Levels	Rat	SPF SD	NA	Estradiol	F0 expose	ed in feed f	rom GD 0 fo	or 1	Methoxychlor
22348781	Aoyama	2012 E		Two-gen repr	o	Serum Levels	Rat	SPF SD	NA	Progesterone	F0 expose	ed in feed f	rom GD 0 fo	or 1	Methoxychlor
22348781	Aoyama	2012 E	-	Two-gen repr	o	Organ Weigh	Rat	SPF SD	NA	Uterine Weight	absolute	weight, F1,	exposed in	fe	Methoxychlor
22348781	Aoyama	2012 E	-	Two-gen repr	o	Organ Weigh	Rat	SPF SD	NA	Uterine Weight	absolute	weight, F2,	exposed in	fe	Methoxychlor
22348781	Aoyama	2012 E		Two-gen repr	o	Organ Weigh	Rat	SPF SD	NA	Uterine Weight	relative w	veight, F1, e	exposed in f	fee	Methoxychlor
22348781	Aoyama	2012 E		Two-gen repr	o	Organ Weigh	Rat	SPF SD	NA	Uterine Weight	relative w	veight, F2, e	exposed in f	fee	Methoxychlor
23727370	Marrero-	2013 E		Immature		Organ Weigh	Mouse	CD-1	NA	Uterine Weight	uterine h	orn weight,	, s.c. injectio	on	Tamoxifen
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	s.c. inject	ion, 1x/day	/3 days		Ethinyl estradiol
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	s.c. inject	ion, 1x/day	/3 days		Tamoxifen
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	s.c. inject	ion, 1x/day	/3 days		N-(7-nitrobenzo[c][
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	uterine h	orn weight,	, s.c. injectio	on	Ethinyl estradiol
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	uterine h	orn weight,	, s.c. injectio	on	Tamoxifen
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	uterine h	orn weight,	, s.c. injectio	on	N-(7-nitrobenzo[c][
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	antagonis	t mode, s.o	. injection		Tamoxifen
21893177	Zhang	2011 E		Estrogen rece	pto	Binding	Human	NA	NA	ERa	outcome	is Potential	of Mean Fo	orc	Dibenzyl phthalate
21893177	Zhang	2011 E		Estrogen rece	pto	Binding	Human	NA	NA	ERa	outcome	is Potential	of Mean Fo	orc	Butylbenzyl phthala
21893177	Zhang	2011 E		Estrogen rece	pto	Binding	Human	NA	NA	ERa	outcome	is Potential	of Mean Fo	orc	Estradiol
21893177	Zhang	2011 E		Estrogen rece	pto	Binding	Human	NA	NA	ERa antagonist-bir	outcome	is Potential	of Mean Fo	orc	Dibenzyl phthalate
21893177	Zhang	2011 E		Estrogen rece	pto	Binding	Human	NA	NA	ERa antagonist-bir	outcome	is Potential	of Mean Fo	orc	Butylbenzyl phthala
21893177	Zhang	2011 E		Estrogen rece	pto	Binding	Human	NA	NA	ERa antagonist-bir	outcome	is Potential	of Mean Fo	orc	4-hydroxytamoxifer
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	antagonis	t mode, s.o	. injection		N-(7-nitrobenzo[c][
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	antagonis	t mode, ut	erine horn v	we	Tamoxifen
23727370	Marrero-	2013 E		Immature		Organ Weigh	Rat	SD	NA	Uterine Weight	antagonis	t mode, ut	erine horn v	we	N-(7-nitrobenzo[c][
21827856	Ayan	2011 E		Ovariectomiz	ed	Organ Weigh	Mouse	BALB/c	NA	Uterine Weight	s.c. inject	ion, 2x/day	/7 days		Estradiol
21827856	Ayan	2011 E		Ovariectomize	ed	Organ Weigh	Mouse	BALB/c	NA	Uterine Weight	s.c. inject	ion, 2x/day	/7 days		17a estradiol
21827856	Ayan	2011 E		Ovariectomize	ed	Organ Weigh	Mouse	BALB/c	NA	Vaginal Weight	s.c. inject	ion, 2x/day	/7 days		Estradiol
21827856	Ayan	2011 E		Ovariectomize	ed	Organ Weigh	Mouse	BALB/c	NA	Vaginal Weight	s.c. inject	ion, 2x/day	/7 days		17a estradiol

New NICEATM Focus Areas


- High Quality in vivo Reference Data
- Tox21 Validation support
- Computational Approaches

UNITED STATE


Advancing Alterna to Animal Testin

Tox21 10K Library

Interagency Coordinating Committee on the Validation of Alternative Methods

Tox21 10K Library

²⁶ Compound identity and structures available at http://www.epa.gov/ncct/dsstox/sdf_tox21s.html

• Identify proposed usage (fit for purpose)

- Identify proposed usage (fit for purpose)
- Retrospective analysis using established reference chemicals (i.e., Performance Standards)

- Identify proposed usage (fit for purpose)
- Retrospective analysis using established reference chemicals (i.e., Performance Standards)
- Calculate performance statistics (accuracy, sensitivity, specificity, PPV, NPV, etc....)

- Identify proposed usage (fit for purpose)
- Retrospective analysis using established reference chemicals (i.e., Performance Standards)
- Calculate performance statistics (accuracy, sensitivity, specificity, PPV, NPV, etc....)
- Determine reproducibility (at least 3 runs/chemical)

- Identify proposed usage (fit for purpose)
- Retrospective analysis using established reference chemicals (i.e., Performance Standards)
- Calculate performance statistics (accuracy, sensitivity, specificity, PPV, NPV, etc....)
- Determine reproducibility (at least 3 runs/chemical)
- Cannot assess <u>transferability</u> with existing data

- Identify proposed usage (fit for purpose)
- Retrospective analysis using established reference chemicals (i.e., Performance Standards)
- Calculate performance statistics (accuracy, sensitivity, specificity, PPV, NPV, etc....)
- Determine reproducibility (at least 3 runs/chemical)
- Cannot assess <u>transferability</u> with existing data
- Peer Review

- Manual to HTS (BG1 ER TA)
 - ➢Data on more chemicals
 - Further define applicability domain

- Manual to HTS (BG1 ER TA)
 - Data on more chemicals
 - Further define applicability domain
- HTS to Manual
 - ➢ Focus on transferability

- Manual to HTS (BG1 ER TA)
 - Data on more chemicals
 - Further define applicability domain
- HTS to Manual
 - ➢ Focus on transferability
- HTS only (validated data set)

Curated data set made available for public / regulatory use

>Use HTS data to identify potential reference chemicals

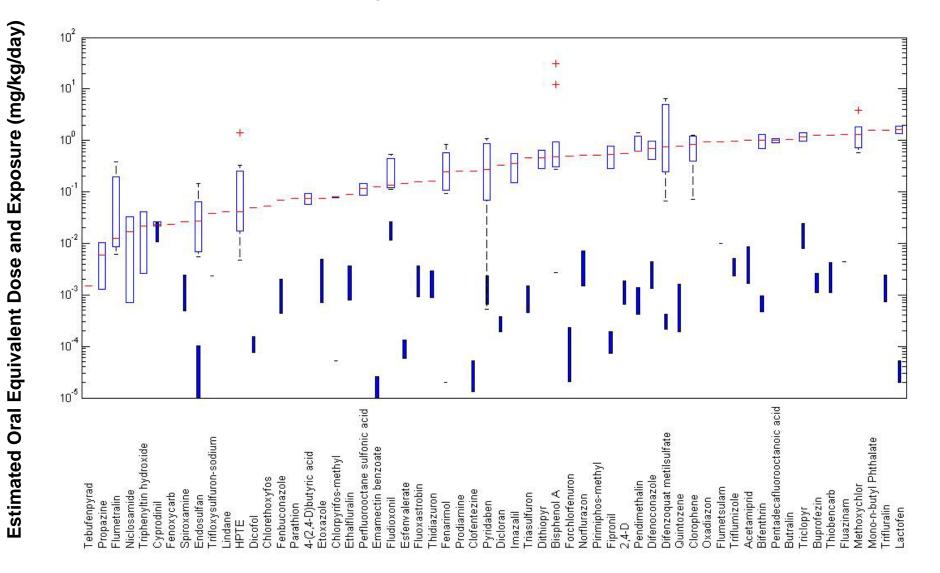
New NICEATM Focus Areas

- High Quality in vivo Reference Data
- Tox21 Validation support
- Computational Approaches

In Vitro to In Vivo Extrapolation

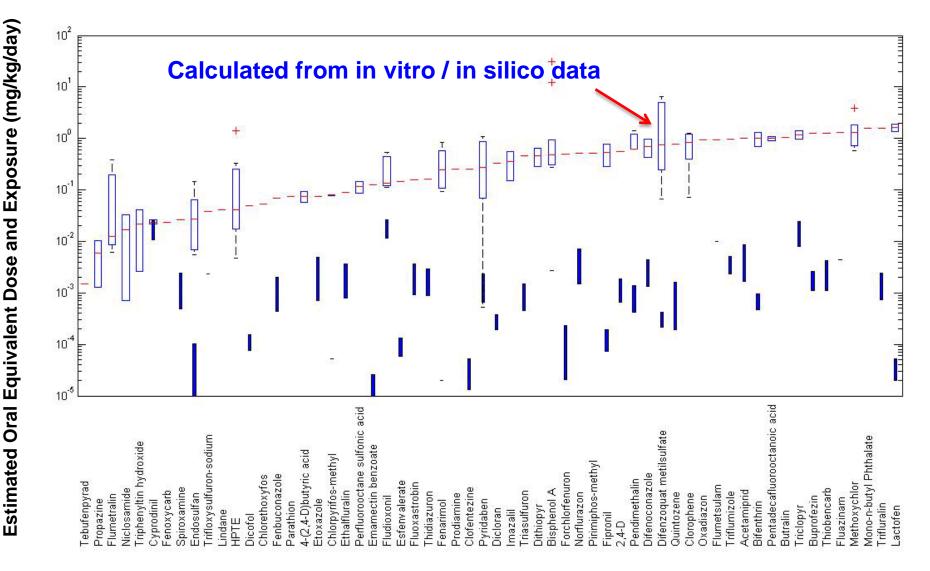
- Can data from *in vitro* HTS assays (i.e., AC50) be accurately extrapolated to estimate the systemic exposure levels in human that would be associated with *in vivo* activity?
 - Plasma protein binding (PPB) and hepatic clearance (HC) data can be estimated using *in vitro* or *in silico* approaches
 - Use PPB and HC data with PB/PBPK modeling software to estimate oral dose that would result in steady state blood concentrations (Css) that reach the AC50 for the chemical of interest

UNITED STATE

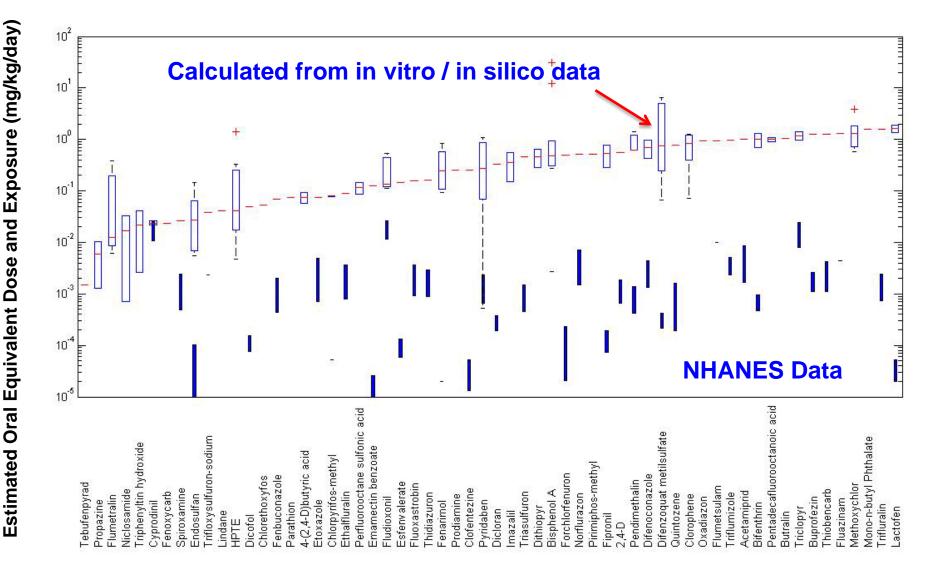


- Can data from *in vitro* HTS assays (i.e., AC50) be accurately extrapolated to estimate the systemic exposure levels in human that would be associated with *in vivo* activity?
 - Plasma protein binding (PPB) and hepatic clearance (HC) data can be estimated using *in vitro* or *in silico* approaches
 - Use PPB and HC data with PB/PBPK modeling software to estimate oral dose that would result in steady state blood concentrations (Css) that reach the AC50 for the chemical of interest
 - Combine the above data with estimated exposure levels from National Health and Nutrition Examination Survey (NHANES) database and determine if there is a potential for reaching Css associated with activity.

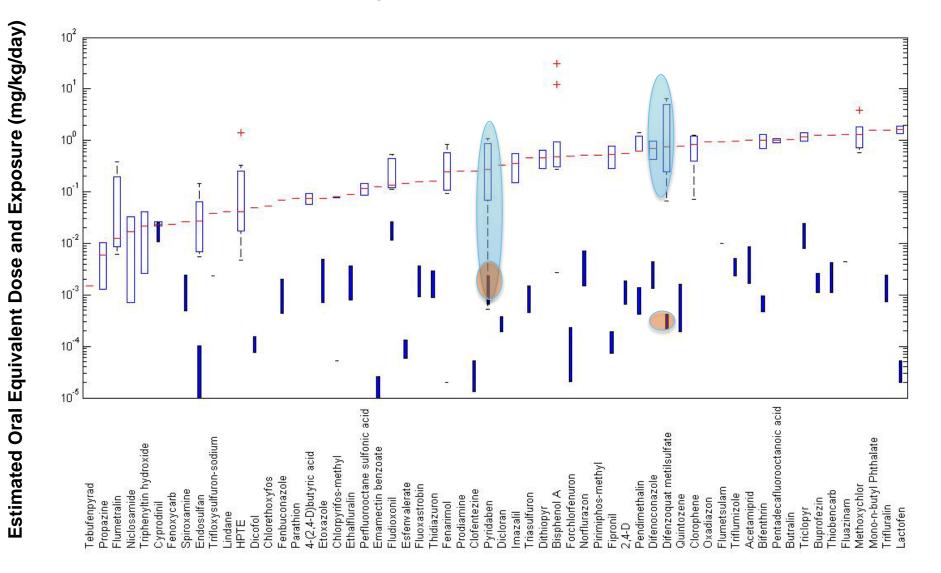
UNITED STATE


UNITED STATES

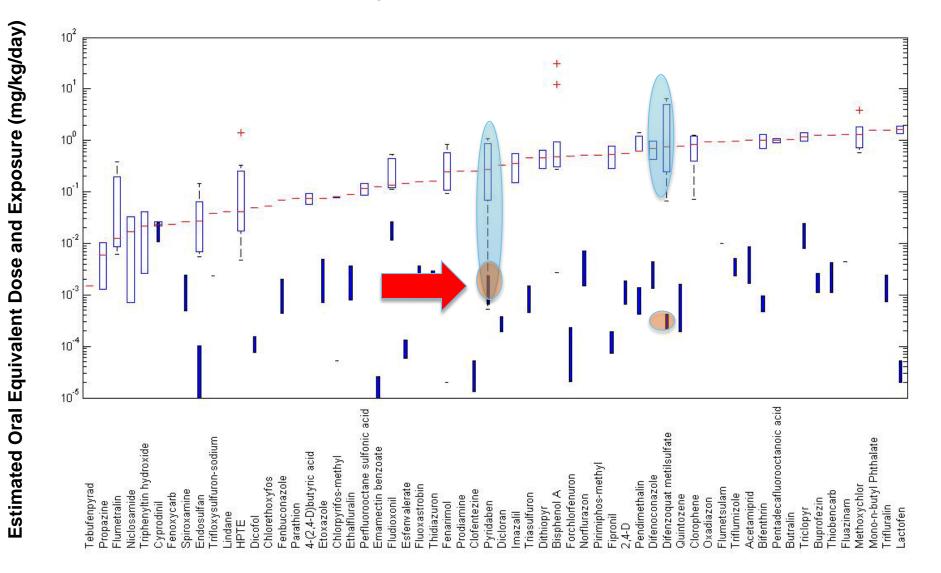
Distribution of Daily Oral Doses Equivalent to AC₅₀ Results from up to 14 HTS ER Assays for Selected Tox21 Chemicals



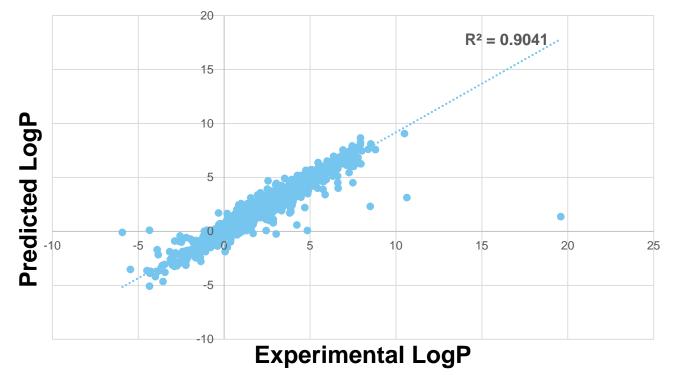
Distribution of Daily Oral Doses Equivalent to AC₅₀ Results from up to 14 HTS ER Assays for Selected Tox21 Chemicals



Distribution of Daily Oral Doses Equivalent to AC₅₀ Results from up to 14 HTS ER Assays for Selected Tox21 Chemicals


UNITED STATES

Distribution of Daily Oral Doses Equivalent to AC₅₀ Results from up to 14 HTS ER Assays for Selected Tox21 Chemicals


UNITED STATES

Distribution of Daily Oral Doses Equivalent to AC₅₀ Results from up to 14 HTS ER Assays for Selected Tox21 Chemicals

Correlation between Predicted and Experimental EPISuite LogP Values

- >2300 Tox21 chemicals with predicted and experimental LogP values
- High correlation between predicted and experimental LogP values using EPISuite (R² > 0.9)

Creating an Open Source Model for Probabilistic Skin Sensitization Hazard Prediction

(wileyonlinelibrary.com) DOI 10.1002/jat.2869

Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice

Joanna Jaworska^a*, Yuri Dancik^a, Petra Kern^a, Frank Gerberick^b and Andreas Natsch^c

ABSTRACT: Frameworks to predict *in vivo* effects by integration of *in vitro*, *in silico* and *in chemico* information using mechanistic insight are needed to meet the challenges of 21st century toxicology. Expert-based approaches that qualitatively integrate multifaceted data are practiced under the term 'weight of evidence', whereas quantitative approaches remain rare. To address this gap we previously developed a methodology to design an Integrated Testing Strategy (ITS) in the form of a Bayesian Network (BN). This study follows up on our proof of concept work and presents an updated ITS to assess skin sensitization

NICEATM – ILS Inc – SSS Inc – Jawowrska et al

http://www.r-project.org/

Other Focus Areas

- Metabolism
- AOPs /Integrated Testing and Decision Strategies
- Mixtures

1. Are the scientific activities of NICEATM consistent with the new operating paradigm outlined in Dr. Birnbaum's EHP editorial (*15 Years Out: Reinventing ICCVAM*) and the ICCVAM Vision statement?

2. Are there specific activities or focus areas that NICEATM should be pursuing which are not currently identified?