

Draft NTP Technical Report TR594 on **p-Chloro-α,α,α-trifluorotoluene** (Inhalation Studies)

Study Scientist: Georgia K. Roberts, Ph.D. Study Pathologist: Amy E. Brix, D.V.M., Ph.D. National Institute of Environmental Health Sciences

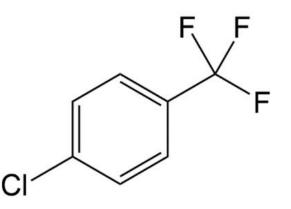
NTP Technical Reports Peer Review Meeting July 13, 2017

p-Chloro- α , α, α-trifluorotoluene (PCTFT)

- Classification as a non-ozone depleting solvent results in higher end-user applications due to compliance with Clean Air Act standards
- Used in automobile body coatings and parts cleaning and as an intermediate in the synthesis of other chemicals (e.g. herbicides)
- Production and import was reported as 29 million pounds in 2011 and generally estimated to be 10 to 50 million from 1985 to 2015

- 2-week gavage (NTP 1992, Toxicity Report 14)
 - F344/N rats and B6C3F1/N mice
 - Increased liver and kidney weight (male and female rats)
 - Hepatocyte hypertrophy (all sex/species) and nephropathy (male rats)
 - α2u-globulin and hyaline droplet: additional kidney slides were evaluated from male rats for hyaline droplet nephropathy
 - α2u-globulin was determined to comprise 11, 17, 34 and 55% of total protein in the 0, 50, 400 and 1,000 mg/kg groups

- Nomination
 - 2001: Public comments submitted to the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR)
 - Suggested evaluation of chronic data needs based on use
 - Concerns for male and female reproductive health
 - 2006: Representative from Kowa American Corporation
 - Expanding use and lack of occupational exposure limits
 - Included nomination of other benzotrifluoride compounds
 - Based on production volume and use pattern, PCTFT was selected for further examination


3-Month Studies

Whole Body Inhalation

- Male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice
- Whole body inhalation exposure
 - 6 hours per day, 5 days per week
 - 0, 125, 250, 500, 1,000 or 2,000 ppm
 - 10 animals/sex/species/concentration
- Endpoints
 - In-life (survival, body weights, clinical observations)
 - Clinical pathology
 - Micronucleus
 - SCVCE
 - Organ weights and histopathology

In-Life

	Rats	Mice
Survival	No effect	No effect
Body Weights	↑ <u>></u> 500 ppm (F)	↑ <u>></u> 500 ppm (M) ↑ <u>></u> 250 ppm (F)
Clinical Chemistry	↑ ALT, SDH, ALP, Cholesterol, Triglycerides (M/F)	N/A
Organ Weights	↑ Liver weight (M/F)↑ Kidney weight (M)	 ↑ Liver weights (M/F) ↑ Kidney weight (M/F) ↓ Thymus weight (F)

In-Life

	Rats	Mice	
Survival	No effect	No effect	
Body Weights	↑ <u>></u> 500 ppm (F)	↑ <u>></u> 250 ppm (F) ↑ <u>></u> 500 ppm (M)	

Clinical (

Rel. Liver Weight Percent higher than

control at 2,000 ppm

Male rats 88% Female rats 96% Male mice 155% Female mice 101%

Sperm Counts and Vaginal Cytology Evaluations

	Rats	Mice
Male	 ↓ sperm motility (≥ 1,000 ppm) ↓ left cauda weight (2,000 ppm) ↓ left epididymis weights (2,000 ppm) ↓ numbers of sperm per cauda (2,000 ppm) Associated histopathological changes: Testes, germ cell degeneration (2,000 ppm) Testes, spermatid retention (≥ 1,000 ppm) Epididymis, duct, exfoliated germ cell (2,000 ppm) 	↓ sperm motility (≥ 500 ppm)
Female	 ↑ probability of extended diestrus (2,000 ppm) Also observed ↓ frequency of estrus, ↑ frequency of diestrus, ↓ number of cycles, ↓ number of cycling rats 	 ↑ probability of extended estrus (≥ 500 ppm) ↑ estrous cycle length (≥ 1,000 ppm)

Sperm Counts and Vaginal Cytology Evaluations

	Rats	Mice
Male	 ↓ sperm motility (≥ 1,000 ppm) ↓ left cauda weight (2,000 ppm) ↓ left epididymis weights (2,000 ppm) ↓ numbers of sperm per cauda (2,000 ppm) Associated histopathological changes: Testes, germ cell degeneration (2,000 ppm) Testes, spermatid retention (≥ 1,000 ppm) Epididymis, duct, exfoliated germ cell (2,000 ppm) 	↓ sperm motility (≥ 500 ppm)
Female	 ↑ probability of extended diestrus (2,000 ppm) Also observed ↓ frequency of estrus, ↑ frequency of diestrus, ↓ number of cycles, ↓ number of cycling rats 	 ↑ probability of extended estrus (≥ 500 ppm) ↑ estrous cycle length (≥ 1,000 ppm)

PCTFT exhibits the potential to be a reproductive toxicant in male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice

Histopathology: Rats

	Male	Female
Adrenal cortex Vacuolization cytoplasmic	2,000 ppm	≥ 1,000 ppm
Harderian gland Degeneration	≥ 250 ppm	≥ 250 ppm
Kidney Accumulation, hyaline droplet (severity) Nephropathy, chronic (severity)	Mild/moderate Mild/moderate	Minimal/mild
Liver Centrilobular hepatocyte hypertrophy	≥ 250 ppm	≥ 1,000 ppm
Mammary gland Hyperplasia		≥ 1,000 ppm

Histopathology: Mice

	Male	Female
Adrenal Cortex		
Zona fasciculata, hypertrophy	2,000 ppm	2,000 ppm
X-zone, degeneration		2,000 ppm
Forestomach		
Epithelium, hyperplasia	≥ 500 ppm	≥ 500 ppm
Inflammation, granulomatous	2,000 ppm	2,000 ppm
Spleen		
Red pulp, hematopoetic cell proliferation erythrocyte	2,000 ppm	≥ 250 ppm
Red pulp, hematopoetic cell proliferation, megakeratocyte	≥ 1,000 ppm	≥ 250 ppm
Liver		
Centrilobular hepatocyte hypertrophy	≥ 250 ppm	≥ 500 ppm
Centrilobular necrosis	≥ 500 ppm	≥ 1,000 ppm
Multinucleated hepatocytes	≥ 500 ppm	≥ 1,000 ppm

Histopathology: Mice

	Male	Female
Adrenal Cortex		
Zona fasciculata, hypertrophy	2,000 ppm	2,000 ppm
X-zone, degeneration		2,000 ppm
Forestomach		
Epithelium, hyperplasia	≥ 500 ppm	≥ 500 ppm
Inflammation, granulomatous	2,000 ppm	2,000 ppm
Spleen		
Red pulp, hematopoetic cell proliferation erythrocyte	2,000 ppm	≥ 250 ppm
Red pulp, hematopoetic cell	≥ 1,000 ppm	≥ 250 ppm
proliferation, megakeratocyte		
Liver		
Centrilobular hepatocyte hypertrophy	≥ 250 ppm	≥ 500 ppm
Centrilobular necrosis	≥ 500 ppm	≥ 1,000 ppm
Multinucleated hepatocytes	≥ 500 ppm	≥ 1,000 ppm

Nonneoplastic Liver Lesions

	Control	125 ppm	250 ppm	500 ppm	1,000 ppm	2,000 ppm
Males	10	10	10	10	10	10
Centrilobular Hepatocyte, Hypertrophy		0	10** (1.5) ^a	10** (2.7)	10** (3.9)	10** (4.0)
Centrilobular Hepatocyte, Necrosis	0	0	2 (1.0)	10** (1.2)	10**(1.5)	10** (2.0)
Hepatocyte, Multinucelated	0	0	1 (1.0)	8** (1.6)	10** (3.5)	10** (4.0)
Females	10	10	10	10	10	10
Centrilobular Hepatocyte, Hypertrophy	•	0	2 (1.5)	4* (1.0)	10** (2.2)	10** (3.9)
Centrilobular Hepatocyte, Necrosis	0	0	1 (1.0)	2 (1.0)	8**(1.1)	10** (1.6)
Hepatocyte, Multinucelated	0	0	0	0	6** (1.5)	10** (3.3)

* Significantly different (p≤0.05) from chamber controls by Poly-3 test

** Significantly different (p≤0.01) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

^a Average severity of affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

Nonneoplastic Liver Lesions

	Control	125 ppm	250 ppm	500 ppm	1,000 ppm	2,000 ppm
Males	10	10	10	10	10	10
Centrilobular Hepatocyte, Hypertrophy	-	0	10** (1.5) ^a	10** (2.7)	10** (3.9)	10** (4.0)
Centrilobular Hepatocyte, Necrosis	0	0	2 (1.0)	10** (1.2)	10**(1.5)	10** (2.0)
Hepatocyte, Multinucelated	0	0	1 (1.0)	8** (1.6)	10** (3.5)	10** (4.0)
Females	10	10	10	10	10	10
Centrilobular Hepatocyte, Hypertrophy	•	0	2 (1.5)	4* (1.0)	10** (2.2)	10** (3.9)
Centrilobular Hepatocyte, Necrosis	0	0	1 (1.0)	2 (1.0)	8**(1.1)	10** (1.6)
Hepatocyte, Multinucelated	0	0	0	0	6** (1.5)	10** (3.3)

* Significantly different (p≤0.05) from chamber controls by Poly-3 test

** Significantly different (p≤0.01) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

^a Average severity of affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

Summary

- Higher body weights
- Higher liver weights and higher incidence of nonneoplastic lesions of the liver in all sex/species
- Increased severity of nonneoplastic lesions of the kidney in male rats
- PCTFT via inhalation exposure exhibits the potential to be a reproductive toxicant in male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice

Rats

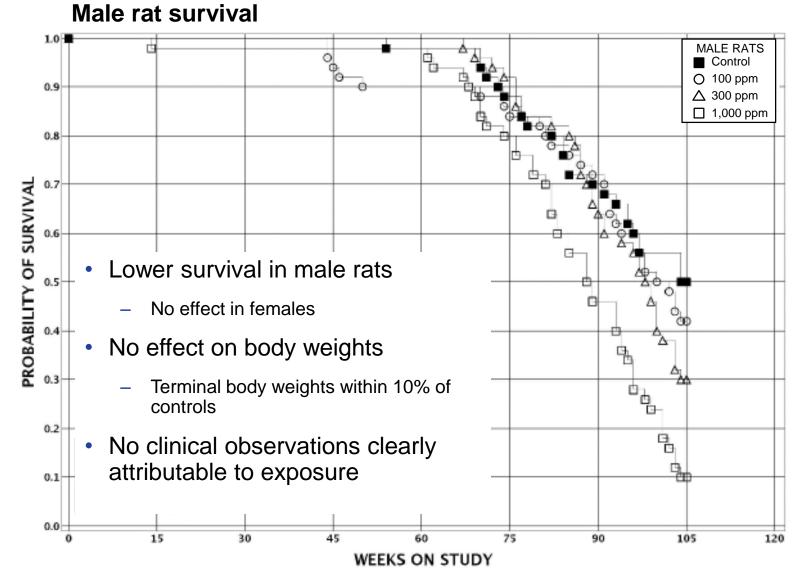
- Highest exposure concentration: 1,000 ppm
 - Based on exposure related increases in relative liver weight; 90% higher than controls (M/F) in 2,000 ppm group

Mice

- Highest exposure concentration: 400 ppm
 - Based on exposure related increases in liver weight (>100% higher than controls) and increased incidences of liver necrosis and other liver lesions at 500 ppm (males) and 1,000 ppm (females)

2-Year Studies

Whole Body Inhalation



- Male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice
- Whole body inhalation exposure
 - 6 hours per day, 5 days per week, 104 weeks
 - 0, 100, 300, 1,000 ppm (rats)
 - 0, 100, 200, 400 ppm (mice)
- 50 animals/species/sex/concentration
- Endpoints
 - In-life (survival, body weights, clinical observations)
 - Histopathology
 - Molecular pathology (mouse liver)

2-Year Study Results: Rats

Survival, Body weights and Clinical Observations

Histopathology

REMINDER:

- One previous study using Hsd:Sprague Dawley SD rats
- Non-inhalation route
- Used to provide context but considered to have limited utility in the interpretation of data in this study

Incidence of Neoplasms in the Thyroid

	Control	100 ppm	300 ppm	1,000 ppm
Males	50	49	49	50
C-cell Adenoma (includes bilateral)	2**	5	3	12**
C-cell Carcinoma	1	0	1	1
C-cell Adenoma or Carcinoma	3**	5	4	13**
Females	50	50	50	50
C-cell Adenoma (includes bilateral)	2**	8	8	14**
C-cell Carcinoma	0	2	0	1
C-cell Adenoma or Carcinoma	2**	10*	8	15**

* Significantly different (p≤0.05) from chamber controls by Poly-3 test

** Significantly different (p≤0.01) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

Incidence of Neoplasms in the Thyroid

	Control	100 ppm	300 ppm	1,000 ppm
Males	50	49	49	50
C-cell Adenoma (includes bilateral)	2** (13/50) ^a	5	3	12**
C-cell Carcinoma	1	0	1	1
C-cell Adenoma or Carcinoma	3**	5	4	13**
Females	50	50	50	50
C-cell Adenoma (includes bilateral)	2** (11/49)	8	8	14**
C-cell Carcinoma	0	2	0	1
C-cell Adenoma or Carcinoma	2**	10*	8	15**

^a Tumor incidence in controls from other SD rat NTP study

* Significantly different (p≤0.05) from chamber controls by Poly-3 test

** Significantly different (p≤0.01) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

Considered **some evidence** of carcinogenic activity

Incidence of Neoplasms in the Lung

	Control	100 ppm	300 ppm	1,000 ppm
Males	50	50	50	50
Alveolar/bronchiolar Adenoma	0	2	0	1
Alveolar/bronchiolar Carcinoma	0*	0	0	2
Alveolar/bronchiolar Adenoma or Carcinoma	0	2	0	3

* Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

Incidence of Neoplasms in the Lung

	Control	100 ppm	300 ppm	1,000 ppm
Males	50	50	50	50
Alveolar/bronchiolar Adenoma	0	2	0	1
Alveolar/bronchiolar Carcinoma	0*	0	0	2
Alveolar/bronchiolar Adenoma or Carcinoma	0 (0/49) ^a	2	0	3

^a Tumor incidence in controls from other SD rat NTP study

* Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

May have been related to exposure (equivocal evidence)

Incidence of Neoplasms in the Lung

	Control	100 ppm	300 ppm	1,000 ppm
Males	50	50	50	50
Alveolar/bronchiolar Adenoma	0	2	0	1
Alveolar/bronchiolar Carcinoma	0*	0	0	2
Alveolar/bronchiolar Adenoma or Carcinoma	0 (0/49) ^a	2	0	3

^a Tumor incidence in controls from other SD rat NTP study

* Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

May have been related to exposure (equivocal evidence)

- Robust response in nonneoplastic lesions in lung
 - Not considered pre-neoplastic

Incidence of Neoplasms in the Adrenal Medulla

	Control	100 ppm	300 ppm	1,000 ppm
Females	49	50	50	50
Hyperplasia	17 (1.1) ^a	25 (1.6)	34** (1.1)	36** (1.5)
Benign Pheochromocytoma	0	3	4	6*
Malignant Pheochromocytoma	0	1	0	0

^a Average severity grade of lesion in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked * Significantly different (p≤0.05) from chamber controls by Poly-3 test

Incidence of Neoplasms in the Adrenal Medulla

	Control	100 ppm	300 ppm	1,000 ppm
Females	49	50	50	50
Hyperplasia	17 (1.1) ^a	25 (1.6)	34** (1.1)	36** (1.5)
Benign Pheochromocytoma	0 (0/49) ^b	3	4	6*
Malignant Pheochromocytoma	0	1	0	0

^a Average severity grade of lesion in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked ^b Tumor incidence in controls from other SD rat NTP study

* Significantly different (p≤0.05) from chamber controls by Poly-3 test

Considered **some evidence** of carcinogenic activity

	Control	100 ppm	300 ppm	1,000 ppm
Females	50	50	50	50
Endometrium, Atypical Hyperplasia	0	0	1 (2.0) ^a	3 (2.3)
Adenoma	0	1	0	0
Adenocarcinoma ^b	1*	1	0	5

* Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

^a Average severity of lesion in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

	Control	100 ppm	300 ppm	1,000 ppm
Females	50	50	50	50
Endometrium, Atypical Hyperplasia	0	0	1 (2.0) ^a	3 (2.3)
Adenoma	0	1	0	0
Adenocarcinoma ^b	1*	1	0	5

* Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

^a Average severity of lesion in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked ^b No historical control available for this tissue due to differences in sectioning

Considered **some evidence** of carcinogenic activity

	Control	100 ppm	300 ppm	1,000 ppm
Females	50	50	50	50
Stromal Polyp, Multiple	0	1	4	2
Stromal Polyp (includes multiple)	7	9	16*	12
Stromal Sarcoma	0	0	1	0
Stromal Polyp or Stromal Sarcoma	7	9	17*	12

*Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

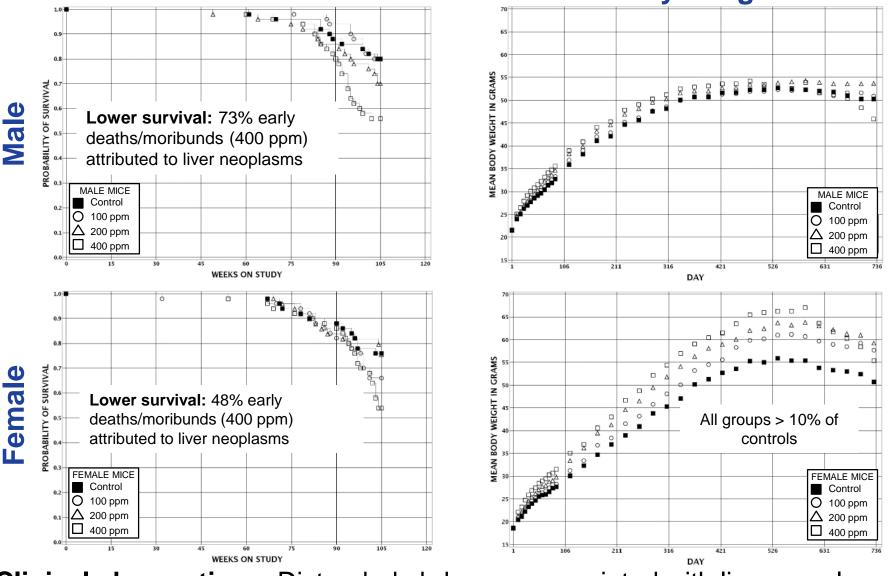
	Control	100 ppm	300 ppm	1,000 ppm
Females	50	50	50	50
Stromal Polyp, Multiple	0	1	4	2
Stromal Polyp (includes multiple) ^a	7	9	16*	12
Stromal Sarcoma	0	0	1	0
Stromal Polyp or Stromal Sarcoma	7	9	17*	12

*Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

^a No historical control available for this tissue due to differences in sectioning

Considered **some evidence** of carcinogenic activity

2-Year Studies Mice



2-Year Study Results: Mice

Clinical observations: Distended abdomen, associated with liver neoplasms

	Control	100 ppm	200 ppm	400 ppm
Males	50	50	50	50
Hepatocellular Adenoma, Multiple	9	15	19*	21**
Hepatocellular Adenoma (includes multiple)	25	24	31	29
Hepatocellular Carcinoma, Multiple	2	5	7	30**
Hepatocellular Carcinoma (includes multiple)	8**	19*	16*	35**
Hepatoblastoma, Multiple	0	0	0	5*
Hepatoblastoma (includes multiple)	1**	1	1	15**
Hepatocellular Adenoma, Hepatocellular Carcinoma or Hepatoblastoma	31**	37	40*	48**

*Significantly different (p≤0.05) from chamber controls by Poly-3 test

**Significantly different (p≤0.01) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

	Control	100 ppm	200 ppm	400 ppm
Males	50	50	50	50
Hepatocellular Adenoma, Multiple	9	15	19*	21**
Hepatocellular Adenoma (includes multiple)	25	24	31	29
Hepatocellular Carcinoma, Multiple	2	5	7	30**
Hepatocellular Carcinoma (includes multiple) ^a	8**	19*	16*	35**
Hepatoblastoma, Multiple	0	0	0	5*
Hepatoblastoma (includes multiple) ^b	1**	1	1	15**
Hepatocellular Adenoma, Hepatocellular Carcinoma or Hepatoblastoma	31**	37	40*	48**

^a Historical incidence (inhalation) 97/300, 16%-50%, (all routes) 165/550, 16%-50%

^b Historical incidence (inhalation) 6/300, 0%-4%, (all routes) 18/550, 0%-8%

Considered **clear evidence** of carcinogenic activity

Incidence of Neoplasms in the Liver

	Control	100 ppm	200 ppm	400 ppm
Females	50	50	50	50
Hepatocellular Adenoma, Multiple	3	5	15**	25**
Hepatocellular Adenoma (includes multiple)	12**	14	24**	34**
Hepatocellular Carcinoma, Multiple	2	3	7	28**
Hepatocellular Carcinoma (includes multiple)	7**	8	12	34**
Hepatoblastoma	0**	0	1	8**
Hepatocellular Adenoma, Hepatocellular Carcinoma or Hepatoblastoma	18**	18	29**	46**

**Significantly different (p≤0.01) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

Incidence of Neoplasms in the Liver

	Control	100 ppm	200 ppm	400 ppm
Females	50	50	50	50
Hepatocellular Adenoma, Multiple	3	5	15**	25**
Hepatocellular Adenoma (includes multiple) ^a	12**	14	24**	34**
Hepatocellular Carcinoma, Multiple	2	3	7	28**
Hepatocellular Carcinoma (includes multiple) ^b	7**	8	12	34**
Hepatoblastoma ^c	0**	0	1	8**
Hepatocellular Adenoma, Hepatocellular Carcinoma or Hepatoblastoma	18**	18	29**	46**

^a Historical incidence (inhalation) 71/300, 12%-38%, (all routes) 141/549, 10%-67% ^b Historical incidence (inhalation) 45/300, 10%-20%, (all routes) 71/549, 4%-20% ^c Historical incidence (inhalation) 3/300, 0%-2%, (all routes) 3/549, 0%-2%

Considered **clear evidence** of carcinogenic activity

Incidence of Neoplasms in the Harderian Gland

	Control	100 ppm	200 ppm	400 ppm
Females	50	50	50	50
Adenoma	2*	6	6	8*
Adenocarcinoma	0	0	3	0
Adenoma or Adenocarcinoma ^a	2*	6	9*	8*

*Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence

^a Historical incidence (inhalation) 22/300, 4%-14%, (all routes) 47/550, 4%-20%

Incidence of Neoplasms in the Harderian Gland

	Control	100 ppm	200 ppm	400 ppm
Females	50	50	50	50
Adenoma	2*	6	6	8*
Adenocarcinoma	0	0	3	0
Adenoma or Adenocarcinoma ^a	2*	6	9*	8*

*Significantly different (p≤0.05) from chamber controls by Poly-3 test; positive trend if associated with a control incidence ^a Historical incidence (inhalation) 22/300, 4%-14%, (all routes) 47/550, 4%-20%

Also considered to be related to treatment (some evidence)

2-Year Study Results

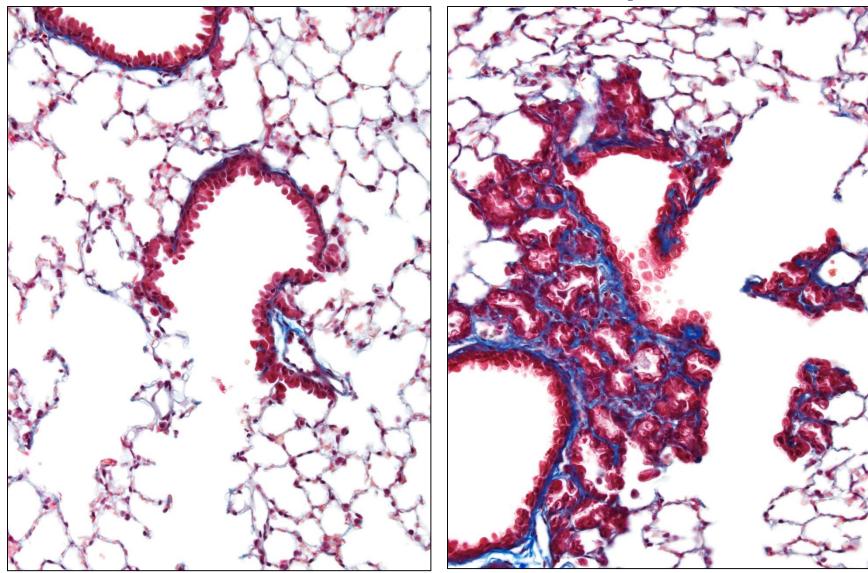
Nonneoplastic Lesions

RATS	Control	100 ppm	300 ppm	1,000 ppm
Males	50	50	50	50
Fibrosis	8 (1.4)	22** (1.5)	28** (1.4)	24** (1.8)
Hemorrhage	11 (1.2)	23* (1.7)	28** (1.5)	28** (1.7)
Inflammation, Chronic	32 (1.2)	42* (1.5)	47** (1.4)	45** (1.8)
Females	50	50	50	50
Fibrosis	11 (1.0)	17 (1.1)	24** (1.4)	28** (1.4)
Hemorrhage	12 (1.1)	11 (1.5)	18 (1.4)	26* (1.4)
Inflammation, Chronic	35 (1.2)	42* (1.2)	48** (1.4)	46* (1.4)
MICE	Control	100 ppm	200 ppm	400 ppm
Males	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (1.8)	50** (2.4)	48** (2.8)
Peribronchiolar, fibrosis	0	45** (1.0)	47** (1.0)	44** (1.0)
Females	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (2.1)	49** (2.3)	50** (2.9)
Peribronchiolar, fibrosis	0	44** (1.0)	44** (1.0)	48** (1.0)

RATS	Control	100 ppm	300 ppm	1,000 ppm
Males	50	50	50	50
Fibrosis	8 (1.4)	22** (1.5)	28** (1.4)	24** (1.8)
Hemorrhage	11 (1.2)	23* (1.7)	28** (1.5)	28** (1.7)
Inflammation, Chronic	32 (1.2)	42* (1.5)	47** (1.4)	45** (1.8)
Females	50	50	50	50
Fibrosis	11 (1.0)	17 (1.1)	24** (1.4)	28** (1.4)
	12 (1.1)	11 (1.5)		26* (1.4)
Inflammation, Chronic	35 (1.2)	42* (1.2)	48** (1.4)	46* (1.4)
MICE	Control	100 ppm	200 ppm	400 ppm
Males	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (1.8)	50** (2.4)	48** (2.8)
Peribronchiolar, fibrosis	0	45** (1.0)	47** (1.0)	44** (1.0)
Females	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (2.1)	49** (2.3)	50** (2.9)
Peribronchiolar, fibrosis	0	44** (1.0)	44** (1.0)	48** (1.0)

RATS	Control	100 ppm	300 ppm	1,000 ppm
Males	50	50	50	50
Fibrosis	8 (1.4)	22** (1.5)	28** (1.4)	24** (1.8)
Hemorrhage	11 (1.2)	23* (1.7)	28** (1.5)	28** (1.7)
Inflammation, Chronic	32 (1.2)	42* (1.5)	47** (1.4)	45** (1.8)
Females	50	50	50	50
Fibrosis	11 (1.0)	17 (1.1)	24** (1.4)	28** (1.4)
Hemorrhage	12 (1.1)	11 (1.5)	18 (1.4)	26* (1.4)
Inflammation, Chronic	35 (1.2)	42* (1.2)	48** (1.4)	46* (1.4)
MICE	Control	100 ppm	200 ppm	400 ppm
Males	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (1.8)	50** (2.4)	48** (2.8)
Peribronchiolar, fibrosis	0	45** (1.0)	47** (1.0)	44** (1.0)
Females	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (2.1)	49** (2.3)	50** (2.9)
Peribronchiolar, fibrosis	0	44** (1.0)	44** (1.0)	48** (1.0)

RATS	Control	100 ppm	300 ppm	1,000 ppm
Males	50	50	50	50
Fibrosis	8 (1.4)	22** (1.5)	28** (1.4)	24** (1.8)
Hemorrhage	11 (1.2)	23* (1.7)	28** (1.5)	28** (1.7)
Inflammation, Chronic	32 (1.2)	42* (1.5)	47** (1.4)	45** (1.8)
Females	50	50	50	50
Fibrosis	11 (1.0)	17 (1.1)	24** (1.4)	28** (1.4)
Hemorrhage	12 (1.1)	11 (1.5)	18 (1.4)	26* (1.4)
Inflammation, Chronic	35 (1.2)	42* (1.2)	48** (1.4)	46* (1.4)
MICE	Control	100 ppm	200 ppm	400 ppm
Males	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (1.8)	50** (2.4)	48** (2.8)
Peribronchiolar, fibrosis	0	45** (1.0)	47** (1.0)	44** (1.0)
Females	50	50	50	50
Alveolar/bronchiolar epithelium, hyperplasia	0	49** (2.1)	49** (2.3)	50** (2.9)
Peribronchiolar, fibrosis	0	44** (1.0)	44** (1.0)	48** (1.0)


RATS		Control	250 ppm	500 ppm	1,000 ppm
Males		50	50	50	50
Fibros	is	8 (1.4)	22** (1.5)	28** (1.4)	24** (1.8)
	rha an	44 (4 0)	0.0* (4.7)	00** (4 E)	<u>- 20** (</u> 1.7)
Inflam			:		1.8)
	Currently no federal	occupai	lional exp	osure IIr	nits
Fibros		Kowowo	uning 20 p		1.4)
	Upon nomination, permissible exp		•	•	.4)
Inflam				v <i>i</i> (j	.4)
MICE	In present study ~1	00% incid	ence of fibro	osis and	pm
	alveolar/bronchiolar epithe	lium, hype	rplasia in m	ice at 100 p	opm
Alveol					2.8)
	onchiolar, fibrosis	0	45** (1.0)	47** (1.0)	44** (1.0)
Females		50	50	50	50
T emaies					
	ar/bronchiolar epithelium, hyperplasia	0	49** (2.1)		50** (2.9)

Peribronchiolar fibrosis (trichrome stain)

Control

Exposed

Nonneoplastic Lesions: Liver

	Control	Low	Mid	High
	50	50	50	50
Centrilobular, Hepatocyte, Hypertrophy				
Male Rats	2 (1.0)	17** (1.2)	39** (1.5)	47** (1.8)
Female Rats	0	1 (2.0)	10** (1.1)	45** (1.9)
Male Mice	0	8** (1.0)	19** (1.1)	49** (1.5)
Female Mice	0	4 (1.0)	5* (1.2)	40** (1.2)
Eosinophilic Foci				
Male Rats	1	5	6	8**
Female Rats	7	6	6 7	15
Male Mice	11	14	18	21*
Female Mice	4	8	24**	31**
Fatty Change				
Male Rats	0	3 (1.3)	7** (1.3)	26** (1.2)
Female Rats	2 (1.0)	4 (1.0)	11* (1.2)	10* (1.3)
Hepatocyte, Multinucleated				
Male Mice	2 (1.0)	8 (1.0)	19** (1.1)	49** (1.4)
Female Mice	0	2 (1.0)	2 (1.0)	25** (1.0)
Hepatocyte, Necrosis				
Male Mice	3 (1.0)	4 (2.5)	3 (2.0)	15** (1.5)
Female Mice	2 (2.0)	1 (1.0)	3 (1.7)	10* (1.3)

Significantly different (*p≤0.05, **p≤0.01) from chamber controls by Poly-3 test; Data in parentheses are severities (1=minimal, 2=mild, 3=moderate, 4=marked). Other nonneoplastic lesions of the liver include mixed cell focus (female rats), clear cell focus (female rats), intrahepatocellular erythrocytes (male mice)

Nonneoplastic Lesions: Liver

	Control	Low	Mid	High
	50	50	50	50
Centrilobular, Hepatocyte, Hypertrophy				
Male Rats	2 (1.0)	17** (1.2)	39** (1.5)	47** (1.8)
Female Rats	0	1 (2.0)	10** (1.1)	45** (1.9)
Male Mice	0	8** (1.0)	19** (1.1)	49** (1.5)
Female Mice	0	4 (1.0)	5* (1.2)	40** (1.2)
Eosinophilic Foci				
Male Rats	1	5	6	8**
Female Rats	7	6	6 7	15
Male Mice	11	14	18	21*
Female Mice	4	8	24**	31**
Fatty Change				
Male Rats	0	3 (1.3)	7** (1.3)	26** (1.2)
Female Rats	2 (1.0)	4 (1.0)	11* (1.2)	10* (1.3)
Hepatocyte, Multinucleated				
Male Mice	2 (1.0)	8 (1.0)	19** (1.1)	49** (1.4)
Female Mice	0	2 (1.0)	2 (1.0)	25** (1.0)
Hepatocyte, Necrosis				
Male Mice	3 (1.0)	4 (2.5)	3 (2.0)	15** (1.5)
Female Mice	2 (2.0)	1 (1.0)	3 (1.7)	10* (1.3)

Significantly different (*p≤0.05, **p≤0.01) from chamber controls by Poly-3 test; Data in parentheses are severities (1=minimal, 2=mild, 3=moderate, 4=marked). Other nonneoplastic lesions of the liver include mixed cell focus (female rats), clear cell focus (female rats), intrahepatocellular erythrocytes (male mice)

Additional Nonneoplastic Lesions

- Kidney: nephropathy severity (male rats)
- Nose: exudate (male rats)
- Larynx: squamous epithelium hyperplasia (male mice)
- Forestomach: inflammation and epithelial hyperplasia (male and female mice)

- Bacterial mutagenicity
 - Negative
- Micronucleus
 - Rats: negative (all changes in historical range)
 - Mice
 - Positive in males
 - Negative in females (all changes in historical range)

Neoplasms: Rats

- Males
 - Some evidence of carcinogenic activity
 - Increased incidences of C-cell adenoma in the thyroid gland
 - May have been related to exposure (equivocal evidence)
 - Combined occurrences of alveolar/bronchiolar adenoma or carcinoma in the lung
- Females
 - Some evidence of carcinogenic activity
 - Increased incidences of C-cell adenoma in the thyroid gland
 - Increased incidences of benign pheochromocytoma in the adrenal medulla
 - Increased incidences of adenocarcinoma in the uterus
 - Increased incidences of stromal polyp in the uterus

Neoplasms: Mice

- Males
 - Clear evidence of carcinogenic activity
 - Increased incidences of hepatocellular carcinoma and hepatoblastoma in the liver
- Females
 - Clear evidence of carcinogenic activity
 - Increased incidences of hepatocellular adenoma, hepatocellular carcinoma, and hepatoblastoma in the liver
 - Related to treatment (some evidence)
 - Combined incidences of adenoma or adenocarcinoma in the Harderian gland

Nonneoplastic Lesions

- Increased incidences of nonneoplastic lesions in the:
 - Lung and liver of male and female rats and mice
 - Nose of male rats
 - Adrenal medulla and uterus of female rats
 - Forestomach of male and female mice
 - Larynx in male mice
- Increased severity of nonneoplastic lesions in the kidney of male rats