

Update on NICEATM Computational Resources

SACATM September 21-22, 2022 Helena Hogberg

Role of Computational Approaches in Chemical Safety Testing

- Computational tools and resources play a critical role in data evaluations:
 - Data aggregation
 - Data curation
 - Mapping data to biological systems and outcomes
 - Generating predicted values
 - Gaining insight into chemical and biological context
 - Chemical properties
 - Chemical use
 - Insight into dose/exposure (IVIVE, PBPK)

OPERA approach

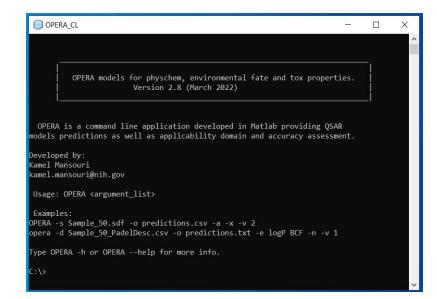
- Curated open access datasets (https://doi.org/10.1186/s13321-018-0263-1)
- **Open-source** code (github.com/NIEHS/OPERA)
- Transparent unambiguous algorithms (https://qsardb.jrc.ec.europa.eu/qmrf/)
- Transparent validated performances (https://doi.org/10.1080/1062936X.2016.1253611)
- **Defined** applicability domain and limitations of the models
- Predictions available through:
 - NICEATM's Integrated Chemical Environment (https://ice.ntp.niehs.nih.gov/)
 - The EPA's CompTox Dashboard (https://comptox.epa.gov/dashboard)
 - Free and open-source standalone application (github.com/NIEHS/OPERA)

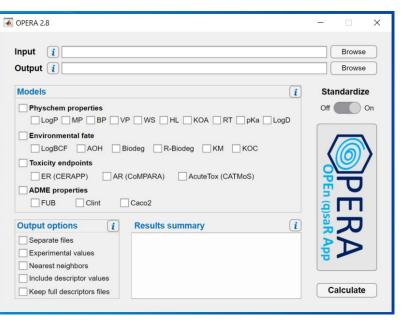
Running OPERA

OPERA standalone application:

- Free, opensource & open-data
- Single chemical and batch mode
- Multiple platforms (Windows and Linux)
- Embeddable libraries (java, C, C++, Python)
- Command line & Graphical user interface

OPERA models:


- Physicochemical properties
- Environmental fate
- ADME properties
- Toxicity endpoints


Input options:

- Structure IDs (CAS, DTXSID, InChIKey)
- Structure files (SMILES, SDF, Mol)

Links:

https://github.com/NIEHS/OPERA https://ntp.niehs.nih.gov/go/opera https://jcheminf.biomedcentral.com/ articles/10.1186/s13321-018-0263-1

OPERA models (version 2.9)

Phys	chem properties	Chemicals	Version	Envi	ronmental fate	Chemicals	Version
<mark>BP</mark>	Boiling Point	7860	<mark>2.9</mark>	AOH	Atmospheric	692	2.6
HL	Henry's Law Constant	2233	<mark>2.9</mark>	BCF	Hydroxylation Rate Bioconcentration	626	2.6
LogP	Octanol-water Partition Coefficient	18154	<mark>2.9</mark>	BioHL	Factor Biodegradation Half-life	150	2.6
<mark>MP</mark>	Melting Point	22554	<mark>2.9</mark>		Ready		
<mark>VP</mark>	Vapor Pressure	6764	<mark>2.9</mark>	RB	Biodegradability	1603	2.6
<mark>WS</mark>	Water Solubility	9943	<mark>2.9</mark>		Fish	E 4 4	2.6
рКа	Acid Dissociation Constant	6503	2.6	KM	Biotransformation Half-life	541	2.0
КОА	Octanol/Air Partition Coefficient	270	2.6	KOC	Soil Adsorption Coefficient	728	2.6

Тохіс	ity endpoints	Chemicals	Version	ADM	E properties	Chemicals	Version
ER	Estrogen Receptor Activity	32464	2.6	<mark>FUB</mark>	Fraction unbound	3229	<mark>2.8</mark>
AR	Androgen Receptor Activity	47673	2.6	<mark>Clint</mark>	Intrinsic clearance	1346	<mark>2.8</mark>
AcuteTox	Acute Oral Systemic Toxicity	50660	2.6	CACO2	Caco-2 permeability	4601	<mark>2.8</mark>

	Models	PFAS/Total
BP	Boiling Point	346/7860
LogP	Octanol-water Partition Coef.	97/18154
MP	Melting Point	409/22554
VP	Vapor Pressure	178/6764
WS	Water Solubility	105/9943

	Deviation of	ogVp (Pa) estimat	es from experimer	ntal measurements	at 25 °C	
	COSMOtherm	EPI Suite	NICEATM	ACD/Labs	TEST	OPERA
MAE RMSE	1.22 1.48	1.08 1.48	1.46 2.06	1.53 1.99	1.31 1.91	0.95 1.26

LogP Octanol-water Coef

Deviation of octanol-water partition ratio (log K_{OW}) estimates from experimental measurements at 25 °C

	COSMOtherm	EPI Suite	NICEATM	ACD/Labs	OPERA	LSER
MAE RMSE	0.41 0.50	0.25 0.29	0.68 1.13	0.61 0.70	0.21 0.28	0.33 0.36

WS Water solubility

Deviation of water solubility (log S; mg/L) estimates from experimental measurements at 25 °C

		COSMOtherm	EPI Suite	NICEATM	TEST ^a	OPERA
Environmental Chemistry	MAE RMSE	0.35 0.41	1.82 2.20	2.38 2.55	0.95 1.36	0.23 0.36

Property Estimation of Per- and Polyfluoroalkyl Substances: A Comparative Assessment of Estimation Methods

Alina Lampic and J. Mark Pamis*

Chemical Properties Research Group (Canadian Environmental Modelling Centre), Department of Chemistry, Trent University, Peterborough, Ontario, Canada

OPERA in the OECD Toolbox

QSAR TOOLBOX	Input Profiling Data	Category definition	01010 01 0 10100 Data Gap Filling ► Report						
Gap Filling	Workflow Editor								
Documents	Filter endpoint tree	1 [target]	Details for 2 (Q)SAR models						
4 Document 1 # [C: 1;Md: 0;P: 0] CAS: 58082		049	QSAR name	#	Predicted	Domain	QMRF	Test set	Training set
# [C],#0.0710] CO.50002	Structure	"yo	Boiling Point Adapted Stein and Brown Method (EPISUITE) (1.0)	1	431 °C	No domain available		0	0
	+ Structure info Parameters		Opera BP (2.6)	2	327 °C	No domain available	Q17-12-0021	0	0
 Data Gap Filling Settings ✓ Only endpoint relevant At this position: OSARs 	 Boiling point Chemical reactivity Density Dissociation Constant (pKa) Explosive properties Flammability Flash point Melting / freezing point Oxidation reduction potential Oxidation reduction potential Oxidation groperties Particle size Particle size Particle size Solubility in organic solvents / fat solubil Stability in organic solvents and identity Surface tension Vapour pressure Viscosity Water solubility Environmental Fate and Transport 		https://	rel	oosit	tory.qsa	rtooll)0X. (org/

Migrate all models to use CDK2 package (OPERA v3.0 coming soon)

ICE v3.7 https://ice.ntp.niehs.nih.gov/

News & Events

ICE v3.6 Release ICE updates include:

New tools and expanded capabilities:

Enhanced filtering for Curve Surfer and Chemical Quest Curve overlay 2-D and 3-D for Curve Surfer SMARTS Filtering and Highlighting Chemical Quest Results Search custom chemical list Chemical Quest

Learn about ICE updates

UPDATES

- Bulk query mindset
- Integrated across multiple data types
- Data curated, cleaned, ready-to-use
- Assays annotated to aid interpretation
- FAIR (Findable, Accessible, Interoperable, and Reusable)
- Tools to support data exploration
- Continued development based on stakeholder and SACATM feedback

Intended use

- Target audience is broad, spanning the scientific community, e.g. regulatory decision makers, researchers, model developers, educators, etc.
- Resource for summary-level, high-quality, curated data
- Ease of accessibility
- Interactive and inter-connected tools
- Provides references: links out to other sites for detailed data review (i.e., EPA comptox data dashboard)

Toxicity endpoint	Assays	# of chemicals
Chemical Parameters	Experimental physchem	~20000
ADME Parameters	FUB, intrinsic clearance, Caco2 permeability	~5000
Acute Toxicity	In vivo acute oral, dermal, and inhalation toxicity	~10000
Cancer	In vivo and in vitro Cancer, and Weight of Evidence	3042
DART	In vivo and in vitro DART	607
Skin Sensitization	In vivo and in vitro skin sensitization	2181
Skin Irritation	In vivo and in vitro skin irritation/corrosion	1664
Eye Irritation	In vivo and in vitro eye irritation/corrosion	796
Endocrine	In vivo and low throughput in vitro data on AR and ER agonist and antagonist activity	281
cHTS	Curated ToxCast and Tox21 assays	~9213

Endpoint	Model	# of chemicals*
Physicochemical Properties	OPEn (q)saR App (OPERA) Mansouri et al. J Cheminform 2018	800,000+
Acute Oral Toxicity	Collaborative Acute Toxicity Modeling Suite (CATMoS) - Rat acute oral toxicity. Mansouri et al. EHP 2021	800,000+
	Estrogen Receptor pathway Model. Browne et al. ES&T 2015	1812
	Androgen Receptor Pathway Model. Kleinstreuer et al. Chem Res Tox 2017	1855
Endocrine	Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). Mansouri et al. EHP 2016	800,000+
	Collaborative Modeling Project for Androgen Receptor Activity (COMAPRA). Mansouri et al. EHP 2020	800,000+

- URL=https://ice.ntp.niehs.nih.gov/api/v1/search
- For one or more chemical ids, return a list of Assay/Endpoint objects
- Query one chemical id using GET
- Use POST to query multiple chemical ids
 - POST Body in JSON
 - See examples in next slides
- Results are formatted in JSON
 - Array of Assay/Endpoint objects
 - Same data structure for POST and GET REST requests

\leftarrow \rightarrow C A https	://ice.ntp.niehs. nih.gov /api/v1/search?chemid=DTXSID7032004
JSON Raw Data Headers	
Save Copy Collapse All Expan	d All (slow) 🗑 Filter JSON
▶ 1568:	{}
▶ 1569:	{}
▶ 1570:	{}
▶ 1571:	{}
▶ 1572:	{}
▶ 1573:	{}
▼ 1574:	
assay:	"Rat Acute Oral Toxicity"
endpoint:	"LD50"
substanceType:	"Chemical"
casrn:	"13311-84-7"
qsarReadyId:	"MKXKFYHWDHIYRV-UHFFFA0YSA-N"
value:	"787.0"
unit:	"mg/kg"
species:	"Rat"
receptorSpecies:	
route:	"NA"
sex:	
strain:	
lifeStage:	
tissue:	
lesion:	
location:	
assaySource:	
inVitroAssayFormat:	
reference:	"NLM ChemIDplus TEST (undated)"
referenceUrl:	"https://chem.nlm.nih.gov/chemidplus/"
dtxsid:	"DTXSID7032004"
<pre>substanceName:</pre>	"Flutamide"
pubMedId:	"NA"
▶ 1575:	{}
▶ 1576:	{}
▶ 1577:	{}
▶ 1578:	{}
▶ 1579:	{}
▼ 1580:	
assay:	"NVS_MP_rPBR"
endpoint:	"Top of curve"
substanceType:	"Chemical"

Example R code to query ICE REST API

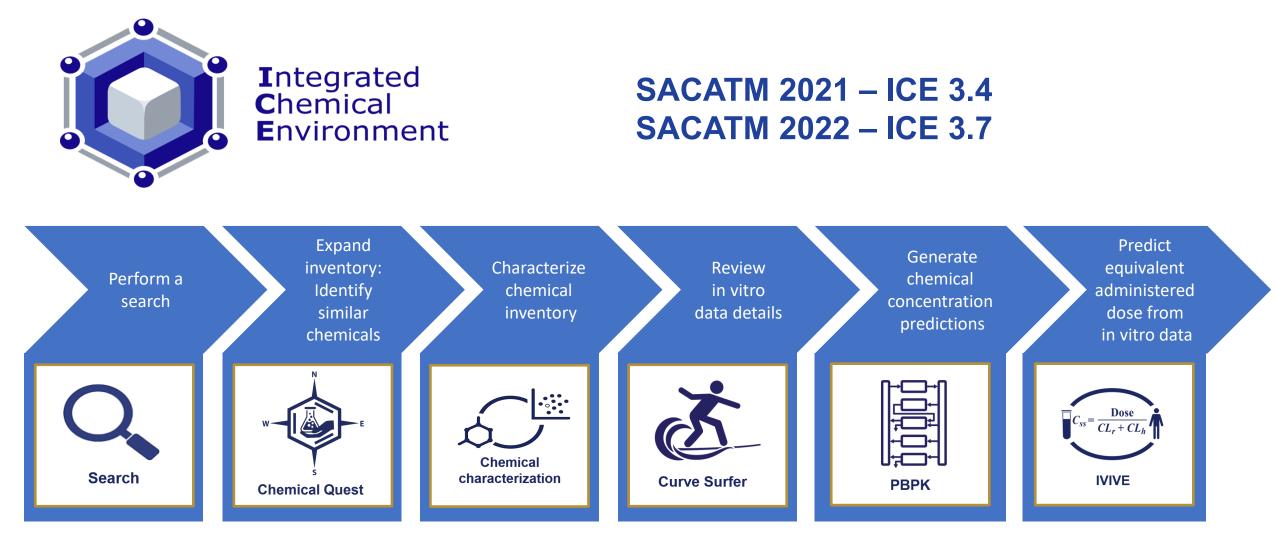
library(httr) library(jsonlite)

#Query a single chemical using GET Request results<-GET("https://ice.ntp.niehs.nih.gov/api/v1/search?chemid=DTXSID7032004") jsonText<-content(results,"text") jsonResults<-fromJSON(jsonText)</pre>

#Query a list of chemicals using POST Request bodyContent ='{"chemids": ["YPQLFJODEKMJEF-UHFFFAOYSA-N", "DTXSID8020381", "330-55-2"]}' results <- POST("https://ice.ntp.niehs.nih.gov/api/v1/search",content_type_json(),body=bodyContent); jsonText<-content(results,"text") jsonResults<-fromJSON(jsonText)</pre>

import requests import json

#Query a single chemical using GET Request
response = requests.get("http://ice.ntp.niehs.nih.gov/api/v1/search?chemid=DTXSID7020182")
print(response);
json_object = json.loads(response.text)
print(json.dumps(json_object, indent=4))


#Query a list of chemicals using POST Request

response = requests.post("http://ice.ntp.niehs.nih.gov/api/v1/search", json={"chemids": ["YPQLFJODEKMJEF-UHFFFAOYSA-N", "DTXSID8020381", "330-55-2"]})
print(response);
json_object = json.loads(response.text)
print(json.dumps(json_object, indent=1))

curl -XGET https://ice.ntp.niehs.nih.gov/api/v1/search?chemid=DTXSID7032004 curl -XPOST -d '{"chemids": ["YPQLFJODEKMJEF-UHFFFAOYSA-N", "DTXSID8020381", "330-55-2"]}' https://ice.ntp.niehs.nih.gov/api/v1/search?chemid=DTXSID7032004

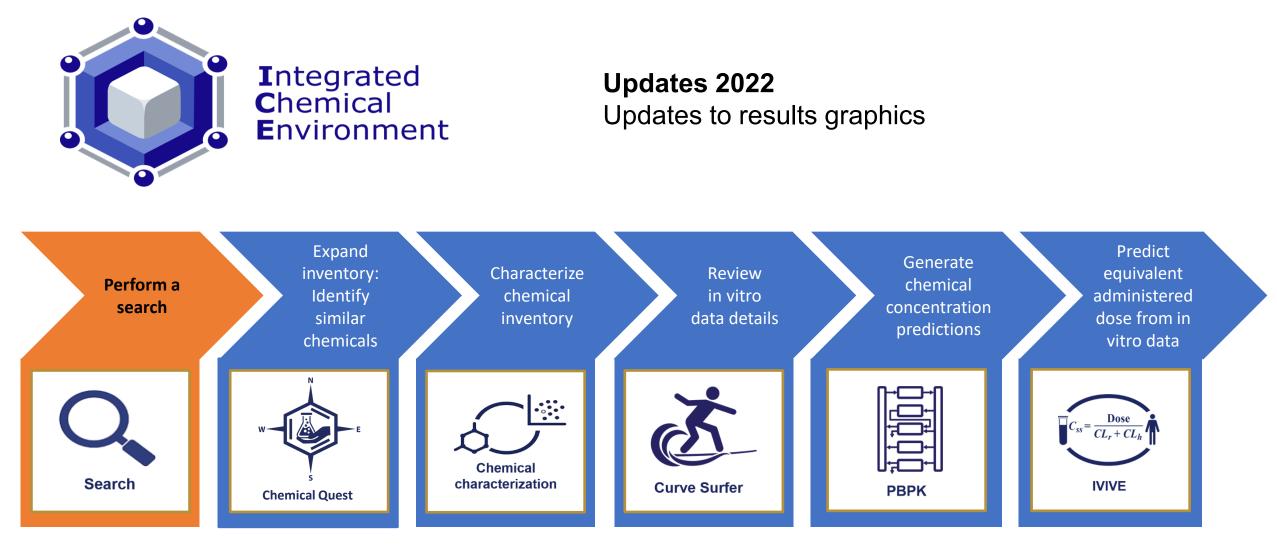
- Continued implementation of FAIR and TRUST standards, e.g., implementation of REST APIs
- QC annotations for cHTS data
- Updated acute oral toxicity, skin sensitization, and httk ADME data.
- Addition and harmonization of endocrine data
- New reference Chemical Quick List
- More attractive, up-to-date user interface
- New Publication section
- Updates to supporting documentation
- Help videos

NURA

Attend a free virtual training

April 18-19, 2022, 1:00-3:00 PM EDT

ICE, ICE, Data: Using NICEATM's Integrated Chemical Environment to support chemical evaluations



Recording at

https://pcrm.widencollective.com/portals/ieooh0ol/ICE 15

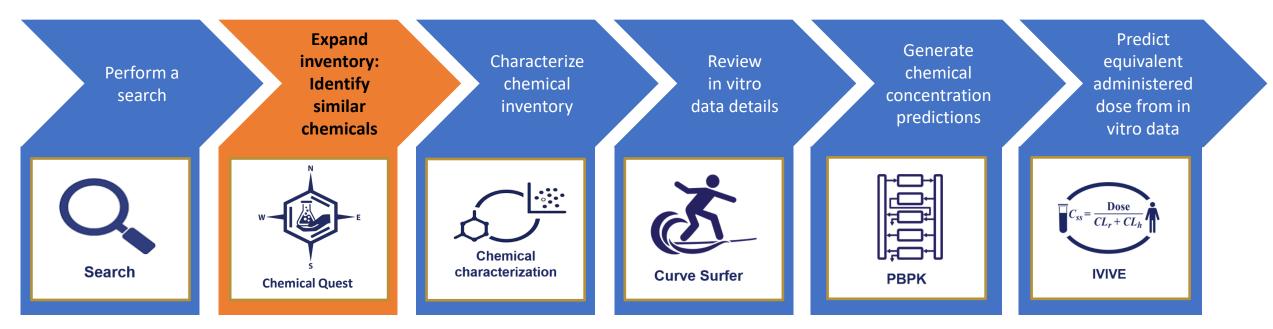
Chemical Input Select Chemicals 1 chemical quick list selected. Quick List CASRNs User Chemical Identifiers 427-51-0 76-43-7 10161-33-8 51-98-9 58-18-4 58-22-0 68-22-4 79-63-7 965-93-5 10540-29-1 Assay Input Select Assays 0 Assay Description Assay Type Image: Chemical Identifiers Assay Description Assay Type Image: Chemical Identifiers Assay Description Assay Input Image: Chemical Identifiers Image: Chemical Identifiers Image: Chemical Identifiers Image: Chemical Identifiers Image:	
Select Chemical quick list selected. Quick List CASRNs User Chemical Identifiers 427-51-0 76-43-7 10161-33-8 51-98-9 58-18-4 58-22-0 68-22-4 797-63-7 965-93-5 1 chemical quick list selected. Assay Description Assay Type DART DART Image: Construction of the problem of the p	
Quick List CASRNs 427-51-0 76-43-7 10161-33-8 51-98-9 58-18-4 58-22-0 68-22-4 797-63-7 965-93-5 User Chemical Identifiers Assay Description Assay Type DART - Cell Proliferation DART in vitro Assay Description Assay Type DART Irritation/Corrosion Endocrine Cancer QC-omit QC-omit Priag-omit Number of Assay Cancer	
427-51-0 Assay Description Assay Type 76-43-7 DART - Cell Proliferation DART in vitro 10161-33-8 Select Assays Select Assays Not tested 58-18-4 CHTS Acute Lethality Sensitization 68-22-4 Irritation/Corrosion Endocrine Cancer	
427-51-0 76-43-7 10161-33-8 51-98-9 58-18-4 58-22-0 68-22-4 797-63-7 965-93-5 DART - Cell Proliferation DART in vitro DART in vitro DART in vitro DART of Cell Proliferation DART in vitro Acute Lethality Sensitization Endocrine Cancer	
76-43-7 DART - Cell Proliferation DART in vitro 10161-33-8 51-98-9 58-18-4 58-22-0 68-22-4 797-63-7 965-93-5	
51-98-9 Select Assays 58-18-4 CHTS 58-22-0 CHTS 68-22-4 CHTS 797-63-7 Irritation/Corrosion 965-93-5 Irritation/Corrosion	
S8-18-4 S8-22-0 CHTS Acute Lethality Sensitization 68-22-4 68-22-4 Irritation/Corrosion Endocrine Cancer	
S8-18-4 S8-22-0 CHTS Acute Lethality Sensitization 68-22-4 68-22-4 Irritation/Corrosion Endocrine Cancer	
68-22-4 797-63-7 965-93-5 Irritation/Corrosion Endocrine Cancer	
Number of Assay Car 965-93-5	ata
965-93-5 Irritation/Corrosion Endocrine Cancer	
965-93-5	Accyonics=1
10540_20_1	
38.8	3%
10605-21-7 DART Cardiotoxicity Chemical Parameters	
129453-61-8	
13311-84-7 32.5%	5%
17804-35-2 23.8	8%
1912-24-9	
Add chemicals with identical QSAR structures	

Users can select from predefined lists of chemicals that are related to specific toxicity endpoints.

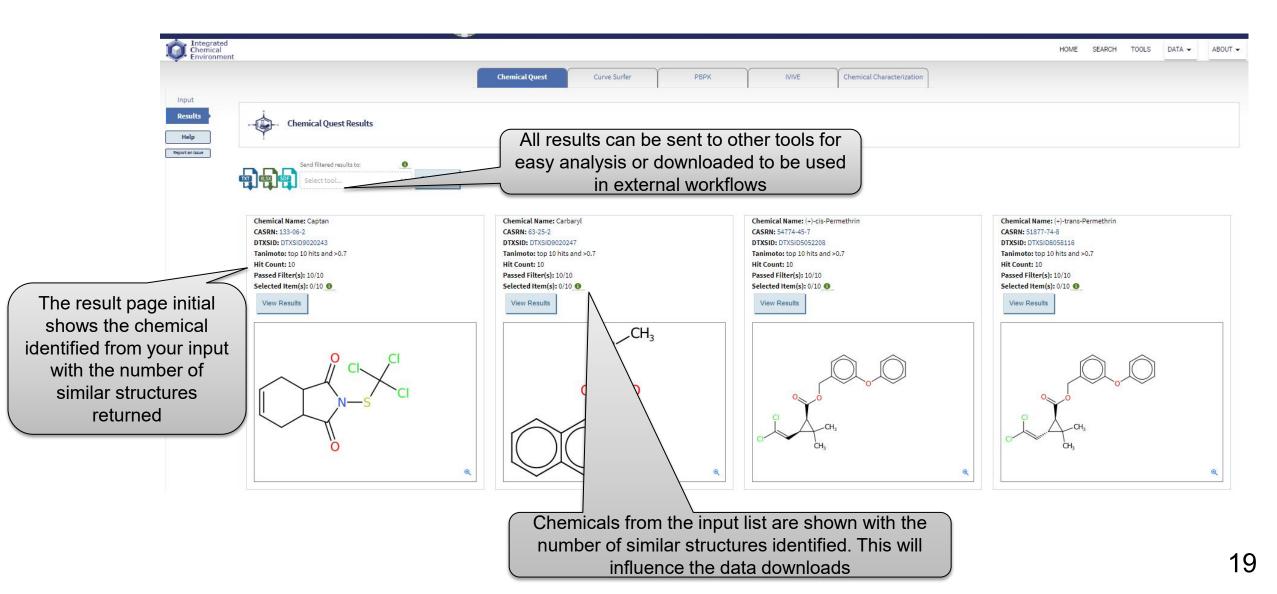
Reference lists and common chemical sets (e.g., Tox21, pesticide Als).

Users can also enter their own chemical identifiers.

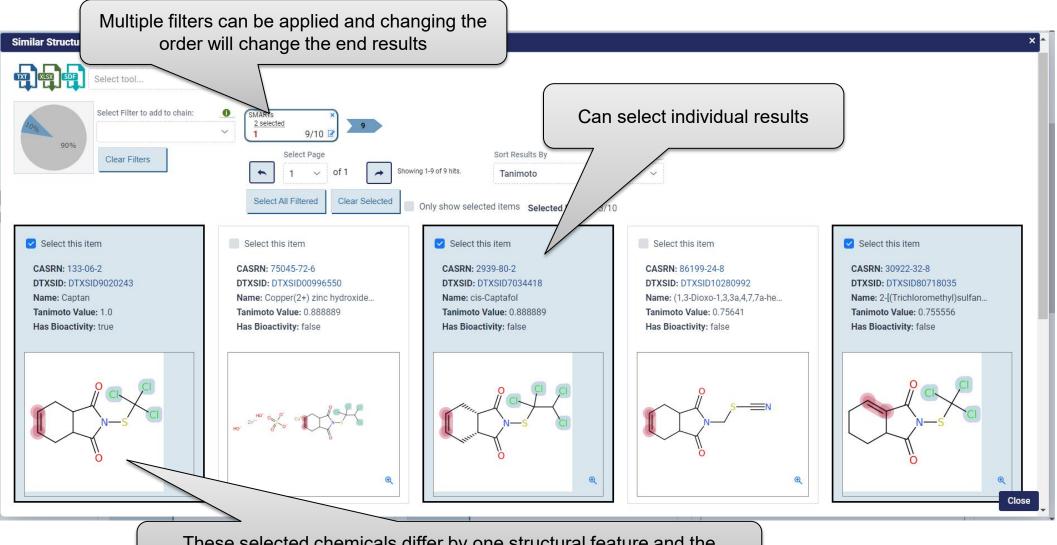
Legend


ICE Tools Workflow

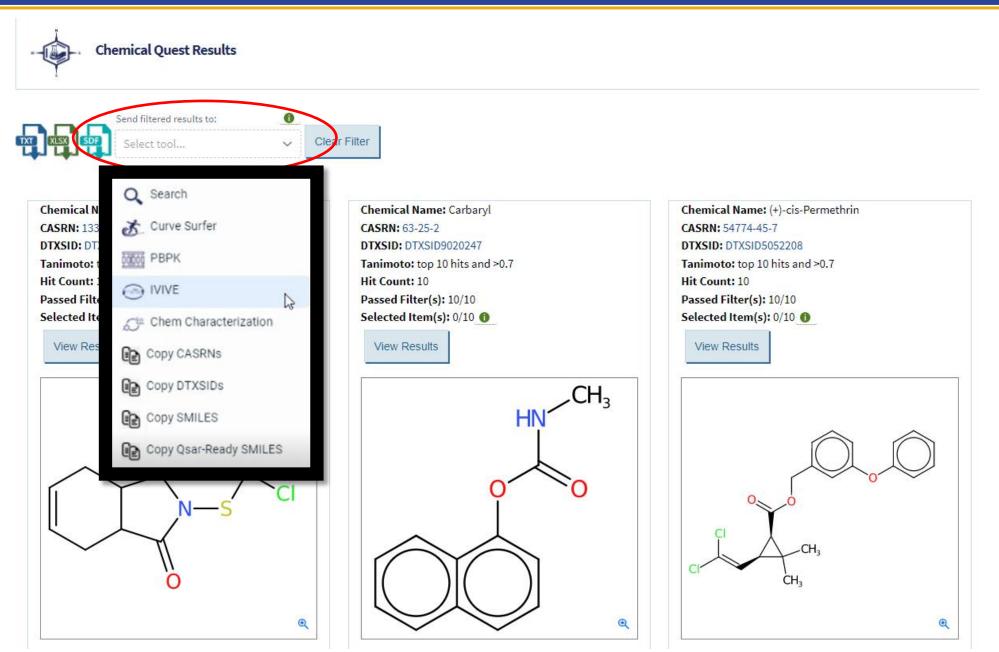
Updates 2022


Similarity search based on custom chemical lists and targets New filtering options New result selection option Utilizes Saggar fingerprints for structural similarity searching

Sedykh et al. 2021 Chem Res Tox

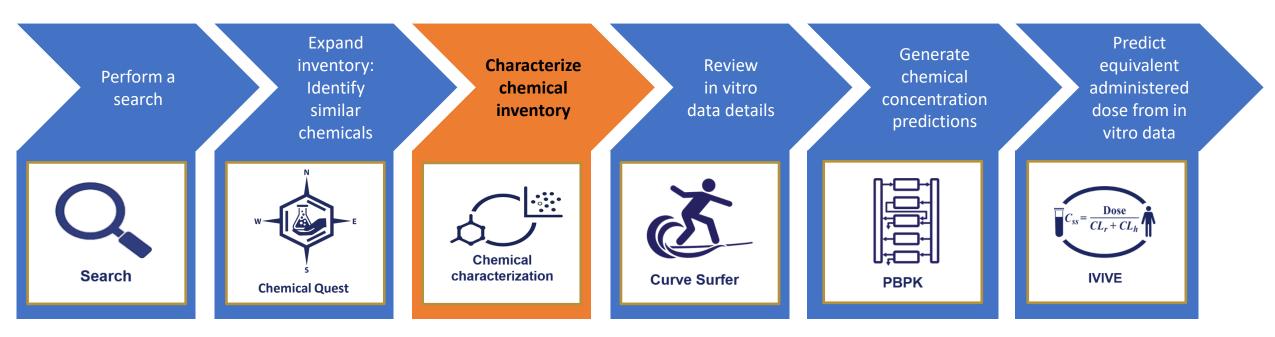


Similar Structure Results



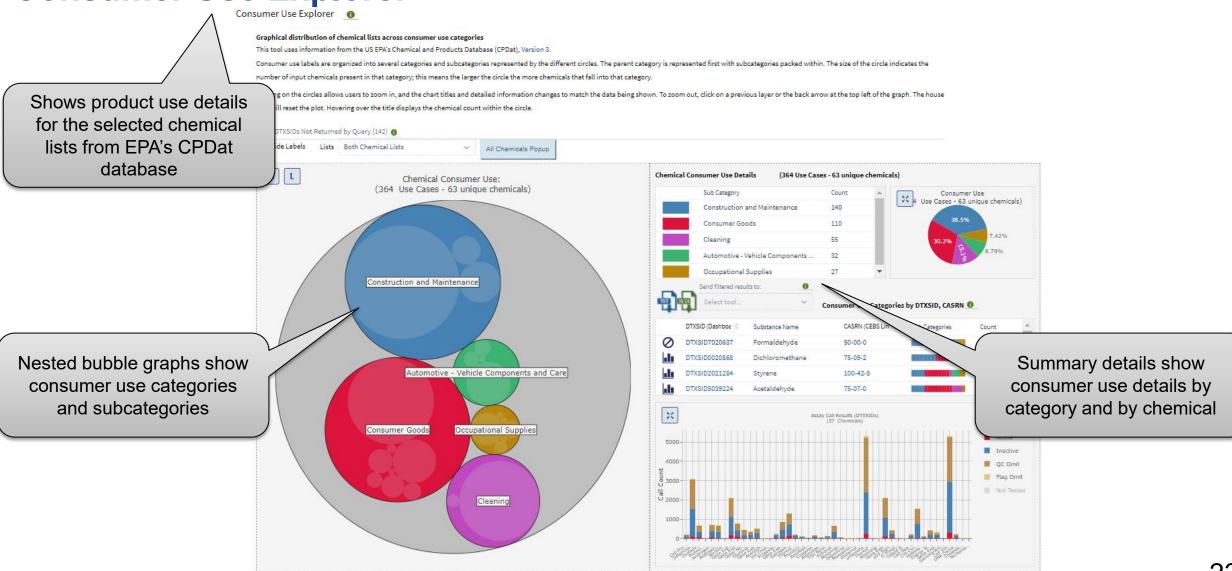
Seeing The Differences

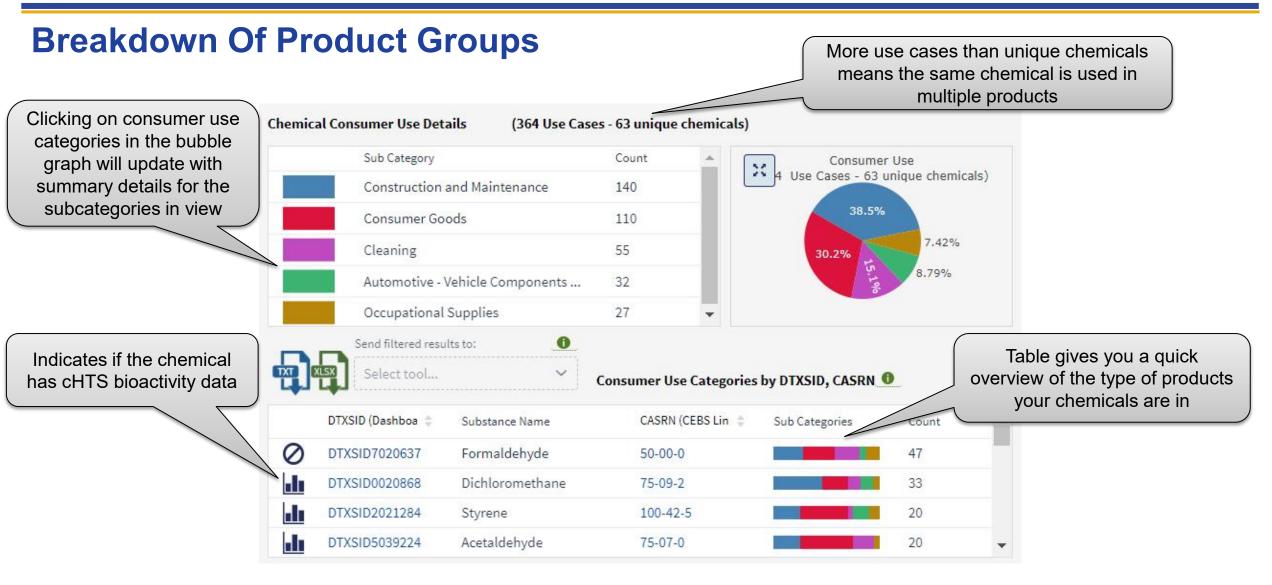
These selected chemicals differ by one structural feature and the difference are quantified by the Tanimoto value



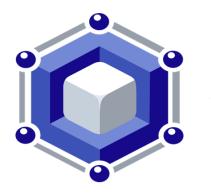
ICE Tools Workflow

Integrated Chemical Environment

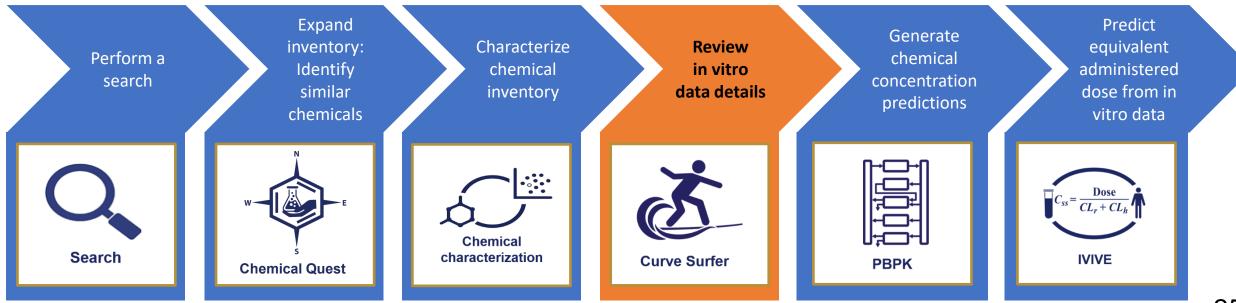

Updates 2022 Improvements in Categorical characterization Updated documentation



ICE Tool: Chemical Characterization

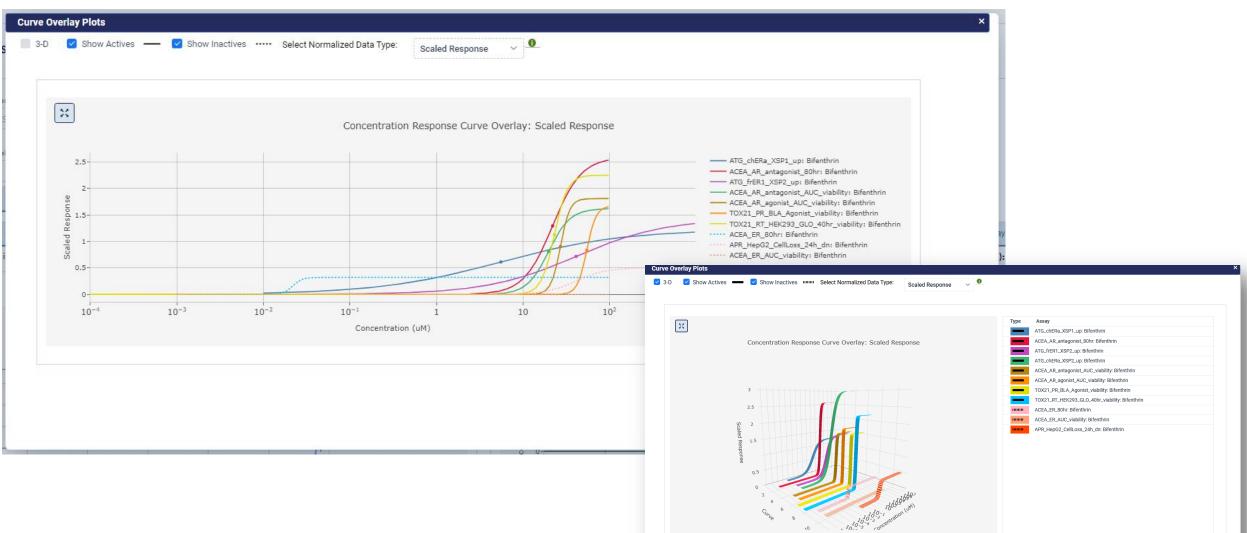

Consumer Use Explorer

ICE Tool: Chemical Characterization

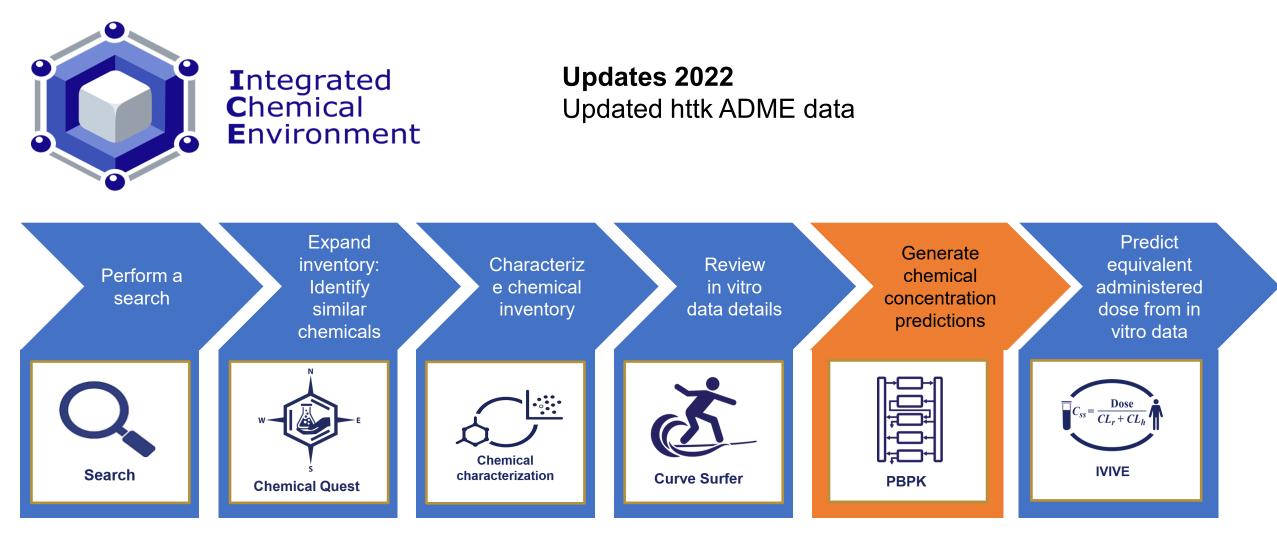


Integrated Chemical Environment

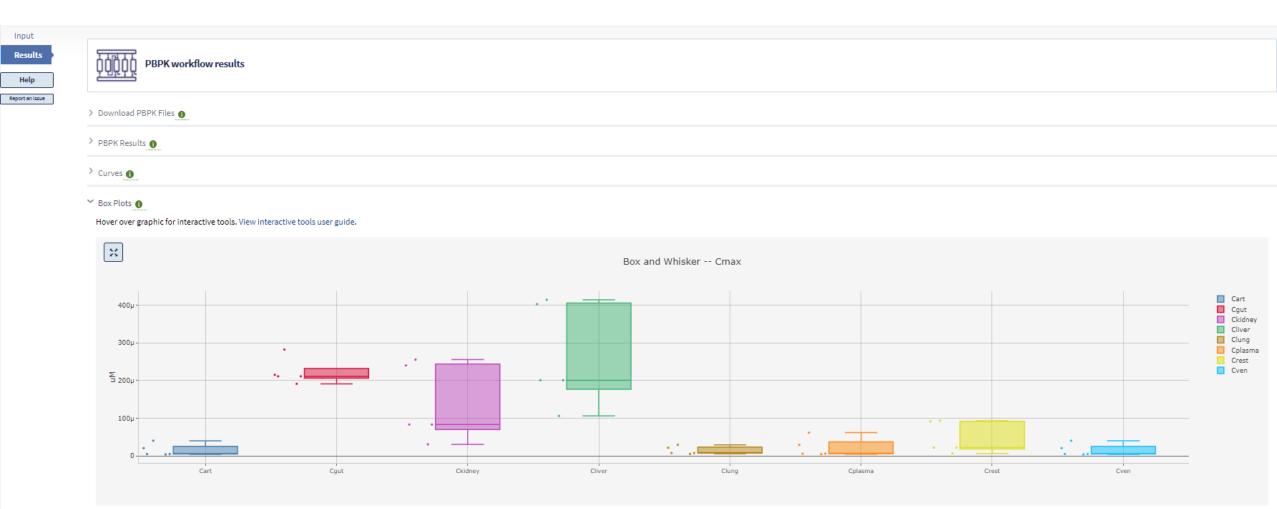
Updates 2022 Overlay, 2D, and 3D curve viewing options New filtering and selection options



View results, filter, and select for overlay

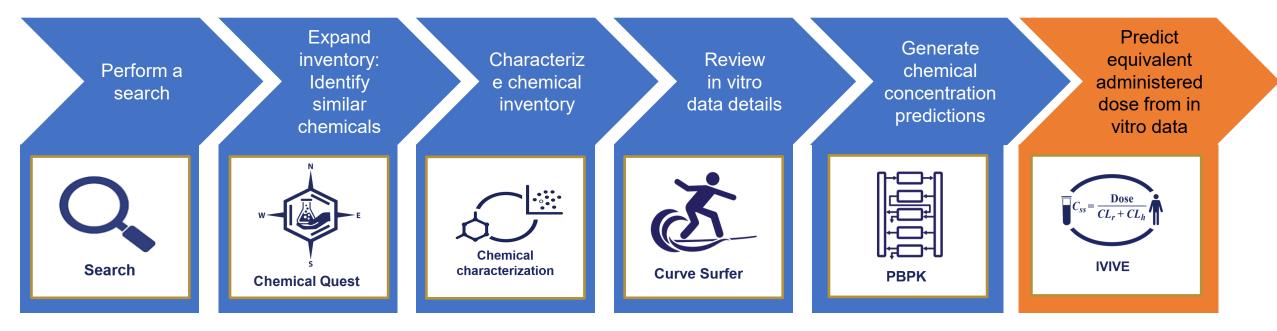


Viewing overlay of multiple concentration-response curves



Example of predicted accumulation of chemical after oral exposure

Comparing predicted levels across tissues

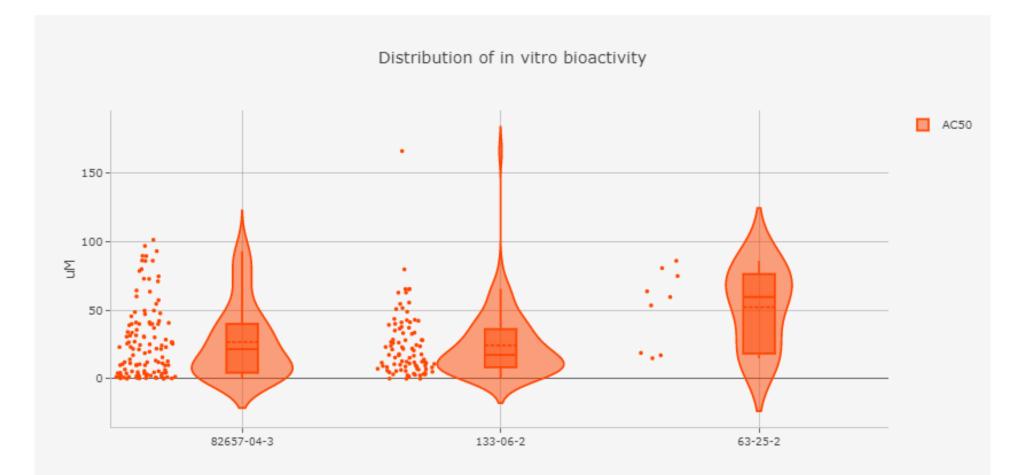


O

Integrated Chemical

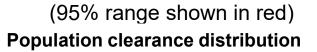
Environment

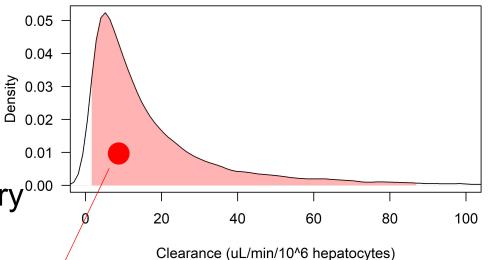
Updates 2022 Uploading custom in vivo and in vitro data



ICE Tool: IVIVE

Visualizing Distributions from In Vitro Data

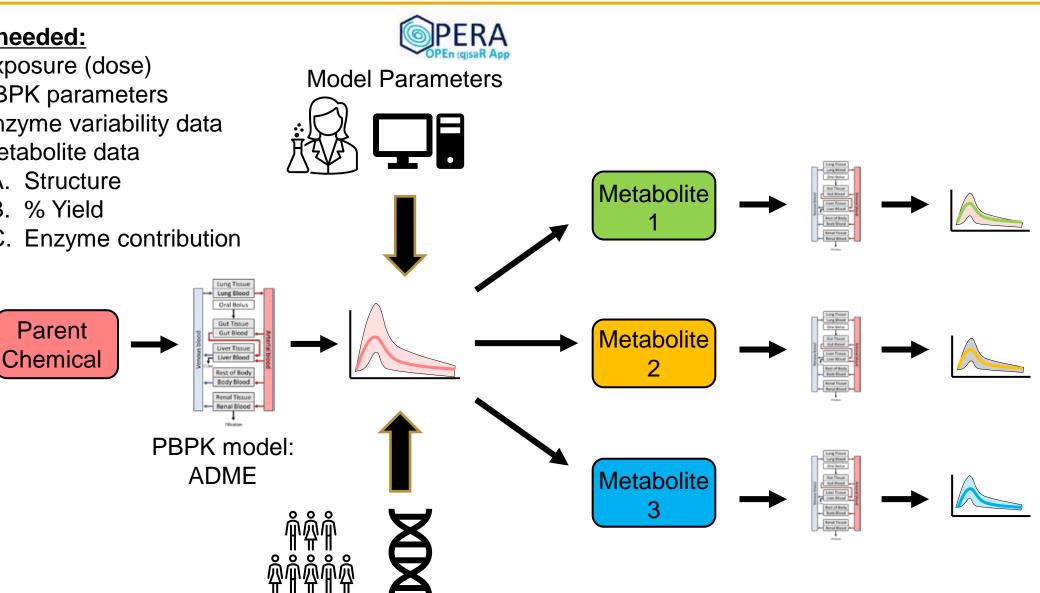

Incorporating Metabolism and Population Variability


Metabolism, enzyme variability, and parameter information are integrated into IVIVE models using the intrinsic clearance (CLint) parameter

1. CLint parameter (measured or OPERA prediction) obtained

Ongoing Work

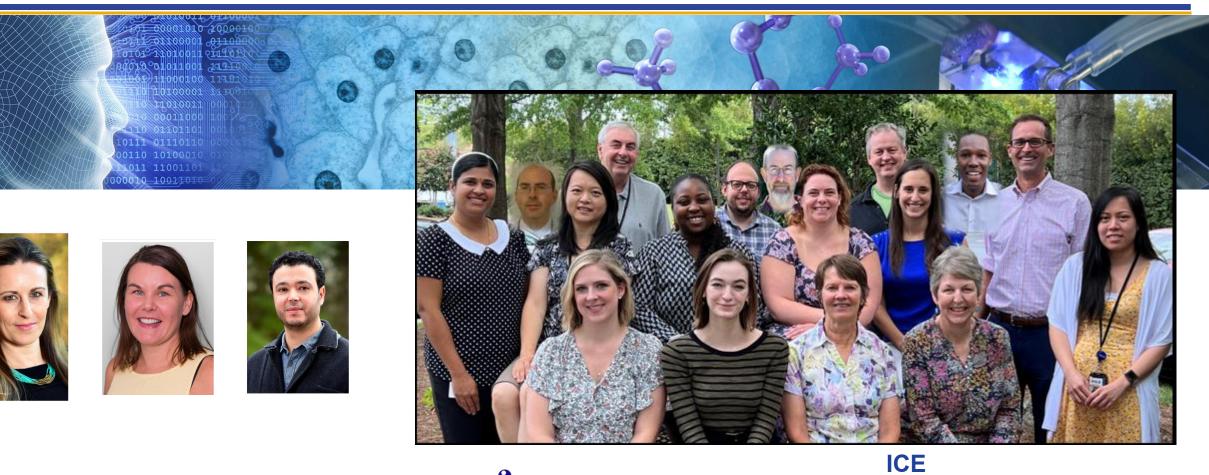
- 2. ADMET Predictor provides **enzymes** involved in metabolism
- 3. Lognormal CLint coefficient of variation (CV) ^{0.01} for **each enzyme** obtained from EFSA summary^{0.00}
- 4. Lognormal distribution of CLint values assembled around CLint parameter using CV
- 5. Monte Carlo sampling (n=10,000) used to run *httk* models and describe predicted tissue concentrations resulting from population enzyme variability 34



Module Overview

Inputs needed:

- Exposure (dose) 1.
- **PBPK** parameters 2.
- Enzyme variability data 3.
- Metabolite data 4.
 - A. Structure
 - B. % Yield
 - C. Enzyme contribution


- Additional data added, including in vivo developmental toxicity data, human skin sensitization data, acute inhalation toxicity data and CaCo2 permeability data
- Simulation of population variability in PBPK
- Removal of outliers from dose-response curves in Curve Surfer and subsequent recalculation of the activity metric
- New molecular descriptors in Chemical Quest
- Continued implementation of FAIR and TRUST standards, e.g., implementation of REST APIs
- Enhanced download formatting
- Targeted training sessions (e.g. via NURA) and help videos

ICE 3.8 Release March 2023 at SOT2023

- Exposure estimates to be included (multiple tools)
- Improved visualization of non cHTS data
- IVIVE/PBPK updates e.g., inhalation model
- Metabolism and population variability
- Data updates
 - OPERA models
 - In vitro Dermal harmonization

ice.ntp.niehs.nih.gov ICE-support@niehs-nih.gov

NICEATM ntp.niehs.nih.gov/go/niceatm