s-Trioxane
[110-88-3]

Review of Toxicological Literature

Prepared for

Errol Zeiger, Ph.D.
National Institute of Environmental Health Sciences
P.O. Box 12233
Research Triangle Park, North Carolina 27709
Contract No. N01-ES-65402

Submitted by

Raymond Tice, Ph.D. (Principal Investigator)
Brigette Brevard, M.A. (Co-Principal Investigator)
Integrated Laboratory Systems
P.O. Box 13501
Research Triangle Park, North Carolina 27709

March 1999
BASIS FOR NOMINATION

s-Trioxane was nominated by the National Institute of Environmental Health Sciences (NIEHS) for toxicity and carcinogenicity testing based on its high U.S. production volume and potentially high human exposure.

Chemical Identification: *s*-Trioxane (CASRN: 110-88-3; C₃H₆O₃; mol. wt. = 90.08) is also called formaldehyde, trimer; metaformaldehyde; sym-trioxane; 1,3,5-trioxacyclohexane; 1,3,5-trioxane; and trioxymethylene (Lewis, 1993; Budavari, 1996).

![Chemical Structure](image)

Physical-Chemical Properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State</td>
<td>White, crystalline solid</td>
<td>Budavari (1996); Radian (1991)</td>
</tr>
<tr>
<td>Odor</td>
<td>Chloroform-like</td>
<td>Budavari (1996)</td>
</tr>
<tr>
<td>Boiling Point (°C @ 759 mm Hg)</td>
<td>114.5</td>
<td>Budavari (1996); Lide and Milne (1994)</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>64</td>
<td>Budavari (1996); Radian (1991)</td>
</tr>
<tr>
<td>Specific Gravity (@ 65°C/20°C)</td>
<td>1.17</td>
<td>Budavari (1996); Lide and Milne (1994)</td>
</tr>
<tr>
<td>Vapor Pressure (mm Hg @ 25°C)</td>
<td>13</td>
<td>Radian (1991)</td>
</tr>
<tr>
<td>Flash Point (°C/°F)</td>
<td>45/113</td>
<td>Budavari (1996); Radian (1991)</td>
</tr>
<tr>
<td>Soluble in:</td>
<td>Water, alcohol, ether, ketones, dimethyl-sulfoxide, and chlorinated and aromatic hydrocarbons</td>
<td>Budavari (1996); Lide and Milne (1994)</td>
</tr>
</tbody>
</table>

s-Trioxane is converted to formaldehyde in the presence of a strong acid in non-aqueous systems (Budavari, 1996). It is slowly depolymerized in strong acids, and is unreactive in basic solutions. When heated, it gives off formaldehyde vapors.

Production: *s*-Trioxane is produced by Hoechst-Celanese (Performance Products and Fine Chemicals Division) by distillation of formaldehyde with an acid catalyst, with solvent extraction (Lewis, 1993; Kuney, 1994). Annual production is estimated to be 92 to 181 million pounds.
Use: s-Trioxane is used as an intermediate in organic synthesis, mainly in the production of acetal resins (Gerberich and Seaman, 1992; Starr, 1991), as a medical disinfectant (Ligocka et al., 1998), and as a non-luminous, odorless fuel (Lewis, 1993). It is an active ingredient in some contraceptive creams (Ligocka et al., 1998). It is also used as an intermediate in the manufacture of artificial horns and ivory, and synthetic resins (Ligocka et al., 1998). Additionally, s-trioxane is used to produce CELCON®, a highly crystalline thermoplastic (Kitchens et al., 1976).

Environmental: s-Trioxane may enter the environment via waste streams as a result of its production and use. s-Trioxane has been detected at levels of 0.020-0.022 ppm (0.07-0.08 mg/m³; 0.78-0.89 µmol/m³) in air samples taken above preserved tissues under a canopy hood in a histology laboratory (Trocha and Samimi, 1993). In the atmosphere, depolymerization of s-trioxane would not be expected because of its stability under neutral or basic conditions. However, under slightly acidic conditions, slow depolymerization to formaldehyde is expected (Kitchens et al., 1976).

Human Exposure: Inhalation of vapors is the primary route of exposure. An estimated 5,829 employees were potentially exposed to s-trioxane in 1974 (RTECS, 1998). Dental students (male and female) exposed to allergy-producing substances, such as s-trioxane, had a higher incidence of latent allergies (65%) at the end of their fourth year of dental school than at the end of their second year (14%) (Dzhemileva et al., 1976; cited by HSDB, 1998).

Regulatory: Polyoxymethylene copolymers (used as an article or article component intended for food contact) containing s-trioxane are regulated by the Food and Drug Administration as indirect food additives (FDA) at 21 CFR §177.2470.

Chemical Disposition, Metabolism, and Toxicokinetics: s-Trioxane is metabolized to
formaldehyde (Ligocka et al., 1998). In an investigation of its distribution, excretion, and metabolism, s-trioxane was excreted mainly as exhaled CO₂ (Ligocka et al., 1998). It was distributed mainly to the liver and to a lesser extent to the fat and brain tissues. Because it is eliminated rapidly, s-trioxane is not expected to bioaccumulate significantly.

Toxicological Data: In rats, the oral LD₅₀ is 5,000 mg/kg (55.5 mmol/kg) and the inhalation LC₅₀ is <26 g/m³ (7,057 ppm; 288 mol/m³) (Czajkowska et al., 1980; cited by Ligocka et al., 1998). In rabbits, the dermal LD₅₀ is 10,000 mg/kg (111 mmol/kg) (Radian, 1991). s-Trioxane was strongly irritating to the eyes and skin of rabbits (Radian, 1991). In rats, chronic inhalation exposures (concentration n.p.) to s-trioxane caused pulmonary irritation and central nervous system impairment (Jedlinska et al., 1982; Czajkowska et al., 1983; both cited by Ligocka et al., 1998).

s-Trioxane retarded fetal development and caused significant congenital malformations and maternal toxicity in rats orally administered 1.55 or 3.87 g/kg (17.2 or 43.0 mmol/kg) every other day on days 8-20 of gestation (Sitarek et al., 1988; cited by Ligocka et al., 1998).

s-Trioxane was not mutagenic in *Salmonella typhimurium* strains TA97, TA98, TA100, TA1535, and TA1538 in the presence or absence of metabolic activation (Kowalski et al., 1984; Zeiger et al., 1988). It did not induce a significant increase in micronucleated mouse erythrocytes following intraperitoneal (i.p.) administration of 2,125-4,250 mg/kg (23.59-47.18 mmol/kg) (Przybojewska et al., 1984).

No data on carcinogenicity, immunotoxicity or structure-activity relationships were located.

REFERENCES

ACKNOWLEDGEMENTS

Support to the National Toxicology Program for the preparation of s-Trioxane—Review of Toxicological Literature was provided by Integrated Laboratory Systems, Inc., through NIEHS Contract Number N01-ES-65402. Contributors included: Raymond R. Tice, Ph.D. (Principal Investigator); Brigette D. Brevard, M.A. (Co-Principal Investigator); and Esther M. Morris, M.S.