

## Thermal Pilot Studies of Cell Phone Radiofrequency Radiation

### Michael Wyde, PhD Toxicology Branch National Institute of Environmental Health Sciences

NTP Technical Report Peer-Review Meeting March 26-28, 2018





- Three-phase toxicology and carcinogenicity studies in Harlan Sprague Dawley rats and B6C3F<sub>1</sub> mice
  - 5-day thermal pilot studies at specific absorption rates (SARs) of 4-12 W/kg in young and aged rats and mice and pregnant rats (10 studies)
  - 28-day prechronic toxicology studies
  - 2-year toxicology and carcinogenicity studies





- Goals of the thermal pilot studies
- Thermal pilot study design
- Rat studies: Results
- Mouse studies: Results
- Summary & Discussion



- Evaluate a wide range of specific absorption rates (SARs) to determine the threshold for potential thermal effects of cell phone radiofrequency radiation (RFR)
  - Determine power levels for exposure at which rodents can maintain thermoregulation
  - Identify power levels that do not induce an excessive increase in body temperature (> 1°C)
- Determine impact of animal size and pregnancy status on body temperature
  - Evaluated effects in young and aged rats and mice, and pregnant rats
- Determine potential effects of RFR exposure on pregnancy in rats



- Conducted series of 10 studies
  - Young, aged, and pregnant rats exposed to (GSM\* or CDMA) RFR
  - Young and aged mice exposed to (GSM or CDMA) RFR
  - 5 animals per sex for each exposure group
- Daily exposure to 0, 4, 6, 8, 10, 12 W/kg for 9 hrs 10 min for 5 days
  - 18 hrs 20 min per day in 10 min on/10 min off cycles
  - Rats exposed to signals at 900 MHz; mice exposed at 1900 MHz
  - Pregnant rats exposed during gestation days (GD) 10-15
  - Due to the number of chambers, exposures were conducted in <u>multiple cohorts</u>

\* GSM = Global System for Mobile Communication; CDMA = Code Division Multiple Access



- Collected body temperatures via implanted microchips at multiple time points over 5 days
  - Collected 3 times per day on Days 1, 3, and 5 immediately after cessation of exposure during the 10-minute off period
  - Collected after daily shutdown for husbandry prior to initiation on Days 2 and 4
- Dams from the control group and 10 and 12 W/kg evaluated by Cesarean section for potential effects of exposure on pregnancy



Wyde et al. (2018) Bioelectromagnetics 9999:1-10. https://doi.org/10.1002/bem.22116



|               | Sex    | GSM | CDMA |
|---------------|--------|-----|------|
| Young rats    | Male   | 157 | 158  |
|               | Female | 122 | 120  |
| Aged rats     | Male   | 504 | 470  |
|               | Female | 298 | 261  |
| Pregnant rats | Female | 248 | 253  |
| Young mice    | Male   | 21  | 22   |
|               | Female | 19  | 18   |
| Aged mice     | Male   | 52  | 50   |
|               | Female | 57  | 54   |



|               | Sex    | GSM | CDMA |
|---------------|--------|-----|------|
| Young rats    | Male   | 157 | 158  |
|               | Female | 122 | 120  |
| Aged rats     | Male   | 504 | 470  |
|               | Female | 298 | 261  |
| Pregnant rats | Female | 248 | 253  |
| Young mice    | Male   | 21  | 22   |
|               | Female | 19  | 18   |
| Aged mice     | Male   | 52  | 50   |
|               | Female | 57  | 54   |



# **Rat Study Results**

- 1. Young males and females GSM
- 2. Young males and females CDMA
- 3. Aged males and females GSM
- 4. Aged males and females CDMA
- 5. Pregnant dams GSM
- 6. Pregnant dams CDMA





### Body temperature in young male rats



- SAR-dependent increase in body temperature following RFR exposure
- No significant differences in young females

Data presented as the mean of the 9 time points on Days 1, 3, and 5 Wyde et al. (2018) *Bioelectromagnetics* 9999:1-10. <u>https://doi.org/10.1002/bem.22116</u>



- GSM modulation
  - All aged male rats exposed to 10 or 12 W/kg RFR died during the first day of exposures.
  - In female rats, exposures to 12 W/kg GSM were discontinued on the first day due to excessive increases in body temperature (> 3°C)
- CDMA modulation
  - All aged male rats exposed to 12 W/kg died during the first day of exposures
  - In aged male rats exposed to 10 W/kg were discontinued on the first day due to increases in body temperature (> 3°C)



### Body temperature in aged male rats



- SAR-dependent increase in body temperature following RFR exposure at ≥ 6 W/kg GSM or CDMA
- Increases greater than  $1^{\circ}C$  at  $\geq 8$  W/kg GSM or CDMA

Wyde et al. (2018) Bioelectromagnetics 9999:1-10. https://doi.org/10.1002/bem.22116



- Results similar for aged female and pregnant female rats
- SAR-dependent increase in body temperature following RFR exposure at ≥ 6 W/kg GSM or CDMA
  - − Increases greater than  $1^{\circ}C$  at ≥ 8 W/kg GSM or CDMA
- Increase in the number of resorptions at 12 W/kg compared to controls (GSM only)
- No treatment-related effects on the number of live/dead pups, number of corpora lutea, number of implantation sites, or mean fetal weight

## Summary: Results for 5-day pilot study in rats

- 10 and 12 W/kg
  - Excessive increases in body temperature in pregnant and aged male and female rats with increased mortality in aged males
  - Increase in early resorptions at 12 W/kg GSM in pregnant rats
- 8 W/kg
  - Several instances of increased body temperature considered excessive (> 1°C) in <u>pregnant</u> and <u>aged</u> male and female rats
- 6 W/kg
  - Some increases (< 1°C) in body temperature in <u>young</u> and <u>aged</u> males and aged females
- Overall, effects more robust in aged (larger) than young (smaller) rats, and in males compared to females



# **Mouse Study Results**

- 1. Young males and females GSM
- 2. Young males and females CDMA
- 3. Aged males and females GSM
- 4. Aged males and females CDMA





### **Body temperature in aged mice**



Similar results observed for aged males, young male and female mice

Wyde et al. (2018) Bioelectromagnetics 9999:1-10. https://doi.org/10.1002/bem.22116

## Summary: Results for 5-day pilot study in mice

- Sporadic increases in body temperature
- Increases not considered exposure related
- No differences between males and females, GSM or CDMA
- These data suggest that higher SARs could be tolerated



#### <u>Rat Studies</u>

- Lethal effects and excessive increases in body temperatures were observed in rats at 10 and 12 W/kg
- Increase in early resorptions and decreased body weight gain in pregnant dams at 12 W/kg GSM
- Based on these data, SARs of ≥ 10 W/kg were not recommended for further study in rats
- 3, 6, and 9 W/kg selected for 28-day studies

#### Mouse Studies

- No thermal effects observed at SARs up to 12 W/kg regardless of age, sex, or modulation
- 5, 10, and 15 W/kg selected for 28-day studies





National Institute of Environmental Health Sciences Research Triangle Park, NC



Chicago, II





Zurich, Switzerland