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Risk 1s Multifaceted

EPA is charged with evaluating risks associated with
1000s of chemicals in commerce
» For example, as of June 2017 there were 67,709
chemicals on the TSCA Inventory

Evaluating chemicals for risk to humans or the
environment requires information on hazard and
exposure potential

Exposure potential quantifies the degree of contact
between a chemical and a receptor

Toxicokinetic information is required to bridge hazard
and exposure (what real-world exposure is required to
produce an internal concentration consistent with a
potential hazard?)
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Traditional Exposure Data Are Limited
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Egeghy et al. (2012)

Use category information for
chemicals being tested via high
throughput screening at EPA

# Chemicals

ToxCast Tox21

Some use information available
B No use information

The ExpoCast project and its collaborators are working to fill gaps in exposure data for 1000s of
chemicals using high-throughput new approach methodologies (NAMSs) for exposure
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New Approach Methodologigé

in Regulatory Science

Proceedings of a scientific workslii

Helsinki, 19—20 April 2016
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“NAMs were taken in a broad context to include in silico
approaches, in chemico and in vitro assays, as well as the
inclusion of information from the exposure of chemicals in the
context of hazard assessment”

“...the committee sees the potential for the application of
computational exposure science to be highly valuable and
credible for comparison and priority-setting among chemicals in
a risk-based context.”
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_ _ o _ _ _ o ,_H:;. Current Opinion in Toxicology “_“:
 Chemical descriptors that provide information on chemicals in e N Available online 31 July 2019 s
an exposure context (e.g., how chemicals are used) LS e el Eapet = =

* Machine-learning approaches that use these descriptors to fill

' exioting dat New Approach Methodologies for Exposure
gaps in existing data

Science
* ngh-throughpUt exposure mOdeIS for Varlous pathways john F. Wambaugh ' & 5, Jane C. Bare #, Courtney C, Carignan °, Kathie L. Dionisio *, Robin E.
. . . . . Dodson ™ %, Olivier jolliet *, Xiaoyu Liu®, David E. Meyer *, Seth R. Newton °, Katherine A. Phillips
« High-throughput measurements to fill gaps in monitoring data Paul 5. Price *, Caroline L. Ring , Hyeong-Moo Shin 1°, jon R. Sobus *, Tamara Tal ', Elin M, Ulrich
' Daniel A. Vallero *, Barbara A. Wetmare *, Kristin K. Isaacs
« High-throughput approaches for measuring and predicting :
chemical toxicokinetics ma/kg
. . . BW/day
* New evaluation frameworks for integrating models and _
monitoring to provide consensus exposure predictions Fotential flazard
. . . Reverse
» All these pieces together provide the tools for high-throughput Toxicokinetics
chemical prioritization
Potential
Exposure
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Chemical Descriptor NAMs

General use
categories

Che ical and Products Database

|dentification of
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Development of a consumer product ingredient database for chemical @ R——
exposure screening and prioritization
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 Targeted Analysis:
— We know exactly what we’re looking for
— 10s — 100s of chemicals

* Non-Targeted Analysis (NTA):
— We have no preconceived lists
— 1,000s - 10,000s of chemicals

» Ongoing consumer product scanning and blood
sample monitoring via contract (NTA and confirmation
of tentative IDs with available standards

» Development of significant in-house capabilities

» EPA s coordinating a comparison of non-targeted screening workflows used by leading academic and
government groups using known chemical mixtures (ToxCast) and standardized
environmental/biological samples

« Goal is to develop tools, databases, and workflows for rapid analysis of any sample for chemicals of
interest, i.e. exposure forensics

High Resolution Mass Spectrometry

FEEEAN Office of Research and Development
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» Pilot study of 20 classes of products,
including clothing, personal care
products, carpet padding, cleaners

« 5 products from each category

e GCXGC/MS

« Phillips et al., Env. Sci. Tech. 2018

FEREAN Office of Research and Development

Recycled Materials

Products from six categories of

recycled products, including building
materials, paper products, toys, and

clothing

20 products per category with 50%
recycled material, 8 products virgin

materials
GC X GC/MS
Lowe et al., in prep

Residential Dust

Dust samples from 56 U.S. homes
in the American Health Homes
Survey

LC/MS

Rager et al., Env. Int., 2016
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Machine Learning NAMs

Training Sets of Chemical

Descriptor NAMS
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High-throughput dietary exposure
predictions for chemical migrants from
food contact substances for use in
chemical prioritization
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Developing and applying metamodels
of high resolution process-based
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* \We use Bayesian methods to incorporate multiple pathway models into consensus
predictions for 1000s of chemicals within the Systematic Empirical Evaluation of

Models (SEEM)

Hurricane path
ki prediction is an
0 -“-.;;." example of integrating

multiple models

FERERN Office of Research and Development

with
Monitoring
Data

Dataset 1
Dataset 2

Chemicals

Apply calibration and estimated uncertainty to
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* \We use Bayesian methods to incorporate multiple pathway models into consensus
predictions for 1000s of chemicals within the Systematic Empirical Evaluation of

Models (SEEM)

» ExpoCast is developing SEEM Models for
multiple receptors and pathways

 Human (Wambaugh et al., 2013, 2014;
Ring et al., 2018)

» Evaluated with NHANES
biomonitoring data

» Ecological (Sayre et al., in prep)
» Evaluated with USGS water data
» Occupational (planned)

» Evaluated with OSHA occupational
monitoring data

FEREAN Office of Research and Development

Chemicals
with Xposure

Monitoring Inference
Data

Dataset 1
Dataset 2

Apply calibration and estimated uncertainty to

* other chemicals
Estimate

Uncertainty Calibrate

models

. '\
. *+ Different
+ Chemicals

Inferred Intake Rate

Evaluate Model Performance
and Refine Models

VICLCIFEN == Available Exposure Predictors :
Model 2

Material from John Wambaugh
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o Chemicals
@ e Predictor (including Models) Reference(s) Predicted Pathways
ot =S| EPAInventory Update Reporting and Chemical Data US EPA (2018) 7856 Al
Reporting (CDR) (2015)
Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 Far-Field Industrial and
M Pollutants (2017) Pesticide
NERSITY OF EPA Pesticide Reregistration Eligibility Documents (REDs) ~Wetmore etal. (2012, 2015) 239 Far-Field Pesticide
‘ Exposure Assessments (Through 2015)
UC D AVI s United Nations Environment Program and Society for Rosenbaum et al. (2008) 8167 Far-Field Industrial

Environmental Toxicology and Chemistry toxicity model
(USEtox) Industrial Scenario (2.0)

UNIVERSITY OF CALIFORNIA

UNIVERSITY OF

A TEXAS USEtox Pesticide Scenario (2.0) Fantke etal. (2011, 2012, 2016) 940 Far-Field Pesticide
"W ARLINGTON
Risk Assessment IDentification And Ranking (RAIDAR) Amot et al. (2008) 8167 Far-Field Pesticide
71} panmarks Far-Field (2.02)
o F’f“‘s"? EPA Stochastic Human Exposure Dose Simulator High Isaacs (2017) 7511 Far-Field Industrial and
- mversitel  qh0ughput (SHEDS-HT) Near-Field Direct (2017) Pesticide
SV STap SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential
2 o Y Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin etal. (2012) 645 Residential
;Ta M E RAIDAR-ICE Near-Field (0803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
’4.{ pHu-iE-c' USEtox Dietary Scenario (20) Jolliet et al. (2015), Huang et al. (2016), 8167 Dietary

Ernstoff et al. (2017)

Office of Research and Development Material from John Wambaugh
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¢ R?-0816 Ring et al., 2019

= Machine learning models RMSE =0.929

were built for each of four
exposure pathways

L P Pathway(s)
o bt o Consumer
I Consumer, Industrial
Consumer, Pesticide
4 Consumer, Pesticide, Industrial
7 Dietary, Consumer
B Dietary, Consumer, Industrial
# Dietary, Consumer, Pesticide
A Dietary, Consumer, Pesticide, Industrial
¢ Dietary, Pesticide, Industrial
Industrial
= Pesticide
Pesticide, Industrial

= Pathway predictions can be
used for large chemical
libraries

1071
= Use prediction (and accuracy

of prediction) as a prior for
Bayesian analysis

Consensus Model Predictions

= Each chemical may have
exposure by multiple
pathways

_ Intake Rate (mg/kg B\ﬁ]day) Inferréd from
[EREAl Office of Research and Development NHANES Serum and Urine Material from John Wambaugh
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= We extrapolate to predict relevant
pathway(s), median intake rate, and credible 10
interval for each of 479,926 chemicals

“a 1880 chemicals
=0.1 mag/kg bw/day

. Pathway(s)
= Of the chemicals evaluated, 30% have less A1 e
than a 50% probability for relevance to any > Gons, Pest
. - £ Cons , e,
of the four pathways and are considered el et

Ciat | Cons

Ciet, Cons., Ind
Cuat, Cons., Pest
Cuet., Ind.

Cuct, Fest

7 Deet, Pest, Ind
Cietary
Industrial

Pest, Ind
Festcide

outside the “domain of applicability”

1074

= This approach identifies 1,880 chemicals for
which the median population intake rates
may exceed 0.1 mg/kg bodyweight/day.

Population Median Intake Rate (mg/kg bw/day)

10 10°
Chemical Rank

Office of Research and Development Material from John Wambaugh
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= We extrapolate to predict relevant _
pathway(s), median intake rate, and credible 10 a };‘33:1::(‘:”’;:1; 0 b
interval for each of 479,926 chemicals '
z &
. % Pathway(s) g
= Of the chemicals evaluated, 30% have less 8 |1 Al Fou a ,

- . = 14 Cons., Ind g 478046 chemicals
than a 50% probability for exposure via any E oomrm B | <0.1 mg/kg bwiday
of the four pathways and are considered Y < Consumer Py _
outside the “domain of applicability” ¥ oeows & e i

e ® Det,Cors,ind @ -..Slugkg bwiday
m A Diet, Cons., Pest (@
= This approach identifies 1,880 chemicals for 5 g et sl ka B
which the median population intake rates = " E
. =] : , k=]
may exceed 0.1 mg/kg bodyweight/day. s R AN S
j=3 (=%
€ 10° & 10
= There is 95% confidence that the median
intake rate is below 1 pg/kg BW/day for
474,572 compounds.
10 10° 10°  1x10° 2x10° 3x10° 4x10° 5x1
Chemical Rank Chemical Rank
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. . g Hepatocyles earance it — »
e Chemical-specific data for (10 donerpoc) vl ﬂ "|__LungBlood  [o——>
. . . Extrapolation Lung Tissue
toxicokinetics (TK) are as sparse as
for exposure — & Concentrations GutBlood |
a9y | Gut Tissue Qqur
. Human Plasma E T Koutans >
* High throughput TK methods have Plasma Proten 3 Gut Lumen 7
. {8 donor pool) Binding a s_T‘_)
prOVIqed data for nearly 1000 Rotroff et al. (2010) 35 chemicals 2 Tiver Blood ¥
chemicals over the past decade Wetmore et al. (2012) +204 chemicals S| CheaoisfTverTosue | Qe |2
Wetmore et al. (2015) +163 chemicals
. Wambaugh et al. (in prep.) + ~300 chemicals Bodv Blood ¢
» However, thousands of chemicals . —L Qe
: . : : In vitro Measurements LT
remain requiring machine learning
¢ Kidney Blood
and QSAR approaches -— O e Qum
E&E&dé%?_l_ll:EDRMATIDN um y
Informing the Human Plasma Protein Binding of Environmental
Chemicals by Machine Learning in the Ph tical Space: i i i ;
Applicability Domain and Limits of Predictability Generic Physiologically
El‘andall L. Ingle,: Brandon C. Veber, ® John W. Nichols,; and Rogelio Tornero-Velez* : B aS ed TOX I CO kl n etl C MO d el S

Machine Learning Models
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Estimated Equivalent Dose or Predicted Exposure
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1Ization NAMSs: Risk-Based Evaluation in Practice

' High throughput in vitro
screening + toxicokinetics NAMs

$ gﬁ' can estimate doses needed to
é dfﬁ’;‘:* cause bioactivity
(e.g., Wetmore et al., 2015)

Consensus exposure rates

/ with uncertainty
(e.g., Ring et al., 2018)

emicals Monitored by CDC NHANES
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= Estimates of human and ecological exposures are required as critical input to risk-based prioritization
and screening of chemicals.

= The ExpoCast project seeks to develop the data, tools, and evaluation approaches required to generate
rapid and scientifically-defensible:

— Exposure predictions for the full universe of existing and proposed commercial chemicals.

— The toxicokinetic data required to relate bioactive concentrations identified in high-throughput
screening to predicted real world doses (i.e. in vitro-in vivo extrapolation).

= We are developing and applying computational and analytical new approach methodologies for exposure
science and toxicokinetics that are appropriate for application to 1000s of chemicals.

= Rapid prediction of chemical exposure and bioactive doses allows prioritization based upon risk.

XA Office of Research and Development
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