

US Strategic Roadmap Goal: Encourage the Use and Adoption of New Methods and Approaches by Federal Agencies and Regulated Industry

Microphysiological Systems as an Exemplar

B. R. Berridge, DVM, PhD, DACVP Associate Director, NTP

- End-user perspective for engagement of a novel technology
- Bridge between pharma and NTP contexts
- A guide to building confidence
- Distinguishing 'validation' from 'qualification'
- I'm going to complicate things
 - toxicology contexts
 - organ systems
 - differentiating validation, qualification and confidence

Linking platform developers to platform users IQ Consortium- LGs and WGs

Microphysiological Systems WG

Multi-disciplinary team of pharmaceutical scientists representing expertise and interests in drug metabolism and distribution, safety, and the 3Rs of judicious animal use for research

- Inaugurated late 2014
- NCATS request
- •24 members
- •16 pharma organizations

An analysis of the attrition of drug candidates from four major pharmaceutical companies

Michael J. Waring¹, John Arrowsmith², Andrew R. Leach³, Paul D. Leeson^{3,4}, Sam Mandrell², Robert M. Owen⁵, Garry Pairaudeau¹, William D. Pennie^{6,7}, Stephen D. Pickett³, Jibo Wang⁸, Owen Wallace^{8,9} and Alex Weir²

Over half of terminations are for things we test preclinically.

Table 1 Populations of the primary	cause of failure	categories for te	rminated compo	ounds*		
Termination reason	Overall	Period		Phase		
		2000-2005	2006-2010	Candidate nomination	Phase I	Phase II
Clinical safety	68 (11%)	48 (13%)	20 (8%)	5 (1%)	40 (25%)	22 (25%)
Commercial	40 (7%)	23 (6%)	17 (7%)	26 (7%)	10 (6%)	4 (4%)
Efficacy	55 (9%)	45 (11%)	10 (4%)	10 (3%)	14 (9%)	31 (35%)
Formulation	9 (1%)	4 (1%)	5 (2%)	8 (2%)	1 (0.6%)	0
Non-clinical toxicology	240 (40%)	144 (40%)	96 (40%)	211 (59%)	21 (13%)	7 (8%)
Patent issue	1 (0.2%)	0	1 (0.4%)	1 (0.3%)	0	0
Pharmacokinetics or bioavailability	29 (5%)	19 (5%)	10 (4%)	3 (0.8%)	25 (16%)	1 (1%)
Rationalization of company portfolio	124 (21%)	46 (13%)	78 (32%)	75 (21%)	29 (18%)	19 (21%)
Regulatory	2 (0.3%)	2 (0.6%)	0	1 (0.3%)	1 (0.6%)	0
Scientific	33 (5%)	28 (8%)	5 (2%)	13 (4%)	15 (10%)	5 (6%)
Technical	3 (1%)	3 (1%)	0	2 (0.6%)	1 (0.6%)	0
Other	1 (0.2%)	0	1 (0.4%)	1 (0.3%)	0	0
Total	605	362	243	356	157	89

Nat Rev Drug Disc 14: 475, 2015

*Table entries for each column indicate the total number and the percentage in parentheses.

Environmental Challenge

National Toxicology Program

Headquartered at the National Institute of Environmental Health Sciences NIH-HHS

Tox21: Chemical testing in the 21st century

Tox21 aims to:

- Develop new testing methods that use human cells, called *in vitro* approaches
- Expand the number of chemicals that are tested
- Reduce the time, effort, and costs associated with testing
- Minimize the number of laboratory animals used

Pharma uses secondary pharmacology screening in a lower throughput context.

Current approaches trade human in vivo relevance for throughput and analytical clarity.

Current approaches trade human in vivo relevance for throughput and analytical clarity.

Opportunity- Microphysiological Systems

NATURE | VOL 471 | 31 MARCH 2011

Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective

Lorna Ewart¹, Kristin Fabre², Ananthsrinivas Chakilam³, Yvonne Dragan⁴, David B Duignan⁵, Jeetu Eswaraka⁶, Jinping Gan⁷, Peggy Guzzie-Peck⁸, Monicah Otieno⁸, Claire G Jeong⁹, Douglas A Keller¹⁰, Sonia M de Morais¹¹, Jonathan A Phillips¹², William Proctor¹³, Radhakrishna Sura¹¹, Terry Van Vleet¹¹, David Watson¹⁴, Yvonne Will¹⁵, Danilo Tagle¹⁶ and Brian Berridge⁹

Experimental Biology and Medicine 2017; 242: 1579-1585.

Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective

Lorna Ewart¹, Kristin Fabre², Ananthsrinivas Chakilam³, Yvonne Dragan⁴, David B Duignan⁵, Jeetu Eswaraka⁶, Jinping Gan⁷, Peggy Guzzie-Peck⁸, Monicah Otieno⁸, Claire G Jeong⁹, Douglas A Keller¹⁰, Sonia M de Morais¹¹, Jonathan A Phillips¹², William Proctor¹³, Radhakrishna Sura¹¹, Terry Van Vleet¹¹, David Watson¹⁴, Yvonne Will¹⁵, Danilo Tagle¹⁶ and Brian Berridge⁹

Experimental Biology and Medicine 2017; 242: 1579–1585.

Progression in confidence

These processes defined by the ultimate 'context-of-use'

Confidence evolves and is enabled by key elements of the process!

Pharma Context of Use

NTP Context of Use

DNTP Translational Toxicology Pipeline Plan

ER pathway to breast cancer

From Morgan et al., 2016, Pharmacology & Therapeutics 165: 79-92

Appreciation to Cynthia Rider for introducing me to this.

Ensure that biology is translatable

Consult relevant guidelines or engage your local XVAM!

cf. Human toxicityTubular toxicity

•cf. Animal assessment
•Tubule cell injury
•Urinary Kim-1, NAG

Qualification of a novel test or modeling system requires-

- an understanding of the how the new system compares to the traditional system
- an understanding of how the pathobiology of interest manifests in the species of interest
- an understanding of how the pathobiology of interest manifests in traditional model species.

n patient

Drug-Induced Nephrotoxicity

CYNTHIA A. NAUGHTON, PharmD, BCPS, North Dakota State University College of Pharmacy, Nursing, and Allied Sciences, Fargo, North Dakota

Drug class/drug(s)	Pathophysiologic mechanism of renal injury		
Analgesics			
Acetaminophen, aspirin	Chronic interstitial nephritis		
Nonsteroidal anti-inflammatory drugs	Acute interstitial nephritis, altered intraglomerular hemodynamics, chronic interstitial nephritis, glomerulonephritis		
Antidepressants/mood stabilizers			
Amitriptyline (Elavil*), doxepin (Zonalon), fluoxetine (Prozac)	Rhabdomyolysis		
Lithium	Chronic interstitial nephritis, glomerulonephritis, rhabdomyolysis		
Antihistamines			
Diphenhydramine (Benadryl), doxylamine (Unisom)	Rhabdomyolysis		
Antimicrobials			
Acyclovir (Zovirax)	Acute interstitial nephritis, crystal nephropathy		
Aminoglycosides	Tubular cell toxicity		
Amphotericin B (Fungizone*; deoxycholic acid formulation more so than the lipid formulation)	Tubular cell toxicity		
Beta lactams (penicillins, cephalosporins)	Acute interstitial nephritis, glome- rulonephritis (ampicillin, penicillin)		
Foscarnet (Foscavir)	Crystal nephropathy, tubular cell toxicity		
Ganciclovir (Cytovene)	Crystal nephropathy		
Pentamidine (Pentam)	Tubular cell toxicity		
Quinolones	Acute interstitial nephritis, crystal nephropathy (ciprofloxacin [Cipro]		
Rifampin (Rifadin)	Acute interstitial nephritis		
Sulfonamides	Acute interstitial nephritis, crystal nephropathy		
Vancomycin (Vancocin)	Acute interstitial nephritis		

Common Presentations

- Acute interstitial nephritis
- Chronic interstitial nephritis
- •Rhabdomyolysis
- •Tubular cell toxicity
- •Crystal nephropathy
- •Altered glomerular hemodynamics
- •Glomerulonephritis

But, not in every patient!

Table 2. Patient-Related Risk Factors for Drug-Induced Nephrotoxicity

"Absolute" or "effective" intravascular volume depletion Age older than 60 years Diabetes Exposure to multiple nephrotoxins Heart failure Sepsis Underlying renal insufficiency (glomerular filtration rate < 60 mL per minute per 1.73 m²)

Information from references 1 through 3, 7, 34, and 35.

Adefovir (Hepsera), cidofovir
(Vistide), tenofovir (Viread)
Indinavir (Crixivan)

Benzodiazepines Calcineurin inhibitors Cyclosporine (Neoral)

Tacrolimus (Prograf)

Cardiovascular agents

blockers

(Ticlid)

Chemotherapeutics

(investigational)

Interferon-alfa (Intron A)

Mitomycin-C (Mutamycin)

Triamterene (Dyrenium)

Proton pump inhibitors

Lansoprazole (Prevacid),

Allopurinol (Zyloprim)

Haloperidol (Haldol)

Phenytoin (Dilantin)

Ouinine (Oualaquin)

Ranitidine (Zantac)

Zoledronate (Zometa)

Pamidronate (Aredia)

Gold therapy

omeprazole (Prilosec), pantoprazole (Protonix)

Cocaine, heroin, ketamine (Ketalar),

methadone, methamphetamine

Chinese herbals with aristocholic acid

Cisplatin (Platinol)

Methotrexate

Contrast dye

Drugs of abuse

Diuretics Loops, thiazides

Herbals

Others

Statins

Angiotensin-converting enzyme inhibitors, angiotensin receptor

Clopidogrel (Plavix), ticlopidine

Carmustine (Gliadel), semustine

Tubular cell toxicity Acute interstitial nephritis, crystal

Altered intraglomerular hemodynamics, chronic interstitial nephritis, thrombotic microangiopathy Altered intraglomerular hemodynamics

Altered intraglomerular hemodynamics

nephropathy

Rhabdomyolysis

Thrombotic microangiopathy

Rhabdomyolysis

Chronic interstitial nephritis

Chronic interstitial nephritis, tubular cell toxicity Glomerulonephritis Crystal nephropathy Thrombotic microangiopathy Tubular cell toxicity

Acute interstitial nephritis Crystal nephropathy

Rhabdomyolysis

Chronic interstitial nephritis

Acute interstitial nephritis

Acute interstitial nephritis Glomerulonephritis Rhabdomyolysis Glomerulonephritis Acute interstitial nephritis Thrombotic microangiopathy Acute interstitial nephritis Tubular cell toxicity

*—Brand not available in the United States. Information from references 10 through 31.

Toxicologic Pathology, 40: 14S-86S, 2012 Copyright © 2012 by The Author(s) ISSN: 0192-6233 print / 1533-1601 online DOI: 10.1177/0192623312438736

Proliferative and Nonproliferative Lesions of the Rat and Mouse Urinary System

Kendall S. Frazier¹, John Curtis Seely², Gordon C. Hard³, Graham Betton⁴, Roger Burnett⁵, Shunji Nakatsuji⁶, Akiyoshi Nishikawa⁷, Beate Durchfeld-Meyer⁸, and Axel Bube⁸

Renal responses to injury

- •Degeneration, tubule
- •Necrosis, proximal and distal tubules
- •Necrosis, papillary
- Infarct, cortex
- •Hemorrhage
- •Vacuolation, proximal and distal tubules
- Accumulation, glycogen
- •Accumulation, hyaline droplets
- Accumulation, pigment
- •Cast, hyaline
- •Cast, granular
- •Crystals, proximal and distal tubules
- •Mineralization, tubule
- •Mineralization, interstitial

- •Hypertrophy, tubule
- •Glomerulonephritis
- •Glomerulosclerosis
- •Infiltrate, inflammatory cell, interstitial
- •Edema, interstitial
- •Fibrosis, interstitial
- •Hyperplasia, tubule
- •Hyperplasia, juxtaglomerular
- Adenoma, kidney
- Carcinoma, kidney

Renal biomarkers

•Serum- BUN, Cr

•Urine- Total protein, albumin, sp. gravity, Kim-1, osteopontin, lipocalin-2, NAG

Contextualizing the opportunity- How do we characterize it in animals?

- Qualifying the *in vivo* relevance of a modeling system (novel or traditional) requires a fundamental understanding of what you're modeling.
- Need to understand how the pathobiology manifests in both the species of interest and the species that has been traditionally used to model that pathobiology.
- Qualifying a novel test system for its *in vivo* relevance to a species of interest is a bit more challenging than validating one but just as important.
- Given the challenges of doing the 'human experiment', *in vivo* experiments in the alternative species may be a component of building confidence in the *in vivo* relevance of a novel system.

- Engaging end-users and stakeholders of a novel test system or alternative approach is critical to their adoption.
- End-users have a responsibility to guide developers in the construction, validation and qualification of a novel system.
- Building confidence is an evolutionary process with many elements including working the paradigm and seeing the outcomes.
- Acceptance of a novel approach requires a clear line of sight from a problem to a strategy for enabling confidence.

Questions?