National Cancer Institute CARCINOGENESIS Technical Report Series NO. 191

19**79**

BIOASSAY OF TECHNICAL GRADE BIS(2-CHLORO-1-METHYLETHYL) ETHER FOR POSSIBLE CARCINOGENICITY

CAS No. 108-60-1

NCI-CG-TR-191

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

BIOASSAY OF TECHNICAL-GRADE BIS(2-CHLORO-1-METHYLETHYL) ETHER FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health Bethesda, Maryland 20205

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

NIH Publication No. 79-1747

BIOASSAY OF TECHNICAL-GRADE BIS(2-CHLORO-1-METHYLETHYL) ETHER FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health

FOREWORD: This report presents the results of the bioassay of bis(2-chloro-l-methylethyl) ether conducted for the Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland. This is one of a series of experiments designed to determine whether selected chemicals have the capacity to produce cancer in animals. A negative result, in which the test animals do not have a greater incidence of cancer than control animals, does not necessarily mean that the test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of circumstances. A positive result demonstrates that the test chemical is carcinogenic for animals under the conditions of the test and indicates that exposure to the chemical is a potential risk to man. The actual determination of the risk to man from chemicals found to be carcinogenic in animals requires a wider analysis.

CONTRIBUTORS: This bioassay of bis(2-chloro-l-methylethyl) ether was conducted by Hazleton Laboratories America, Inc., Vienna, Virginia, initially under direct contract to NCI and currently under a subcontract to Tracor Jitco, Inc., Rockville, Maryland, prime contractor for the NCI Carcinogenesis Testing Program.

The NCI project officers who were responsible for selecting the protocols used in this bioassay were Drs. N. P. Page (1,2) and C. Cueto (1). The principal investigators were Drs. M. B. Powers (3,9) and R. W. Voelker (3). Ms. K. J. Petrovics (3) was responsible for data management, and Mr. G. Najarian (3,4) for animal care. Histopathologic examinations were performed by Dr. B. M. Ulland (3), and the diagnoses included in this report represent his interpretation.

Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute (5). Statistical analyses were performed by Dr. J. R. Joiner (6), using methods selected for the bioassay program by Dr. J. J. Gart (7).

Chemicals used in this bioassay were analyzed at Midwest Research Institute (8), and gavage mixtures containing the test chemical were analyzed at Hazleton Laboratories by Dr. C. L. Guyton (3) and Mr. E. Missaghi (3). The results of these analyses were reviewed by Dr. C. W. Jameson (6,9).

This report was prepared at Tracor Jitco (6) in collaboration with Hazleton Laboratories and NCI. Those responsible for the report at Tracor Jitco were Dr. C. R. Angel, Acting Director of the Bioassay Program; Dr. S. S. Olin, Deputy Director for Science; Dr. J. F. Robens (10), toxicologist; Drs. R. L. Schueler, pathologist; Ms. L. A. Owen and Mr. W. D. Reichardt, bioscience writers; and Dr. E. W. Gumberg, technical editor, assisted by Ms. Y. E. Presley.

The following scientists at NCI (1) were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. Kenneth C. Chu, Dr. Cipriano Cueto, Jr., Dr. J. Fielding Douglas, Dr. Richard A. Griesemer, Dr. Charles K. Grieshaber, Dr. Thomas E. Hamm, Dr. William V. Hartwell, Dr. Morton H. Levitt, Dr. Harry Mahar, Dr. Harry A. Milman, Dr. Thomas W. Orme, Dr. A. R. Patel, Dr. Marcelina B. Powers, Dr. Sherman F. Stinson, Dr. Jerrold M. Ward, and Dr. Carrie E. Whitmire.

- (1) Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- (2) Now with Office of Toxic Substances TS 788, the Environmental Protection Agency, 401 M Street, S.W., Washington, D.C.
- (3) Hazleton Laboratories America, Inc., 9200 Leesburg Turnpike, Vienna, Virginia.
- (4) Now with Tracor Jitco.
- (5) EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland.
- (6) Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland.

- (7) Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- (8) Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri.
- (9) Now with Carcinogenesis Testing Program.
- (10) Now with the Bureau of Veterinary Medicine, Food and Drug Administration, 5600 Fishers Lane, Rockville, Maryland.

SUMMARY

A bioassay of technical-grade bis(2-chloro-l-methylethyl) ether for possible carcinogenicity was conducted by administering the test chemical by gavage to F344 rats.

Groups of 50 rats of each sex were administered a solution of bis(2-chloro-1-methylethyl) ether in corn oil 5 days per week at either 100 or 200 mg/kg/day for 103 weeks. Vehicle controls consisted of groups of 50 rats of each sex that were administered the corn oil alone. Untreated-control groups of the same size were also used. All surviving rats were killed at week 104 or 105.

Mean body weights of the dosed groups of male and female rats were lower than those of the corresponding vehicle-control groups throughout most of the study and were dose related. Similarly, survivals of the high-dose males and of both the high- and low-dose females were lower than those of the corresponding vehicle controls and were dose related. Almost all animals in the high-dose groups died by the end of the bioassay.

No tumors occurred in the dosed groups of rats of either sex at incidences that were significantly higher than those of the vehicle-control groups.

It is concluded that under the conditions of this bioassay, the technical-grade test material, bis(2-chloro-l-methlyethyl) ether, was not carcinogenic for F344 rats of either sex.

TABLE OF CONTENTS

I.	Introduction	1
11.	Materials and Methods	5
	A. Chemical B. Dosage Preparation	5 6
	C. Animals	7
	D. Animal Maintenance	7
	E. Subchronic Studies	9
	F. Chronic Studies	11
	G. Clinical Examinations and Pathology	11 14
111	Results	17
	A. Body Weights and Clinical Signs	17
	B. Survival	17
	C. Pathology	20
	D. Statistical Analyses of Results	22
IV.	Discussion	33
v.	Bibliography	35

APPENDIXES

Appendix A	Summary of the Incidence of Neoplasms in Rats Administered Bis(2-chloro-l-methylethyl) ether By Gavage	39
Table Al	Summary of the Incidence of Neoplasms in Male Rats Administered Bis(2-chloro-1- Methylethyl) ether by Gavage	41
Table A2	Summary of the Incidence of Neoplasms in Female Rats Administered Bis(2-chloro-1- Methylethyl) ether	46

Appendix B	Summary of the Incidence of Nonneoplastic Lesions in Rats Administered Bis(2-chloro-1- methylethyl) ether by Gavage	51
Table Bl	Summary of the Incidence of Nonneoplastic Lesions in Male Rats Administered Bis(2-chloro-l-methylethyl) ether by Gavage	53
Table B2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Administered Bis(2-chloro-l-methylethyl) ether by Gavage	60
Appendix C	Analysis of Bis(2-chloro-l-methylethyl) ether	67
	TABLES	
Table l	Survival and Mean Body Weights of Rats Gavaged with Bis(2-chloro-l-methylethyl) for 13 Weeks	10
Table 2	Bis(2-chloro-l-methylethyl) ether Chronic Gavage Studies in Rats	12
Table 3	Analyses of the Incidence of Primary Tumors in Male Rats Administered Bis(2-chloro-1- methylethyl) ether by Gavage	24
Table 4	Analyses of the Incidence of Primary Tumors in Female Rats Administered Bis(2-chloro-1- methylethyl) ether by Gavage	28
	FIGURES	
Figure l	Growth Curves for Rats Administered Bis(2-chloro-l-methylethyl) ether by Gavage	18
Figure 2	Survival Curves for Rats Administered Bis(2-chloro-l-methylethyl) ether by Gavage	19
Figure 3	Infrared Absorption Spectrum of Bis(2-chloro- l-methylethyl) ether, Lot No. 7	76
Figure 4	Infrared Absorption Spectrum of Bis(2-chloro- l-methylethyl) ether, Lot No. PB41576	77
Figure 5	Infrared Absorption Spectrum of Bis(2-chloro- l-methylethyl) ether, Lot No. I62976	78

Figure 6	Nuclear Magnetic Resonance Spectrum of Bis(2- chloro-l-methylethyl) ether, Lot No. 7	79
Figure 7	Nuclear Magnetic Resonance Spectrum of Bis(2- chloro-l-methylethyl) ether, Lot No. PB41576	80
Figure 8	Nuclear Magnetic Resonance Spectrum of Bis(2- chloro-l-methylethyl) ether, Lot No. 162976	81

Page

I. INTRODUCTION

Bis(2-chloro-1-methylethyl) ether

Bis(2-chloro-1-methylethyl) ether (CAS 108-60-1; NCI C50044) is a beta-haloether and a byproduct of propylene oxide and propylene glycol manufacture (Lapkin, 1966; Cook, 1971). It has been found in effluent from industrial plants, downstream from these plants in raw intake water, and in tap water from the Ohio River in Evansville, Indiana (Kleopfer and Fairless, 1972). Concentrations found in this river in 1971 ranged from 0.5 to 5 μ g/1, and a concentration of 0.8 μ g/1 was found in the tap water of Evansville. There are also reports of its occurrence in the Kanawha River at Nitro, West Virginia (Rosen et al., 1963), in the Mississippi River at New Orleans (Mayes, 1971), and in the Rhine and Scheldt Rivers in the Netherlands (Piet et al., 1973). Bis(2-chloro-1-methylethyl) ether is considered by Kleopfer and Fairless (1972) to be practically The chemical was formerly used in paint and nonbiodegradable. varnish removers, in spotting agents and cleaning solutions, as an

intermediate in the manufacture of dyes, resins, and pharmaceuticals, and to assist the action of soap solutions in textile processes (Hake and Rowe, 1963). Five former manufacturers or distributors of bis(2chloro-1-methylethyl) ether stated that they no longer carried the chemical for commercial use when contacted in 1978 (Jameson, 1978). One manufacturer stated that the process for manufacturing propylene oxide had been changed to eliminate bis(2-chloro-1-methylethyl) ether as a by-product (Dow Chemical Co., 1978).

Bis(2-chloro-1-methylethyl) ether has an acute oral LD_{50} of 240 mg/kg in rats of unspecified strain and sex (Smyth et al., 1951). Beta-haloethers are not as reactive chemically as alpha-haloethers. Van Duuren et al. (1972) considered them also to be less potent carcinogens than alpha-haloethers on the basis of studies performed by subcutaneous injection. However, the beta-haloether, bis(2-chloro-ethyl) ether, which is an analog of the test chemical, has been reported to induce hepatomas when administered in the diets to B6C3F1 or B6AKF1 mice (National Technical Information Service, 1968; Innes et al., 1969) and sarcomas at the site of subcutaneous injection in female ICR/Ha Swiss mice (Van Duuren et al., 1972). In comparison, alpha-haloethers such as chloromethyl methyl ether, bis(chloromethyl) ether, and bis(1-chloroethyl) ether were found to be highly carcinogenic. In particular, bis(chloromethyl) ether has been reported to induce, in addition to the sarcomas in female ICR/Ha Swiss mice (Van

Duuren et al., 1972), lung adenomas in subcutaneously injected newborn ICR Swiss mice (Gargus et al., 1969), lung adenomas in male A/Heston mice inhaling the vapors (Leong et al., 1971), lung squamous-cell carcinomas and olfactory esthesioneuroepitheliomas in Sprague-Dawley rats inhaling the vapors (Laskin et al., 1971), sarcomas in subcutaneously injected Sprague-Dawley rats (Van Duuren et al., 1969), and lung cancer in men exposed to the chemical in a manufacturing plant (Figueroa et al., 1973). Bis(2-chloro-1-methy1ethy1) ether was selected by the NCI Carcinogenesis Testing Program because of its close chemical structural formula to that of known carcinogenic haloethers.

II. MATERIALS AND METHODS

A. Chemical

known as bis(2-chloro-Bis(2-chloro-l-methylethyl) ether, also isopropyl) ether, was obtained in three batches from three different The first batch (Lot No. 7) was obtained from MC&B sources. Manufacturing Chemists, Cincinnati, Ohio, and was used during the first 46 weeks of the chronic study. The second batch (Lot No. PB41576) was obtained from Pfaltz and Bauer, Inc., Stanford, Connecticut, and was used during weeks 47 through 83. The third batch (Lot No. 162976) was obtained from I.C.N. Pharmaceuticals, Inc., Irvine, California, and was used from week 84 to the end of Analysis of each batch at Midwest Research Institute the study. included elemental analysis, boiling point, vapor-phase chromatography, and infrared and nuclear magnetic resonance spectrometry (Appendix C). The results indicated that each batch was a mixture of isopropyl and n-propyl ethers. Additional analysis by vapor-phase chromatography/mass spectrometry at Midwest Research Institute on Lot No. 162976 after completion of the bioassay indicated that this batch contained 69.4% bis(2-chloro-l-methylethyl) ether, 2.1% bis(2chloro-n-propyl) ether, and 28.5% of the mixed iso and normal ether. These results were consistent with the amounts of the isomers

estimated in each batch by nuclear magnetic resonance spectrometry. This technical-grade test material is referred to as bis(2-chloro-lmethylethyl) ether in this report.

The test material was stored in its original glass containers at room temperature.

B. Dosage Preparation

Dosage mixtures of bis(2-chloro-l-methylethyl) ether were prepared fresh daily. The chemical was first dissolved completely in a small amount of corn oil (Duke's[®], S.F. Sauer Co., Richmond, Va.). The stock solution was then diluted with additional corn oil to the desired final volume. The concentrations were made up based on the weight of chemical to volume of corn oil.

As a quality control check on the accuracy of preparation of the gavage solutions, the concentrations of bis(2-chloro-l-methylethyl) ether were determined in a random selection of different batches of gavage solutions during the chronic study. The results of these analyses indicated that all the gavage solutions were within a $\frac{+}{10\%}$ limit of the theoretical concentration.

C. Animals

Male and female F344 (Fischer) rats, 3 to 4 weeks of age, were obtained from the NCI Frederick Cancer Research Center (Frederick, Md.). The animals were housed within the test facility for 2 to 3 weeks, and then assigned, five animals to a cage, on a weight basis to the various dosed or control groups.

D. Animal Maintenance

The rats were housed in solid-bottom polycarbonate cages (Maryland Plastic, Federalsburg, Md.) covered with stainless steel cage lids and nonwoven, spun-bonded Filtek fiber filter bonnets (Filtek, Appleton, Wis.). The rats were initially housed five per cage; however, at week 36 the males were divided into groups of two or three per cage.

All cages were furnished with heat-treated hardwood chip bedding (Sani-Chips[®], Shurfire Products Corporation, Beltsville, Md.) that was changed twice per week. Diets of presterilized Wayne[®] Sterilizable Lab Meal (Allied Mills, Inc., Chicago, Ill.) and well water were provided ad libitum.

Feed hoppers and water bottles were refilled twice per week. Cages, water bottles, and sipper tubes were washed at 81°C twice per week, feed hoppers once per week, and cage racks once per month. An industrial dishwasher was used for the water bottles and sipper tubes; a cage and rack washer was used for the feed hoppers, cages, and racks. The detergent used was Super Soilax[®] (Economics Laboratory, Inc., St. Paul, Minn.). When racks were washed, clean racks containing cages of animals were randomly repositioned in the rooms.

Animal rooms were maintained at 20 to 24^oC and 45 to 55% relative humidity. Incoming air for single-pass circulation was filtered through 2-inch-thick disposable fiberglass filters and supplied at a rate that allowed 12 changes of room air per hour. Lighting was provided on a 12-hour-per-day cycle. Food and tap water were available ad libitum.

Rats administered bis(2-chloro-l-methylethyl) ether by gavage and their corresponding controls were maintained in the same room as rats being administered the following chemicals:

Feed Studies

(CAS	119-53-9)	benzoin
(CAS	120-61-6)	dimethyl terephthalate
(CAS	89-78-1)	dl-menthol
(CAS	13463-67-7)	titanium dioxide

Gavage Studies

(CAS 127-69-5)	sulfisoxazole
(CAS 7446-34-6)	selenium sulfide

Drinking Water Studies

(CAS 108-95-2) phenol

At week 36, the cages of rats in the bioassay of bis(2-chloro-lmethylethyl) ether were moved to a separate room for the remainder of the bioassay.

E. Subchronic Studies

Subchronic gavage studies were conducted to determine the concentrations used in the chronic studies (referred to in this report as "low" and "high" doses). Groups of 10 males and 10 females were administered the test chemical by gavage once daily 7 days per week for a period of 13 weeks. Ten animals of each sex received only the corn oil (Duke's[®]) diluent. Table 1 shows doses given, the survival of animals in each dosed group at the end of the study, and the mean body weight of each dosed group at week 13, expressed as a percentage

	Male	Female			
Dose (mg/kg)	Survival(a)	Mean Weight at Week 13 as % of Control	Survival(a)	Mean Weight at Week 13 as % of Control	
	10/10	100	10/10		
0	10/10	100	10/10	100	
10	10/10	98	10/10	95	
25	10/10	97	10/10	101	
50	10/10	96	10/10	100	
100	10/10	94	10/10	96	
250(Ъ)	10/10	80	10/10	92	

Table 1. Survival and Mean Body Weights of Rats Gavaged with Bis(2-chloro-1-methylethyl) for 13 Weeks

(a) Number surviving/number in group.

(b) No abnormal gross or histopathologic findings were seen in any dosed groups. Occasional urine stains and a hunched or thin appearance were observed sporadically in the 250 mg/kg group during weeks 4 to 7. of the mean body weight of the corresponding controls. At the end of the 13 weeks, the animals were killed and necropsied.

Survival of the rats was not affected by the test chemical at any dose used. An adverse effect on body weight was observed only at the 250 mg/kg/day dose. Based on these findings, the low and high doses for chronic studies using rats were set at 100 mg/kg/day and 200 mg/kg/day.

F. Chronic Studies

The test groups, doses administered, and durations of the chronic feeding studies are shown in table 2.

G. Clinical Examinations and Pathology

All animals were observed twice daily. Clinical signs and the presence of palpable masses were recorded every week. Mean body weights were recorded every 2 weeks for the first 12 weeks, then monthly until week 72, when the rats were weighed every 2 weeks for the duration of the study.

Sex and Test Group	Bis(2-chloro Initial l-methylethy No. of ether Dose(h Animals(a) mg/kg/day(c)		<u>Time on Study</u> Dosed Observed (weeks) (weeks)	
Male				
Untreated-Control	50	0		105
Vehicle-Control (d)	50	0		105
Low-Dose	50	100	103	1-2
High-Dose	50	200	200 103	
Female				
Untreated-Control	50	0		105
Vehicle-Control (d)	50	0		105
Low-Dose	50	100	103	2
High-Dose	50	200	103	2

Table 2. Experimental Design for Chronic Gavage Studies with Bis(2-chloro-l-methylethyl) ether in Rats

(a) Rats were approximately 5 weeks of age when placed on study.

- (b) Dosed rats were administered a solution of the test chemical by gavage 5 days per week.
- (c) Bis(2-chloro-l-methylethyl) ether was mixed with corn oil at appropriate concentrations to allow administration of 1 ml/kg of gavage mixtures containing the respective desired amounts of the test chemical.
- (d) Vehicle controls received a volume of vehicle (corn oil) of l ml/kg of body weight by gavage 5 days per week.

Animals that were moribund and those that survived to the termination of the study were killed by exsanguination after they were anesthetized by intraperitoneal injections of 0.3-0.5 ml Diabutal[®] (Diamond Laboratories, Inc., Des Moines, Iowa) containing 60 mg/ml sodium pentobarbital.

Gross and microscopic examinations were performed on major tissues, major organs, and all gross lesions from killed animals and from animals found dead. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Sections from the following tissues were examined microscopically: skin, lungs and bronchi, trachea, bone and bone marrow, spleen, lymph nodes, heart, salivary gland, liver, pancreas, stomach, small intestine, large intestine, kidney, urinary bladder, pituitary, adrenal, thyroid, parathyroid, mammary gland, prostate or uterus, testis or ovary, and brain. Occasionally, additional tissues were also examined microscopically. Special staining techniques were utilized as necessary.

Necropsies were also performed on all animals found dead, unless precluded in whole or in part by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and does not necessarily represent the number of animals that were placed on study in each group.

H. Data Recording and Statistical Analyses

Data on this experiment were recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible doserelated effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. One-tailed P values have been reported for all tests except the departure from linearity test, which is only reported when its two-tailed P value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a

specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors), or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each dose level.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared to its control was calculated from the exact interval on the odds ratio (Gart, 1971).

The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analyses. The interpretation of the limits is that in approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result (P less than 0.025 onetailed test when the control incidence is not zero, P less than 0.050 when the control incidence is zero) has occurred. When the lower limit is less than unity, but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical, which could not be detected under the conditions of this test.

III. RESULTS

A. Body Weights and Clinical Signs

Mean body weights of the dosed groups of male and female rats were lower than those of corresponding control groups throughout the period of the bioassay and were dose related (figure 1). Weight loss and hunched appearance occurred in dosed groups.

B. Survival

Estimates of the probabilities of survival for male and female rats administered bis(2-chloro-1-methylethyl) ether by gavage at the doses of this bioassay, together with those of the vehicle and untreated controls, are shown by the Kaplan and Meier curves in figure 2. The untreated controls are not included in the statistical analysis because the test conditions of the vehicle controls resemble more closely those of the dosed groups. The result of the Tarone test for positive dose-related trend in mortality is significant (P less than 0.001) in each sex. An indicated departure from linear trend is also observed (P less than 0.001) in each sex

Figure 1. Growth for Rats Administered Bis(2-chloro-1-methylethyl) ether by Gavage

Figure 2. Survival Curves for Rats Administered Bis(2-chloro-1-methylethyl) ether by Gavage

due to the relatively steep decrease in survival in the high-dose group. In male rats, 28/50 (56%) of the high-dose group, 46/50 (92%) of the low-dose group, and 44/50 (88%) of the control group were alive at week 78 on study. In females, 25/50 (50%) of the high-dose group, 44/50 (88%) of the low-dose group, and 48/50 (96%) of the control group were alive at week 78 on study.

Except for the high-dose males and females, sufficient numbers of rats of each sex were at risk for the development of late-appearing tumors.

C. Pathology

Histopathologic findings on neoplasms in rats are summarized in Appendix A, tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix B, tables Bl and B2.

The variety of tumors which occurred in both control and dosed groups of rats were of a type, incidence, and distribution commonly observed in aged F344 rats. These tumors, most of which occurred at higher incidences in controls than in tested animals, were not considered to be related to administration of the compound.

An increased incidence of esophageal hyperkeratosis was observed in high-dose male and female rats, as compared with their respective control groups. A small number of high-dose females also had esophageal acanthosis. The incidence of gastric hyperkeratosis was greater in vehicle controls than in dosed males and females, and the occurrence of gastric acanthosis was not appreciably different from the vehicle controls. These incidences are summarized in the following tabulation:

	MALE				FEMALE			
	Untreated	Vehicle	Low	High	Untreated	Vehicle	Low	High
	<u>Control</u>	<u>Control</u>	Dose	Dose	<u>Control</u>	Control	_Dose	Dose
No. of Tissues Examine Micro- scopic- ally	:đ	50	50	49	49	50	49	48
Esopha- geal Hyper- kera- tosis	0(0%)	9(18%)	10(20%)	40(82%)	0(0%)	13(26%)	10(20%)	31(65%)
Esopha- geal Acan- thosis	0(0%)	0(0%)	1(2%)	1(2%)	0(0%)	1(2%)	0(0%)	5(10%)
Gastric Hyper- kera- tosis	0(0%)	13(26%)	5(10%)	10(20%)	0(0%)	21(42%)	14(29%)	11(23%)
Gastric Acan- thosis	1(2%)	6(12%)	4(8%)	9(18%)	0(0%)	8(16%)	5(10%)	9(19%)

A dose-related increased incidence of aspiration pneumonia was observed in low- and high-dose males and females.

The histopathologic examination provided no evidence that bis(2chloro-l-methylethyl) ether was carcinogenic to F344 rats under the conditions of this bioassay.

D. Statistical Analyses of Results

Tables 3 and 4 contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and at an incidence of at least 5% in one or more than one group. The untreated controls are not included in this analysis because the test conditions of the vehicle controls resemble more closely those of the dosed groups.

The results of the Cochran-Armitage test for positive dose-related trend in the incidence of tumors and the results of the Fisher exact test comparing the incidence of tumors of the control group with that in each dosed group in the positive direction are not significant in either sex.

Significant results in the negative direction are observed in the
incidences of hematopoietic tumors and tumors of the adrenal, preputial gland, and testis in male rats, as well as tumors of the pituitary, uterus, and pancreatic islets in female rats. This significance in the negative direction may be accounted for by the relatively low survival of rats in the high-dose groups.

In each of the 95% confidence intervals for relative risk shown in the tables, the value of one or less than one is included: this indicates the absence of significant positive results. It should also be noted that some of the intervals have an upper limit greater than one, indicating the theoretical possibility of tumor induction by bis(2-chloro-1-methylethyl) ether, which could not be detected under the conditions of this test.

	Vehicle	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Hematopoietic System:			
Lymphoma or Leukemia (b)	14/50(28)	9/50(18)	3/50(6)
P Values (c,d)	P = 0.003 (N)	N.S.	P = 0.003 (N)
Relative Risk (f)		0.643	0.214
Lower Limit		0.271	0.042
Upper Limit		1.441	0.709
Weeks to First Observed Tumor	88	15	15
Pituitary: Chromophobe			
Adenoma (b)	4/43(9)	4/50(8)	3/41(7)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.860	0.787
Lower Limit		0.170	0.122
Upper Limit		4.360	4.361

Table 3. Analyses of the Incidence of Primary Tumors in Male Rats Administered Bis(2-chloro-l-methylethyl) ether by Gavage (a)

	Vehicle	Low	High
Topography: Morphology	Control	Dose	Dose
Adrenal: Pheochromocytoma (b)	8/50 (16)	3/50(6)	2/50(4)
P Values (c,d)	P = 0.025 (N)	N.S.	P = 0.046 (N)
Relative Risk (f)		0.375	0.250
Lower Limit		0.067	0.027
Upper Limit		1.460	1.176
Weeks to First Observed Tumor	105	104	78
Pancreatic Islets:			An
Islet-cell Adenoma	0/49(0)	3/50(6)	0/50(0)
P Values (c,d)	N.S.	N.S.	
P Values (c,d) Departure from Linear Trend(e)	N.S. $P = 0.014$	N.S.	
		N.S. Infinite	
Departure from Linear Trend(e)			
Departure from Linear Trend(e) Relative Risk (f)		Infinite	

25

Table 3. Analyses of the Incidence of Primary Tumors in Male Rats Administered Bis(2-chloro-1-methylethyl) ether by Gavage (a)

	Vehicle	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Mammary Gland: Fibroadenoma (b)	0/50(0)	3/50(6)	0/50(0)
P Values (c,d)	N.S.	N.S.	
Departure From Linear Trend (e)	P = 0.014		
Relative Risk (f)		Infinite	
Lower Limit		0.601	
Upper Limit		Infinite	
Weeks to First Observed Tumor		103	
Preputial Gland:			
Carcinoma, NOS (b)	7/50(14)	1/50(2)	0/50(0)
P Values (c,d)	P = 0.002 (N)	P = 0.030 (N)	P = 0.006 (N)
Relative Risk (f)		0.143	0.000
Lower Limit		0.003	0.000
Upper Limit		1.052	0.515
Weeks to First Observed Tumor	78	104	

Table 3.	Analyses of	the Incidence	of Primary	Tumors	in Male Rats
Adminis	tered Bis(2-o	chloro-l-methy	lethyl) ethe	er by Ga	vage (a)

26

Table 3.	Analyses	of the	Incidence	of Pri	mary Tum	ors in	Male Rats
Administ	ered Bis(2-chlor	co-1-methy	lethy1)	ether by	y Gavag	ge (a)

(continued)

	Vehicle	Low	High
Topography: Morphology	Control	Dose	Dose
Testis: Interstitial-cell Tumor (b)	42/49(86)	43/50(86)	27/49(55)
P Values (c,d)	P less than 0.001 (N)	N.S.	P = 0.001 (N)
Departure From Linear Trend (e)	P = 0.035		
Relative Risk (f)		1.003	0.643
Lower Limit		0.848	0.510
Upper Limit		1.188	0.856
Weeks to First Observed Tumor	86	86	55

27

(a) Dosed groups received 100 or 200 mg/kg/day, 5 days/week.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05, otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

m1	Vehicle	Low	High.
Topography: Morphology	Control	Dose	Dose
Integumentary System: Fibroma			
of the Subcutaneous Tissue (b)	3/50(6)	3/49(6)	0/48(0)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.020	0.000
Lower Limit		0.143	0.000
Upper Limit		7.273	1.730
Weeks to First Observed Tumor	104	97	
Hematopoietic System:			
Lymphoma or Leukemia (b)	3/50(6)	7/49(14)	2/48(4)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		2.381	0.694
Lower Limit		0.581	0.060
Upper Limit		13,550	5.794
Weeks to First Observed Tumor	83	84	18

Table 4. Analyses of the Incidence of Primary Tumors in Female Rats Administered Bis(2-chloro-l-methylethyl) ether by Gavage (a)

	Vehicle	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Pituitary: Chromophobe			
Adenoma (b)	14/50(28)	8/49(16)	3/48(6)
P Values (c,d)	P = 0.003 (N)	N.S.	P = 0.004 (N)
Relative Risk (f)		0.583	0.223
Lower Limit		0.233	0.044
Upper Limit		1.348	0.737
Weeks to First Observed Tumor	82	60	78
Thyroid: C-cell		ny gana dia mampina dia manggan pandiny pina dika mpangka matrika dia na mandra n	, and an all a second and a second a s
Carcinoma (b)	4/50(8)	1/46(2)	1/48(2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.272	0.260
Lower Limit		0.006	0.005
Upper Limit		2.613	2.508
Weeks to First Observed Tumor	105	105	104

Table 4. Analyses of the Incidence of Primary Tumors in Female Rats Administered Bis(2-chloro-1-methylethyl) ether by Gavage (a)

	Vehicle	Low	High
Topography: Morphology	Control	Dose	Dose
Thyroid: C-cell Carcinoma			
or Adenoma (b)	4/50(8)	3/46(7)	1/48(2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.815	0.260
Lower Limit		0.125	0.005
Upper Limit		4.556	2.508
Weeks to First Observed Tumor	105	69	104
Pancreatic Islets:			
Islet-cell Adenoma (b)	4/50(8)	1/49(2)	0/48(0)
P Values (c,d)	P = 0.028 (N)	N.S.	N.S.
Relative Risk (f)		0.255	0.000
Lower Limit		0.005	0.000
Upper Limit		2.459	1.122
Weeks to First Observed Tumor	105	105	

Table 4. Analyses of the Incidence of Primary Tumors in Female Rats Administered Bis(2-chloro-l-methylethyl) ether by Gavage (a)

	Vehicle	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Mammary Gland:			
Fibroadenoma (b)	8/50(16)	7/49(14)	3/48(6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.893	0.391
Lower Limit		0.298	0.070
Upper Limit		2.598	1.517
Weeks to First Observed Tumor	73	76	71
Uterus: Endometrial			
Stromal Polyp (b)	16/48(33)	13/49(27)	7/47(15)
P Values (c,d)	P = 0.025 (N)	N.S.	P = 0.031 (N)
Relative Risk (f)		0.796	0.447
Lower Limit		0.398	0.172
Upper Limit		1.565	1.033
Weeks to First Observed Tumor	82	69	66

Table 4. Analyses of the Incidence of Primary Tumors in Female Rats Administered Bis(2-chloro-1-methylethyl) ether by Gavage (a) Table 4. Analyses of the Incidence of Primary Tumors in Female Rats Administered Bis(2-chloro-1-methylethyl) ether by Gavage (a)

(continued)

- (a) Dosed groups received 100 or 200 mg/kg/day, 5 days/week.
- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05, otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

IV. DISCUSSION

Mean body weights of the dosed groups of male and female rats were lower than those of the corresponding vehicle-control groups throughout most of the bioassay and were dose related. Similarly, survivals of the high-dose males and of both the high- and low-dose females were lower than those of the corresponding vehicle controls and were dose related. Almost all animals in the high-dose groups died by the end of the bioassay.

No tumors occurred in the dosed groups of rats of either sex at incidences that were significantly higher than those of the vehiclecontrol groups. Several kinds of tumors occurred, however, at lower incidences in dosed groups of the males and females than in the corresponding control groups; this may have been due, in part at least, to the low survival of animals in the high-dose groups.

Two male rats, one high-dose and one low-dose, died during week 15 with malignant lymphoma affecting multiple organs. These early deaths with tumors were not considered to be related to the test compounds. F344 rats are known to have juvenile lymphoid tumors and these deaths were considered as isolated events.

The occurrence of nonneoplastic lesions indicates the toxicity of the test substance and possible effects of the gavage treatment. An increased incidence of esophageal hyperkeratosis was observed in highdose male and female rats, as compared with their respective control groups. A small number of high-dose females also had esophageal acanthosis. The incidence of gastric hyperkeratosis and acanthosis was greater in vehicle controls and in low- and high-dose male and female rats than in the untreated controls.

Several related haloethers have been found to be carcinogenic, but tests with bis(2-chloro-l-methylethyl) ether for possible carcinogenicity have not previously been reported.

Under the conditions of this bioassay, technical-grade bis(2-chlorol-methylethyl) ether was not carcinogenic for F344 rats of either sex. The test material can not be considered to have been adequately tested, however, until bioassays are conducted in other animal species.

V. BIBLIOGRAPHY

Armitage, P., <u>Statistical Methods in Medical Research</u>, John Wiley & Sons, Inc., New York, 1971, pp. 362-365.

Berenblum, I., ed., <u>Carcinogenicity Testing: A Report of the Panel</u> on <u>Carcinogenicity of the Cancer Research Commission of the UICC</u>, Vol. 2. International Union Against Cancer, Geneva, 1969.

Cook, W. A., Ethers. In: <u>Encyclopaedia of Occupational Health and</u> Safety, Vol. I, McGraw-Hill Book Co., New York, 1971, pp. 479-481.

Cox, D. R., <u>Analysis of Binary Data</u>, Methuen & Co., Ltd., London, 1970, pp. 48-52.

Cox, D. R., Regression models and life tables. <u>J. R. Statist. Soc.</u> B 34:187-220, 1972.

Dewael, A., Bull. Soc. Chim. Belg. 39:395-401, 1930.

Dow Chemical Company, Personal Communication, 14 July, 1978.

Figueroa, W. G., Raszkowski, R., and Weiss, W., Lung cancer in chloromethyl methyl ether workers. <u>N. Engl. J. Med.</u> 288(21):1096-1097, 1973.

Gargus, J. L., Reese, W. H., Jr., and Rutter, H. A., Induction of lung adenomas in newborn mice by bis(chloromethyl)ether. <u>Toxicol.</u> Appl. Pharmacol. 15:92-96, 1969.

Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratification. Rev. Int. Stat. Inst. 39:148-169, 1971.

Hake, C. L. and Rowe, V. K., Ethers. In: <u>Industrial Hygiene</u> and <u>Toxicology</u>, <u>Vol. II</u>, Patty, F. A., ed., Interscience Publishers, <u>New</u> York, 1963, pp. 1677-1979

Innes, J. R. M., Ulland, B. M., Valerio, M. G., Petrucelli, L., Fishbein, L., Hart, E. R., Pallotta, A. J., Bates, R. R., Falk, H. L., Gart, J. J., Klein, M., Mitchell, I. and Peters, J., Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: a preliminary note. J. Nat. Cancer Inst. 42:1101-1114, 1969. Jameson, Bill, Personal Communication, Tracor Jitco, Rockville, Md., 17 July 1978.

Kleopfer, R. D. and Fairless, B. J., Characterization of organic components in a municipal water supply. <u>Environ. Sci. Tech. 6(2)</u>: 1036-1037, 1972

Lapkin, M., Epoxides. In: <u>Kirk-Othmer</u> <u>Encyclopedia</u> of <u>Chemicals</u> <u>Technology</u>, <u>Vol.</u> 8. Interscience Publishing Co., Inc., New York, 1966, pp. 280-281.

Laskin, S., Kuschner, M., Drew, R. T., Cappiello, V. P., and Nelson, N., Tumors of the respiratory tract induced by inhalation of bis(chloromethyl)ether. Arch. Environ. Hlth. 23:135-136, 1971.

Leong, B. K. J., Macfarland, H. N., and Reese, W. H., Jr., Induction of lung adenomas by chronic inhalation of bis(chloromethyl) ether Arch. Environ. Hlth. 22:663-666, 1971.

Linhart, M. S., Cooper, J. A., Martin, R. L., Page, N. P., and Peters, J. A., Carcinogenesis bioassay data system. <u>Comp.</u> and Biomed. Res. 7:230-248, 1974.

Mayes, J. H., personal communication, 1971. Cited in: Fishbein L., Mutagens and potential mutagens in the biosphere. <u>Sci. Tot.</u> Environ. 4:305-340, 1973.

Miller, R. G., Jr., <u>Simultaneous Statistical Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.

National Technical Information Service, <u>Evaluation of Carcinogenic</u>, <u>Teratogenic</u>, and <u>Mutagenic</u> <u>Activities of Selected</u> <u>Pesticide and</u> <u>Industrial Chemicals</u>, <u>Vol.</u> <u>I.</u>, <u>Carcinogenic</u> <u>Study</u>, U.S. Department of Commerce. PB-23 159. August, 1968.

Piet, G. J., Zoeteman, B. C. J., Nettenbreijer, A. H., and Ruijgrok, C. T. M., <u>Bis(2-Chloroisopropyl)</u> <u>Ether</u> in <u>Surface</u> and <u>Drinking Water</u> in <u>the Netherlands</u>, Rijksinstituut Voor Drinkwater-voorziening, S-Gravenhage, Parkwag 13, 3447, The Netherlands, 1973.

Rosen, A. A., Skeel, R. T., and Ettinger, M. B., Relationship of river water odor to specific organic contaminants. J. WPCF 35(6) 777-782, 1963.

Sadtler Standard Spectra, Sadtler Research Laboratories, Philadelphia. I.R. No. 13382.

Smyth, H. F., Carpenter, C. P., and Weil, C. S., Range-finding toxicity data: List IV. Arch. Ind. Hyg. Occup. Med. 4:119-122, 1951.

Tarone, R. E., Tests for trend in life table analysis. <u>Biometrika</u> 62(3):679-682, 1975.

Van Duuren, B. L., Katz, C., Goldschmidt, B. M., Frenkel, K., and Sivak, A., Carcinogenicity of halo-ethers. II. Structure-activity relationships of analogs of bis(chloromethyl)ether. <u>J. Nat. Cancer</u> Inst. 48:1431-1439, 1972.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS ADMINISTERED BIS(2-CHLORO-1-METHYLETHYL) ETHER BY GAVAGE

. .

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS ADMINISTERED BIS(2-CHLORO-1-METHYLETHYL) ETHER BY GAVAGE

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50 50	50 50 50 50	50 50 50 50	50 50 50
INTEGUMENTARY SYSTEM				
*SKIN PAPILLOMA, NOS SQUAMOUS CELL CARCINOMA BASAL-CELL CARCINOMA	(50)	(50) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
*SUBCUT TISSUE FIBROMA FIBROSARCOMA HEMANGIOSARCOMA	(50) 3 (6%) 1 (2%)	(50) 2 (4%) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 2 (4%)
ESPIRATORY SYSTEM				
#LUNG SQUAMOUS CELL CARCINOMA, METASTA ADENOCARCINOMA, NOS, METASTATIC ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA LIPOSARCOMA, METASTATIC	(50) 1 (2%)	(50)	(50) 1 (2%) 2 (4%) 1 (2%)	(50) 1 (2%) 2 (4%)
EMATOPOIETIC SYSTEM				
*MULTIPLE ORGANS MALIG-LYMPHOMA, HISTIOCYTIC TYPE MONOCYTIC LEUKEMIA	(50) 1 (2%) 15 (30%)	(50) 1 (2%) 12 (24%)	(50) 1 (2%) 8 (16%)	(50) 1 (2%) 2 (4%)
#SPLEEN HEMANGIOSARCOMA MALIG.LYMPHOMA, HISTIOCYTIC TYPE	(50) 1 (2%)	(50) 1 (2%)	(50)	(50)
#THYMUS THYMOMA	(35)	(34)	(29)	(36)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: N	EOPLASMS	(CONTINUED)
------------------------	----------	-------------

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
CIRCULATORY SYSTEM				
#ENDOCARDIUM SARCOMA, NOS	(50) 1 (2%)		(50)	(50)
DIJESTIVE SYSTEM				
#LIVER NEOPLASTIC NODULE	(50)	(49) 1 (2%)	(50)	(50)
HEPATOCELLULAR CARCINOMA ANGIOSARCOMA		(27)	1 (2%)	1 (2%
*STOMACH ANGIOMA	(50) 1 (2%)	(50)	(50)	(50)
#SMALL INTESTINE MUCINOUS ADENOCARCINOMA	(50)	(50) 1 (2%)	(49)	(49)
RINARY SYSTEM				
#KIDNEY TRANSITIONAL-CELL CARCINOMA TUBULAR-CELL ADENOMA	(50) 1 (2%) 1 (2%)	(50)	(50)	(50)
#KIDNEY/TUBULE PAPILLARY CYSTADENOMA, NOS	(50) 1 (2%)	(50)	(50)	(50)
#K1DNEY/PELVIS CARCINOSARCOMA	(50) 1 (2%)	(50)	(50)	(50)
NDOCRINE SYSTEM				
<pre>#PITUITARY CHROMOPHOBE ADENOMA</pre>	(44) 5 (11%)	(43) 4 (9%)	(50) 4 (8%)	(41) 3 (7 %
#ADRENAL PHEOCHROMOCYTOMA	(50) 5 (10%)	(50) 8 (16%)	(50) 3 (6%)	(50) 2 (4%
#THYROID FOLLICULAR-CELL ADENOMA POLLICULAR-CELL CARCINOMA	(49) 1 (2%) <u>1 (2%)</u>	(49) 1 (2%)	(49) 2 (4%)	(50) 2 (4 %

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
 * NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
C-CELL ADENOMA C-CELL CARCINOMA	1 (2%) 4 (8%)		1 (2%) 1 (2%)	
<pre>#PANCREATIC ISLETS ISLET-CELL ADENOMA</pre>	(50) 2 (4 %)	(49)	(50) 3 (6%)	(50)
EPRODUCTIVE SYSTEM				
*MAMMARY GLAND ADENOCARCINOMA, NOS FIBROADENOMA	(50)	(50)	(50) 1 (2%) 3 (6%)	(50)
*PREPUTIAL GLAND CARCINOMA,NOS SQUAMOUS CELL CARCINOMA	(50) 6 (12%)	(50) 7 (14%)	(50) 1 (2%)	(50) 1 (2%)
<pre>#TESTIS INTERSTITIAL-CELL TUMOR</pre>	(50) 46 (92%)	(49) 42 (86%)	(50) 43 (86%)	(49) 27 (55
* SCROTUM SQUAMOUS CELL CARCINOMA MESOTHELIOMA, MALIGNANT MESOTHELIOMA, METASTATIC	(50) 1 (2%)	(50)	(50) 1 (2 %)	(50) 1 (2%
IERVOUS SYSTEM				
#CEREBRUM ASTROCYTOMA	(50)	(50)	(48) 1 (2%)	(49)
PECIAL SENSE ORGANS				
*ZYMBAL'S GLAND SQUAMOUS CELL CARCINOMA	(50)	(50)	(50)	(50) 1 (2%
USCULOSKELETAL SYSTEM				
NONE				
ODY CAVITIES				
*MEDIASTINUM ADENOCARCINOMANOSMETASTAT	(50) IC	(50)	(50) <u>1 (2%)</u>	(50)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
*PERITONEUM MESOTHELIOMA, NOS	(50)	(50)	(50)	(50) 1 (2%)
* MESENTERY HEMANGIOSARCOMA	(50) 1 (2%)	(50)	(50)	(50)
*TUNICA VAGINALIS MESOTHELIOMA, NOS MESOTHELIOMA, MALIGNANT	(50)	(50)	(50) 1 (2%) 2 (4%)	(50) 1 (2%)
ALL OTHER SYSTEMS				
*MULTIPLE ORGANS MESOTHELIOMA, METASTATIC	(50) 1 (2%)	(50)	(50) 1 (2%)	(50)
DIAPHRAGM ADENOCARCINOMA, NOS, METASTATIC			1	
ANIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY	50	50	50	50
NATURAL DEATHD	15	14	15	47
MORIBUND SACRIFICE	3	1	1	
SCHEDULED SACRIFICE				
ACCIDENTALLY KILLED	3.5	2	2.0	7
TERMINAL SACRIFICE Animal Missing	32	33	34	3

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	UNTREATED Control		LOW DOSE	HIGH DOSI
UMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	50 102	45 84	47 82	34 48
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	47 67	43 56	46 63	30 38
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	29 35	22 27	17 18	8 8
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	1 1		4 6	1 1
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS		1	1	2 2
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS				
PRIMARY TUMORS: ALL TUMORS EXCEPT SEC SECONDARY TUMORS: METASTATIC TUMORS O			DJACENT ORGAN	

TABLE A2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS ADMINISTERED BIS(2-CHLORO-1-METHYLETHYL) ETHER BY GAVAGE

	UNTREATED Control		LOW DOSE	
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50	50 50 50	50 49 49	50 48 48
INTEGUMENTARY SYSTEM				
*SKIN SQUAMOUS CELL CARCINGMA KERATOACANTHOMA	(50) 1 (2%)	(50)	(49) 1 (2%)	(48)
*SUBCUT TISSUL PIBROMA FIBROSARCOMA	1 (2%)	(50) 3 (6%) 2 (4%)	(49) 3 (6%) 1 (2%)	(48)
RESPIRATORY SYSTEM				
*NASAL SEPTUM Syuamous cell carcinoma, metasta	(50) 1 (2%)	(50)	(49)	(48)
SQUAMOUS CELL CARCINOMA, METASTA Alveolar/bronchiolar adenoma Pheochronocytoma, metastatic	1 (2%) 1 (2%)	(50)	(49) 1 (2%)	(48)
HEMATOPOISTIC SYSTEM				
*MULTIPLE ORGANS MALIG.LYMPHOMA, HISTIOCYTIC TYPE MONOCYTIC LEUKEMIA	(50) 7 (14%)	(50) 1 (2%) 2 (4%)	(49) 6 (12%)	(48) 1 (2%) 1 (2%)
*BRONCHIAL LYMPH NODE MALIG.LYMPHOMA, LYMPHOCYTIC TYPE	(49)	(50)	(49) 1 (2%)	(48)
CIRCULATORY SYSTEM				
NONE				

* NUMBER OF ANIMALS NECROPSIED

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM				
#LIVER HEPATOCELLULAR CARCINOMA	(49) 1 (2 %)	(50)	(49)	(48)
<pre>#PANCREAS INFILTRATING DUCT CARCINOMA</pre>	(49)	(50) 1 (2%)	(49)	(48)
#ESOPHAGUS SQUAMOUS CELL PAPILLOMA	(49)	(50)	(49)	(48) 1 (2%)
JRINARY SYSTEM				
NONE				
ENDOCRINE SYSTEM		-		
*PITUITARY CHROMOPHOBE ADENOMA	(49) 18 (3 7%)	(50) 14 (28%)	(49) 8 (16%)	(48) 3 (6%)
#ADRENAL PHEOCHROMOCYTOMA, MALIGNANT	(49) 1 (2%)	(50)	(49) 1 (2%)	(48)
#THYROID FOLLICULAR-CELL ADENOMA C-CELL ADENOMA	(49)	(50)	(46) 1 (2%) 2 (4%)	(48)
C-CELL CARCINOMA	1 (2%)	4 (8%)	1 (2%)	1 (2%)
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(49)	(50) 4 (8%)	(49) 1 (2%)	(48)
EPRODUCTIVE SYSTEM				
*MAMMARY GLAND ADENOMA, NOS ADENOCARCINOMA, NOS	(50) 1 (2%)	(50) 1 (2%)	(49) 2 (4%)	(48) 1 (2%)
PAPILLARY ADENOCARCINOMA FIBROADENOMA	10 (20%)	1 (2%) 8 (16%)	7 (14%)	3 (6%)
*PREPUTIAL GLAND CARCINOMA,NOS	(50) 3 (6%)	(50)	(49) <u>1 (2%)</u>	(48) 1 (2%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	UNTREATED CONTROL	VEHICLE CONTROL	LOW DOSE	HIGH DOSE
*VAGINA	(50)	(50)	(49)	(48)
FIBROSARCOMA ENDOMETRIAL STROMAL SARCOMA, INV	1 (2%) 1 (2%)		•	
#UTERUS	(49)	(48)	(49)	(47)
CARCINOMA,NOS PAPILLARY CYSTADENOMA, NOS		1 (2%)	1 (2%)	
FIBROSARCOMA LEIOMYOMA	1 (2%)			1 (2%) 1 (2%)
ENDOMETRIAL STROMAL POLYP ENDOMETRIAL STROMAL SARCOMA	11 (22%) 1 (2%)	16 (33%) 1 (2%)	13 (27%) 1 (2%)	7 (15
#UTERUS/ENDOMETRIUM PAPILLARY ADENOMA	(49)	(48) 1 (2%)	(49)	(47)
#OVARY GRANULOSA-CELL CARCINOMA	(49)	(48)	(49)	(46) 1 (2%
PECIAL SENSE ORGANS				
JSCULOSKELETAL SYSTEM				
NONE				
DDY CAVITIES				
NONE				
L OTHER SYSTEMS				
MULTIPLE ORGANS	(50)	(50) 1_(2%)	(49)	(48)

TABL	A2. FEMALE RATS: NEOPLASMS (CONTINUE	D)

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
FIBROSARCOMA, METASTATIC				1 (2%)
NIMAL DISPOSITION SUMMARY				
	50	50	50	50
NATURAL DEATHO	11	8	20	48
MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	2	1	2	1
TERMINAL SACRIFICE ANIMAL MISSING	37	41	28	1
INCLUDES AUTOLYZED ANIMALS				
UMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	36 59	39 62	32 51	15 22
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	29 43	31 47	28 39	11 15
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	14 16	13 15	12 12	7 7
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	3 4	1 1	1 1	1 1
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS				
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS				
PRIMARY TUMORS: ALL TUMORS EXCEPT SEC SECONDARY TUMORS: METASTATIC TUMORS C			DJACENT ORGAN	

APPENDIX B

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS ADMINISTERED BIS(2-CHLORO-1-METHYLETHYL) ETHER BY GAVAGE

TABLE B1.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS ADMINISTERED BIS(2-CHLORO-1-METHYLETHYL) ETHER BY GAVAGE

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50 50	50 50 50 50	50 50 50	50 50 50 50
INTEGUMENTARY SYSTEM				
*SKIN EPIDERMAL INCLUSION CYST ULCER, NOS ABSCESS, NOS NECROSIS, NOS HYPERKERATOSIS ACANTHOSIS	(50) 1 (2%) 1 (2%) 5 (10%) 2 (4%)	(50) 2 (4%) 1 (2%)	(50) 1 (2%)	(50) 1 (2%)
*SUBCUT TISSUE HEMATOMA, ORGANIZED ABSCESS, NOS	(50)	(50)	(50)	(50) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM				
*NOSÉ INFLAMMATION, ACUTE	(50)	(50)	(50)	(50) 1 (2%)
<pre>#TRACHEA INFLAMMATION, NECROTIZING INFLAMMATION, ACUTE</pre>	(50)	(50)	(50) 2 (4%)	(49) 1 (2%)
*LUNG THROMBOSIS, NOS CONGESTION, NOS EDEMA, NOS HEMORRHAGE PNEUMONIA, ASPIRATION ABSCESS, NOS PNEUMONIA, CHRONIC MURINE	(50) 1 (2%) 7 (14%) 42 (84%)	(50) 2 (4%) 1 (2%) 1 (2%) 2 (4%) 2 (4%) 48 (96%)	(50) 3 (6%) 7 (14%) 44 (88%)	(50) 7 (14%) 2 (4%) 2 (4%) 12 (24%) 2 (4%) 36 (72%)
INFARCT, NOS HEMOSIDEROSIS <u>HYPERPLASIA, ALVEOLAR EPITHELIUM</u>	1 (2%)	1 (2%) 1 (2%)		

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B1	. MALE RATS	: NONNEOPLASTIC	LESIONS	(CONTINUED)

	UNTREATED Control	VEHICLE CONTROL	LOW DOSE	HIGH DOSE
HEMATOPOIETIC SYSTEM				
<pre>#BONE MARROW MYELOFIBROSIS HYPERPLASIA, HEMATOPOIETIC</pre>	(48)	(50)	(50) 1 (2%) 2 (4%)	(50) 2 (4%)
#SPLEEN CONGESTION, NOS HEMORRHAGE INFLAMMATION, CHRONIC FIBROSIS FIBROSIS, FOCAL HEMOSIDEROSIS ANGLECTASIS HEMATOPOIESIS	(50) 1 (2%) 20 (40%)	(50) 1 (2%) 1 (2%) 2 (4%) 1 (2%) 8 (16%) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%) 13 (26%) 14 (28%)	(50) 12 (24%) 10 (20%)
<pre>#SPLENIC CAPSULE INFLAMMATION, CHRONIC</pre>	(50)	(50) 1 (2%)	(50)	(50)
<pre>#SPLENIC POLLICLES ATROPHY, NOS</pre>	(50)	(50)	(50)	(50) 2 (4%)
#CERVICAL LYMPH NODE LYMPHANGIECTASIS ABSCESS, NOS HYPERPLASIA, LYMPHOID	(50) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 3 (6%)	(50)
*LYMPH NODE OF THORAX ATROPHY, NOS	(50) 1 (2%)	(50)	(50)	(50)
#BRONCHIAL LYMPH NODE LYMPHANGIECTASIS HEMORRHAGE	(50)	(50) 1 (2%) 1 (2%)	(50)	(50)
<pre>#THYMUS VEGETABLE FOREIGN BODY HEMORRHAGE ABSCESS, NOS</pre>	(35)	(34) 1 (3%) 2 (6%) 1 (3%)	(29)	(36)
CIRCULATORY SYSTEM				
#HEART THROMBOSIS, NOS	(50)	(50) <u>1 (2%)</u>	(50)	(50)

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
INFLAMMATION, CHRONIC		± +		2 (4%)
<pre>#BASE OF HEART ABSCESS, NOS</pre>	(50)	(50) 1 (2%)	(50)	(50)
<pre>#HEART/ATRIUM THROMBUSIS, NOS</pre>	(50) 2 (4%)	(50) 1 (2%)	(50)	(50) 2 (4%)
#MYOCARDIUM INFLAMMATION, CHRONIC FIBROSIS	(50) 19 (38%)	(50) 8 (16%) 25 (50%)	(50) 34 (68%) 8 (16%)	(50) 29 (58≸)
DEGENERATION, NOS CALCIFICATION, NOS	18 (36%) 2 (4%)	6 (12%)	1 (2%)	2 (4%)
*AORTA INFLAMMATION, CHRONIC	(50)	(50)	(50) 1 (2%)	(50)
DIGESTIVE SYSTEM				
*SALIVARY GLAND INFLAMMATION, SUPPURATIVE	(50)	(50)	(50)	(50) 1 (2%)
HYPERPLASIA, CYSTIC			1 (2%)	
<pre>#LIVER THROMBOSIS, NOS CONGESTION, NOS</pre>	(50) 1 (2%) 1 (2%)	(49) 1 (2%) 2 (4%)	(50)	(50)
IN PLAMH ATION, NOS Hepatitis, toxic Peliosis Hepatis	3 (6%) 1 (2%)	3 (6%)		1 (2%) 1 (2%)
NECROSIS, NOS NECROSIS, FOCAL	2 (4%)	1 (2%)	1 (2%) 2 (4%) 1 (2%)	2 (4%)
INFARCT, NOS Metamorphosis fatty Focal cellular change	1 (2%) 6 (12%) 20 (40%)	20 (41%)	1 (2%) 1 (2%) 15 (30%)	1 (2%) 2 (4%) 8 (16%)
ANGIECTASIS HEMATOPOIESIS			1 (2%)	1 (2%)
<pre>#LIVER/CENTRILOBULAR NECROSIS, NOS</pre>	(50) 4 (8 %)	(49) 5 (10 %)	(50) 2 (4 %)	(50) 11 (22%)
#BILE DUCT INFLAMMATION, CHRONIC	(50) 26 (52%)	(49) 2 (4%)	(50) 1 (2%)	(50)
FIBROSIS HYPERPLASIA, NOS	17 (34%)	1 (2%) 29 (59%)	3 (6%) 24 (48%)	3 (6%) <u>3 (6%)</u>

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	UNTREATED Control	VEHICLE CONTROL	LOW DOSE	HIGH DOSE
#PANCREAS	(50)	(49)	(50)	(50)
INFLAMMATION, CHRONIC	2 (4%)	1 (2%)	2 (4%)	(30)
PIGMENTATION, NOS			1 (2%)	
ATROPHY, NOS	13 (26%)	1 (2%)	1 (2%)	
ATROPHY, FOCAL		10 (20%)	2 (4%)	
#ESOPHAGUS	(47)	(50)	(50)	(49)
INFLAMMATION, CHRONIC			1 (2%)	2 (4%)
HYPERKERATOSIS		9 (18%)	10 (20%)	40 (82%)
ACANTHOSIS			1 (2%)	1 (2%)
#STOMACH	(50)	(50)	(50)	(50)
MINERALIZATION	2 (4%)			
HEMORRHAGE	2 (4%)	3 (6 %)	2 (4%)	3 (6%)
ULCER, FOCAL Inflammation, acute		1 (2%)		1 (2%)
INFLAMMATION, CHRONIC	3 (6%)	(2.4)	1 (2%)	
NECROSIS, NOS	5 (10%)		1 (2%)	1 (2%)
NECROSIS, POCAL	1 (2%)		1 (2%)	3 (6%)
CALCIFICATION, METASTATIC		1 (2%)	.	
HYPERKERATOSIS	a (2 4)	13 (26%)	5 (10%)	10 (20%)
ACANTHOSIS	1 (2%)	6 (12%)	4 (8%)	9 (18%)
#LARGE INTESTINE	(49)	(50)	(50)	(49)
PARASITISM	1 (2%)	3 (6%)	2 (4%)	4 (8≴)
#CECUM INFLAMMATION, ACUTE	(49)	(50)	(50)	(49) 1 (2%)
JRINARY SYSTEM				
*KIDNEY	(50)	(50)	(50)	(50)
HYDRONEPHROSIS		1 (2%)		» 1 (0 3 8)
INFLAMMATION, CHRONIC CALCIFICATION, NOS	49 (98%) 1 (2%)	44 (88%)	45 (90%)	41 (82%) 1 (2%)
PIGMENTATION, NOS	2 (4%)			1 (24)
HYPERPLASIA, TUBULAR CELL	- ()	1 (2%)		
*KIDNEY/CORTEX	(50)	(50)	(50)	(50)
CYST, NOS	1 (2%)			• •
ABSCESS, NOS				1 (2%)
#RENAL PAPILLA	(50)	(50)	(50)	(50)
NECROSIS, NOS		1 (2%)	N/	N/

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	UNTREATED CONTROL	VEHICLE Control	LOW DOSE	HIGH DOSE
<pre>*KIDNEY/TUBULE NECROSIS, CYTODEGENERATIVE PIGMENTATION, NOS</pre>	(50)	(50) 1 (2%)	(50) 3 (6%)	(50) 1 (2%)
·	46 7 1		• • •	11.5
#URINARY BLADDER HEMORRHAGE	(47)	(50) 1 (2%)	(49)	(46)
INFLAMMATION, ACUTE		()	1 (2%)	1 (2%)
INFLAMMATION, CHRONIC		2 (4%)		
NECROSIS, NOS		2 (4%)		
HYPERPLASIA, EPITHELIAL		1 (2%)		
METAPLASIA, OSSEOUS				1 (2%)
ENDOCRINE SYSTEM				
#PITUITARY	(44)	(43)	(50)	(41)
CYST, NOS	1 (2%)	1 (2%)	2 (4%)	1 (2%)
HEMORRHAGE		2 (5%)	1 (2%)	
HYPERPLASIA, FOCAL	2 (5%)	2 (5%)	1 (2%)	
#ADRENAL	(50)	(50)	(50)	(50)
THROMBOSIS, NOS		1 (2%)		
METAMORPHOSIS FATTY	2 (4%)			
ANGIECTASIS		2 (4%)		
#ADRENAL/CAPSULE	(50)	(50)	(50)	(50)
FIBROSIS	1 (2%)			
#ADRENAL CORTEX	(50)	(50)	(50)	(50)
DEGENERATION, NOS	1 (2%)	1 (2%)	· · · · · ·	
ANGIECTASIS		1 (2%)	1 (2%)	
#ADRENAL MEDULLA	(50)	(50)	(50)	(50)
HYPERPLASIA, NOS	4 (8%)	3 (6%)	()	(/
#THYROID	(49)	(49)	(49)	(50)
FOLLICULAR CYST, NOS	2 (4%)			_
INFLAMMATION, CHRONIC	0 (bat)	F (400)	0 (4.7)	2 (4%)
HYPERPLASIA, C-CELL	2 (4%)	5 (10%)	2 (4%)	
# PARATHYROID	(41)	(37)	(40)	(40)
HYPERPLASIA, NOS	X · · /	2 (5%)	()	11
-				
PANCREATIC ISLETS	(50)	(49)	(50)	(50)
HYPERPLASIA, NOS		1 (2%)	1 (2%)	

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICBOSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE
HYPERPLASIA, FOCAL			1 (2%)	
REPRODUCTIVE SYSTEM				
*MAMMARY GLAND GALACTOCELE	(50)	(50) 1 (2%)	(50)	(50)
CYST, NOS CYSTIC DUCTS INFLAMMATION, CHRONIC	3 (6%) 2 (4%)	1 (2%) 1 (2%)	3 (6%)	
HYPERPLASIA, CYSTIC		• •	1 (2%)	
*PBEPUTIAL GLAND Hyperplasia, nos Hyperplasia, cystic	(50)	(50)	(50) 1 (2%) 1 (2%)	(50)
#PROSTATE INFLAMMATION, SUPPURATIVE	(49)	(49)	(49) 2 (4%)	(45)
INFLAMMATION, ACUTE Abscess, nos Inflammation, chronic	13 (27%) 7 (14%)	11 (22%) 3 (6%) 7 (14%)	9 (18%) 2 (4%)	4 (9%) 2 (4%) 2 (4%)
*SEMINAL VESICLE INFLAMMATION, NOS INFLAMMATION, ACUTE	(50)	(50)	(50)	(50) 1 (2%) 2 (4%)
#TESTIS HENORRHAGE PERIARTERITIS	(50) 1 (2%)	(49) 1 (2%)	(50)	(49)
DEGENERATION, NOS HYPOSPERMATOGENESIS HYPERPLASIA, INTERSTITIAL CELL	2 (4%) 29 (58%)	3 (6%) 38 (78%)	2 (4%) 14 (28%)	5 (10%) 1 (2%) 18 (37%)
*EPIDIDYMIS STEATITIS INFLAMMATION, CHRONIC	(50) 2 (4%) 1 (2%)	(50) 2 (4%)	(50) 1 (2%) 1 (2%)	(50)
GRANULOMA, SPERMATIC NECROSIS, FAT	. (22)	1 (2%) 1 (2%)	2 (4%)	1 (2%) 1 (2%)
*SCROTUM NECROSIS, FAT	(50)	(50)	(50) 1 (2%)	(50)
NERVOUS SYSTEM				
#CEREBRUM <u>Hemorrhage</u>	(50)	(50) 1 (2%)	(48) 2 (4系)	(49)

NUMBER OF ANIMALS WITH TISSUE EXAMINED NICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED
TABLE B1. MALE RATS: NONNEOPLA	STIC LESIONS (CONTINUED)

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE	
NECROSIS, NOS		1 (2%)			
#CEREBELLUM HEMORRHAGE	(50)	(50)	(48) 1 (2%)	(49) 1 (2%)	
SPECIAL SENSE ORGANS					
*EYE	(50)	(50)	(50)	(50)	
HEMORRHAGE SYNECHIA, POSTERIOR	1 (2%)	1 (2%)	1 (2%)	1 (2%) 1 (2%)	
CATARACT Phthisis bulbi	1 (2%)	2 (4%)			
*EYE/RETINA	(50)	(50)	(50)	(50)	
INFLAMMATION, CHRONIC DEGENERATION, NOS	1 (2%)	2 (4%)	2 (4%)	1 (2%)	
*EAR CANAL HYPERKERATOSIS	(50)	(50)	(50)	(50) 1 (2%)	
NONE					
*ABDOMINAL CAVITY	(50)	(50)	(50)	(50)	
2 00010 7070	(50) 3 (6%)	2 (4%) 8 (16%)	(50) 2 (4%) 2 (4%)	3 (6%)	
STEATITIS NECROSIS, FAT	1 (2%)				
NECROSIS, FAT *MESENTERY NECROSIS, FAT		(50)	(50) 1 (2%)	(50)	
NECROSIS, FAT *MESENTERY NECROSIS, FAT	(50)	(50)	(50) 1 (2%)	(50)	
NECROSIS, FAT *MESENTERY NECROSIS, FAT 	(50)	(50)	(50) 1 (2%)	(50)	
NECROSIS, FAT *MESENTERY NECROSIS, FAT ALL OTHER SYSTEMS NONE	(50)	(50)	(50) 1 (2%)	(50)	

* NUMBER OF ANIMALS NECROPSIED

TABLE B2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS ADMINISTERED BIS(2-CHLORO-1-METHYLETHYL) ETHER BY GAVAGE

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE	
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50	50 50 5 0	50 49 49	50 48 48	
INTEGUMENTARY SYSTEM		-			
*SKIN EPIDERMAL INCLUSION CYST ACANTHOSIS	(50)	(50)	(49) 1 (2%) 1 (2%)	(48)	
*SUBCUT TISSUE ABSCESS, NOS	• •	(50)	• •	(48) 1 (2%)	
RESPIRATORY SYSTEM					
#TRACHEA INFLAMMATION, ACUTE METAPLASIA, SQUAMOUS	(49)	(49)	(49) 1 (2%)	(48) 1_(2%)	
#LUNG/BRONCHIOLE HYPERPLASIA, NOS	(49)	(50) 1 (2%)	(49)	(48)	
<pre>#LUNG CONGESTION, NOS EDEMA, NOS</pre>	(49)	(50)	(49) 1 (2%) 1 (2%)	(48) 7 (15%)	
HEMORRHAGE PNEUMONIA, ASPIRATION INFLAMMATION, ACUTE ABSCESS, NOS	1 (2%)	2 (4%) 1 (2%)	8 (16%) 16 (33%)		
PNEUMONIA, CHRONIC MJRINE FOREIGN MATERIAL, NOS HEMOSIDEROSIS	48 (98%)	45 (90%)	42 (86%) 1 (2%)		
HYPERPLASIA, ALVEOLAR EPITHELIUM		1 (2%)			
EMATOPOIETIC SYSTEM					
#BJNE MARROW <u>HYPERPLASIA, HEMATOPOIETIC</u>	(48) <u>1_(2%)</u>	(50)	(48)	(48)	

	UNTREATED Control	VEHICLE Control	LOW DOSE	HIGH DOSE	
#SPLEEN HEMOSIDEROSIS HYPERPLASIA, LYMPHOID HEMATOPOILSIS	(48) 33 (69%) 28 (58%)	(49) 38 (78%) 1 (2%) 27 (55%)	(49) 26 (53%) 19 (39%)	(48) 19 (40%) 11 (23%)	
#SPLENIC FOLLICLES ATROPHY, NOS	(48)	(49)	(49) 2 (4%)	(48) 1 (2%)	
*CERVICAL LYMPH NODE HEMOSIDEROSIS HYPERPLASIA, LYMPHOID	(49)	(50)	(49) 1 (2%) 2 (4%)	(48)	
<pre>#MESENTERIC L. NODE LYMPHANGIECTASIS ATROPHY, NOS</pre>	(49) 2 (4%)	(50) 1 (2%)	(49)	(48)	
#THYMUS .1EMORRHAGE	(20) 1 (5%)	• •	(18)	(26)	
CIRCULATORY SYSTEM					
#HEART/ATRIUM Thrombosis, Nos	(49) 1 (2%)	(50)	(49)	(48)	
<pre>#MYOCARDIUM INFLAMMATION, CHRONIC FIBROSIS DEGENERATION, NOS CALCIFICATION, NOS</pre>	(49) 29 (59%) 4 (8%) 2 (4%) 1 (2%)	(50) 9 (18%) 8 (16%) 19 (38%)	(49) 12 (24%) 3 (6%) 13 (27%)	(48) 5 (10%) 1 (2%) 12 (25%)	
# ENDOCARDIUM FIBROSIS	(49)	(50)	(49) 1 (2%)	(48)	
DIGESTIVE SYSTEM					
#SALIVARY GLAND INFLAMMATION, CHRONIC	(48) 1 (2%)	(50)	(49)	(48)	
<pre>#LIVER CONGESTION, NOS INFLAMMATION, NOS INFLAMMATION, FOCAL</pre>	(49)	(50)	(49)	(48) 1 (2%) 2 (4%)	

		TROL		ICLE TROL	LOW DI	DSE	HIGH D	OSE
HEPATITIS, TOXIC	3	(6%)			2	(4%)		
NECROSIS, NOS				(2%)	_			
NECROSIS, FOCAL	2	(4%)		(2%) (2%)		(4%) (4%)		(4%) (6%)
METAMORPHOSIS FATTY HEMOSIDEROSIS	1	(2%)	1	(2%)	2	(4,4)		[0,4)
POCAL CELLULAR CHANGE		(49%)	37	(74%)	23	(47%)	9	(19%
#LIVER/CENTRILOBULAR	(49)		(50)				(48)	
NECROSIS, NOS			1	(2%)	1	(2%)	7	(15%
#LIVER/HEPATOCYTES	(49)		(50)		(49)		(48)	
NECROSIS, NOS							I	(2%)
#BILE DUCT	(49)		(50)		(49)		(48)	
INFLAMMATION, CHRONIC		(10%)		(6%)	4		1	/ ว สา
FIBROSIS Hyperplasia, Nos		(8%) (29%)		(2%) (30%)		(2%) (2%)		(2%) (4%)
#PANCREAS	(49)		(50)		(49)		(48)	
EMBRYONAL REST	• • • •		••		• •			(4%)
ATROPHY, NOS Atrophy, Focal		(4%) (6%)	7	(14%)	3	(6%)	2	(4%)
*ESOPHAGUS	(49)				(49)		(48)	
HYPERKERATOSIS	(43)			(26%)		(20%)		(65%
ACANTHOSIS				(2%)		•		(10%
#STOMACH	(48)		(50)		(49)		(48)	
HEMORRHAGE	1	(2%)	1	(2%)				(4%)
ULCER, FOCAL			2	11197)			1	(2%)
INFLAMMATION, ACUTE INFLAMMATION, CHRONIC	1	(2%)	2	(4%)				
NECROSIS, NOS		(2)	1	(2%)				
NECROSIS, FOCAL				(6%)		(2%)	2	
HYPERKERATOSIS				(42%)		(29%)		(23%
ACANTHOSIS			. 8	(16%)	5	(10%)	9	(19%
#LARGE INTESTINE INFLAMMATION, ACUTE	(47)	(2%)	(50)		(49)		(48)	
PARASITISM		(2%) (6%)	1	(2%)	3	(6%)	4	(8%)
RINARY SYSTEM								
*KIDNEY	(49)		(49)		(49)		(48)	
ABSCESS, NOS					1			

TABLE B2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	UNTREATED Control	VEHICLE CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION, CHRONIC	37 (76%)	27 (55%)	15 (31%)	7 (15%)
<pre>#KIDNEY/CORTEX CYST, NOS</pre>	(49) 1 (2%)	(49) 2 (4%)	(49) 2 (4%)	(48)
<pre>#KIDNEY/TUBULE NECROSIS, CYTODEGLNERATIVE PIGMENTATION, NOS</pre>	(49) 8 (16%)	(49) 6 (12%)	(49) 2 (4%)	(48) 1 (2%) 1 (2%)
<pre>#KIDNEY/PELVIS CALCIFICATION, NOS</pre>	(49)	(49)	(49)	(48) 1 (2%)
#URINARY BLADDER HYPERPLASIA, PAPILLARY	(48)	(45)	(47) 1 (2%)	(44)
ENDOCRINE SYSTEM				
#PITUITARY CYST, NOS HEMORRHAGE HEMORRHAGIC CYST	(49) 5 (10%) 1 (2%)	(50) 11 (22%) 5 (10%)	(49) 5 (10%) 5 (10%)	(48) 7 (15%)
HYPERPLASIA, FOCAL ANGIECTASIS	3 (6%) 4 (8%)	6 (12%) 3 (6%)	3 (6%) 1 (2%)	1 (2%) 2 (4%)
#ADRENAL FIBROSIS METAMORPHOSIS FATTY	(49) 3 (6%)	(50)	(49)	(48) 1 (2%)
ANGIECTASIS	2 (4%)	5 (10%)	1 (2%)	2 (4%)
#ADRENAL CORTEX DEGENERATION, NOS ANGIECTASIS	(49) 5 (10%) 5 (10%)	(50) 4 (8%) 2 (4%)	(49) 10 (20%) 3 (6%)	(48) 1 (2%) 13 (27%)
#ADRENAL MEDULLA NECROSIS, NOS HYPERPLASIA, NOS HYPERPLASIA, FOCAL	(49)	(50)	(49) 1 (2%) 1 (2%) 1 (2%)	(48)
<pre>#THYROID HYPERPLASIA, C-CELL</pre>	(49) 5 (10%)	(50) 3 (6%)	(46) 4 (9%)	(48) 1 (2%)
<pre>#PANCREATIC ISLETS HYPERPLASIA, NOS HYPERPLASIA, FOCAL</pre>	(49) 1 (2%)	(50) 1 (2%)	(49) 1 (2%)	(48)

	UNTREATED Control	VEHICLE CONTROL	LOW DOSE	HIGH DOSE	
REPBODUCTIVE SYSTEM					
*MAMMARY GLAND	(50)	(50)	(49)	(48)	
GALACTOCELE	1 (2%)	4 (8%)	Ì (2%)	1 (2%)	
CYSTIC DUCTS	23 (46%)	15 (30%)	9 (18%)	1 (2%)	
HYPERPLASIA, NOS			1 (2%)		
HYPERPLASIA, CYSTIC	14 (28%)	22 (44%)	11 (22%)	5 (10%	
#UTERUS	(49)	(48)	(49)	(47)	
HYDROMETRA	3 (6%)	4 (8%)	1 (2%)	3 (6%)	
HEMORRHAGE	1 (2%)	3 (6%)	1 (2%)		
#CERVIX UTERI	(49)	(48)	(49)	(47)	
INFLAMMATION, CHRONIC	1 (2%)				
#UTERUS/BNDOMETRIUM	(49)	(48)	(49)	(47)	
CYST, NOS		1 (2%)	• •	• •	
INFLAMMATION, VESICULAR			1 (2%)		
#OVARY	(49)	(48)	(49)	(46)	
FOLLICULAR CYST, NOS	1 (2%)	2 (4%)	1 (2%)	• •	
PAROVARIAN CYST			1 (2%)		
IERVOUS SYSTEM					
#BRAIN/MENINGES	(49)	(50)	(49)	(48)	
INFLAMMATION, SUPPURATIVE	1 (28)			1 (2%)	
INFLAMMATION, ACUTE	1 (2%)				
#CEREBRUM	(49)	(50)	(49)	(48)	
HEMORRHAGE	1 (2%)			•	
#CEREBELLUM	(49)	(50)	(49)	(48)	
INFLAMMATION, ACUTE	1 (2%)				
PPECIAL SENSE ORGANS					
*EYE	(50)	(50)	(49)	(48)	
HEMORRHAGE	~~/	1 (2%)	· · · · ·	/	
CATARACT		1 (2%)			
PHTHISIS BULBI	1 (2%)	1 (2%)			
*EYE/RETINA	(50)	(50)	(49)	(48)	
*EYE/RETINA INFLAMMATIONCHRONIC	• •	(50)	(49)	(48) <u>1_(2</u>	

	UNTREATED Control		LOW DOSE	
DEGENERATION, NOS		1 (2%)		
*EYE/CONJUNCTIVA INFLAMMATION, CHRONIC ACANTHOSIS		(50)	(49)	(48) 1 (2% 1 (2%
USCULOSKELETAL SYSTEM				
*RIB HEALED FRACTURE	(50)	(50)	(49) 1 (2%)	(48)
*MUSCLE OF NECK INFLAMMATION, CHRONIC	(50)	(50) 1 (2%)	(49)	(48)
BODY CAVITIES				
*ABDOMINAL CAVITY STEATITIS NECROSIS, FAT	(50) 1 (2%) 1 (2%)	(50) 1 (2%)	(49) 1 (2%) 3 (6%)	(48)
*MESENTERY INFLAMMATION, ACUTE	(50)		(49) 1 (2%)	(48)
LL OTHER SYSTEMS				
*MULTIPLE ORGANS HEMATOPOIESIS		(50)	(49)	(48) 1 (2 %
SPECIAL MORPHOLOGY SUMMARY				
NO LESION REPORTED	1			1
AUTO/NECROPSY/NO HISTO AUTOLYSIS/NO NECROPSY	i		1	2

APPENDIX C

ANALYSIS OF BIS(2-CHLORO-1-METHYLETHYL) ETHER

APPENDIX C

Analysis of Bis(2-chloro-1-methylethyl) ether

Midwest Research Institute

A. Elemental Analysis

Element:		С	Н	C1
Theory:		42.12	7.07	41.45
Found:	Lot No. 7	41.92 41.85	6.93 7.05	41.78 41.74
	Lot No. PB41576	41.48 41.60	6.93 7.09	42.67 42.91
	Lot No. 162976	42.14 42.28	7.05 7.12	41.37 41.43

B. Boiling Point

Literature	:	187 to 188 ⁰ C at 761 mm Hg (Dewael et al., 1930)
Found:	Lot No. 7	181.5 to 184 ⁰ C at 767 mm Hg
	Lot No. PB41576	184°C at 742.4 mm Hg
	Lot No. 162976	181.8 to 186.6°C at 765 mm Hg

C. Vapor-Phase Chromatography

Lot No. 7

System 1:

- 1. Instrument: Varian Aerograph 1400
- 2. Detector: Thermal conductivity
- 3. Column: Chromosorb 102, 2 mm x 1.8 m 4. Program: 100 to 250°C at 10°C/min
- 5. Results: Major peak and seven impurities

Peak	Retention Time*	<u>Area*</u>
1	0.01	<0.1
2	0.11	0.3
3	0.21	<0.1
4	0.40	< 0.1
5	0.42	< 0.1
6	0.75	0.4
7	0.96	6.5
8(major)	1.00(13.0 min)	100

System 2:

1. Instrument: Tracor MT 220

2. Detector: Flame ionization

3. Column: 3% Dexsil 400, 2 mm x 1.8 m

4. Program: 50°C, 14 min: 50-200°C at 10°C/min

5. Results: Major peak and four impurities

Peak	Retention Time*	<u>Area*</u>
1	0.32	1.1
2	0.40	0.8
3	0.76	0.2
4(major)	1.00(5.0 min)	100
5	2.76	0.04

Lot No. PB41576

System 1:

* Retention times and areas normalized to major peak.

Peak	Retention Time (min)	Retention Time (Relative to Bis(2- chloro-l-methylethyl) ether)	Relative Areas (Compared to Major Peak)
1	0.9	0.08	trace, < 0.01
	1.0	0.09	trace, < 0.01
2 3	1.1	0.10	trace, <0.01
4	1.8	0.16	trace, <0.01
5	2.4	0.21	trace, <0.01
6	2.8	0.24	0.3
7	3.0	0.26	<pre>shoulder, < 0.03</pre>
8	3.3	0.29	0.03
9	4.8	0.43	0.04
10	6.0	0.58	0.4
11	8.4	0.74	0.6
12	9.4	0.83	0.2
13	9.6	0.84	shoulder
14	10.2	0.90	trace, < 0.01
15	10.8	0.95	shoulder
16	11.4	1.00	100
17	12.4	1.09	0.04
18	12.6	1.11	0.02
19	13.2	1.16	shoulder
20	13.4	1.18	0.8
21	14.2	1.26	2.0
22	14.9	1.30	0.03
23	15.2	1.34	0.04
24	15.6	1.37	0.3

System 2:

Instrument: Tracor MT 220
Detector: Flame ionization
Inlet temperature: 200°C
Detector temperature: 270°C
Column: Chromosorb 102, 100/120, 1.8 m x 4 mm ID,
 glass
Oven temperature program: 100 to 200°C at 10°C/min
Results: Major peak and nine impurities

Peak	Retention Time (min)	Retention Time (Relative to Bis(2- chloro-l-methylethyl) ether)	Relative Areas (Compared to Major Peak)
1	3.1	0.09	0.001
2	3.9	0.12	0.001
3	6.2	0.19	0.006
4	9.6	0.29	0.002
5	10.7	0.32	0.3
6	11.0	0.33	0.3
7	18.8	0.56	1.0
8	20.3	0.61	1.4
9	22.4	0.68	0.6
10	33.3	1.00	100

System 3:

		Retention Time	Relativ	e Areas
	Retention	(Relative to Bis(2-	(Compa	red to
Peak	<u>Time (min)</u>	chloro-l-methylethyl) ether)	<u>Major</u>	Peak)
1	0.3	0.01	trace,	<0.01
2	0.5	0.02	trace,	<0.01
3	1.3	0.05		0.12
4	2.6	0.10	trace,	<0.01
5	3.6	0.15	trace,	<0.01
6	7.8	0.33		0.02
7	8.9	0.38	trace,	<0.01
8	9.8	0.41	trace,	< 0.01
9	13.1	0.55	trace,	< 0.01
10	14.2	0.60		0.06
11	15.4	0.64		0.02
12	16.2	0.68		0.39
13	16.8	0.70		0.19
14	18.4	0.77	trace,	<0.01
15	19.0	0.80	trace,	<0.01

Peak	Retention Time (min)	Retention Time (Relative to Bis(2- chloro-1-methylethyl) ether)	Relativ (Compa Major	
(conti	nued)			
16	20.0	0.84	trace,	< 0.01
17	20.8	0.87		0.03
18	22.1	0.92		3.0
19	22.8	0.95		2.7
20	23.3	0.98		2.0
21	23.8	1.00		100

Lot No. 162976

System 1:

Instrument: Tracor MT 220 Detector: Flame ionization Inlet temperature: 225°C Detector temperature: 310⁰C Column: 10% Carbowax 20 M-TPA on 80/100 Chromosorb W AW, 1.8 m x 4 mm I.D., glass Oven temperature program: 5 min at $75^{\circ}C$, then 75 to 200°C at 10°C/min Results: Major peak and 32 impurities. One of these has an area of 0.89% of the major peak, one 0.20, one 0.19, and one 0.18% of the major peak. The others individually constitute < 0.1% of the major peak and total 0.4% of the major peak.

Peak	Retention Time (min)	Retention Time (Relative to Bis(2- chloro-l-methylethyl) ether)	Relative Areas (Compared to Major Peak)
1	0.51	0.046	0.0001
2	0.56	0.052	0.0005
3	0.86	0.078	0.003
4	1.0	0.096	0.003
5	1.2	0.11	0.0006
6	1.8	0.16	0.0007
7	2.1	0.19	0.009
8	2.3	0.21	0.005
9	4.8	0.44	0.19

Peak	Retention <u>Time (min)</u>	Retention Time (Relative to Bis(2- chloro-l-methylethyl) e	-
(cont:	inued)		
10	6.6	0.60	0.0005
11	7.2	0.66	0.008
12	7.5	0.68	shoulder, 0.006-0.02
13	7.7	0.70	0.18
14	8.0	0.74	shoulder, 0.0006-0.004
15	8.2	0.76	0.0005
16	8.6	0.78	0.0005
17	8.8	0.81	0.05
18	9.0	0.82	shoulder, 0.0002-0.006
19	9.5	0.88	0.001
20	9.8	0.90	0.0008
21	10.9	1.00	100
22	11.5	1.06	0.89
23	12.3	1.12	0.02
24	12.4	1.14	0.03
25	12.6	1.16	0.002
26	13.0	1.20	0.05
27	13.5	1.24	0.01
28	13.9	1.28	0.005
29	14.3	1.32	0.20
30	14.6	1.34	shoulder, 0.002-0.009
31	14.8	1.36	0.03
32	15.2	1.39	0.02
33	15.6	1.44	0.06

System 2:

Instrument: Tracor MT 220 Detector: Flame ionization Inlet temperature: 225°C Detector temperature: 310⁰C Column: 20% SP 2100/0.1% Carbowax 1500 on 100/120 Supelcaport, 1.8 m x 4 mm I.D., glass Oven temperature program: 5 min at 75°C, then 75 to 200°C at 10°C/min Major peak and 32 impurities. One of these Results: has an area 0.94% of the major peak, one 0.18, one 0.16 and one 0.15% of the major peak. The others individually constitute < 0.1% of the major peak and total < 0.5%of the major peak.

Peak	Retention Time (min)	Retention Time (Relative to Bis(2- chloro-l-methylethyl) ethe	Relative Areas (Compared to er) Major Peak)
1	0.66	0.05	0.0002
2	0.91	0.06	0.0004
3	1.6	0.12	0.002
4	2.2	0.16	0.003
5	2.7	0.20	0.001
6	3.4	0.25	0.004
7	4.1	0.30	0.18
8	4.8	0.36	0.15
9	5.8	0.42	0.03
10	7.6	0.55	0.001
11	8.0	0.58	0.001
12	8.6	0.62	0.02
13	9.2	0.68	0.0002
14	9.4	0.70	0.004
15	10.2	0.75	0.08
16	10.6	0.78	0.16
17	11.0	0.80	0.03
18	11.2	0.82	shoulder 0.002-0.001
19	11.4	0.83	0.009
20	11.8	0.86	0.008
21	12.1	0.88	0.94
22	12.4	0.90	0.02
23	12.8	0.94	0.04
24	13.7	1.00	100
25	14.2	1.04	0.03
26	14.6	1.06	0.04
27	14.8	1.08	shoulder 0.002-0.004
28	15.0	1.10	0.008
29	15.2	1.11	0.02
30	15.4	1.12	0.008
31	15.8	1.16	0.01
32	16.1	1.18	0.001
33	16.5	1.20	0.05

D. Spectral Data

1. Infrared: All lots gave infrared absorption spectra (figures 3 to 5) which were consistent with spectra given in the literature (Sadtler Standard Spectra)

2. Nuclear Magnetic Resonance: The nuclear magnetic resonance spectra of all three lots (figures 6 to 8) contained 2 methyl resonances (at 1.19 and 1.46 ppm). One resonance (1.19 ppm) agrees with the structure, and the second (1.46 ppm) agrees with the resonance for a methyl group next to a carbon bonded to one proton and one chlorine atom. The integration ratios indicated that these were present in a ratio of 80:20. It was postulated at the time of analysis that if the isomers were randomly distributed among the possible combinations, the samples contained 65% bis(2-chloro-1-methylethyl) ether, 4% bis(2-chloro-n-propyl) ether, and 31% mixed ethers. No reference spectrum was found in the literature.

E. Special Analysis

Additional analysis on Lot No. I62976 by vapor-phase chromatography and gas chromatography/mass spectrometry analysis after completion of the bioassay indicated that this lot contained 69.4% bis(2-chloro-1-methylethyl) ether, 2.1% bis(2-chloro-n-propyl) ether, and 28.5% mixed ether.

Review of the Bioassay of Bis(2-chloro-l-methylethyl)ether* for Carcinogenicity by the Data Evaluation/Risk Assessment Subgroup of the Clearinghouse on Environmental Carcinogens

May 1, 1979

The Clearinghouse on Environmental Carcinogens was established in May, 1976, in compliance with DHEW Committee Regulations and the Provisions of the Federal Advisory Committee Act. The purpose of the Clearinghouse is to advise the Director of the National Cancer Institute of the Institute's bioassay program to identify and evaluate chemical carcinogens in the environment to which humans may be exposed. The members of the Clearinghouse have been drawn from academia, industry, organized labor, public interest groups, and State health officials. Members have been selected on the basis of their experience in carcinogenesis or related fields and, collectively, provide expertise in chemistry, biochemistry, biostatistics, toxicology, pathology, and epidemiology. Representatives of various Governmental agencies participate as ad hoc members. The Data Evaluation/Risk Assessment Subgroup of the Clearinghouse is charged with the responsibility of providing a peer review of reports prepared on NCI-sponsored bioassays of chemicals studied for carcinogenicity. It is in this context that the below critique is given on the bioassay of Bis(2-chloro-l-methylethyl)ether.

The primary reviewer for the report on the bioassay of Bis(2-chlorol-methylethyl)ether said that the compound was not carcinogenic in treated Fischer 344 rats, under the conditions of test. After briefly commenting on the experimental design, he noted a significant increased incidence of esophageal hyperkeratosis among high dose treated animals of both sexes and an increased incidence of esophageal acanthosis among high dose treated female rats. The maximum tolerated dose may have been exceeded, as indicated by the poor survival rate in the high dose treatment groups of both sexes. Although he agreed with the conclusions given in the report, the primary reviewer noted that the assessment of the carcinogenicity of Bis(2-chlorol-methylethyl)ether was limited in that it had been tested in only a single species.

The secondary reviewer pointed out that only 69 per cent of the tested material was Bis(2-chloro-l-methylethyl)ether; the remainder being comprised of different isomers. He recommended that this fact be reflected in the title of the report. He also commented on the fact that the test material was obtained from three different sources and that the tumor incidence was lower in treated animals than controls. The latter may be attributed to inadequate sampling of histopathological materials or weight loss among treated animals. It was moved that the report on the bioassay of Bis(2-chloro-1methylethyl)ether be accepted with the limitations noted in the reviewers' critiques. The motion was seconded and approved unanimously.

Clearinghouse Members Present:

Arnold L. Brown (Chairman), University of Wisconsin Medical School David B. Clayson, University of Nebraska Medical Center Joseph Highland, Environmental Defense Fund William Lijinsky, Frederick Cancer Research Center Sheldon Samuels, AFL-CIO Michael Shimkin, University of California at San Diego Louise Strong, University of Texas Health Sciences Center Kenneth Wilcox, Michigan State Health Department

* Subsequent to this review, changes may have been made in the bioassay report either as a result of the review or for other reasons. Thus, certain comments and criticisms reflected in the review may no longer be applicable.

★U.S. GOVERNMENT PRINTING OFFICE: 1979-281-217:3217

NIH Publication No. 79-1747