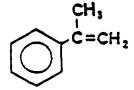
્ર્ચ


alpha-METHYLSTYRENE

I. Chemical and Physical Information

A. <u>Synonyms</u>: <u>a-Methylstyrene</u> Isopropenylbenzene 2-Phenylpropylene l-Methylethenyl benzene

AMS

- B. <u>CAS No</u>: 98-83-9
- C. <u>Molecular Formula</u>: C₉H₁₀
- D. <u>Structural Formula</u>:

E. <u>Molecular Weight</u>: 118.18

F. <u>Physical Properties</u>:

- 1. <u>Physical State</u>: Colorless liquid (Verschueren, 1977)
- 2. <u>Melting Point</u>: -23.2°C (Verschueren, 1977)
- 3. Boiling Point: 165.38°C (Hawley, 1981)
- 4. Flash Point: 53.9°C (Hawley, 1981)
- <u>Vapor Pressure</u>: 2.3 mm Hg at 20°C and 4 mm Hg at 30°C (Verschueren, 1977)
- 6. <u>Specific Gravity</u>: 0.9062 at 25°C (Verschueren, 1977)
- 7. <u>Refractive Index</u>: 1.5359 at 25/25°C (Hawley, 1981)
- 8. <u>Solubility in Water</u>: 0.056 wt% at unspecified temperature (Santodonato et al., 1980)
- 9. <u>Solubility in Organic Solvents</u>: Soluble in ether, benzene, chloroform, acetone, carbon tetrachloride (Weast, 1984; TDB, 1985)
 - 10. Log Octanol/Water Partition Coefficient: 3.36 (Leo, 1978; cited in ISHOW, 1985)
 - 11. <u>Other</u>: Subject to polymerization by heat or catalyst; combustible (Hawley, 1981); pleasant, sweet, aromatic odor; low odor detection threshold - 0.008 ppm (Verschueren, 1977); 0.29 ppm (Amoore and Hautala, 1983).

-1-

February 28, 1986; rev. 11/30/87

DRAFT

A. <u>Production</u>

1. Manufacturing Process

 α -Methylstyrene (AMS) is formed primarily as a byproduct of the manufacture of phenol from cumene. The process involves the oxidation of cumene to its peroxide followed by a cleavage reaction in an acidic medium to produce phenol, acetone, and AMS (Kirk-Othmer, 1983; Santodonato et al., 1980). AMS is also manufactured by the direct catalytic dehydrogenation of cumene.

AMS may also be produced by dehydrogenating ethyl toluene or by the ethylation and dehydrogenation of toluene (TDB, 1985).

2. <u>Volume</u>

The U.S. International Trade Commission (USITC) has reported the domestic production volume of AMS for the years 1980 through 1983 (USITC, 1981a-1984a), as follows:

Year	Production Volume (million lb)
1980	38.7
1981	35.5
1982	10.1
1983	47.5

The public portion of the Toxic Substances Control Act (TSCA) Chemical Substance Inventory (TSCA Inventory) reported the domestic production volume of AMS for 1977 to be between 34.2 and 192 million pounds (refer to Enclosure 1) (USEPA, 1985a). Of this reported volume, 10-50 million pounds were reported as produced for onsite use only.

-2-

II.

As of January 1, 1985, the estimated annual domestic production capacity of AMS was reported to be 113 million pounds (SRI International, 1985).

For 1980 and 1982, the USITC reported AMS importation volumes of 22,046 and 2,238,969 pounds, respectively; no data were reported for 1981 or 1983 (USITC, 1981b-1984b).

3. <u>Producers and Importers</u>

Georgia Gulf Corp.

Bound Brook, NJ

Plaquemine, LA

1.11

Producers (USITC, 1984a; SRI International, 1985)

Allied Chemical Corp.	Amoco Chemicals Corp.
Frankford, PA	Texas City, TX

Chemical Exchange Co., Inc. Baytown, TX

Blue Island, IL

Clark Oil and Refining Corp.

Shell Oil Company Deer Park, TX

Texaco Chemical CompanyUnited States Steel Corp.El Dorado, KSHaverhill, OH

The TSCA Inventory listed the following additional companies as producers of AMS during the period 1975-1982 (USEPA, 1985a):

Chevron U.S.A. Inc.Dow Chemical Co., U.S.ARichmond, CAMidland, MI

Monsanto Co.	Union Carbide Corp.
Alvin, TX	Bound Brook, NJ
Texas City, TX	Ponce, PR

-3-

Importers

No importers were identified in the TSCA Inventory (USEPA, 1985a). The USITC does not identify importers.

4. <u>Technical Product Composition</u>

Commercial AMS is marketed as a minimum 99.3 wt% pure monomer inhibited with t-butylcatechol to prevent polymerization (Kirk-Othmer, 1983; Santodonato et al., 1980).

B. Use

Virtually all of the AMS produced is used in the formulation of specialty polymers and resins. It is widely used in the production of modified polyester and alkyd resin formulations. The primary demand for AMS in specialty resins is as an acrylonitrile-butadiene-styrene (ABS) additive; the resulting resin is useful in producing lightweight automotive products (Santodonato et al., 1980). As a copolymer in ABS and polystyrene, AMS increases the heat-distortion resistance of the product. In coatings and resins, AMS moderates reaction rates and improves product clarity (Kirk-Othmer, 1983).

Lower purity grades of AMS have a small number of end uses, including applications in musk oil fragrances and shoe soles (CEH, 1985).

Low-molecular-weight AMS polymers, which are viscous liquids, are used as plasticizers in paints, waxes, adhesives, and plastics . (Santodonato et al., 1980).

C. <u>Occupational Exposure</u>

The National Occupational Hazard Survey (NOHS), conducted by the National Institute for Occupational Safety and Health (NIOSH) from 1972 to 1974, estimated that 25,018 workers in 1,999 plants were

-4-

potentially exposed to AMS in the workplace (NIOSH, 1976). These estimates were derived from observations of the actual use of the compound, the use of tradename products known to contain the compound, and generic products suspected of containing the compound (3%, 96%, and 1% of total estimate, respectively). The industries with the largest number of exposed workers were heavy construction contractors, miscellaneous business services, and paper and allied products (refer to Enclosure 2). The occupational groups with the largest number of exposed workers were construction laborers (excluding carpenters' helpers), automobile mechanics, and heavy equipment mechanics (refer to Enclosure 3).

AMS was not included in the National Occupational Exposure Survey conducted by NIOSH from 1980 to 1983 (NIOSH, 1984).

The NIOSH Tradename Ingredient Data Base of NOHS listed AMS as a constituent of 15 products used in industrial applications (NIOSH, 1976). The concentration of AMS in the products ranged from 1-99%: six products contained 1-5% AMS, seven contained 14-50%, and two were composed of 99% AMS (refer to Enclosure 4).

Recommended workplace exposure limits for airborne concentrations of AMS have been established by the American Conference of Governmental Industrial Hygienists (ACGIH, 1984). The 8-hour time-weighted average (TWA) threshold limit value is 50 ppm (240 mg/m³), and the short-term (15-minute) exposure limit is 100 ppm (485 mg/m³).

At one facility, Samimi and Falbo (1982) monitored the levels at which production workers were exposed to the principal monomers, including AMS, used in the production of styrene-based polymers. Samples were taken at several locations: Reactors A and B, which were open for the preliminary stages of the process; Reactors C and D, which were closed systems; and the unloading docks where the monomers were received into the plant. The results of exposure to AMS were summarized as follows:

-5-

	Number of	TWA Concentra	tion of AMS (ppb)
Job Site	Samples	Mean	Range
Reactor A	11	15	ND ^a -40
Reactor B	9	116	ND-583
Reactor C	13	8	ND-56
Reactor D	6	23	9-52
Unloading Docks	11	98	ND-360

Time-Weighted Average Concentration of AMS Monomer in the Breathing Zones of Workers at Various Job Sites

^aND = Not detectable (< 1 ppb).

Time-Weighted Average Concentration of AMS Monomer in the Atmosphere of Various Workplaces

	Number of	TWA Concentra	ation of AMS (ppb)
Job Site	Samples	Mean	Range
Reactor A	8	21	ND ^a -122
Reactor B	6	19	6-34
Reactor C	6	2	ND-9
Reactor C (lower level)	9	ND	
Reactor D	10	ND	
Unloading Dock	18	4	ND-452

^aND = Not detectable (< 1 ppb).

The authors attributed these low values (ppb) to highly efficient engineering controls, including the employment of closed system polymerization processes and continuous ventilation of reactor enclosures.

Cocheo et al. (1983) studied the volatile pollutants produced during several rubber goods manufacturing processes. None of the processes studied utilized AMS as a raw material. However, AMS was detected in the ambient air in the extrusion area of an electrical cable insulation plant. The concentration of AMS in the 10 samples analyzed ranged from 0 to 5 μ g/m³.

-6-

The ability of workers to detect exposure potential to industrial chemicals, including AMS, has been summarized by Amoore and Hautala (1983). For AMS, the geometric mean for odor threshold, as reported in the literature, was 0.29 ppm. Odor thresholds are defined on the basis of the percentage of workers able to recognize the presence of a specific chemical in the air. Verschueren (1977) reported an odor threshold value of 0.008 ppm with 100% recognition at 0.156 ppm. In an early study involving limited exposure to AMS, Wolf et al. (1956) reported that the odor was not detectable at levels below 10 ppm. Regardless, the odor threshold is quite low, and likely provides adequate warning of its presence (HAZARDLINE, 1985).

D. Consumer Exposure

No specific information was found on consumer exposure to AMS. However, it has been reported (Kirk-Othmer, 1983) that AMS is a product of the outgassing of polystyrene insulation materials. Therefore, consumers may be exposed via inhalation to AMS mobilized from these materials.

E. Environmental Data

Relative to its primary application in the manufacture of polymers and resins, AMS may be released to the environment via emissions from vents on process equipment, storage tank losses, miscellaneous leaks and spills, process wastewaters, and solid process wastes (Santodonato et al., 1980). The identification of methylstyrenes (not specified) in oxy-acetylene and oxy-ethylene flames suggests combustion sources as possible environmental sources of AMS. Pfäffli et al. (1978) identified AMS as a product of the thermal degradation of polystyrene, with 0.12 ± 0.02 mg AMS at 350°C and 0.07 ± 0.01 mg AMS at 500°C released from 100 mg of polystyrene.

-7-

No information was found on ambient environmental concentrations of AMS. Available information suggests that AMS is not photoreactive in sunlight and that hydrolysis is not expected to occur in the environment (Santodonato et al., 1980). AMS is subject to oxidation in air; thus, commercial AMS must be stabilized.

The log octanol/water partition coefficient of AMS is 3.36, which may indicate a potential to bioconcentrate. In trace quantities AMS is soluble in water; it will evaporate relatively rapidly and is expected to partition to the atmosphere (Santodonato et al., 1980).

Little information was found on the biodegradability of AMS. AMS has been identified in the sewage of a synthetic rubber factory by Ilyaletdinov et al. (1983). Isolated from the same sewage were several bacterial strains, two of which were identified as <u>Bacillus cereus</u> and <u>Pseudomonas aeruginosa</u>. The authors reported the decomposition of AMS and the increase in biomass of each of the active cultures, grown on synthetic medium with AMS as the sole source of carbon.

F. <u>Regulatory Status</u>

6.5

AMS was scored for biological effects and exposure potential by the TSCA Interagency Testing Committee (ITC) in 1983 (ITS, 1985). The ITC reviews chemicals in commerce for potential designation to the Environmental Protection Agency for consideration for industry-required testing for toxicological and/or environmental health effects. AMS was not selected for further study by the ITC as a result of the scoring activity.

The Occupational Safety and Health Administration (OSHA) has established a permissible exposure ceiling limit of 100 ppm (480 mg/m³) for AMS (OSHA, 1983). OSHA and NIOSH have established 5000 ppm (24.0 g/m³) as the concentration of AMS that is

-8-

immediately dangerous to life or health (Sittig, 1981). Employers are required to provide potentially exposed employees with adequate ventilation; respiratory, eye, and face protective equipment; and accessible medical services, sanitation, and first aid. E

Under the Hazardous Materials Transportation Act, administered by the Department of Transportation, AMS is regulated as a flammable liquid under Section 49 CFR 172.102 (USDOT, 1984). Consequently, international transporters of AMS are required to conform to certain labeling and packaging requirements.

Due to its combustibility, AMS is regulated as an ignitable hazardous waste (Waste No. D001), not otherwise specified, under the Resource Conservation and Recovery Act (RCRA). Generators and transporters of hazardous waste, as well as owners and operators of waste treatment, storage, and disposal facilities, are subject to minimum standards that define acceptable management practices. As a result of its inclusion under RCRA, AMS is also regulated under Section 101(14) of the Comprehensive Environmental Response, Compensation, and Liability Act, with a reportable quantity of 100 pounds for releases of AMS from vessels and facilities (HAZARDLINE, 1985; USEPA, 1985b).

III. Toxicological Effects

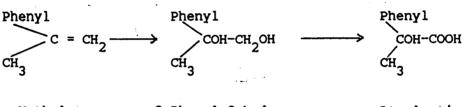
- A. <u>Human Data</u>
 - <u>Acute</u>: No specific information was found on the systemic acute toxicity of AMS. The results of limited exposure of human subjects to AMS were summarized by Wolf et al. (1956) as follows:

-9-

AMS (ppm)	Type and Degree of Response
600 or more	Very strong odor; strong eye and nasal irritation
200	Objectionably strong odor
100	Strong odor but tolerated without excessive discomfort
50	Detectable odor but no irritation
Less than 10	Odor not detectable

The "comfort" level of AMS to humans is well below the "no effect" level of 200 ppm determined in animal experiments.

2. Epidemiological Evidence/Case Reports: Putalova (1979)conducted a clinical study of 102 workers in various butadiene-a-methylstyrene rubber factories. The workers were exposed for 7-10 years to vapors of AMS, butadiene, isopropylbenzene, benzene and other chemicals used in the butadiene-a-methylstyrene manufacture of copolymer Forty-eight percent of the workers suffered from rubber. hepatobiliary functions, including liver abnormal disturbances and dyskinesia.


Demchenko (1978) studied the effect of exposure to AMS on the functional state of the respiratory system of synthetic rubber production workers. In a group of 76 workers exposed to AMS and doing hard manual labor, higher consumption and utilization of oxygen were found as compared to a control group.

3. <u>Chemical Disposition</u>: Aizvert (1979) studied the skin absorption and excretion kinetics of AMS in humans. Undiluted pure AMS penetrated the unimpaired skin well and was absorbed at a rate of 19.5 mg/cm²/hour. The absorption rate of AMS from aqueous solutions was in the range of 0.048 to 0.256 mg/cm²/hr depending on the temperature and

-10-

concentration of the solution. The kinetics of excretion of the AMS metabolites, atrolactic acid and 2-phenyl-2hydroxypropanol, was found to be a first-order process. No rate constants were given. The author compared these results with his results obtained from inhalation exposure of volunteers and reported a lower rate of metabolism from the skin route with the amount of metabolites excreted in the urine about one-third that obtained with the inhalation route.

Bardodej and Bardodejova (1970) studied the biotransformation of AMS in humans exposed for an 8-hour period to unspecified levels of the compound by inhalation. Based on their observation that atrolactic acid is present in the urine of exposed individuals, the authors proposed the following partial biotransformation scheme for AMS:

a-Methylstyrene 2-Phenyl-2-hydroxy- Atrolactic propanol acid

Aizvert (1974, 1975) studied the excretion of atrolactic acid in humans exposed to AMS. The urine of workers exposed to AMS by inhalation at atmospheric concentrations in the range of 2-27 mg/m³ contained 0.5-2.4 mg% atrolactic acid (Aizvert, 1974). The duration of exposure was not specified. Following exposure at 0.02-4.0 mg/L, 26.2% of AMS was excreted as atrolactic acid (Aizvert, 1975). Atrolactic acid was not found in the urine of individuals exposed to AMS at atmospheric levels of 0.005 mg/L (Aizvert, 1974). 4. <u>Biochemical Effects</u>: Sergeta et al. (1977) studied ornithine carbamoyl transferase (OCT) levels in workers at a synthetic rubber plant. An unspecified higher level of the enzyme was found in exposed healthy workers and in exposed workers showing initial signs of nervous disorders.

Bravve (1974) studied hematological changes and levels of vitamin B_{12} in the serum of workers at a synthetic rubber plant. Hematological investigation of workers employed for 1-5 years (Group 1) or for 5-14 years (Group 2) indicated the following:

- o The level of vitamin B₁₂ dropped to 61% and 35% of control values in workers in Groups 1 and 2, respectively.
- Several changes in the erythrone system were reported, including a rise in average erythrocyte diameter and percent macrocytes, and a drop in normocytes. No further details were available in the English abstract of this Russian paper.
- 5. <u>Carcinogenicity/Chronic</u>: No information was found in the information sources searched.
- <u>Teratogenicity and Reproductive Effects</u>: No information was found.
- B. <u>Animal Data</u>
 - <u>Acute</u>: The acute systemic toxicity data on AMS are summarized in Table 1.

Species	Strain	Route I	No./Sex	Dose	Effects	Reference
Rat	White	Orl (gavage)	20/M		LD ₅₀ : 4.9 g/kg Post-mortem examination of the animals revealed slight liver abnormality and kidney effect of questionable significance	Wolf et al. (1956)
Rat	a	lhi	-/-	3000 ppm ^b	Lowest lethal concen-	Wolf et al. (1956)
Guinea pig		lhl	-/-	3000 ppm ^b	Lowest lethal concen- tration	Wolf et al. (1956)

Table I. Acute Toxicity of AMS in Laboratory Animals

.

E.

^aNot specified

^bNo. of 7-hr exposures = 3-4; duration of experiment = 3-4 days.⁻

÷

Two drops of undiluted liquid AMS applied to the conjunctival sac of the right eye of an unspecified number of white rabbits caused slight conjunctival irritation but no corneal injury (Wolf et al., 1956). Repeated applications (10-20) of undiluted AMS to the ear and shaved abdominal skin of an unspecified number of white rabbits over 2-4 weeks caused moderate-to-marked irritation and slight necrosis (Wolf et al., 1956).

- 2. <u>Chemical Disposition</u>: Bardodej and Bardodejova (1970) observed atrolactic acid in the urine of an unspecified number of dogs and rats dosed orally with unspecified levels of AMS. The authors proposed that atrolactic acid is formed from AMS via 2-phenyl-2-hydroxypropanol, as shown previously (see p. 11).
 - Aizvert (1975) studied the biotransformation of AMS in albino rats and guinea pigs. When AMS was administered orally and subcutaneously, for 1-3 days, at doses ranging from 5 to 100 mg/kg, atrolactic acid is excreted with urine in the amount of 15.6% in guinea pigs and 9.6% in rats. Daily atrolactic acid excretion in the urine of rats and guinea pigs was also determined following 5-hr inhalation exposures at concentrations of 0.005, 0.02, 0.05, 0.2, 2.0, and 4.0 Except for the lowest exposure concentration, mq/L. the atrolactic acid excretion was proportional to the AMS concentration in the air and lasted from 1 to 5 days following the exposure. Following exposure equivalent to the maximum permissible concentration of 5.0 mg/m^3 no atrolactic acid was found in the urine.
- 3. <u>Biochemical Effects</u>: Solov'ev (1974) studied the effect of AMS on the brain metabolism of rats. The animals were exposed by inhalation to AMS at atmospheric levels of 0.05 mg/L, 4-5 hours daily for 6 months. The observed effects

-14-

included accumulation of high levels of ammonia, decreased total protein nitrogen and protein amide nitrogen, and increased glutamine formation. Other effects observed in the brain included decreased tissue respiration and glycogen levels, increased glycolysis, and uncoupling of oxidative phosphorylation.

Solov'ev and Barashkova (1978) studied the effect of AMS on the content of free amino acids in rat brain. The animals were exposed by inhalation to AMS at atmospheric levels of 3-5 mg/L, 6 hours/day for 6 days. There was an increase in levels of γ -aminobutyric acid, lysine, histidine, and aspartate. There was a decrease in levels of valine, methionine, and tyrosine.

Klimina (1974) studied the effect of AMS on acetylcholine levels in rats. A single inhalation exposure to AMS at an atmospheric concentration of 3-5 mg/L (length of exposure not specified) decreased the acetylcholine level of the blood, kidneys, and liver.

- Prechronic: Mirzoyan and Zhakenova (1972) applied AMS (30%, solvent not specified) to rabbit skin daily for 20 days. The observed effects included inflammation, hyperemia, edema, desquamation and sensitization. Thickening of the epidermal layer and hyperkeratosis were also observed.
- 5. <u>Carcinogenicity/Chronic</u>: No information was found on the carcinogenic potential of AMS.
 - Wolf et al. (1956) exposed rats, guinea pigs, rabbits, and rhesus monkeys to AMS vapors for 7 hours/day, 5 days/week for up to 212 days (in the high dose groups of rats and guinea pigs, the experiment lasted only 3-4 days). The concentrations employed ranged from 200 to 3000 ppm for rats

2.1

. . . .

and guinea pigs, and were 200 and 600 ppm for rabbits and monkeys. Further details and results of repeated AMS vapor inhalation are given in Table 2. Growth depression and increase in liver and kidney weights were observed. Some rabbits in the high-dose group died after 152 exposures. No ill effects were observed in monkeys following 149 exposures at 600 ppm. No ill effects were observed in any of the species after 139 exposures at 200 ppm over a period of 197 days. Gerarde (1960) noted that an important negative finding in this investigation was the lack of any evidence of injury to the blood-forming tissues.

Makar'eva (1972) studied the effect of chronic AMS exposure on leukopoiesis and functional state of leukocytes in rats and rabbits. Twenty-one rats and 8 rabbits were exposed (route unspecified) for 3 months to average AMS concentrations of 0.59 ± 0.09 mg/L (100 times higher than permissible) with functional measurements taken during the exposure period. This resulted in a decrease of osmotic stability of leukocytes, and glycogen and peroxidase content in the neutrophils.

6. <u>Teratogenicity and Reproductive Effects</u>: In a 4-month inhalation study by Serebrennikov and Ogleznev (1978), female rats exposed to AMS at the maximum permissible concentration showed increased embryonal mortality (33.3%), as compared to 7.5% in the controls. The frequency of malformations (teratogenesis) also increased to 21.0%, as compared to 3.0% in controls. The type of malformations were not indicated in the English abstract of this Russian paper.

Animal	Average Concent			7-Hr Exposures,	Duration of Experiment,				
Species	ppm	mg/L	Sex	No.	Days		Effe	ets*	
Rat	3,000	14.49	Both	3-4	34				M+++
	800	3.86	Both	28	38	G+;	Lw+;	Kw+	
	600	2.90	Both	149	212		Lw+;	Kw+	
	200	0.97	Both	139	197			No effect	
Guinea	3,000	14.49	Both	3-4	3-4				M+++
pig	800	3.86	Both	27	38	G+;	Lw+;	Kw+	
	600	2.90	Both	144	212		Lw+		
	200	0.97	Both	139	197			No effect	
Rabbit	600	2.90	Both	152	212	G+;			M+ -
	200	0.97	Both	139	197	-		No effect	
Rhesus	600	2.90	F	149	212		· · · · · · · · · · · · · · · · · · ·	No effect	
monkey	200	0.97	Both	139	197	ан • <u></u>		No effect	

The intensity of response is noted as follows:

+ = slight

++ = moderate

+++ = severe

Table 2. Results of Repeated Vapor Inhalation on Animals Exposed to a-Methyl Styrene

*G = growth depression

w = weight increase

L = liver

K = kidney

M = mortality

^aAdapted from Wolf et al. (1956)

. . .

C. Genotoxicity

AMS was tested for its ability to induce sister-chromatid exchanges (SCE's) in human lymphocytes (Norppa and Vainio, 1983). Lymphocytes from whole blood of a healthy male donor were treated for 48 hours with the test compound at concentrations ranging from 0.33 to 10 mM. AMS showed a positive effect only at the 0.33 mM level; however, it did not double the mean number of SCE's/cell over the corresponding control cultures.

D. Structure-Activity Relationships

Methylated styrenes and styrene are known to induce SCE's in human whole-blood lymphocyte cultures without exogenous metabolic activation systems (Norppa and Vainio, 1983). Since these compounds are not direct mutagens, they are perhaps converted into reactive metabolites in vitro. Styrene analogs (2-phenylethanol and ethylbenzene) without a double bond in the sidechain show negative or weak effects in SCE induction. This suggests that these compounds are not themselves effective mutagens and are not converted into reactive species in the test system; the reactive metabolites are derived from the conversion of the vinyl group of styrene and methylated styrenes and are styrene-7,8-oxides.

The testing status of related compounds, currently being studied by the National Toxicology Program, is summarized in Table 3.

IV. Nomination Source

- A. Source: Environmental Protection Agency (USEPA, 1984)
- B. <u>Recommendation</u>: Toxicological evaluation Genetic toxicology

Subchronic

Chemical	CAS Number	Genotoxicity	Carcinogenicity	Other
Methyl Styrene ^b	98-83-9	-Selected for <u>Salmonella</u> -On test for chromosomal aberrations and sister chromatid exchanges in CHO cells		_
Styrene	100-42-5	-Negative in <u>Salmonella</u> -On test for sex-linked recessive lethal mutations in <u>Drosophilla</u> -On test for chromo- somal aberrations and sister chromatid exchanges in CHO cells	-Equivocal in gavage bioassay; increased incidence of lung adenomas and carci- nomas in mice; however, convincing evidence for carcinogenicity in mice and rats is lacking -Nominated for inha- lation carcinogenesis studies	
Styrene oxide	96-09-3	-Positive in mouse lymphoma	-Report of gavage bio- assay in preparation by Frederick Cancer Research Foundation	-Inhalation tera- tology study: 16% maternal mortality; reduced maternal body weight; reduced liver weight; increased lung and kidney weight; reduced number of preg- nancies -Inhalation tera- tology study: 79.2% maternal mortality at 50 ppm; l6.7% at 15 ppm; reduced weight gain at 50 ppm; increased lung weight. Fetal effect: reduced weight
Vinyl toluene	25013-15-4	-Negative in <u>Salmonella</u> -Positive in mouse lymphoma -On test for chromosomal aberrations and sister chromatid exchanges in CHO cells	-Histology phase of inhalation bioassay in progress	-Dominant lethal test, no repro- ductive effects, reduced kidney and testes weights

1

Table 3. NTP Testing Status of Compounds Related to AMS^a

.

-19-

• 4 4

Chemical	CAS Number	Genotoxicity	Carcinogenicity	Other
Divinylbenzene	1321-74-0	-Negative in <u>Salmonella</u> in two independent studies	_	
Ethylbenzene	100-41-4	-Negative in <u>Salmonella</u> -On test in mouse lymphoma -Negative for chromosomal aberrations and sister chromatid exchanges in CHO cells.		-Inhalation tera- tology study: incresed maternal liver weight at 960 ppm; reduced number of live fetuses/litter at 100 and 960
			с. Х.	ppm -Inhalation tera- tology study: reduced pregesta- tion body weight;
			ν. • • • • • • • • • • • • • • • • • • •	increased liver, kidney, and spleen weight; fewer pregnan- cies; reduced fetal length; increase in fetal ribs -Dominant lethal test: inadequate results

Table 3. NTP Testing Status of Compounds Related to AMS^{a,b} (continued)

^aNTP CHEMTRACK (1986).

2

^bAMS has been nominated for genetic toxicology and subchronic testing (see Section IV).

1.11

- C. <u>Rationale</u>: Very high production Limited <u>in vitro</u> data
- D. <u>Priority</u>: None given

E. Date of Nomination: July 1984

۷.

Chemical Evaluation Committee Review

- A. Date of Review: October 23, 1985
- B. <u>Recommendations</u>: -In-depth toxicological evaluation

-Short-term in vivo reproductive toxicity assay

-<u>In vitro</u> cytogenetics

- C. Priority: Low
- D. NTP Chemical Selection Principle(s): 3, 8
- E. <u>Rationale/Remarks</u>: -High production

-Potential for toxicity based on in vitro data

VI. Board of Scientific Counselors Review

- A. Date of Review: October 23, 1985
- B. <u>Recommendations</u>: In-depth toxicological evaluation - Short-term in vivo reproductive toxicity assay - In vitro cytogenetics
- C. Priority: Low
- D. <u>Rationale/Remarks</u>: High production - Lack of toxicity data

VII. Executive Committee Review

A. Date of Review: August 24, 1987

B. <u>Decision</u>: Selected as an NTP FY 1987 priority chemical for in-depth toxicological evaluation

VIII. Information Sources

This report was prepared by a multidisciplinary team of scientists and technicians. Dr. Satish Bhalla was the principal author.

The information resources used in preparing this review include the automated data bases listed below, journal articles, general reference materials, and contractor/agency reports.

ON-LINE DATA BASES SEARCHED

MÉDLARS

CHEMLINE RTECS TDB MEDLINE TOXLINE TOX 76 TOX 65 CANCERLIT CANCERPROJ EXPRESS

Ξ.

•

1983-Present 1966-Present 1976-1980 1940-1975 1963-Present 1978-1981 1984-Present

DIALOG

AGRICOLA	1970-Present
AQUALINE	1960-Present
BIOSIS PREVIEWS	1969-Present
CA SEARCH	1967-Present
CHEMICAL EXPOSURE	1974-Present
CIN (Chemical Indust. Notes)	1974-Present
CLAIMS/U.S. PATENT ABSTRACTS	1950-Present
CONFERENCE PAPERS INDEX	1973-Present
CRGS (Chemical Regulations and Guidelines)	1982-Present
System)	
EMBASE	1974-Present
ENVIROLINE	1971-Present
ENVIRONMENTAL BIBLIOGRAPHY	1974-Present
FEDERAL REGISTER ABSTRACTS	1977-Present
FEDERAL RESEARCH IN PROGRESS	1976-Present
GPO	
LIFE SCIENCES COLLECTION	1978-Present
NTIS	1970-Present
OCCUPATIONAL SAFETY AND HEALTH	1972-Present
PTS PROMT	1972-Present
PTS F&S INDEXES	1972-Present
POLLUTION ABSTRACTS	1970-Present
SCISEARCH	1974-Present

CIS

OHMTADS SPHERE, CESARS, DERMAL, ENVIROFATE, GENETOX, and ISHOW

+ 13 ⁺

.

BRS

KIRK-OTHMER

1978-Present

÷

INFOLINE

LABORATORY HAZARD BULLETIN1981-PresentCURRENT AWARENESS IN BIOLOGICAL SCIENCES1983-PresentCHEMICAL HAZARDS IN INDUSTRY1984-PresentWORLD SURFACE COATING ABSTRACTS1976-Present

OTHERS

CECATS CURRENT AWARENESS DIDS EMIC ETIC EPACASR FSTA (Food Science and Technology Abstracts) IPA (International Pharmaceutical Abstracts) ITS METADEX NOES NOHS NTP CHEMTRACK STORET TSCA INVENTORY HAZARDLINE OSHA MONITORING DATA BASE WORLD TEXTILES

1950-Present 1940-Present

1969-Present 1970-Present

1966-Present

1983-Present

1970-Present

ENCLOSURE 1 TSCA Inventory

98-83-9 STH COLLECTIVE INDEX NAME: ÷ STYRENE, .ALPHA.-METHYL-9TH COLLECTIVE INDEX NAME: BENZENE, (1-METHYLETHENYL)-CHEVRON U.S.A. INC (000976C)P.O. BOX 1272 RICHMOND REFINERY RICHMOND CA 94802 MANUFACTURER 1977 PRODUCTION OF 1 MILLION TO TEN MILLION POUNDS DOW CHEMICAL COMPANY U.S.A. (0010246) MICHIGAN DIVISION 809 E. MAIN STREET MIDLAND MI -48640MANUFACTURER 1977 PRODUCTION OF 1 MILLION TO TEN MILLION POUNDS MONSANTO CO. (002043M) ATTN: PHILLIP E. BRUBAKER BOX 1311 TEXAS CITY TX 77590 MANUFACTURER 1977 PRODUCTION OF 100,000 TO 1,000,000 POUNDS MONSANTO COMPANY (002060B) ATTN: GORDON E DAVENPORT P.O. BOX 711 ALVIN TΧ 77511 MANUFACTURER PRODUCED SITE LIMITED 1977 PRODUCTION OF TEN MILLION TO FIFTY MILLION POUNDS U.S. STEEL CORP. (0032950)ATTN: S.J. DEMSKI BOX 127 IRONTON **DH** 45638 MANUFACTURER 1977 PRODUCTION OF TEN MILLION TO FIFTY MILLION POUNDS UNION CARBIDE CARIBE (003325P) P.O. BOX 3168 - PONCE PLANT PONCE PR: MANUFACTURER UNION CARBIDE CORPORATION (003334Y) RIVER ROAD BOUND BROOK 14 1 08805 MANUFACTURER -24-

ENCLOSURE 1 TSCA Inventory (continued)

2800 FARM ROAD	(0033742)
	TX 77590
ALLIED CHEMICAL CORPORATION MARGARET & BERMUDA STREETS	(0034376)
PHILADELPHIA MANUFACTURER	PA 19137
SHELL OIL COMPANY P.O. BOX 100	(0043341)
	TX 77536
GEORGIA-PACIFIC CORP-PLAQUEMI HWY 405	(006219W)
PLAQUEMINE MANUFACTURER	LA 70764 ILLION TO FIFTY MILLION POUNDS
GETTY REFINING & MARKETING	
P.O. BOX 1121 EL DORADO	KS 67042
MANUFACTURER 1977 PRODUCTION OF 1 MIL	LION TO TEN MILLION POUNDS
CLARK DIL & REFINING CORP. ATTN: ROBERT H. BRUGGINK 131ST AND KEDZIE AVENUE	(007072B)
BLUE ISLAND MANUFACTURER	IL 60406
1977 PRODUCTION OF 1 MIL	LION TO TEN MILLION POUNDS
CHEMICAL EXCHANGE CD., INC. FINI BAKER ROAD	
A THUN 1A-CTURER	TX 77520
(**** RODUCTION OF 100,0	00 18 190009000

والارتجاز والمعادية

. . . .

.

namina bana at nari dalah birdara matalara dalamatar di kanar ku

-25-

1.1

National Occupational Hazard Survey

PROJECTED NUMBERS BY INDUSTRY					07/23/85		
CAS	#	HAZ	DESCRIPTION				
00009	0839	M1533 M	ETHYLSTYRENE, ALPHA-	·			
SIC				ESTIMATED	ESTIMATED	ESTIMATED	
CODE	DESCRIPTION			PLANTS	PEOPLE	EXPOSURES	
<u>1</u> 5	GENERAL AUTED			73	1,813 **	1,813	
16	HEAVY CONSTRUC			63	6,254 ***	6,254	
25	FURNITURE AND			23	464 ±=±	464	
59	PAPER AND ALL			46	3,971 ###	3,971	
28	CHEMICALS AND			206	2,760 ***	4,007	
30	RUBBER AND PL;	STICS PI	RODUCTS. NEC	24	47 ***	47	
31	LEATHER AND LE			13	13 ***	13	
33	PRIMARY METAL				287 ***	287	
34	FARHICATED MET			203	581 ***	891	
37	TRAISPORTATION	EQUIPM	INT		287 ***	287	
48	COMMUNICATION			_45	91 ***	91	
<u>55</u>			SERVICE STATIONS	794	3,175 ***	3,175	
72	PERSONAL SERVI			355	710 **	710	
73	MISCELLANEOUS	BUSINES	SERVICES	109	4,565 ***	4,565	
TOTAL				1,999	25,018 ***	26,575	
**	USE FIRST STAN	ARD DEV	LATION COLUMN. EMPLOYEE 1	ABLE			
* * *	USE SECOND STA	NDARD DI	EVIATION COLUMN. EMPLOYEE	TABLE		.	
			· · · · · · · · · · · · · · · · · · ·			-	

ENCLOSURE 2 NOHS

National Occupational Hazard Survey

· · · ·

ION		
ALPHA-	· · · · · · · · · · · · · · · · · · ·	
FATTMATEN	ESTIMATED	ESTIMATED
PLANTS	PEOPLE	EXPOSURES
5	15 ***	15
30	30 ***	30
30	120 ***	120
68	324 ***	324
45	91 +++	91
135	224 ***	292
5	20 ***	20
19, N.E.C 30	120 ***	120
)E 104	1,872 ***	1,872
202	618 ***	685
ERS 30	60 ***	60
43	129 ***	129
30	90 ***	90
30	300 ***	300
, 87	250 ***	220
508	3,238 ***	3,238
		2,300
		330
		22
· · · · · · · · · · · · · · · · · · ·		1,813
· 7		112
TI (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	And the second sec	150
		710
		1,355
• • •		13
		2,324
	••••	1,042
• =		626
	33 k**	33
11	23 858	
TER HEIPER		h.754
TER HELPER 63	6,254 ±**	6,254
TER HELPER 63 30	690 ***	690
TER HELPER 63	6,254 ±**	
	ALPHA- ESTIMATED PLANTS 30 30 68 45 135 59. N.E.C. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50	ALPHA= ESTIMATED ESTIMATED PLANTS PEOPLE 30 30 *** 30 30 *** 30 120 *** 68 324 *** 45 91 *** 135 224 *** 45 91 *** 135 224 *** 135 224 *** 5 20 *** 135 224 *** 5 20 *** 104 1,672 *** 202 618 ** 203 60 *** 30 90 *** 30 90 *** 30 300 *** 87 220 *** 30 300 *** 43 129 *** 30 300 *** 139 2.300 *** 802 3.238 *** 130 130 *** 30 30 *** 11 22 *** 30 30 *** 13 1,813 ***

-27-

,

NIOSH TRADENAME INGREDIENT DATA BASE - NOHS DATE (17/23/85 PAGE 19
33 METHYLSTYRENE, ALPHA-	······
0009408 CELLO CHEMICAL COS8200 FISHER AVESBALTIMORE, MD 21222	
0082644 CELLO SPRAY BUFF SYSTEM	x 50
0577201 CELLOTHANE	03 <u>x</u>
0080289 PENNSYLVANIA INDUS CHEMICALSPO BOX 2403CLAIRTON, PA 15025	
0493369 PICCO 6100 TOVMP	04 X
0493372 PICCODIENE 2215	05 X
0945119 PICCODIENE 275-74A RESIN	04 %
0126540 THIELE-ENGDAHL INCS714 DIVISION STSELIZABETH, NJ 07201	
D126598 TOPLACQUER AJM-6809	32 x
0182079 INMONT CORPSRUUTE 17 & GREGG STREETSLODI, NJ 07644	
0616626 836 POLY STYRENE	20 x
0235925 UPACO ADHESIVES INCLMONUMENTAL ADHESIVES DIVS3 E SPITBROOK RDSPD BOX 1207SNASHUA, NH	
0471316 SLC-8029	. 33 X
U277967 A HOCD CHEMICALS CORPS200 E RANDOLPH DRSCHICAGO, IL 60601	
6020098 A110CO RESIN 18-290	99 X
0290596 BORG-HARNER CORPSMARBON CHEMICAL DIVS200 S MICHIGAN AVESCHICAGO, IL 60604	•
0641540 2650 CYCOL	53 X
0641542 CYCOLOX800	24 %
C359629 THIDKOL CHEMICAL CORPSPO BOX 5175MOSS POINT, MS 39563	
0360467 TP=680	. 99 %
0905445 NEVILLE CHEMICAL\$432 W TURKEYFOOT LAKESAKRON, OH 44319	
0905444 CUMAR W 2 1/2	01 X
1014470 HERCULES INCSBIG NORTHLAND TOWERS WESTSSOUTHFIELD, MI 48075	
6012548 PICCO 6120-3	14 ¥
6000235 HERCULES INCSINDUSTRIAL CHEMICAL DIVS120 STATE STSCLAIRTON, PA 15025	
6009330 PICCOTEX 120	50 X

;

\$\$**"**,

IX. References

ACGIH. 1984. TLV's-Threshold Limit Values for Chemical Substances and Physical Agents in the Work Environment and Biological Exposure Indices with Intended Changes for 1984-85. Cincinnati, OH: American Conference of Governmental Industrial Hygienists. p. 25.

Aizvert LG. 1974. Test of occupational exposure to alpha-methylstyrene according to the atrolactic content of the urine. [In Russian]. Vopr. Gig. Tr. Profzabol., Mater. Itogovoi Nauchn. Konf. pp. 17-20. [Abstract].

Aizvert LG. 1975. Determination of atrolactic acid in urine as a test for exposure to alpha-methylstyrene. [In Russian]. Gig. Tr. Prof. Zabol. 3:38-41. [Abstract].

Aizvert LG. 1979. Absorption of alpha-methylstyrene through human skin. [In Russian]. Gig. Tr. Prof. Zabol. 8:32-36. [Abstract].

Amoore JE, Hautala E. 1983. Odor as an aid to chemical safety: Odor thresholds compared with the threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J. Appl. Toxicol. 3(6):272-290.

Bardodej Z, Bardodejova E. 1970. Biotransformation of ethyl benzene, styrene, and alpha-methylstyrene in man. Am. Ind. Hyg. Assoc. J. 31:206-209.

Bravve VN. 1974. Content of vitamin B_{12} in the serum of workers at the Krasnoyarsk synthetic rubber plant. [In Russian]. Narusheniya Metab., Tr. Nauchn. Konf. Med. Inst. Zapadn. Sib., lst. 259-261. [Abstract].

CEH. 1985. Chemical Economics Handbook. Stanford Research Institute, Menlo Park, CA: SRI International. Section 638.5030K.

Cocheo V, Bellomo ML, Bombi GG. 1983. Rubber manufacture: Sampling and identification of volatile pollutants. Am. Ind. Hyg. Assoc. J. 44(7):521-527.

Demchenko VG. 1978. Effect of occupational factors on the functional state of the respiratory system of synthetic rubber production workers. [In Russian]. Gig. Tr. Prof. Zabol. 7:52. [Abstract].

Gerarde H. 1960. Toxicology and Biochemistry of Aromatic Hydrocarbons. New York, NY: Elsevier Publishing Company. pp. 129-133.

Hawley GG. 1981. The Condensed Chemical Dictionary. 10th ed. New York, NY: Van Nostrand Reinhold Company, Inc. p. 690.

HAZARDLINE. 1985. [data base]. New York, NY: Occupational Health Services, Inc.

Ilyaletdinov AN, Alieva RM, Dzhusupova DB. 1983. Bacteria that decompose a-methylstyrene. Microbiology 52(4):477-481.

4.4

ISHOW. 1985. Information System for Hazardous Organics in Water [data base]. Baltimore, MD: Chemical Information Systems, Inc. Supported by the National Institutes of Health/U.S. Environmental Protection Agency.

ITS. 1985. Interagency Tracking System [data base]. Washington, DC: TSCA Interagency Testing Committee/U.S. Environmental Protection Agency.

Kirk-Othmer. 1983. Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed., Vol. 21. New York, NY: John Wiley & Sons. pp. 310, 795-796.

Klimina GM. 1974. Study of the single-dose effect of high concentrations of alpha-methylstyrene and acrylonitrile on the cholinergic mediation system. [In Russian]. Narusheniya Metab., Tr. Nauchn. Konf. Med. Inst. Zapadn. Sib., 1st. 46-48. [Abstract].

Makar'eva LM. 1972. Effect of isopropylbenzene and alpha-methylstyrene on leucopoiesis. [In Russian]. Farmakol. Toksikol. 35(4):491-492. [Abstract].

Mirzoyan IM, Zhakenova RK. 1972. Effect of alpha-methylstyrene and tert-dodecyl mercaptan on the skin of animals. [In Russian]. Vopr. Gig. Tr. Profzabol., Mater. Nauchn. Konf., 247-249. [Abstract].

NIOSH. 1976. National Occupational Hazard Survey (1972-1974) [data base]. Cincinnati, OH: Department of Health and Human Services, National Institute for Occupational Safety and Health.

NIOSH. 1984. National Occupational Exposure Survey (1980-1983) [data base]. Cincinnati, OH: Department of Health and Human Services, National Institute for Occupational Safety and Health.

Norppa H, Vainio H. 1983. Induction of sister-chromatid exchanges by styrene analogues in cultured human lymphocytes. Mutat. Res. 116:379-387.

NTP CHEMTRACK. 1986. [data base]. Research Triangle Park, NC: National Toxicology Program/National Institute of Environmental Health Sciences. U.S. Department of Health and Human Services. Results report as of 2-7-86.

OSHA. 1983. OSHA Safety and Health Standards for General Industry. 29 CFR 1910. Subpart Z. U.S. Department of Labor, Occupational Safety and Health Administration. Washington, DC, U.S. Government Printing Office. OSHA Publication No. 2206. p. 601.

Pfäffli P, Zitting A, Vainio H. 1978. Thermal degradation products of homopolymer polystyrene in the air. Scand. J. Work Environ. Health 4:22-27.

Putälova TV. 1979. Status of the liver function in workers of various butadiene-methylstyrene rubber factories. [In Russian]. Gig. Tr. Prof. Zabol. 6:21-24. [Abstract].

Samimi B, Falbo L. 1982. Monitoring of workers exposure to low levels of airborne monomers in a polystyrene production plant. Am. Ind. Hyg. Assoc. J. 43(11):858-862.

Santodonato J, Meylan WM, Davis LN, Howard PH, Orzel DM, Bogyo DA. 1980. Investigation of selected potential environmental contaminants: Styrene, ethylbenzene, and related compounds. Syracuse Research Corporation report to U.S. EPA Office of Toxic Substances. EPA Report No. EPA-560/11-80-018. pp. 4, 11, 14, 49, 50, 57, 69, 80, 84, 118, 226, 228.

13

 \mathfrak{O}

Serebrennikov OA, Ogleznev GA. 1978. Developmental anomalies in the mother-fetus system following exposure to petrochemical products. [In Russian]. Chem. Abstr. No. 091/205223A. [Document pending].

Sergeta VN, Al'berton NI, Fomenko VP. 1977. Serum ornithine carbamoyl transferase activity of workers in the synthetic rubber industry. [In Russian]. Zdravookhr. Kaz; Issue 1:50-53. [Abstract].

Sittig M. 1981. Handbook of Toxic and Hazardous Chemicals. Park Ridge, NJ: Noyes Publications. p. 465.

Solov'ev II. 1974. General and particular features of cerebral metabolic failure under the effect of different substances on an organism. [In Russian]. Narusheniya Metab., Tr. Nauchn. Konf. Med. Inst. Zapadn. Sib., 1st; 255-258. [Abstract].

Solov'ev II, Barashkova VI. 1978. Effect of alpha-methylstyrene on the content of free amino acids in the rat brain. [In Russian]. Patol. Fiziol. Eksp. Ter. 4:74-76. [Abstract].

SRI International. 1985. Directory of Chemical Producers, USA, 1984. Menlo Park, CA: SRI International. p. 723.

TDB. 1985. Toxicology Data Bank [data base]. Bethesda, MD: National Library of Medicine, U.S. Department of Health and Human Services.

USDOT. 1984. U.S. Department of Transportation. Optional hazard materials table. Hazardous Materials Transport Act. Code of Federal Regulations, Vol. 49, Section 172.102, p. 227.

USEPA. 1984. U.S. Environmental Protection Agency. Personal communication from L. Rosenstein, Test Rules Development Branch, EPA, Washington, DC to D. Canter, NTP, Bethesda, MD. July 1984.

ŝ.

USEPA. 1985a. U.S. Environmental Protection Agency. Computer printout (CICIS): 1977 Production Statistics for Chemicals in the Nonconfidential Initial TSCA Chemical Substance Inventory. Retrieved June 10, 1985. Washington, DC: Office of Pesticides and Toxic Substances.

USEPA. 1985b. U.S. Environmental Protection Agency. 40 CFR parts 117 and 302. Notification requirements; reportable quantity adjustments; final rule and proposed rule. Fed. Reg., Vol. 50, No. 65. April 4, 1985. pp. 13456-13522.

USITC. 1981a. U.S. International Trade Commission. Synthetic Organic Chemicals, United States Production and Sales, 1980. Washington, DC: U.S. Government Printing Office. Publication No. 1183. pp. 25, 49. USITC. 1982a. U.S. International Trade Commission. Synthetic Organic Chemicals United States Production and Sales, 1981. Washington, DC: U.S. Government Printing Office. Publication No. 1221. pp. 25, 44.

et it m

dia:

USITC. 1983a. U.S. International Trade Commission. Synthetic Organic Chemicals, United States Production and Sales, 1982. Washington, DC: U.S. Government Printing Office. Publication No. 1422. pp. 27, 47.

USITC 1984a. U.S. International Trade Commission. Synthetic Organic Chemicals, United States Production and Sales, 1983. Washington, DC: U.S. Government Printing Office. Publication No. 1588. pp. 27, 46.

USITC. 1981b. U.S. International Trade Commission. Imports of Benzenoid Chemicals and Products, 1980. Washington, DC: U.S. Government Printing Office. Publication No. 1163. p. 23.

USITC. 1982b. U.S. International Trade Commission. Imports of Benzenoid Chemicals and Products, 1981. Washington, DC: U.S. Government Printing Office. Publication No. 1272.

USITC. 1983b. U.S. International Trade Commission. Imports of Benzenoid Chemicals and Products, 1982. Washington, DC: U.S. Government Printing Office. Publication No. 1401. p. 21.

USITC. 1984b. U.S. International Trade Commission. Imports of Benzenoid Chemicals and Products, 1983. Washington, DC: U.S. Government Printing Office. Publication No. 1548.

Verschueren K. 1977. Handbook of Environmental Data on Organic Chemicals. New York, NY: Van Nostrand Reinhold Co. p. 471.

Weast RC. 1984. CRC Handbook of Chemistry & Physics. A Ready-Reference Book of Chemical and Physical Data. 65th ed. West Palm Beach, FL: CRC Press, Inc. p. C-522.

Wolf MA, Rowe VK, McCollister DD, Hollingsworth RL, Oyen F. 1956. Toxicological studies of certain alkylated benzenes and benzene. AMA Arch. Ind. Health 14:387-398.