Analysis of *Kras*, *Egfr* and *Tp53* Mutations in F344/NTac Rat and B6C3F1/N Mouse Alveolar/bronchiolar Carcinomas Resulting from Chronic Inhalation Exposure to Cobalt metal

Arun Pandiri
Experimental Pathology Laboratories, Inc.
Contractor to the National Toxicology Program, NIEHS

NTP Technical Reports Peer Review Meeting
October 29, 2013
Introduction

• Mutational patterns of carcinogens
 – Tobacco smoke - Lung cancer (C:G > A:T)
 – Aflatoxin - Hepatocellular carcinoma (C:G > A:T)
 – UV light - Melanoma (C:G > T:A)
 – *H. pylori* - Gastric carcinoma (C:G > T:A)
 – *O. viverrini* - Cholangiocarcinoma (C:G > T:A)
 – Aristolochic acid - Urothelial carcinoma (A:T > T:A)

Poon et al., 2013; Lee and Ladanyi, 2013
Introduction

• “Driver” mutations in genes of human lung cancer
 – KRAS, EGFR, ALK, ERBB2, BRAF, MAP2K1, PIK3CA, FGFR1, MET, DDR2
 – TP53, PTEN, STK11, AKT1

• Most commonly altered and evaluated mutations in human Non Small Cell Lung Carcinoma (NSCLC) include KRAS, EGFR and TP53

Imielinski et al., 2012; Pao and Girard, 2011
Introduction

• Human Non Small Cell Lung Carcinoma (NSCLC)
 – *KRAS* mutations (26%; 67/254)
 – *EGFR* mutations (9%; 22/254)
 – *TP53* mutations (50%; 52/104)

• *Kras* mutations in Mouse (B6C3F1) lung tumors
 – Spontaneous (27%; 34/124)
 – 1,3-Butadiene (83%; 20/24)
 – Cumene (87%; 45/52)
 – Cobalt sulfate heptahydrate (35%; 9/26)
 – Ethylene oxide (100%; 23/23)

Sills et al., 1995; Sills et al., 1999; Hong et al., 2007; Hong et al., 2008; Boch et al., 2013; Husgafvel-Pursiainen and Kannio., 1996
Objective

Evaluate mutations in *Kras*, *Egfr*, and *Tp53* genes in F344/NTac rat and B6C3F1/N mouse Alveolar/bronchiolar carcinomas (ABCs) arising spontaneously (in controls) and by chronic inhalation exposure to Cobalt metal.
Materials and methods

• DNA was extracted from formalin fixed paraffin embedded (FFPE) ABC tissues from the 2-year bioassay
 – Tumors >5 mm were razor-dissected from five 10 micron FFPE sections
 – If the tumors were microscopic and randomly scattered, then entire FFPE sections were used for DNA extraction

• Semi-nested PCR
 – Kras (exons 1 and 2)
 – Egfr (exons 18-21)
 – Tp53 (exons 5-8)

• Amplified DNA purified and Sanger sequenced (2x)

• Samples with mutations were confirmed by repeat analysis starting with the original DNA extracts.
Results
Rat ABC mutation analysis

<table>
<thead>
<tr>
<th>Cobalt metal</th>
<th>n</th>
<th>Kras</th>
<th>Egfr</th>
<th>Tp53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control#</td>
<td>10</td>
<td>0 (0%)**</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>1.25 mg/m³</td>
<td>14</td>
<td>2 (14%)</td>
<td>2 (14%)</td>
<td>3 (21%)</td>
</tr>
<tr>
<td>2.5 mg/m³</td>
<td>17</td>
<td>6 (35%)*</td>
<td>3 (18%)</td>
<td>6 (35%)*</td>
</tr>
<tr>
<td>5 mg/m³</td>
<td>17</td>
<td>7 (41%)*</td>
<td>3 (18%)</td>
<td>2 (12%)</td>
</tr>
<tr>
<td>Treated Total</td>
<td>48</td>
<td>15 (31%)*</td>
<td>8 (17%)</td>
<td>11 (23%)</td>
</tr>
</tbody>
</table>

* Significantly different (P≤0.05) from the chamber control group by the Fisher’s exact test
** Significant trend (P≤0.001) by the Cochran-Armitage trend test
Spontaneous alveolar/bronchiolar carcinomas (n=10) were sourced from vehicle or chamber control groups in various NTP chronic bioassays.
Results
Mouse ABC mutation analysis

<table>
<thead>
<tr>
<th>Cobalt metal</th>
<th>n</th>
<th>Kras</th>
<th>Egfr</th>
<th>Tp53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical control#</td>
<td>124</td>
<td>34 (27%)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>0 (0%)####</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>1.25 mg/m³</td>
<td>16</td>
<td>11 (69%)##</td>
<td>2 (13%)</td>
<td>3 (19%)</td>
</tr>
<tr>
<td>2.5 mg/m³</td>
<td>23</td>
<td>11 (48%)##</td>
<td>7 (30%)</td>
<td>3 (13%)</td>
</tr>
<tr>
<td>5 mg/m³</td>
<td>30</td>
<td>24 (80%)##</td>
<td>3 (10%)</td>
<td>7 (23%)</td>
</tr>
<tr>
<td>Treated Total</td>
<td>69</td>
<td>46 (67%)##</td>
<td>12 (17%)</td>
<td>13 (19%)</td>
</tr>
</tbody>
</table>

** Significantly different (P≤0.01) from the chamber control group by the Fischer’s exact test
*** P≤0.001 by one-sided Fischer exact test for single or combined exposure groups or a one-sided Cochran-Armitage trend test for the chamber control group
Significant trend (P≤0.001) by the Cochran-Armitage trend test
All routes, all vehicles; NA = not available
Results

- **Kras mutations**
 - Rats (n=15): codon 12 (93%) > codon 13 (7%)
 - Mice (n=48*): codon 12 (63%) > codon 61 (29%) > codon 13 (8%)
 - Mice historical control spontaneous ABC (n=34)
 - codon 12 (59%) > codon 61 (23%) > codon 13 (18%)

- **Egfr mutations**
 - Rats (n=9*): exon 20 (67%) > exon 21 (22%) > exon 19 (11%)
 - Mice (n=12): exon 20 (50%) > exon 21 (33%) > exon 18 & 19 (8%)

- **Tp53 mutations**
 - Rats (n=13*): exon 6 (38%) > exon 7 and 8 (23%) > exon 5 (15%)
 - Mice (n=14*): exon 5 (50%) > exon 7 (29%) > exon 6 (21%)

* Double mutations included
Results

• *Kras* mutations
 - Rats: G→T transversions (57%; 8/14) and G→A transitions (43%; 6/14)
 - Mice: G→T transversions (80%; 24/30) and G→A transitions (17%; 5/30)
 - Mice historical spontaneous ABC (n=124): G→A transition (70%; 14/20)

• *Egfr* mutations
 - Rats: Transitions G→A (50%; 5/10) or C→T (30%; 3/10)
 - Mice: Transitions G→A (42%; 5/12) or C→T (17%; 2/12)

• *Tp53* mutations
 - Rats: Transitions C→T (38%; 5/13) or G→A (31%; 4/13)
 - Mice: Transversions G→C (60%; 9/15)
Discussion

- *Kras* Codon 12 mutations were the most common mutations in rat and mouse ABCs resulting from cobalt metal exposure
 - human NSCLC contains *KRAS* mutations in codons 12 (86%) and 13 (14%)
- G→T transversions were the most common mutations in cobalt metal exposed rat (57%) and mouse (80%) ABCs
 - one of the most common mutations in mouse (55%) ABCs resulting from cobalt sulfate heptahydrate aerosol inhalation exposure (NTP TR 471)
 - one of the most common mutations in human (67%) NSCLC
 - correlate with 8-OHdG adducts resulting from oxidative stress

Sills et al., 1998 in NTP TR 471; Devereux et al., 1993; Rodenhuis et al., 1989; Siegfried et al., 1997
Acknowledgements

• Lily Hong
• Mark Hoenerhoff
• Ronald Herbert
• Robert Sills
• Michelle Hooth
• Mamta Behl
• Grace Kissling
• Kristine Witt
• NIEHS sequencing core