

Balancing Machine Learning and Mechanistic Modeling

Nicole C. Kleinstreuer

NICEATM Deputy Director

19th September, SACATM, Washington DC

Expert-driven vs. Data-driven

- Two "competing" approaches to modern toxicology/drug discovery:
- Build testing strategies/models based exclusively on existing biological knowledge
- Generate as much data as possible and let the machines sort it out
- Success lies in leveraging both approaches
- BUT this requires appropriate toolkits, resources and support infrastructure

Predictive Toxicology Vision

FAIR Resources

Regulatory/Safety/Efficacy Decisions

Making Data Systems and Resources FAIR

FAIR PRINCIPLES		
Findable	A data object should be uniquely and persistently identifiable.	
Accessible	Data is accessible by authorized users (human and machine) through a well-defined protocol.	
Interoperable	(Meta) data assigned to the data object is syntactically parse-able and semantically machine accessible.	
Reusable	Data objects must comply with the above three principles and sufficiently documented to allow integration/linkage with other data sources.	

https://www.force11.org/fairprinciples

Wilkinson et al. 2016

NIEHS Data Commons – initial stage

- Internal research data & metadata
- Capture, access, control, search, and sharing
- Engage external stakeholders

Courtesy of C. Schmitt

Interoperability Across Systems

Consistent & compatible web-APIs

CEBS

ICE

Others...

Data Commons

NIEHS Data Systems

Consistent data set access & retrieval

EPA Dashboard

Pub©hem

Many others...

NCATS BioPlanet

Integrated Chemical Environment: ICE

Users Resources Outcomes Identify opportunities to develop new methods **Method Developers High-Quality Data** Compare method performance Chemical Producers Reference Chemicals Identify data gaps Obtain and examine toxicity Risk Assessors Computational Tools and chemical data Develop testing strategies

Bell et al. 2017 EHP

https://ice.ntp.niehs.nih.gov/

- Uphold FAIR principles for ICCVAM Data
- Provide intuitive access to high quality (curated) data and tools to support:
 - chemical evaluations,
 - data integration,
 - informatics analyses, and
 - model development
- Enable wider community to engage in the use of alternative and computational approaches for assessing chemical safety

Core Trustworthy Data Repository Certification

31 October 2019: Release of Final Core Trustworthy Data Repositories Requirements 2020–2022

- R1: Mission/Scope
- R2: Licenses
- R3: Continuity of Access
- R4: Confidentiality/Ethics
- R5: Organizational Infrastructure
- R6: Expert Guidance
- R7: Data Integrity and Authenticity
- R8: Appraisal

- R10: Preservation Plan
- R11: Data Quality
- R12: Workflows
- R13: Data Discovery and Identification
- R14: Data Reuse
- R15: Technical Infrastructure
- R16: Security

What goes into ICE?

Validation Studies

Databases

Published Data

Computational Models

What data are currently in ICE?

Toxicity endpoint/ Data source	Assays	# of chemicals
Acute Oral Toxicity	Acute oral toxicity	10,348
Skin Sensitization	DPRA, hCLAT, KeratinoSens, LLNA, human potency, etc	578
Skin Irritation	Acute skin irritation/corrosion, 4h HPT	120
Eye Irritation	Acute eye irritation/corrosion (e.g, Draize eye), Vitrigel	183
Endocrine	AR/ER Pathway Models, Uterotrophic, AR/ER binding	1903
cHTS	ToxCast and Tox21 assays	9076
OPERA predictions	BP, HLC, KOA, BCF, LogP, MP, MW, VP, WS	705,666
Formulation data	Acute 6-pack	298 (747 formulations)

Currently of interest:

- In vivo data
 - Collections of data generated using regulatory guideline-like studies
 - Acute inhalation, skin and eye irritation/corrosion
- Toxicokinetic data
 - Collections of in vivo measurements
 - Data from *in vitro* assays aimed at informing modeling of chemical ADME within the body

Chemical Space Characterization

IVIVE

Overlay In Vivo Data on IVIVE Results

Predicting Key Toxicokinetic Parameters

Multiple Machine Learning Models (SVM, DNN, XGB, etc.)

- ADME properties
 - Plasma fraction unbound (FuB)
 - Intrinsic clearance (Clint)
- Tissue partition coefficient inputs
 - pKa
 - Log D

Mansouri et al. 2019 Journal of Cheminformatics in press

https://github.com/NIEHS/OPERA

Global Collaborative Projects

Applying machine learning to predict endpoints of regulatory importance

CERAPP

Collaborative Estrogen Receptor
Activity Prediction Project (2015/16)

CoMPARA

Collaborative Modeling Project for Androgen Receptor Activity (2017/18)

CATMoS

Collaborative Acute Toxicity Modeling Suite (2018/19)

Endocrine Disruptor Screening Program (EDSP)

ICCVAM Acute Systemic Toxicity Workgroup

Mansouri et al. 2016 EHP 124:1023–1033

Mansouri et al. 2019 under revision at EHP

Kleinstreuer et al. 2018 Comp Tox; Mansouri et al. 2019 in prep

Manually Identifying Reference Data

Ex: Uterotrophic Database

- Systematic literature search of publically available data (e.g. PubMed, Scopus)
- Identify chemical activities measured in "guideline-like" uterotrophic studies
- Identify a subset of in vivo reference chemicals
 - Active chemicals verified in <u>></u>2 independent studies
 - Inactive chemicals verified in ≥2 independent studies (with no positive results in any study)

Kleinstreuer et al. EHP (2015)

Automating Reference Data Identification

- Project with Oak Ridge National Labs (ORNL) and FDA CFSAN to apply text-mining (NLP) approaches & ML to identify high-quality data
- Semi-automated retrieval and evaluation of published literature (trained on uterotrophic database)
- Apply to developmental toxicity studies (with ICCVAM DARTWG)
 - Define literature search keywords, identify corpus
 - Extract/characterize study protocol details from regulatory guidelines: minimum criteria
 - Apply ML algorithms to identify high-quality studies, expert check

Study Extractions and Endpoint Mapping

- Extract study details from prenatal developmental toxicity guideline studies
 - NTP legacy studies
 - ECHA submissions (expert reviewed for quality)
- Map results to controlled vocabularies/ontologies
 - UMLS (ToxRefDBv2.0)
 - EPA/BfR DevTox DB
 - OECD Harmonized Templates

Flipping the Paradigm: Mechanistic Screening

X lbs./yr. commercial production

Initial Focus

Agent Y

https://ncats.nih.gov/tissuechip/chip

Mortality

Selected Causes of Death

Figure 2. Age-adjusted death rates for selected causes of death for all ages, by sex: United States, 2004–2014

Cardiovascular Health Effects Strategy

Adapted from B. Berridge - NTP BSC Presentation- Dec. 2018

1° Failure

modes

Cellular Events Linked to CV Failure Modes

Drug actions on human receptors, ion channels, cellular processes Potency + Exposure (dose, time) Δ Vasoactivity Δ Inotropy Cardiomyocyte/ myocardial injury Endothelial injury/coagulation

Systemic_Hypertension

- Antagonism at α2-receptors,
 Rebound phenomenon (α2-
- agonists and beta-blockers)

 Agonism at glucocorticoid
- receptors
 Inhibition of VEGF pathway,
- Inhibition of monoamine
- oxidases (MAO) 11β-hydroxysteroid dehydrogenase type 2

inhibition Systemic Hypotension

- Antagonism at α1-receptors,
- Ca2+ channel blockade
- Opening of K+ channels,
- Inhibition or renin– angiotensin–aldosterone axis
- Agonism at β2 receptors
 Agonism at α2-receptors,
- Agonism at I1-receptors,
- Stimulation of cGMP
- Inhibition of phosphodiesterase 5

Synthesis,

Left ventricular (LV) dysfunction/heart failure

- Ca2+ channel blockade
- Na+ channel blockade,
- Antagonism at ß1-receptors
- Anthracyclines, cyclophosphami de (high dose),
- taxanes
 HER2 signaling inhibition
- VEGF signaling inhibition.
- tyrosine kinase inhibition (multikinase)
- drugs),
 Proteasome inhibition

Bradydysrhythmias

- Ca2+ channel blockade,
- Na+ channel blockade,
- Blockade of If current
- Antagonism at β1receptors,
- Agonism at M-receptors
- Agonism at I1-receptors,
 Agonism at sphingosine-1-phosphate receptor,

Tachydysrhythmias

- Blockade of hERG channels
- Agonism at β-receptors
- Antagonism at Mreceptors
- Anhibition of Na+/K+ pump,
 Na+ channel blockade

Myocardial ischemia

- Agonism at β1-receptors (direct effects or indirect effect via
- endogenous Catecholamin es)
- Rebound phenomenon (nitrates, βblockers)

Myocarditis

- Autoimmun
 e reactions
 (e.g.,
- clozapine)monoclonal antibodies targeting

PD-1

Impairment of cardiac

 Agonism at 5-HT2B receptors

valves

Pericardial disease induction

 Immune reaction (e.g., drugs inducing lupus

osus)

inducing lupus erythemat

Arterial

- Inhibition of cyclooxygenase 2
- VEGF targeting
- Agonism at erythropoietin receptors

Venous

- Agonism at estrogenic receptors
- VEGF targeting
- Agonism at erythropoietin Receptors

CardioToxPi: HTS Assay Mapping

Vascular Development & Disruption

Adverse Outcome Pathway (AOP)

Knudsen and Kleinstreuer (2011) Birth Defects Res

AOP43: one of 28 AOPs included in the OECD work plan with status 'open for citation & comment' https://aopwiki.org/wiki/index.php/Aop:43

Mechanistic Models and Experimental Results

38 chemical test set: qualification of

pVDC ToxPi across 9 endothelial behaviors

- A pVDC score from ToxCast dataset (ToxPi)
- B HUVEC tubulogenesis (FICAM)
- C tubulogenesis in synthetic matrices
- D tubulogenesis in Matrigel
- E nuCTNB biomarker (EndMT)
- F endothelial cell migration
- S sprouting assay (iPSC-derived endothelial cells)
- H reporter zebrafish (ISV outgrowth)
- I reporter zebrafish (hyaloid vascular network)
- J HUVEC tubulogenesis (VALA)
- K ANY (B to J)

Predicting Toxicity of Mixtures

- How can we leverage machine learning, mechanistic modeling, and systems approaches to tackle complex problems such as predicting mixtures toxicity across heterogeneous populations?
- How do we build datasets that will allow models for mixtures toxicity against human health endpoints to be more effectively developed?

Ocular QSAR Mixture Models

- EPA_ANY = Category I, II, III vs Category IV
- EPA_IRR = Category I/II vs Category III/IV
- EPA_ Corr = Category I vs Category II, III, IV

Predictive Toxicology Vision

FAIR Resources

Predicting Human Toxicity

Acknowledgments

- ILS/NICEATM group
- Sciome collaborators
- ICCVAM agencies
- ICATM partners
- Brian Berridge (NTP)
- Shagun Krishna (Kelly)
- Robert Patton (ORNL)
- Jessica Wignall (ICF)
- Tom Knudsen (EPA)
- Todd Zurlinden (EPA)
- Kate Saili (EPA)
- Tony Williams (EPA)

Questions?