

OECD ACTIVITIES TO INCREASE THE UTILITY AND UPTAKE OF AOPS IN REGULATORY CONTEXTS ACROSS COUNTRIES

Science Advisory Committee on Alternative Test Methods 19-20 September 2019

Integrated Approaches to Testing and Assessment (IATA)

OECD IATA Case Studies Project

Objective:

- Increase <u>experience</u> with the use of <u>Integrated Approaches for</u> Testing and Assessment by developing case studies, which constitute examples of predictions that are fit for regulatory use
- Create common understanding and develop guidance

Deliverables:

Guidance documents on methodologies with associated case studies.

Year-No. (Lead)	Assessment approach	Endpoint	IATA topics				
			AOP*	UR's	NAM*3	L/N°s	References
2016-1 (Japan)	Read-across	Repeated dose toxicity		x	x		OECD, 2017a
2016-2 (US)	Grouping for cumulative risk assessment	Neurotoxicity	x		x		OECD, 2017b
2016-3 (ICAPO)	Read-across	Repeated dose texicity		X	X	X	OECD, 2017c
2016-4 (ICAPO)	Read-across	Repeated dose toxicity		X	X	X	OECD, 2017d
2016-5 (JRC/BIAC)	Safety assessment workflow	Repeated dose toxicity	Х		X		OECD, 2017e
2015-1 (Canada/US)	Read-across	Mutagenicity	х	X			OECD, 2016b
2015-2 (Canada)	Read-across	Repeated dose toxicity		X	X		OECD, 2016c
2015-3 (Japan)	Read-across	Repeated dose toxicity	x	X			OECD, 2016d
2015-4 (Japan)	Read-across	Bioaccumulation		х		х	OECD, 2016e

IATA Case Studies and AOPs ...

• IATA Case Studies Project

- 8 case studies use AOP or mechanistic information
- 2 include mechanism for endorsed AOP 38 Adverse Outcome
 Pathway on Protein Alkylation Leading to Liver Fibrosis (AOP)
- 2 link to AOPs under development, others had no relevant AOP in the wiki ...
- This round of case studies almost all contain
 AOP/mechanistic thinking ... often not on endorsed/active
 AOPs

POTENTIAL APPLICATIONS OF THE AOP CONCEPT

Early key events can be measured with non-animal tests, which can be used to predict the adverse outcome

Read-across based on mechanistic understanding

QSAR TOBOX

• Free software application to predict the properties of chemicals (version 4.3 launched in 2019)

• Estimate missing experimental values by read-across and trend analysis (grouping of similar chemicals, chemical categories)

www.oecd.org/env/hazard/qsar

S

Documents

Profilers
predicting
results of key
events

Databases with results from key events

Test Guideline Development (e.g. skin sensitisation)

Thyroid AOP Network: future opportunities for candidate *in vitro* assays, IATAs

Developmental neurotoxicity (DNT) project

 Objective: to develop guidance on application and interpretation of in vitro developmental neurotoxicity assays and tiered approach to testing and assessment of DNT modalities not related to endocrine system

Lead Consortium:EFSA, Danish EPA, USEPA, EC-JRC

Key neurodevelopmental processes: mapping of in vitro assays

Graphic representation of 18 DNT-related AOPs

^{*}GABAR is relevant to neurodevelopment but the response varies with developmental stages

IATA project for non-genotoxic carcinogens (NGTxC)

- Led by the UK
- Three cancer models considered: liver, colon and lung
- NGTxC flow developed using the AOP construct:
 - Simple
 - Pragmatic
 - Accomodate most NGTx cancer theories and understanding

Objective: develop a scoping document to characterise *in vitro* assays and their level of readiness for further standardisation

Simplified NGTxC AOP flow

Inflammation

MIE

Immune response

Mitogenic signalling

Cell injury

1 assay block identified

2 assay blocks identified for each KE

Sustained proliferation

3 assay blocks identified i.e.:

- Cell proliferation
- Gene and cell signaling
- Resitance to apoptotic cell death

Cellular atypie / Change in morphology

4 assay blocks identified i.e.:

- Cell transformation
- Pathogenic Angiogenesis and Neoangiogenesis
- Genetic instability
- Scenescence Telomerase

Tumour

1 assay block identified

17

NGTxC pathway leading to tumour formation

IATA-related endocrine projects: Retinoid signalling pathway

- Project to develop a Detailed Review Paper on retinoid pathway signalling
 - Led by Sweden/EC/Secretariat
- Overview of retinoid signalling biology
 - Detailed review of role of retinoid signalling in
 - female reproductive system,
 - male reproductive system,
 - central nervous system, and
 - skeletal system
- Objective: scope available assays
 - Link mechanistic data with apical responses for chemicals known to affect retinoid pathway signalling (case study approach)
 - Request input from expert group on:
 - Assays/endpoints for development
 - Regulatory interpretation
 - Given the complexity of the retinoid pathway, recommendations are likely to be a suite of assays in an IATA/screening battery/ITS

Receptor binding

Effects on key enzymes

Receptor (hetero)dimerization

Altered gene/ protein expression

Biomarkers

Organ system effects

Development of Harmonised Testing Strategies or Defined Approaches

Endocrine Disruptor Screening and Testing: AOP thinking + testing strategies

Adverse Outcome Pathway

Testing strategy developed around an AOP: ER pathway

- IATA case study project
 - Led US
 - Considered with a defined approach
 - Combines results form \geq 4 in vitro assays to predict the rodent in vivo uterotrophic response

IATA versus Defined Approaches

IATA	Defined Approaches
Designed in response to problem formulation	Designed to address pre-defined endpoint/prediction
Inputs are defined by user	Defined information sources
Sequence of input, next steps, decision context defined by user	Sequence defined and next steps are rule-based
Expert judgement for weighting data, interpreting data	Fixed data interpretation procedure
Conclusion may be open to interpretation	Regulatory conclusion is clear

Increasing level of standardisation

Defined Approach (DA) for Skin Sensitisation: General workflow

2017-2020:

Developing a
Guideline that
predicts hazard and
potency for skin
sensitisation

Score	h-CLAT MIT		DPRA depletion	OECD TB	
3	≤10 μg/mL		≥42.47%	-	
2	>10, ≤150 µg/mL		≥22.62, <42.47%	-	
1	>150, ≤5000 µg/mL not calculated		≥6.376, <22.62%	Sens	
0			<6.376%	Non	
Potency:		Stroi	Strong :		
bat	otal ttery core	Weak:		2-6	
		Not classified :		0-1	

Outcome of a discussion of QSAR experts- Nov. 2018

A new approach for describing "applicability domain" of DAs is needed

- Validation and transparency
- Proposal for QA reporting standards for in silico models and resulting predictions

```
QMRF + protocol \sim test \ guideline \\ QPRF \sim test \ report
```

- Proposal for rigid (or automated) protocol for generating predictions to remove expert judgement
 - New version of OECD QSAR TB will have a "skin sensitization for defined approaches" module
 - Included in next update of the TB (OCT 2019)

Interpretation of non-standard in vitro test results

GD 211 for describing Non-Guideline in vitro test methods

- "provide a short description (of an assay) indicating:
- <u>firstly</u> what key event within an existing or developing AOP, or in relation to a mechanism or mode of action, the assay is aiming to characterize (i.e. which level of biological organization the assay may be attributed (e.g. sub-cellular, cellular, tissue, organ or individual), and
- <u>secondly</u> where the assay might fit in the context of an existing regulatory hazard (i.e. adverse outcome)"

Represents an additional effort to give a role/ place to non-standardised methods

http://www.oecd.org/officialdocuments/publicdisplaydocument pdf/?cote=ENV/JM/MONO(2014)35&doclanguage=en

Criteria for AOP prioritisation

- <u>2012-2018</u>: AOP development and review has been a proof-of-concept, open and based on opportunities
- <u>2019</u>: prioritisation under discussion to ensure AOPs developed, reviewed and published will match the needs of countries
 - Is a Regulatory Need Identified?
 - Member country/agency priority
 - Is a Testing Strategy/Assays under development?
 - Help identify candidate in vitro assay or battery of assays or endpoints to standardise
 - Can it link to ongoing/future OECD projects on:
 - » WPHA IATA project
 - » Test Guidelines Programme workplan ?
 - Does it complement an existing network of AOPs addressing a regulatory endpoint?
 - Availability of people/resources to develop and review?

- Continuation of IATA Case Study Project
- OECD QSAR TB (2020-2025)
 - Addition of databases of results from KE (e.g. intermediate effects database by JRC)
- Testing strategies
 - DNT battery of in vitro assays
 - In vitro battery for immunotoxicity (just starting, first step DRP)
 - Follow-up for NGTxC
 - Adult neurotoxicity?

- Defined Approaches
 - Skin Sensitisation: Mid-2020?
 - Eye irritation (ca. 2021)
- Prioritise AOP development and reviewing based on ongoing or upcoming OECD projects and regulatory needs. In parallel, encourage innovation and development of AOPs for future projects.