OECD PERSPECTIVE* ON BUILDING CONFIDENCE FOR NAMs

Patience Browne OECD EHS/ENV SACATM 29 September, 2021

Mutual Acceptance of Data

The Gold Standards

MAGRIPPALFCOSTERTIVMFECIT

Good Laboratory Practices

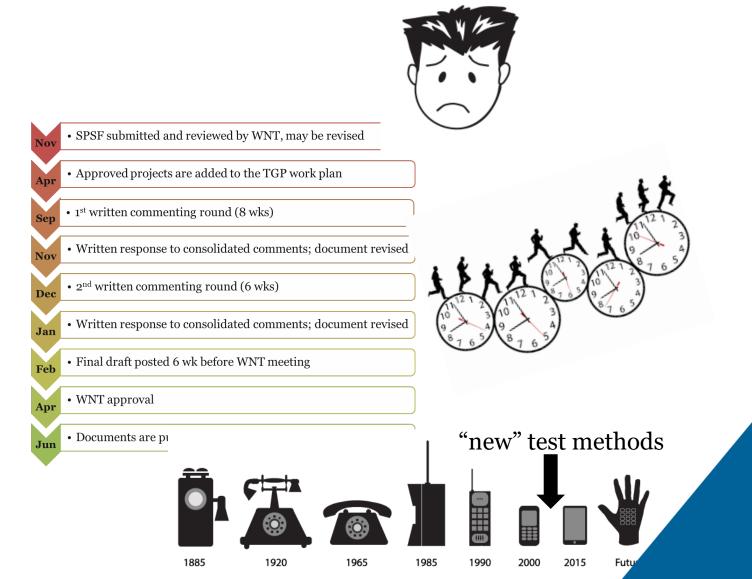
PERCEPT

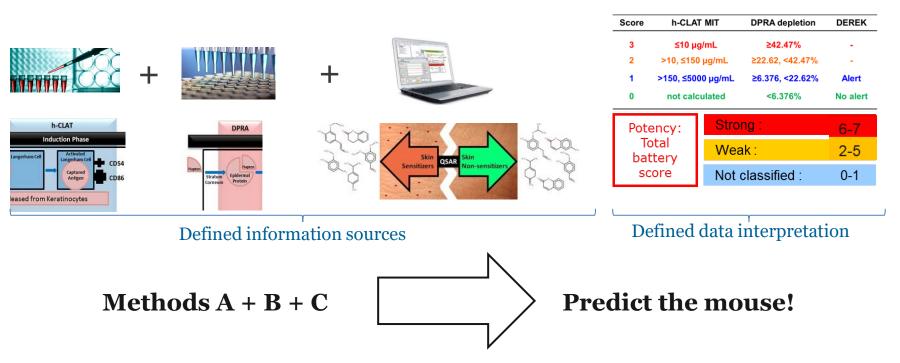
Harmonised Test Guidelines

GLP Quality Assurance

- Criteria
 - Rigorous standards
 - Reporting and data storage requirements
 - Documented through a number of Guidance Documents
- Process
 - Certification
- Review
 - Inspected by National Authorities

GL Scientific Validation


- Criteria
 - Principles outlined in GD 34
 - Reliable/relevant
 - Reproducible/transferable
 - Transparent
- Process
 - Intra-lab
 - Inter-lab
- Review
 - Experts (in/out of OECD)
 - National Coordinators
 - Written Comments


Challenges

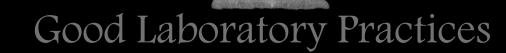
Skin sensitisation: Workflow for defined approach (1st NAM GL)

OECD iLibrary | Guideline No. 497: Defined Approaches on Skin Sensitisation



Mutual Acceptance of Data (MAD)

MAD is legally binding for OECD Member Countries



QUALITY ASSURANCE

Andrew Constanting of the State of the State

CCCC Subalitation State SPACE AND ADDRESS OF

MAGRIPPALFCOSTERTIVMFECIT

Good Computational Method Practices

- OECD Concept of MAD can be expanded beyond traditional laboratory experimental data
 - Computational methods can be done in GLP environment and covered by MAD
 - But... they don't have to be
 - Some methods may not covered by MAD
 - But not **not** useful
 - Regulators have been accepting computational data for years
 - High confidence if:
 - Regulators can reproduce computational data on their own
 - Instructions for generating computational data are codified
- How can OECD facilitate the use of computational data/NAMs/other tools?

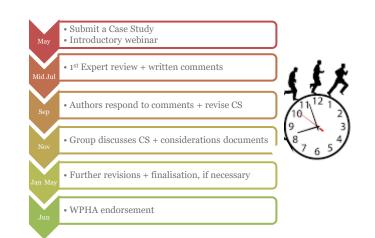
Table 1.		Quality Assurance Coverage	<u>ge √= QA guidance available; 🖋 = draft</u>	ing			
Potential single or combination of elements of existing or future OECD TG	<u>Scenario 1</u> (all elements conducted in GLP laboratory)	(in vitro or in vivo studies condu in silico prediction and DIP for out at stu	<u>Scenario 3</u> (in vitro or in vivo studies conducted in GLP lab and regulator has the results; in silico prediction and/or DIP for combination of information sources carried out by regulator)				
		A (Sponsor premises is part of GLP monitoring programme)	B (Sponsor premises is not part of GLP monitoring programme)				
In vivo model (in test facility)	✓ (GLP Guidance)✓ (TG instructions)		 ✓ (GLP Guidance) ✓ (TG instructions) 				
In vitro model (in test facility)	✓ (GLP Guidance)✓ (TG instructions)		✓ (GLP Guidance)✓ (TG instructions)				
In silico prediction model	 ✓ (GLP - generic guidance for emerging technologies) ✓ (TG instructions) 		✓ (TG instructions) (conducted by sponsor)	Not a MAD scenario as company not			
Data interpretation procedure applied to raw data of in vivo or in vitro model (in test facility)	 ✓ (GLP - generic guidance for emerging technologies) ✓ (GLP Guidance) ✓ (TG instructions) 	Considered as multi-site study for GLP and otherwise Scenario	 	submitting data to regulator; but regulator can follow TG instructions for conducting in silico prediction and/or DIP for combination of			
Data interpretation procedure used to combine outputs from various information sources (in vitro, in vivo and/or in silico)	 	1 applies	✓ (TG instructions) (conducted by sponsor)	information sources			
Documentation (result requirements and retention)	 ✓ (GLP Guidance) for retention ✓ (TG instructions) for what to document 		Result document requirements in TG which would need to be submitted to regulator Retention of records not covered for non- lab components				
MAD applies	\checkmark	\checkmark	In principle, MAD would not apply (because what would regulator be asking to be re-conducted?) But experts noted that based on the TG instructions, regulator would be able to reproduce in silico prediction and DIP on combination of information sources for QA purposes, and could therefore accept the results.	(because not about submission of results), but regulator could conduct parts of the TG themselves following			

Standardized Templates and Reporting Formats

- IATAs
 - General template
 - Read across template
 - Guidance for building blocks in IATA
- Defined Approaches
 - to be used in IATA
 - New GL includes elements to standalone DA use
- QSARs
 - QSAR Model Reporting Formats
 - QSAR Prediction Reporting Formats
 - Expanding to be generalizable to in silico models

- Omics
 - Transcriptomics Reporting Framework
 - Metabolomics Reporting Framework
- OECD Harmonised Templates (OHTs) for chemical safety data
 - ~130 standard reporting formats for information used in risk assessment
 - GL and non-GL studies
 - Chemically agnostic
- AOPs
- Various guidance on how to use

MAGRIPPALFCOSTERTIVMFECIT



Harmonised Test Guidelines

And a second sec

OECD IATA Case Studies Project

- Project of OECD Working Party on Hazard Assessment
- Increase experience with use of IATA by developing case studies providing examples that are fit for regulatory use
 - Exchange information on
 - Scientific approaches
 - Application in a specific regulatory context
 - Establish common/best practices
 - Create common understanding of using novel methodologies
 - Review/revise/publish case studies
 - generation of considerations/guidance on use of IATAs
 - Provide a possible path to
 - NAM use in TG
 - Defined Approach GL
 - Testing Strategies
 - Testing Batteries

- "Endorsement" by WPHA does not
 - indicate OECD Member Countries' agreement to use
 - bind countries in any decision making
- Results are not covered by the Mutual Acceptance of Data

- Guidance for using AOPs to build IATA/DAs
- Guidance for characterisation, evaluation and documenting of physiologically based kinetic (PBK) models (JRC/US lead) (March 2021)

- <u>OECD Nº 331</u>

- OECD Nº 329

- Overview of Concepts and Available Guidance on Integrated Approaches to Testing and Assessment (IATA) and their Components (JRC lead) (Oct 2020)
- Series on Testing and Assesment lo. 329

Overview of Concepts and Available

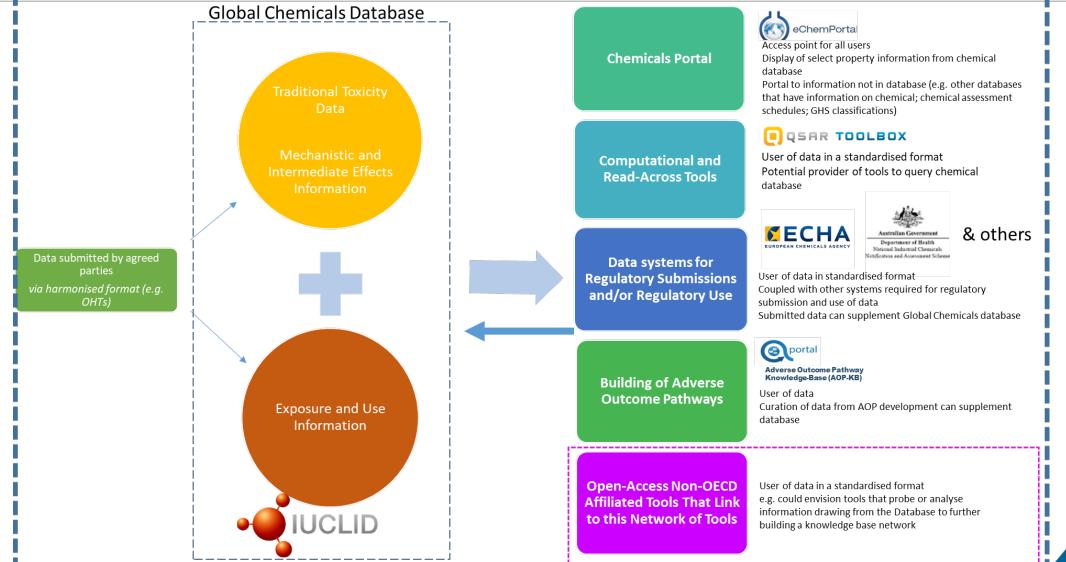
Guidance related to Integrated Approaches to Testing and

Assessment (IATA)

IATA Experience to date (+ 8 CS in this review cycle)

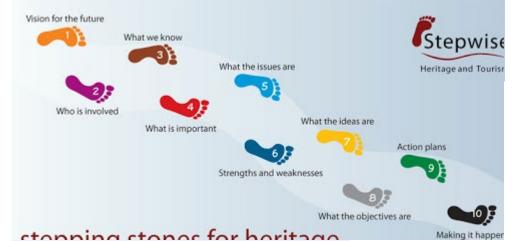
				IATA Topics			
Year-No. (Lead)	Assessment Approach	Endpoint	AOP ¹	UR ²	NAM ³	L/N ⁴	Reference
2020-1 (BIAC)	Safety assessment workflow	Repeated dose toxicity	Х	Х	Х	Х	OECD, 2021a
2019-1 (BIAC)	Safety assessment workflow Read-across	Reproductive toxicity	Х	Х	Х	Х	OECD, 2020a
2019-2 (BIAC)	Read-across	Repeated dose toxicity	Х	Х	Х		OECD, 2020b
2019-3 (BIAC)	Read-across	Repeated dose toxicity	Х	Х			OECD, 2020c
2019-4 (BIAC)	Read-across	Repeated dose toxicity	Х	Х	Х		OECD, 2020d
2019-5 (BIAC)	Read-across	Repeated dose toxicity	Х	Х	Х	Х	OECD, 2020e
2019-6 (BIAC)	Read-across	Developmental toxicity	Х	Х	Х	Х	OECD, 2020f
2019-7 (BIAC)	Read-across	Neurotoxicity	Х	Х	Х		OECD, 2020g
2019-8 (BIAC)	Read-across	Neurotoxicity	Х	Х	Х	Х	OECD, 2020h
2018-1 (Japan)	Read-across	Reproductive toxicity	Х	Х			OECD, 2019b
2018-2 (US)	Prioritisation and screening	Oestrogenicity	Х	Х	Х	Х	OECD, 2019c
2017-1 (Canada/US)	Prioritisation and hazard characterisation	Oestrogenicity	Х	Х	Х	Х	OECD, 2018b
2017-2 (Canada)	Prioritisation of chemicals	Ecotoxicity	Х	Х	Х	Х	OECD, 2018c
2017-3 (JRC)	Read-across	Genotoxicity for nano-TiO ₂		Х	Х		OECD, 2018d
2017-4 (ICAPO)	Read-across	Repeated dose toxicity		Х	Х	Х	OECD, 2018e
2016-1 (Japan)	Read-across	Repeated dose toxicity		Х	Х		OECD, 2017b
2016-2 (US)	Grouping for cumulative risk assessment	Neurotoxicity	Х		Х		OECD, 2017c
2016-3 (ICAPO)	Read-across	Repeated dose toxicity		Х	Х	Х	OECD, 2017d
2016-4 (ICAPO)	Read-across	Repeated dose toxicity		Х	Х	Х	OECD, 2017e
2016-5 (JRC/BIAC)	Safety assessment workflow	Repeated dose toxicity	Х		Х		OECD, 2017f
2015-1 (Canada/US)	Read-across	Mutagenicity	Х	Х			OECD, 2016b
2015-2 (Canada)	Read-across	Repeated dose toxicity		Х	Х		OECD, 2016c
2015-3 (Japan)	Read-across	Repeated dose toxicity	Х	Х			OECD, 2016d
2015-4 (Japan)	Read-across	Bioaccumulation		Х		Х	OECD, 2016e

2014-2020


 24 Cases studies have been published on OECD website

2021 = 7th cycle

- 8 new case studies
 - 5 DNT
 - 1 NGRA Skin Sens
 - 1 inhalation toxicity
 - 1 transcriptomics for ED



OECD Electronic Ecosystem: Global Chemical Knowledge Base

21st Century technology in regulatory decision making

- We're 21% through 21st century
- How can we start using New Approach Methods for regulatory purposes in a step-wise fashion?
 - To gain experience
 - To build confidence
 - To help articulate what is needed at each step in the process

Consideration of how to demonstrate performance (reliability + relevance)

- Reference data
 - Do we need a system to predict the rodent to predict the human?
 - How many reference chemicals do we need?
 - Does this depend on the model system (e.g. human < rodent < in vitro < in silico)? If so, is that supported by logic?
 - Does this depend on how much we know about a toxicity endpoint (e.g. more for new pathways/endpoints that are less understood)? If so, is that an impossibly high bar?
 - Do reference chemicals need to be specific or can we make use (mechanistic) assays that may lead to a number of potential toxicities?
- Physiological validation
 - Can we establish indicators of what things a system SHOULD DO?
 - Can we use chemicals that are known to alter functions certain ways in certain systems?
 - Can we establish reference chemicals that are know organ-system specific toxicants?
 - Can we use these to establish confidence in methods for measuring chemical effects?

Tools to build confidence in NAMs

- Description of applicability domain/uncertainty
 - Due to lack of information
 - Due to limitation of methods
- SOP or standardised execution of the method
- Demonstration of reproducibility
- Predictive capacity of method(s) against robust reference chemicals
- Standardized reporting
- Agreed upon (or at least defined) vocabulary for method/effects/endpoints

Relationship to in vivo tox	 Rationale described Limitations?
Detailed protocol	 Publically available Reproducible
Intralab [Interlab]	• Variability over time
Performance	 Reference chemicals Relevance to target spp/available tox information
Review	Data documentation[GLP]

- We need
 - Practical perspectives on how to take up innovative approaches in a regulatory context
 - A harmonised test guideline is not the only solution
 - An AOP is not required to build an IATAs
- Governments spend 100M \$/€ to support research on alternative methods, many of which do not become harmonised test guidelines
 - Need ways to use the available data and evaluate the suitability and confidence for uptake in a regulatory context
- Rather than asking if these are "ready for regulatory use", maybe we should be asking **what is missing from the "confidence checklist**"?
 - Use the same vocabulary and terms considered for "traditional" test methods