

Pathology Peer Review Process and Selected Lesions for the 2-Year Study of Cell Phone Radiofrequency Radiation in Rats

Mark F. Cesta, DVM, PhD, DACVP

Cellular and Molecular Pathology Branch
National Institute of Environmental Health Sciences

NTP Technical Report Peer-Review Meeting March 26-28, 2018

- Pathology peer review process for the 2-year cell phone radiofrequency radiation (RFR) study in rats
- Heart, brain, and kidney lesions in the 2-year cell phone RFR study in rats

Standard NTP Pathology Peer Review Process

- Pathology Data Review (PDR)
- Audit of Pathology Specimens (APS)
- 3. Quality Assessment Review (QA)
- Pathology Working Group (PWG)
- +/- Pathology Peer Review (PPR)

Cell Phone Pathology Peer Review Process

- Potential treatment-related <u>proliferative heart and</u> <u>brain lesions</u> were initially selected for early reporting (i.e., partial report)
 - Complete review of these lesions (APS, PDR, QA, PWG) was conducted
 - 100% of materials reviewed in Audit of Pathology Specimens
 - Expedited review due to potential public health importance
 - Assigned multiple pathologists
 - Rapid turnaround

Cell Phone Pathology Peer Review Process

- Four Pathology Working Groups (PWGs) were convened
 - Initial PWGs were conducted as part of our normal process and underscored the need to develop definitive diagnostic criteria for these lesions
 - Two additional PWGs composed of specialists in neuro- and cardiovascular pathology conducted to develop these criteria
 - 5 external expert neuropathologists, including an MD pathologist with expertise in proliferative glial cell lesions in humans
 - 5 external expert cardiovascular pathologists

Cell Phone Pathology Peer Review Process

- After release of the partial report, the remaining tissues were reviewed according to our normal peer review process
- Several pathology peer reviews were conducted to address outstanding issues – some of these issues included data from the partial report

Cell Phone Pathology Peer Review Process

 All lesions that were potentially treatment-related were reviewed by panels of expert pathologists and the diagnoses and incidences represent a consensus of the pathology working groups

- Heart
 - Schwannoma
 - Endocardial
 - Myocardial (Intramural)
 - Schwann Cell Hyperplasia
 - Endocardial
 - Myocardial (Intramural)
 - Cardiomyopathy, Right Ventricle

- Brain
 - Malignant Glioma
 - Glial Cell Hyperplasia
- Kidney Chronic Progressive Nephropathy

Diagnostic Criteria – Endocardial Schwannoma

- Typically arises in subendocardial region of left ventricle
- Invasive (into the myocardium)
- Cells have indistinct cell boundaries
- Usually comprises two cell types
 - Ovoid cells (typically adjacent to endocardium)
 - Spindle-shaped cells
- Cells may exhibit mild atypia
- Mitotic figures may be present
- May see palisading nuclei

Diagnostic Criteria – Myocardial Schwannoma

- Often less cellular than endocardial schwannomas
- Lesion margins are indistinct
- Composed of loosely arranged spindle-shaped cells
- Mitotic figures and mild cellular atypia may be present
- May see palisading nuclei

Myocardial Schwannoma

Myocardial Schwannoma

Diagnostic Criteria – Schwann Cell Hyperplasia

- Similar to Schwannoma, <u>except</u>:
 - Less extensive than schwannoma
 - Noninvasive (though proliferation along existing nerve tracts may give the appearance of invasion)
 - There is no cellular atypia
 - Mitotic figures are rare
- May also occur in the myocardium

Endocardial Schwann Cell Hyperplasia

Endocardial Schwann Cell Hyperplasia

Endocardial Schwann Cell Hyperplasia

Diagnostic Criteria – Cardiomyopathy

- Degeneration, necrosis, or loss of cardiomyocytes
- +/- mild inflammation macrophages and lymphocytes with occasional neutrophils
- Fibrosis in later stages of disease
- In right ventricle, most prominent in subepicardial region in lower half of heart (toward apex)

Cardiomyopathy

Right Ventricle – Cardiomyopathy

Right Ventricle – Normal

Right Ventricle – Cardiomyopathy

NTP testing and research strategies

Brain Sampling

From 3 to 7 Sections of Brain

Diagnostic Criteria – Malignant Glioma

- Neoplasms are usually larger than glial cell hyperplasia
- Indistinct lesion borders
- Cells are usually pleomorphic and densely packed
- Perivascular cuffing
- +/- Satellitosis
- +/- Meningeal invasion
- +/- Mitotic figures (few)

Diagnostic Criteria – Glial Cell Hyperplasia

- Similar to malignant glioma except:
 - Usually smaller
 - No meningeal invasion
 - Cell density is low
 - +/- Perivascular cuffing (minimal if present)
 - Generally, no mitotic figures
- Additionally, no reactive, degenerative, or necrotic elements with the associated parenchyma

Normal Brain

Glial Cell Hyperplasia

Malignant Glioma

Kidney – Nephropathy, Chronic Progressive and Related Lesions

- Considered main reason for decreased survival in control group
- Numerous lesions with decreasing incidences and/or severity were considered to be secondary to chronic progressive nephropathy (see draft NTP Technical Report for rats, Table 29, pg. 113)
 - Parathyroid Gland Hyperplasia
 - Bone Fibrous Osteodystrophy
 - Mineral in numerous organs
 - Polyarteritis nodosa (vascular inflammation) and secondary necrosis, degeneration, ulcer, erosion, etc.

Diagnostic Criteria – Chronic Progressive Nephropathy

- Tubular epithelial cell regeneration (increased basophilia, cell size, and cell number)
- Basement membrane thickening around tubules
- Mononuclear inflammatory cell infiltrates
- Tubular dilation
- Tubular epithelial cell hyperplasia
- Tubular epithelial cell atrophy
- Protein casts within tubules
- Glomerular changes

Chronic Progressive Nephropathy

Control - Grade 4

3.0 W/KG CDMA - Grade 1

Chronic Progressive Nephropathy

Chronic Progressive Nephropathy

Thank you