FINAL

Report on Carcinogens
Background Document for

Beryllium and Beryllium Compounds

December 16 - 17, 1999

Meeting of the
NTP Board of Scientific Counselors
Report on Carcinogens Subcommittee

Prepared for the:
U.S. Department of Health and Human Services
Public Health Service
National Toxicology Program
Research Triangle Park, NC 27709

Prepared by:
Technology Planning and Management Corporation
Canterbury Hall, Suite 310
4815 Emperor Blvd
Durham, NC 27703
Contract Number NOI-ES-85421
Criteria for Listing Agents, Substances or Mixtures in the Report on Carcinogens

U.S. Department of Health and Human Services
National Toxicology Program

Known to be Human Carcinogens:

There is sufficient evidence of carcinogenicity from studies in humans which indicates a causal relationship between exposure to the agent, substance or mixture and human cancer.

Reasonably Anticipated to be Human Carcinogens:

There is limited evidence of carcinogenicity from studies in humans which indicates that causal interpretation is credible but that alternative explanations such as chance, bias or confounding factors could not adequately be excluded; or

There is sufficient evidence of carcinogenicity from studies in experimental animals which indicates there is an increased incidence of malignant and/or a combination of malignant and benign tumors: (1) in multiple species, or at multiple tissue sites, or (2) by multiple routes of exposure, or (3) to an unusual degree with regard to incidence, site or type of tumor or age at onset; or

There is less than sufficient evidence of carcinogenicity in humans or laboratory animals, however; the agent, substance or mixture belongs to a well defined, structurally-related class of substances whose members are listed in a previous Report on Carcinogens as either a known to be human carcinogen, or reasonably anticipated to be human carcinogen or there is convincing relevant information that the agent acts through mechanisms indicating it would likely cause cancer in humans.

Conclusions regarding carcinogenicity in humans or experimental animals are based on scientific judgment, with consideration given to all relevant information. Relevant information includes, but is not limited to dose response, route of exposure, chemical structure, metabolism, pharmacokinetics, sensitive sub populations, genetic effects, or other data relating to mechanism of action or factors that may be unique to a given substance. For example, there may be substances for which there is evidence of carcinogenicity in laboratory animals but there are compelling data indicating that the agent acts through mechanisms which do not operate in humans and would therefore not reasonably be anticipated to cause cancer in humans.
Summary Statement

Beryllium and Beryllium Compounds

Beryllium and beryllium compounds were first listed in the Second Report on Carcinogens as *reasonably anticipated to be human carcinogens*

Carcinogenicity

Beryllium and beryllium compounds are *known to be human carcinogens*, based on findings of increased risk of lung cancer in occupational groups exposed to beryllium or beryllium compounds (Steenland and Ward 1991; Ward *et al.* 1992) and supporting animal data (IARC 1993; Finch *et al.* 1996). The epidemiologic evidence supports a conclusion that beryllium and beryllium compounds are carcinogenic to humans. An association with lung cancer has been consistently observed in several populations, with an excess risk of 1.2 to 1.6. Higher risks are found in groups with greater exposure or longer time since first exposure, which are dose-response patterns that support a causal relationship. Acute beryllium pneumonitis, a marker for high exposure to beryllium, is associated with elevated lung cancer rates, with an excess risk of 2.3 (Steenland and Ward 1991). Although smoking is a potential confounder, no evidence was found in any of the published epidemiology studies to indicate that the prevalence of smoking in any of the exposed cohorts was substantially greater than in the referent populations.

Animal experiments have shown consistent increases in lung cancers in rats, mice and rabbits chronically exposed to beryllium and beryllium compounds by inhalation or intratracheal instillation. Osteosarcomas have been produced in mice and rabbits exposed to various beryllium salts by intravenous injection or implantation into the bone.

Other Relevant Information

Beryllium compounds were not mutagenic in a variety of *Salmonella* tester strains. However, beryllium compounds induced genetic transformations in a variety of mammalian cells, *in vitro*. The genetic transformation effects of beryllium may be mediated by binding of ionic beryllium to nucleic acids that can produce infidelity in DNA replication.
Table of Contents

Criteria for Listing Agents, Substances or Mixtures in the Report on Carcinogens.................. i
Summary Statement .. iii

1 Introduction .. 1
 1.1 Chemical identification .. 1
 1.2 Physical-chemical properties .. 1
 1.3 Identification of metabolites ... 9

2 Human Exposure ... 11
 2.1 Use .. 11
 2.1.1 Beryllium .. 11
 2.1.2 Beryllium-copper alloy ... 12
 2.1.3 Other beryllium alloys .. 12
 2.1.4 Beryllia ceramics ... 12
 2.2 Production .. 12
 2.3 Analysis .. 13
 2.4 Environmental occurrence .. 14
 2.4.1 Soil .. 14
 2.4.2 Water ... 15
 2.4.3 Air ... 15
 2.5 Environmental fate ... 16
 2.5.1 Air ... 16
 2.5.2 Water ... 17
 2.5.3 Soil .. 17
 2.6 Environmental exposure ... 17
 2.6.1 Environmental sources of beryllium ... 18
 2.7 Occupational exposure ... 18
 2.7.1 Processing and manufacturing .. 19
 2.7.2 Machining ... 21
 2.7.3 Other occupational exposure scenarios ... 22
 2.8 Biological indices of exposure ... 23
 2.9 Regulations ... 24

3 Human Cancer Studies .. 33
 3.1 IARC Evaluations .. 33
 3.2 Current epidemiologic studies.. 36
 3.3 Case-control studies ... 36
 3.4 Cohort studies ... 37
 3.5 Other studies ... 37
 3.6 Discussion .. 37
4 Studies of Cancer in Experimental Animals ... 43
 4.1 Inhalation studies in rats, hamsters, rabbits, and monkeys 43
 4.2 Intratracheal instillation in rats ... 45
 4.3 Effects of beryllium metal in p53 knockout mice .. 45
 4.4 Intravenous injection in mice and rabbits .. 47
 4.5 Intraperitoneal injection ... 48
 4.6 Implantation and/or injection into bone ... 48
 4.7 Summary .. 49
5 Genotoxicity ... 57
 5.1 Prokaryotic systems .. 57
 5.1.1 Induction of mutations in Salmonella typhimurium 57
 5.1.2 Induction of mutation in Escherichia coli .. 57
 5.1.3 Induction of differential toxicity in Bacillus subtilis rec assay 57
 5.1.4 Induction of mutation in Saccharomyces cerevisiae 57
 5.2 Mammalian systems ... 58
 5.2.1 In vitro assays .. 58
 5.2.2 In vivo assays ... 59
 5.3 Summary .. 59
6 Other Relevant Data .. 61
 6.1 Absorption, distribution, metabolism and excretion .. 61
 6.2 Binding to nucleoproteins and interference with DNA synthesis 62
 6.3 Summary .. 63
7 References .. 65

Appendix C: Carcinogen Profile for Beryllium and Beryllium Compounds (NTP 9th Report on Carcinogens 1999) pp. C-1 – C-4... 79

List of Tables

Table 1-1. Physical and chemical properties of elemental beryllium 2
Table 1-2. Physical and chemical properties of beryllium compoundsa 3
Table 2-1. Industrial uses for beryllium .. 11
Table 2-2. United States production and use .. 13
Table 2-3. Analytical procedures and detection limits for beryllium 14
Table 2-4. Emissions of beryllium into the atmosphere ... 16
Table 2-5. Beryllium concentrations in various foodstuffs .. 18
Table 2-6. Daily weighted average air concentrations (µg/m³) of beryllium in a U.S. beryllium production plant for four time periods ... 20
Table 2-7. Beryllium concentration in samples from two main beryllium production buildings at RFETS ... 21
Table 2-8. Median of quarterly daily weighted averages (DWA) for a beryllia ceramics plant .. 22
Table 2-9. Beryllium body burdens ... 24
Table 2-10. U.S. EPA regulations .. 25
Table 2-11. FDA regulations ... 30
Table 2-12. OSHA regulations for beryllium and beryllium compounds 31
Table 3-1. Current case-control studies of cancer .. 40
Table 3-2. Current cohort studies of cancer ... 41
Table 4-1. Incidence of mice with one or more pulmonary neoplasms following inhalation exposure to beryllium or Pu ... 46
Table 4-2. Animal carcinogenesis studies of beryllium metal, alloys, ores, and compounds 50

List of Figures

Figure 1-1. Structure of beryllium .. 2
1 Introduction

Beryllium and certain beryllium compounds were first listed in the National Toxicology Program’s (NTP) Second Annual Report on Carcinogens in 1981 as reasonably anticipated to be human carcinogens based on sufficient evidence of carcinogenicity in experimental animals and limited evidence in humans. Beryllium and beryllium compounds were nominated for possible upgrading to known to be human carcinogens based on the publication of an International Agency for Research on Cancer (IARC) monograph (1993) which stated that beryllium and beryllium compounds are carcinogenic to humans (Group 1) based on sufficient evidence of carcinogenicity in humans and experimental animals.

1.1 Chemical identification

Elemental beryllium (mol wt 9.01218, CASRN 7440-41-7) is a hard, grayish metal. It is also known as beryllium metal, beryllium-9, beryllium metallic, glucinium, or glucinum. It is one of the lightest of all metals and has one of the highest melting points of the lightest metals. Beryllium occurs naturally as a chemical component of certain kinds of rock, such as bertrandite, beryl, beryl ore, chrysoberyl, and phenakite. It also is found as a component of coal, soil, and volcanic dust. Some of the beryllium compounds discussed in the present review include the following:

- beryllium-aluminum alloy
- beryllium-nickel alloy
- bertrandite
- beryllium acetate
- beryllium chloride
- beryllium hydroxide
- beryllium silicate
- beryllium oxide
- beryllium zinc silicate
- beryllium-copper alloy
- beryllium carbonate
- beryllium fluoride
- beryllium nitrate
- beryllium sulfate
- beryllium phosphate

The U.S. Environmental Protection Agency (EPA) codes are K061 for beryllium and P015 for beryllium compounds. Shipping codes are UN1567 for beryllium and 1566 Poison B for beryllium compounds.

1.2 Physical-chemical properties

The structure of Beryllium is hexagonal close-packed, as illustrated in Figure 1-1. Beryllium has a very high specific heat, heat of fusion, sound conductance, and strength-to-weight ratio. Beryllium is lighter than aluminum but is > 40% more rigid than steel. Beryllium’s modulus of elasticity is about one third greater than that of steel. It has excellent thermal conductivity and is non-magnetic. At ordinary temperatures, beryllium resists oxidation in air; however, its ability to scratch glass is probably due to the formation of a thin layer of the oxide.

Alloys are substances composed of two or more metals, or sometimes a metal and a non metal, which have been mixed intimately by fusion, electrolytic deposition, or other
means. Beryllium in alloys contributes hardness, strength, and high electrical and thermal conductivity; it confers enhanced resistance to corrosion, wear, and fatigue. Beryllium alloyed with copper, aluminum, and other metals is used in the electronics, automotive, defense, and aerospace industries. Beryllium alloys also are used in dental applications and sporting goods (U.S. DOE 1999).

The physical and chemical properties of elemental beryllium and its compounds are listed in Table 1-1 and Table 1-2, respectively.

Table 1-1. Physical and chemical properties of elemental beryllium

<table>
<thead>
<tr>
<th>Property</th>
<th>Information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>9.01218</td>
<td>Budavari et al. (1996); CRC (1998)</td>
</tr>
<tr>
<td>Color</td>
<td>silvery, resembles aluminum powder</td>
<td>Budavari et al. (1996); CRC (1998)</td>
</tr>
<tr>
<td>Odor</td>
<td>odorless</td>
<td>CRC (1998)</td>
</tr>
<tr>
<td>Physical state</td>
<td>solid</td>
<td>Budavari et al. (1996); CRC (1998)</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>1287</td>
<td>Budavari et al. (1996); CRC (1998)</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>2970</td>
<td>Budavari et al. (1996); CRC (1998)</td>
</tr>
<tr>
<td>Density (g/cc at 20 °C)</td>
<td>1.844</td>
<td>Budavari et al. (1996); CRC (1998)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>hexagonal close-packed</td>
<td>Yang and Coppens (1978)</td>
</tr>
<tr>
<td>Young’s modulus (psi)</td>
<td>44 x 106</td>
<td>Rossman et al. (1991)</td>
</tr>
<tr>
<td>Solubility in:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water at 20°C</td>
<td>insoluble</td>
<td>Budavari et al. (1996); CRC (1998);</td>
</tr>
<tr>
<td>Acids (dilute)</td>
<td>soluble</td>
<td>HSDB (1998)</td>
</tr>
<tr>
<td>Alkalies (dilute)</td>
<td>soluble</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-2. Physical and chemical properties of beryllium compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>CASRN</th>
<th>Structure</th>
<th>mol wt</th>
<th>Physical state</th>
<th>Melting point (°C)</th>
<th>Boiling point (°C)</th>
<th>Density (g/cm³)</th>
<th>Solubility</th>
<th>Decomposition products upon heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium-aluminum alloy</td>
<td>12770-50-2</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>toxic fumes of BeO</td>
<td></td>
</tr>
<tr>
<td>62% Be, 38% Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium-copper alloy</td>
<td>11133-98-5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>870-980</td>
<td>NR</td>
<td>toxic fumes of BeO</td>
<td></td>
</tr>
<tr>
<td>0.3 - 2.0% Be, 96.9 - 98.3% Cu; 0.2% min. Ni and Co, 0.65 max. Ni, Fe, and Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium-nickel alloy</td>
<td>37227-61-5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3% Be; up to 4% other additives; rest Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryl ore [Be₃(AlSi₃O₉)₂]</td>
<td>1302-52-9</td>
<td>NR</td>
<td>537.502</td>
<td>blue-green, yellow, or white, transparent hexagonal crystal</td>
<td>1650</td>
<td>NR</td>
<td>2.80</td>
<td>insoluble in acid.</td>
<td>NR</td>
</tr>
<tr>
<td>2.03% Be, 10.04% Al, 31.35% Si, 53.58% O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysoberyl [BeAl₂O₄]</td>
<td>NR</td>
<td></td>
<td>126.973</td>
<td>green, yellow, or brown orthorhombic crystal</td>
<td>NR</td>
<td>NR</td>
<td>3.75</td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>7.10% Be, 42.5% Al, 50.4% O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium acetate C₄H₄BeO₄</td>
<td>543-81-7</td>
<td>![Structure diagram]</td>
<td>127.10</td>
<td>colorless plates</td>
<td>300 (decomposes)</td>
<td>NR</td>
<td>NR</td>
<td>insoluble in cold water, ethanol, and other common organic solvents slow hydrolysis in boiling water</td>
<td>NR</td>
</tr>
</tbody>
</table>

Note: NR = Not recorded
<table>
<thead>
<tr>
<th>Compound</th>
<th>CASRN</th>
<th>Structure</th>
<th>mol wt</th>
<th>Physical state</th>
<th>Melting point (°C)</th>
<th>Boiling point (°C)</th>
<th>Density (g/cm³)</th>
<th>Solubility</th>
<th>Decomposition products upon heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium carbonate BeCO₃</td>
<td>66104-24-3</td>
<td></td>
<td>69.021</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>soluble in acids and alkali, insoluble in cold water, decomposes in hot water.</td>
<td>NR</td>
</tr>
<tr>
<td>Beryllium carbonate; Carbonic 1:1</td>
<td>13106-47-3</td>
<td></td>
<td>112.05</td>
<td>white powder</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>soluble in acids and alkali, insoluble in cold water, decomposes in hot water.</td>
<td>NR</td>
</tr>
<tr>
<td>Beryllium chloride BeCl₂</td>
<td>7787-47-5</td>
<td></td>
<td>79.918</td>
<td>white to colorless deliquescent needles</td>
<td>405°C</td>
<td>520°C</td>
<td>1.899 (25°C)</td>
<td>soluble in water, alcohol, benzene, ether, and pyridine slightly soluble in chloroform and benzene, insoluble in acetone, insoluble in ammonia.</td>
<td>toxic fumes of BeO, HCl and other chlorinated compounds.</td>
</tr>
<tr>
<td>Beryllium fluoride BeF₂</td>
<td>7787-49-7</td>
<td></td>
<td>47.009</td>
<td>colorless amorphous mass (800 sublimes)</td>
<td>545°C</td>
<td>1,160°C</td>
<td>1.986 (25°C)</td>
<td>readily soluble in water, slightly soluble in sulfuric acid and alcohol.</td>
<td>toxic fumes of BeO, HF and other fluorinated compounds.</td>
</tr>
<tr>
<td>Compound</td>
<td>CASRN</td>
<td>Structure</td>
<td>mol wt</td>
<td>Physical state</td>
<td>Melting point (°C)</td>
<td>Boiling point (°C)</td>
<td>Density (g/cm³)</td>
<td>Solubility</td>
<td>Decomposition products upon heating</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>--</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Beryllium hydroxide Be(OH)₂</td>
<td>13327-32-7</td>
<td></td>
<td>43.027</td>
<td>three crystal or powder forms metastable tetragonal crystalline solid stable orthorhombic crystalline solid in slightly basic pH appears as a slimy, gelatinous substance</td>
<td>138°</td>
<td>NR</td>
<td>1.92³</td>
<td>slightly soluble in toxic fumes of BeO</td>
<td>toxic fumes of BeO</td>
</tr>
<tr>
<td>Beryllium nitrate Be(NO₃)₂</td>
<td>13597-99-4</td>
<td></td>
<td>133.022</td>
<td>deliquescent crystalline mass</td>
<td>60</td>
<td>NR</td>
<td>NR</td>
<td>very soluble in water and alcohol.</td>
<td>NR</td>
</tr>
<tr>
<td>Beryllium nitrate trihydrate Be(NO₃)₂·3H₂O</td>
<td>7787-55-5</td>
<td></td>
<td>187.068</td>
<td>white yellow deliquescent crystalline mass</td>
<td>60.5°</td>
<td>142°</td>
<td>1.557°</td>
<td>very soluble in water and ethanol.</td>
<td>NR</td>
</tr>
<tr>
<td>Compound</td>
<td>CASRN</td>
<td>Structure</td>
<td>mol wt</td>
<td>Physical state</td>
<td>Melting point (°C)</td>
<td>Boiling point (°C)</td>
<td>Density (g/cm³)</td>
<td>Solubility</td>
<td>Decomposition products upon heating</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>--------------------</td>
<td>---------</td>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Beryllium nitrate tetrahydrate</td>
<td>13510-48-0</td>
<td>Diagram</td>
<td>205.083</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Beryllium oxide BeO</td>
<td>1304-56-9</td>
<td>Diagram</td>
<td>25.0116</td>
<td>white amorphous powder or gel</td>
<td>2530</td>
<td>3787</td>
<td>3.016</td>
<td>0.2 mg/L (30°C) in water. soluble in acids, alkalies, and ammonium carbonate.</td>
<td>toxic fumes of BeO</td>
</tr>
<tr>
<td>Beryllium phosphate Be₃P₂O₈</td>
<td>13598-15-7</td>
<td>Diagram</td>
<td>216.979</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>slightly soluble in water.</td>
<td>NR</td>
</tr>
</tbody>
</table>

RoC Background Document for Beryllium and Beryllium Compounds
<table>
<thead>
<tr>
<th>Compound</th>
<th>CASRN</th>
<th>Structure</th>
<th>mol wt</th>
<th>Physical state</th>
<th>Melting point (°C)</th>
<th>Boiling point (°C)</th>
<th>Density (g/cm³)</th>
<th>Solubility</th>
<th>Decomposition products upon heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium silicate</td>
<td>13598-00-0</td>
<td></td>
<td>110.11</td>
<td>triclinic colorless crystals</td>
<td>1560°</td>
<td>NR</td>
<td>3.0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Beryllium sulfate</td>
<td>13510-49-1</td>
<td></td>
<td>105.07</td>
<td>colorless tetragonal crystals</td>
<td>decomposes 550 - 600°</td>
<td>Not applicable</td>
<td>2.443</td>
<td>insoluble in cold water and alcohol, converts to tetrahydrate in hot water</td>
<td>toxic fumes of BeO and sulfur oxides SO₃</td>
</tr>
<tr>
<td>Beryllium sulfate</td>
<td>7787-56-6</td>
<td></td>
<td>177.13</td>
<td>colorless tetragonal crystals</td>
<td>100 (loses 2H₂O)⁰ anhydrous 270°</td>
<td>400 (loses 4H₂O)⁰ decomposes 580°</td>
<td>1.713</td>
<td>insoluble in ethanol slightly soluble in concentrated sulfuric acid</td>
<td>toxic fumes of BeO and sulfur oxides SO₃</td>
</tr>
<tr>
<td>Compound</td>
<td>CASRN</td>
<td>Structure</td>
<td>mol wt</td>
<td>Physical state</td>
<td>Melting point (°C)</td>
<td>Boiling point (°C)</td>
<td>Density (g/cm³)</td>
<td>Solubility</td>
<td>Decomposition products upon heating</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Zinc beryllium silicate</td>
<td>39413-47-3</td>
<td>![Structure Image]</td>
<td>166.49</td>
<td>crystalline solid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

\[\text{CH}_3\text{COO}^{-} \quad \text{Be}^{2+} \quad \text{Cl}^{-} \quad \text{OH}^{-} \quad \text{Be} \quad \text{CO}_3^{2-} \quad \text{F} \quad \text{SO}_4^{2-} \quad \text{NO}_3^{-} \quad 2\text{O} \quad \text{PO}_4^{3-} \quad \text{SiO}_4^{4-} \quad \text{Zn}^{2+} \]

a All information obtained from Chemfinder (1998) except where noted.

NR: not reported.

c WHO (1990).

d Sax and Lewis (1987).

e Dean (1992).
1.3 Identification of metabolites

Beryllium metabolites per se have not been identified or studied. Snow (1992), however, reviewed effects of beryllium and beryllium compounds on cellular immunity and nucleic acid metabolism. This analysis compared beryllium with the carcinogenic metals, nickel and chromium. It was suggested that insoluble beryllium, engulfed by activated phagocytes, can be ionized by myeloperoxidases. Reactive oxygen intermediates formed in this inflammatory reaction to beryllium can bind to nucleic acids and interfere with the fidelity of DNA synthesis (Lansdown 1995, Leonard and Lauwerys 1987) (see section 6).
2 Human Exposure

2.1 Use

Beryllium is an extremely light metal with a very high melting point. Because of its unique properties, beryllium has many practical uses in industry. When used in alloys, it confers its unique properties, increasing thermal and electrical conductivity and strength (WHO 1990). Addition of only 2% of beryllium to copper forms alloys that are six times stronger than copper alone (LLNL 1997). Beryllium alloys find limited use in industry because of the low solubility of most other metals in solid beryllium, making alloys difficult to make or very brittle (WHO 1990).

Table 2-1 summarizes the uses for beryllium and beryllium compounds.

Table 2-1. Industrial uses for beryllium

<table>
<thead>
<tr>
<th>Compound</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure beryllium metal</td>
<td>Aircraft disc brakes, X-ray transmission windows,</td>
</tr>
<tr>
<td></td>
<td>space vehicle optics and instruments,</td>
</tr>
<tr>
<td></td>
<td>aircraft/satellite structures, missile parts, nuclear</td>
</tr>
<tr>
<td></td>
<td>reactor neutron reflectors, nuclear weapons, fuel</td>
</tr>
<tr>
<td></td>
<td>containers, precision instruments, rocket</td>
</tr>
<tr>
<td></td>
<td>propellants, navigational systems, heat shields, mirrors</td>
</tr>
<tr>
<td>Beryllium oxide</td>
<td>High-technology ceramics, electronic heat sinks,</td>
</tr>
<tr>
<td></td>
<td>electrical insulators, microwave oven components,</td>
</tr>
<tr>
<td></td>
<td>gyroscopes, military vehicle armor, rocket nozzles,</td>
</tr>
<tr>
<td></td>
<td>crucibles, thermocouple tubing, laser structural components</td>
</tr>
<tr>
<td>Beryllium alloys</td>
<td>Electrical connectors and relays, springs, precision</td>
</tr>
<tr>
<td></td>
<td>instruments, aircraft engine parts, non-sparking tools,</td>
</tr>
<tr>
<td></td>
<td>submarine cable housings and pivots, wheels, pinions, automotive</td>
</tr>
<tr>
<td></td>
<td>electronics, molds for injection</td>
</tr>
<tr>
<td></td>
<td>molded plastics for automotive, industrial and consumer applications</td>
</tr>
</tbody>
</table>

2.1.1 Beryllium

Beryllium’s earliest application was as a window for X-ray tubes. Because beryllium is relatively transparent to X-rays, these tubes were of the highest standard. Beryllium was then used in aircraft brake manufacturing because of its high specific heat (four times that of steel). Beryllium has a low density yet is very stiff, which results in dimensional stability. Because of these unique properties, it is used in missile, aircraft, and spacecraft guidance systems. Beryllium also is used in test reactors, tokamak reactors, and fusion reactors because it has a combination of high neutron multiplication, low absorption, and high scattering characteristics (Rossman et al. 1991).
2.1.2 **Beryllium-copper alloy**

Around 72% of all beryllium is used to produce beryllium-copper alloys (WHO 1990). While the alloy retains copper’s desirable properties (corrosion resistance and thermal and electrical conductivity), addition of beryllium significantly increases the strength of the alloy. Few, if any, other types of copper alloy exhibit as great an increase in strength as beryllium-copper alloy. Because of the strength of this alloy, it can be used in many demanding applications, from military and commercial landing gear to oil field drill collars and drilling bit friction bushings (Rossman *et al.* 1991). Beryllium-copper alloys do not spark and are nonmagnetic. Non-sparking tools made of beryllium-copper alloy can therefore be used in explosive environments where sparks from steel-to-steel contact must be avoided (IARC 1993).

2.1.3 **Other beryllium alloys**

Beryllium-aluminum alloys have garnered increased attention particularly in the aerospace industry, because they are extremely lightweight, yet very strong (IARC 1993) (WHO 1990).

Beryllium-nickel alloys are used in some high-temperature applications because they have higher thermal conductivity and a greater hardness than beryllium-copper alloys (WHO 1990).

Beryllium-nickel-chromium alloys are used in dentistry as an alternative to gold because beryllium increases the porcelain-metal bond strength and facilitates castability (WHO 1990).

2.1.4 **Beryllia ceramics**

Beryllium oxide (BeO) ceramics exhibit many of the properties that are necessary for ceramic materials used in electronic packages. They are very effective electrical insulators, have the ability to be hermetically sealed, and have the mechanical properties suitable for mounting and protection of the electronic circuitry (Rossman *et al.* 1991). BeO ceramics have the highest thermal conductivity of the oxide ceramics. Together with their high heat capacity and electrical resistivity, this property allows BeO ceramics to be used as an electrical insulator in electronics and other applications that require thermal dissipation.

2.2 **Production**

Because of beryllium’s increased importance in nuclear and aerospace technologies, U.S. production of beryllium has steadily increased. There are only two commercially important beryllium-containing minerals: beryl and bertrandite (Cunningham 1997).

Beryl (3BeO·Al₂O₃·6SiO₂), which contains around 11% beryllium oxide (up to 4% beryllium), is the predominant beryllium-containing mineral mined in the world. Beryl is found largely in Brazil and the former U.S.S.R. Impurities in beryl include alkali metals, alkaline-earth metals, iron, manganese, and phosphorus. Emeralds (chromium-containing
beryl), aquamarine (iron-containing beryl), and other semiprecious gems are examples of beryl at its purest gem quality (IARC 1993).

Bertrandite (4BeO·2SiO2·H2O) is the principal beryllium-containing mineral mined in the United States, accounting for approximately 85% of U.S. consumption. Bertrandite contains <1% beryllium but can be efficiently processed into beryllium hydroxide.

Other compounds also are being studied to determine the commercial feasibility of extracting beryllium from them. Two main examples are phenakite (2BeO·SiO2) and chrysoberyl (BeO·Al2O3). Phenakite is found in Canada, and chrysoberyl is found mostly in Texas (IARC 1993).

Table 2-2 shows the trend toward increased beryllium production (Cunningham 1997).

Table 2-2. United States production and use

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Production, mine shipments</td>
<td>198</td>
<td>173</td>
<td>202</td>
<td>211</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Imports for consumption, ore, and metal</td>
<td>8</td>
<td>53</td>
<td>32</td>
<td>20</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Exports, metal</td>
<td>20</td>
<td>29</td>
<td>61</td>
<td>57</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Consumption: apparent</td>
<td>183</td>
<td>198</td>
<td>198</td>
<td>204</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Consumption: reported</td>
<td>196</td>
<td>174</td>
<td>227</td>
<td>234</td>
<td>230</td>
<td></td>
</tr>
</tbody>
</table>

Source: Cunningham (1997).
* Estimated.

2.3 Analysis

Analysis of beryllium started with spectroscopic, fluorometric, gamma activation, spectrophotometric, and automatic titrimetric techniques. Atomic absorption spectrometry currently is used to determine beryllium levels in biological and environmental samples. Inductively coupled plasma atomic emission spectrometry is now being used because of its high sensitivity and low level of interference (IARC 1993).

Table 2-3 defines analytical and detection limits for various assays to determine beryllium levels.
Table 2-3. Analytical procedures and detection limits for beryllium

<table>
<thead>
<tr>
<th>Sample Matrix</th>
<th>Assay Procedure(a)</th>
<th>Limit of Detection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous samples, extracts, wastes</td>
<td>FLAA, ICP (313 nm), GFAA</td>
<td>0.005 mg/L, 0.3 µg/L, 0.2 µg/L</td>
<td>U.S. EPA (1986a), U.S. EPA (1986b), U.S. EPA (1986c)</td>
</tr>
<tr>
<td>Oil, greases, waxes (organic extract)</td>
<td>FLAA, ICP</td>
<td>0.005 mg/L, 0.3 µg/L</td>
<td>U.S. EPA (1986a), U.S. EPA (1986b)</td>
</tr>
<tr>
<td>Sediments, sludges, soils</td>
<td>FLAA, ICP (313 nm), GFAA</td>
<td>0.005 mg/L, 0.3 µg/L, 0.2 µg/L</td>
<td>U.S. EPA (1986a), U.S. EPA (1986b), U.S. EPA (1986c)</td>
</tr>
<tr>
<td>Tissue samples</td>
<td>FLAA</td>
<td>2 µg/L</td>
<td>Kleinman et al. (1989)</td>
</tr>
<tr>
<td>Urine</td>
<td>GFAA (untreated), GFAA (modify matrix with magnesium nitrate)</td>
<td>0.5 µg/L, 0.05 µg/L</td>
<td>Angerer and Schaller (1985), Paschal and Bailey (1986)</td>
</tr>
</tbody>
</table>

\(a\) FLAA: flame atomic absorption spectrometry; GFAA: graphite furnace atomic absorption spectrometry; ICP: inductively coupled argon plasma emission spectrometry.

2.4 Environmental occurrence

2.4.1 Soil

Beryllium is the 44th most abundant element in the Earth’s crust (IARC 1993). Beryllium concentrations in the Earth’s crust are estimated at 2.6 ppm.

Beryllium and beryllium compounds are widely distributed in soils. Through geochemical surveys, it is estimated that the lithosphere contains 6 mg Be/kg. Agricultural soils in the United States average 0.6 mg beryllium/kg (ranging from < 1 to 7 mg beryllium/kg). The rare geological sites that contain large deposits of beryllium evidently account for the relatively high overall lithospheric beryllium concentration (WHO 1990). Anthropogenic contributions to beryllium soil concentrations include coal ash and municipal waste combustor ash. Industrial waste also is a source of beryllium in the soil. Land burial is the most popular method of disposing of industrial waste generated from the processing or use of beryllium (ATSDR 1993).

In compliance with the Emergency Planning and Community Right-to-Know Act (EPCRA), 16 facilities reported their total beryllium land release as 47,428 lb. No underground injection values were reported (TRI 1996).
2.4.2 Water

Surface water concentrations of beryllium are usually in the nanograms per liter range. Seawater levels of beryllium are one tenth those of surface waters, varying from 3.5×10^{-8} to 22×10^{-8} ppm (Emsley 1998). Increased beryllium concentrations in water levels usually are due to industrial wastewater effluents (WHO 1990). Deposition of atmospheric beryllium also adds to water concentrations. However, the relative contributions of these sources cannot be assessed. Beryllium also can enter the water through the weathering of rocks and soils (ATSDR 1993).

The mean concentration of beryllium in 1,577 U.S. drinking-water samples was calculated at 190 ng/L (range 10 to 1,200 ng/L) (U.S. EPA 1980, cited in ATSDR 1993). A more recent survey of metals in the New York City drinking water did not detect any beryllium in the samples with a detection limit of 10 µg/L (10,000 ng/L) (Iwan 1987, cited in ATSDR 1993). U.S. EPA has set a standard where by the concentration of beryllium in drinking water may not exceed 4 µg/L.

In compliance with the EPCRA, 16 facilities reported their total beryllium water release as 32 lb (TRI 1996). The reportable quantity for release of beryllium into water is 1 lb.

2.4.3 Air

Although windblown dust and volcanic particles account for some of the natural atmospheric releases of beryllium, combustion of coal and fuel oil is the most likely source of environmental release. Coal combustion and fuel oil are estimated to account for 96% of the U.S. beryllium emission from all natural and anthropogenic sources. The average beryllium concentration in coal is between 1.8 and 2.2 µg/g of coal. Beryllium also occurs in the ash of many coals at concentrations of around 100 µg/g coal ash (IARC 1993). It is estimated that 10% to 30% of the beryllium contained in coal is released into the ambient atmosphere. Regulatory limits dictate that fuel oil can contain no more than 0.08 ppm beryllium. It is assumed that about 40% of beryllium contained in fuel oil is released into the atmosphere (ATSDR 1993).

The Toxic Release Inventory (U.S. EPA) listed 16 industrial facilities that produced, processed, or otherwise used beryllium in 1996. In compliance with EPCRA, 16 facilities reported their total beryllium air release as 1,254 lb (TRI 1996). The reportable quantity for release of beryllium into air is 1 lb.

Table 2-4 summarizes anthropogenic and natural sources of beryllium emissions into the atmosphere. The national emission standard for beryllium is 10 g/24 h per facility.
Table 2-4. Emissions of beryllium into the atmosphere

<table>
<thead>
<tr>
<th>Emission source</th>
<th>Total U.S. production (10^6 metric tons/year)</th>
<th>Emission factor (g/ton)</th>
<th>Emissions (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windblown dust</td>
<td>8.2</td>
<td>0.6</td>
<td>5</td>
</tr>
<tr>
<td>Volcanic particles</td>
<td>0.41</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal combustion</td>
<td>640</td>
<td>0.28</td>
<td>180</td>
</tr>
<tr>
<td>Fuel oil combustion</td>
<td>148</td>
<td>0.048</td>
<td>7.1</td>
</tr>
<tr>
<td>Beryllium ore processing</td>
<td>0.008^a</td>
<td>37.5^b</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>187.4</td>
</tr>
</tbody>
</table>

Source: ATSDR (1993; adapted from data provided by U.S. EPA 1987).
^a The production of beryllium ore is expressed in equivalent tons of beryl; the emission factor of 23.5 is estimated. Production of 8,000 tons/year of beryl is equivalent to ≈400 tons/year of contained metal.
^b Units are metric tons.

Atmospheric background concentrations of beryllium have been reported to be less than 0.1 and 0.2 ng/m³. Air samples taken over 100 cities in the U.S. from 1964 to 1965 did not contain detectable amounts of beryllium. From 1977 to 1981, average air concentrations of beryllium were around the limit of detection (0.03 ng/m³). From 1981 to 1986, beryllium concentrations at urban monitoring stations exceeded of 0.03 ng/m³, ranging from 0.11 to 6.7 ng/m³. Atmospheric concentrations of beryllium are higher around beryllium processing plants than in other areas. The concentration of beryllium in air near a Pennsylvania factory averaged 15.5 ng/m³, with a maximum of 82.7 ng/m³, whereas the background concentrations in several locations in the area averaged only 0.2 ng/m³ (IARC 1993).

The average air concentration of beryllium in the United States is 0.03 ng/m³, and the median concentration in cities is 0.2 ng/m³. According to a survey by the National Air Surveillance Network, atmospheric concentrations of beryllium (between 1977 and 1981) were > 0.1 ng/m³ in 50 U.S. cities, with the highest average being 0.4 ng/m³ in Dallas, Texas, in 1979 (ATSDR 1993).

2.5 Environmental fate

2.5.1 Air

Beryllium is most likely emitted into the atmosphere as BeO. BeO is formed through ore processing (both bertrandite and beryl contain BeO) and in stack emissions in burning of coal and refuse. It is not known whether BeO reacts with sulfur or nitrogen oxides in the atmosphere. If this process does occur, wet deposition of beryllium will be accelerated. Rainwater in Fresno, California, contained beryllium (concentrations not quantified), indicating that transport of beryllium to soil and water occurs via wet transport (ATSDR 1993).

Stack emissions from coal combustion were studied to determine relative particle aerodynamic size, wind speed, and surface roughness. Most beryllium particles were of a
median aerodynamic diameter of < 2.5 \mu m (Gladney and Owens 1976, cited in ATSDR 1993), meaning that these particles could remain airborne for around 10 days.

2.5.2 Water
Concentrations of dissolved beryllium in natural waters are very low. The most likely reaction between beryllium compounds and water is hydrolysis to form beryllium hydroxide (BeOH), which has low solubility in the pH range of most natural water. Although other reactions might occur that would allow other, more soluble complexes to be formed, the pH range needed for these reactions is not found in most natural waters. Studies comparing sediment and water beryllium concentrations show that sediment has beryllium concentrations several orders of magnitude higher than water, indicating that beryllium is not present in a dissolved form in the water as insoluble complexes naturally settle into the sediment. However, at higher pH, soluble complexes could be formed, increasing solubility and mobility of beryllium in water (ATSDR 1993).

Beryllium will remain in ocean water for a few hundred years before it is removed from the aquatic phase through sedimentation or some other removal system (ATSDR 1993).

Bioaccumulation of beryllium in fish is not thought to occur, because uptake of beryllium from the water by aquatic animals is low. Though beryllium is toxic to warmwater fish in soft water, bioconcentration factors (BCFs) of 100 were reported in freshwater and marine plants, invertebrates, and fish. A BCF greater than 1,000 is required for significant bioaccumulation in aquatic organisms. BCFs for bottom-feeding animals may be higher. There is no evidence of beryllium biomagnification in food chains (ATSDR 1993).

2.5.3 Soil
Beryllium is expected to have low mobility in soil. Because of its similarity to aluminum, beryllium is thought to be adsorbed onto clay surfaces at low pH. Higher pH may result in increased mobility of beryllium in soils. Beryllium reactions that might occur in the soil are hydrolysis of soluble salts, anion exchange reaction, and complexation reactions with ligands present in the soil (ATSDR 1993).

2.6 Environmental exposure
Inhalation of beryllium resulting in lung deposition is the primary route of exposure. Over time, beryllium slowly enters the bloodstream and is eventually excreted by the kidneys. It takes months or years for inhaled beryllium to be removed by the body. Beryllium exposure also may occur if beryllium is ingested into the body through drinking water, contaminated foodstuffs, or smoking. Ingestion, however, is not thought to be an important mode of exposure, because only 1% of ingested beryllium enters the bloodstream. Dermal exposure can occur if beryllium enters through cuts in the skin (ATSDR 1993).

Whether through consumption of contaminated food or water or through inhalation, the entire U.S. population is exposed to beryllium. U.S. EPA and ATSDR have estimated the
daily beryllium intake for the general population from background environmental exposure to be 420 ng/day. People who work in beryllium manufacturing, fabricating, and reclaiming industries are exposed to higher levels of beryllium than the general public. Smokers also may be exposed to higher levels of beryllium, because cigarette smoke contains beryllium (ATSDR 1993).

2.6.1 Environmental sources of beryllium

Beryllium has been found in various foods and cigarettes. Table 2-5 summarizes food surveys done to determine beryllium concentrations.

Table 2-5. Beryllium concentrations in various foodstuffs

<table>
<thead>
<tr>
<th>Food</th>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polished rice</td>
<td>dry weight (mg/kg)</td>
<td>0.08</td>
</tr>
<tr>
<td>Potatoes</td>
<td>dry weight (mg/kg)</td>
<td>0.17</td>
</tr>
<tr>
<td>Toasted bread</td>
<td>dry weight (mg/kg)</td>
<td>0.12</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>dry weight (mg/kg)</td>
<td>0.24</td>
</tr>
<tr>
<td>Head lettuce</td>
<td>dry weight (mg/kg)</td>
<td>0.33</td>
</tr>
<tr>
<td>Beans</td>
<td>in ash (ppm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Cabbage</td>
<td>in ash (ppm)</td>
<td>0.05</td>
</tr>
<tr>
<td>Hen eggs (yolk)</td>
<td>in ash (ppm)</td>
<td>0.01</td>
</tr>
<tr>
<td>Milk</td>
<td>in ash (ppm)</td>
<td>0.02</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>in ash (ppm)</td>
<td>0.12</td>
</tr>
<tr>
<td>Nuts</td>
<td>in ash (ppm)</td>
<td>0.01 - 0.47</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>in ash (ppm)</td>
<td>0.02</td>
</tr>
<tr>
<td>Baker’s yeast</td>
<td>in ash (ppm)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Source: HSDB (1997)

Beryllium also was found in three brands of German cigarettes (0.47, 0.68, and 0.74 µg/cigarette) (WHO 1990). It is estimated that from 4.5% to 10% of the beryllium in a cigarette passes to the smoker through the tobacco smoke (HSDB 1997).

2.7 Occupational exposure

The highest levels of human exposure to beryllium are through occupational exposure. Occupational exposure may occur via inhalation or dermal contact if workers are exposed to beryllium dust or handle products containing beryllium. Occupational exposure may also lead to at-home exposure to beryllium through work garments. In personal monitoring studies in the workplace, it was noted that air concentration measurements from personal monitors mounted on clothing increased when the fabric load of beryllium increased (HSDB 1997).

As applications of beryllium and beryllium compounds have increased, more workers are exposed, from miners to workers at processing plants and factories that convert beryllium into alloys and chemicals. It has been estimated that over 800,000 workers have been exposed to beryllium (Cullen et al. 1986, cited in Meyer 1994).
Occupational Exposure Survey estimated that a total of 19,012 workers, including 1,778 women, might have been exposed to beryllium between 1980 to 1983 (NIOSH 1990). The following industries have the potential for occupational exposure to beryllium (WHO 1990):

- ceramics
- nonferrous foundries
- sandblasting
- nuclear control equipment
- refractories
- hazardous waste processing
- engineering and scientific equipment
- tool and die making
- welding or flame cutting
- automotive parts
- golf club manufacture
- electrical connectors
- nonferrous smelters
- aerospace
- electronics
- beryllium smelting or fabrication
- dental equipment and supplies
- mechanical measuring devices
- soldering
- metal plating
- telecommunication equipment

2.7.1 Processing and manufacturing

Beryllium is released during the various processes involved in processing and manufacturing beryllium compounds. These include melting, casting, molding, grinding, buffing, welding, cutting, electroplating, milling, drilling, and baking (WHO 1990). Control measures were instituted in 1949 to limit high exposures to beryllium. In a sample of 2,627 air samples taken between 1950 and 1957, Breslin and Harris (1959, cited in IARC 1993) reported that 10% to 15% of the workers were exposed to beryllium concentrations greater than the standard Occupational Safety and Health Administration (OSHA) limit (2 μg/m3).

Kriebel et al. (1988) calculated time-weighted average (TWA) air concentrations of beryllium in a U.S. refinery. This refinery is where most of the beryllium in the United States has been refined since 1934, with beryllium-copper alloys as its principal product. Before 1977, beryllium exposure levels at the plant were sometimes in excess of 100 μg/m3. After 1977, exposure levels decreased so as not to exceed the permissible exposure level of 2 μg/m3. Although there was some overlap in the plants surveyed, the median exposure for 297 white male workers in 1977 was 0.4 μg/m3. The median cumulative exposure (with a mean of 17 years worked) was 65 μg/m3 per year. Table 2-6 summarizes the data.
Table 2-6. Daily weighted average air concentrations (µg/m³) of beryllium in a U.S. beryllium production plant for four time periods

<table>
<thead>
<tr>
<th>Department</th>
<th>Approximate number of workers in 1943</th>
<th>Number of jobs in department</th>
<th>beryllium (air) concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide</td>
<td>46</td>
<td>14</td>
<td>46</td>
</tr>
<tr>
<td>Arc furnace room</td>
<td>26</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Detroit furnaces</td>
<td>24</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>Foundry</td>
<td>27</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Melt and cast</td>
<td>105</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Hot rolling</td>
<td>19</td>
<td>8</td>
<td>9.3</td>
</tr>
<tr>
<td>Cold rolling</td>
<td>29</td>
<td>8</td>
<td>9.2</td>
</tr>
<tr>
<td>Rod and wire</td>
<td>39</td>
<td>8</td>
<td>5.9</td>
</tr>
<tr>
<td>Annealing</td>
<td>10</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Pickling</td>
<td>11</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>Machining, grinding</td>
<td>60</td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>Maintenance</td>
<td>73</td>
<td>13</td>
<td>6.2</td>
</tr>
<tr>
<td>Inspection</td>
<td>12</td>
<td>7</td>
<td>1.6</td>
</tr>
<tr>
<td>Laundry</td>
<td>–</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Laboratories, research and development</td>
<td>28</td>
<td>6</td>
<td>1.4</td>
</tr>
<tr>
<td>Store, shipping</td>
<td>20</td>
<td>3</td>
<td>3.6</td>
</tr>
</tbody>
</table>

NA = not applicable; these departments were not operational during 1977–83.

One of the most extensive studies done in the United States to determine occupational exposure levels of beryllium was the Rocky Flats Environmental Technology Sites (RFETS) studies. The RFETS are a part of the U.S. Department of Energy nuclear weapons complex. Beryllium use began in 1953, and beryllium production began in 1957. Barnard and Torma-Krajewski (1994, cited in Stange et al. 1996) analyzed two beryllium production buildings to determine beryllium levels between 1984 and 1986. From the random fixed-airhead samples from 1984 to 1986, the mean beryllium exposure level was 0.16 ± 0.33 µg/m³ (95% CI = 0.10 - 0.22 µg/m³). The mean beryllium exposure level in personal breathing-zone samples was 1.04 ± 1.25 µg/m³ (95% CI = 0.79 - 1.29 µg/m³). There was no correlation between the fixed-airhead and personal breathing-zone results ($r^2 = 0.029$). Table 2-7 summarizes the sampling data from the RFETS.
Table 2-7. Beryllium concentration in samples from two main beryllium production buildings at RFETS

<table>
<thead>
<tr>
<th>Year</th>
<th>Fixed airhead</th>
<th>Personal breathing zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of samples (random sample)</td>
<td>Mean (µg/m³)</td>
</tr>
<tr>
<td>1970</td>
<td>308</td>
<td>0.306</td>
</tr>
<tr>
<td>1971</td>
<td>402</td>
<td>0.358</td>
</tr>
<tr>
<td>1972</td>
<td>430</td>
<td>0.358</td>
</tr>
<tr>
<td>1973</td>
<td>430</td>
<td>0.416</td>
</tr>
<tr>
<td>1974</td>
<td>416</td>
<td>0.228</td>
</tr>
<tr>
<td>1975</td>
<td>432</td>
<td>0.162</td>
</tr>
<tr>
<td>1976</td>
<td>431</td>
<td>0.105</td>
</tr>
<tr>
<td>1977</td>
<td>432</td>
<td>0.121</td>
</tr>
<tr>
<td>1978</td>
<td>431</td>
<td>0.134</td>
</tr>
<tr>
<td>1979</td>
<td>369</td>
<td>0.102</td>
</tr>
<tr>
<td>1980</td>
<td>410</td>
<td>0.156</td>
</tr>
<tr>
<td>1981</td>
<td>426</td>
<td>0.137</td>
</tr>
<tr>
<td>1982</td>
<td>432</td>
<td>0.163</td>
</tr>
<tr>
<td>1983</td>
<td>432</td>
<td>0.271</td>
</tr>
<tr>
<td>1984a</td>
<td>180</td>
<td>0.304</td>
</tr>
<tr>
<td>1984b</td>
<td>243</td>
<td>0.158</td>
</tr>
<tr>
<td>1985</td>
<td>396</td>
<td>0.163</td>
</tr>
<tr>
<td>1986a</td>
<td>242</td>
<td>0.159</td>
</tr>
<tr>
<td>1986b</td>
<td>48</td>
<td>0.039</td>
</tr>
<tr>
<td>1987</td>
<td>255</td>
<td>0.034</td>
</tr>
<tr>
<td>1988</td>
<td>310</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Source: Barnard et al. (1996).

2.7.2 Machining

The National Institute of Occupational Safety and Health (NIOSH) conducted numerous air surveys to determine beryllium concentrations in various facilities. No detectable concentrations of beryllium were found in areas where machining of beryllium metal and alloys involved drilling, boring, cutting, and sanding (Gilles 1976; Bioana 1980; Lewis 1980, all cited in IARC 1993). During welding, air contamination depended on the type of welding process used and the concentration of beryllium in the compound being welded. The highest beryllium air emissions occurred in argon-arc welding (Bobrishev-Pushkin et al. 1975, cited in WHO 1990).
Kreiss et al. (1996) examined beryllium exposure measurements in a beryllia ceramics plant. Her group found that the daily weighted average (DWA) for machining processes exceeded that for any other occupation. Quarterly DWAs were estimated by a formula that incorporated average general area, full-shift area, and breathing zone measurements of beryllium. Table 2-8 summarizes these findings.

Table 2-8. Median of quarterly daily weighted averages (DWA) for a beryllia ceramics plant

<table>
<thead>
<tr>
<th>Job</th>
<th>Dates of jobs</th>
<th>Median DWA (µg/m³)</th>
<th>Number of DWA > 2.0 µg/m³</th>
<th>Range (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs with DWAs over 2.0 µg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sawer/grinder</td>
<td>10/85 – 3/88</td>
<td>0.9</td>
<td>2</td>
<td>0.4 – 6.8</td>
</tr>
<tr>
<td>Lapper</td>
<td>4/88 – 3/92</td>
<td>0.6</td>
<td>2</td>
<td>0.2 – 2.1</td>
</tr>
<tr>
<td>Centerless grinder</td>
<td>4/88 – 3/92</td>
<td>0.5</td>
<td>1</td>
<td>0.1 – 8.2</td>
</tr>
<tr>
<td>Driller</td>
<td>4/88 – 3/92</td>
<td>0.3</td>
<td>2</td>
<td>0.1 – 4.9</td>
</tr>
<tr>
<td>Kiln operator</td>
<td>10/85 – 3/92</td>
<td>0.3</td>
<td>1</td>
<td>0.1 – 14.4</td>
</tr>
<tr>
<td>Dicer</td>
<td>4/88 – 3/92</td>
<td>0.1</td>
<td>1</td>
<td>0.1 – 2.2</td>
</tr>
<tr>
<td>Jobs with no DWAs over 2.0 µg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press setup operator</td>
<td>–</td>
<td>0.4</td>
<td>0</td>
<td>0.1 – 1.9</td>
</tr>
<tr>
<td>Janitor</td>
<td>–</td>
<td>0.3</td>
<td>0</td>
<td>0.1 – 1.0</td>
</tr>
<tr>
<td>Surface grinder</td>
<td>–</td>
<td>0.3</td>
<td>0</td>
<td>0.1 – 1.7</td>
</tr>
<tr>
<td>Material preparer</td>
<td>–</td>
<td>0.2</td>
<td>0</td>
<td>0.1 – 1.2</td>
</tr>
<tr>
<td>Green machinist</td>
<td>–</td>
<td>0.2</td>
<td>0</td>
<td>< 0.1 – 0.6</td>
</tr>
<tr>
<td>Tape operator</td>
<td>–</td>
<td>0.2</td>
<td>0</td>
<td>0.1 – 1.2</td>
</tr>
<tr>
<td>Small presser</td>
<td>–</td>
<td>0.1</td>
<td>0</td>
<td>< 0.1 – 0.8</td>
</tr>
<tr>
<td>Large presser</td>
<td>–</td>
<td>0.1</td>
<td>0</td>
<td>< 0.1 – 0.6</td>
</tr>
<tr>
<td>Isopresser</td>
<td>–</td>
<td>0.1</td>
<td>0</td>
<td>< 0.1 – 0.7</td>
</tr>
<tr>
<td>Engineering technician</td>
<td>–</td>
<td>0.1</td>
<td>0</td>
<td>< 0.1 – 0.6</td>
</tr>
<tr>
<td>Inspector</td>
<td>–</td>
<td>0.1</td>
<td>0</td>
<td>< 0.1 – 1.9</td>
</tr>
<tr>
<td>Front office employee</td>
<td>–</td>
<td>0.1</td>
<td>0</td>
<td>< 0.1 – 0.3</td>
</tr>
<tr>
<td>Metallizer</td>
<td>–</td>
<td>< 0.1</td>
<td>0</td>
<td>< 0.1 – 0.1</td>
</tr>
</tbody>
</table>

Source: Kreiss et al. (1996).

The median or quarterly DWA for machining processes was 0.9 µg/m³, accounting for the majority of quarterly DWAs higher than the OSHA standard of 2.0 µg/m³. Kreiss et al. (1996) calculated that 8.1% of the machining DWAs were above this OSHA standard.

2.7.3 Other occupational exposure scenarios

Dental laboratory technicians were found to be exposed to beryllium while processing beryllium-containing dental alloys. Dvivedi and Shen (1983, cited in WHO 1990) found that when exhaust extraction was used, beryllium exposure levels averaged 1.75 µg/m³. Without exhaust extraction, however, beryllium exposure levels were as high as 74.3 µg/m³.
OSHA also identified workers who grind, polish, and finish golf clubs containing a certain beryllium-copper alloy as occupationally exposed to beryllium. The average beryllium breathing-zone concentration of beryllium for these workers ranged from 2 to 14 µg/m³ (OSHA, personal communication 1989, cited in WHO 1990).

2.8 Biological indices of exposure

Beryllium concentrations can be analyzed by various methods to determine exposure and body burden. While urine analysis may provide evidence of current exposure to beryllium compounds, analysis of blood, serum, or plasma can indicate the level of current exposure (Tsalev and Zaprianov 1984, cited in ATSDR 1993). Measured concentrations of beryllium in bodily fluids have decreased since 1983 probably as a result of better analytical techniques and more efficient ways of limiting beryllium contamination during collection and assay. Urine concentrations from non-occupationally exposed humans, identified by graphite furnace atomic absorption (GFAA), appear to have decreased, from 0.9 ± 0.4 µg/L (Grewal and Kearns 1977, cited in IARC 1993) to 0.13 µg/L (Paschal and Bailey 1986, cited in IARC 1993). Smoking appears to increase beryllium concentrations in urine. Apostoli et al. (1989, cited in IARC 1993) found that heavy smokers have beryllium urine levels (0.31 ± 0.17 µg/L) significantly higher than those of nonsmokers (0.20 ± 0.14 µg/L).

In a survey of 66 patients with chronic beryllium disease in the U.S. Beryllium Case Registry, beryllium concentrations ranged from 4 to 45,700 µg/kg dry lung tissue. Of the 66 patients, 82% had beryllium concentrations of more than 20 µg/kg dry weight. Beryllium levels ranging from 2 to 30 µg/kg dry lung tissue were found in 125 lung specimens from these patients during thoracic surgery (Sprince et al. 1976, cited in IARC 1993).

An exposure concentration of 2 µg/m³ of beryllium in the air was found to correspond to beryllium concentrations in human urine and blood of about 7 µg/L and 4 µg/L, respectively. (Zorn et al. 1988, cited in IARC 1993).

Beryllium remains in major tissues for long periods, especially the bones and lymph nodes. Elimination of beryllium from the body can take months or years. Table 2-9 summarizes beryllium body burdens (HSDB 1997).
Table 2-9. Beryllium body burdens

<table>
<thead>
<tr>
<th>Body site</th>
<th>Beryllium Concentration (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total body burden</td>
<td>36</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>24</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.2</td>
</tr>
<tr>
<td>Liver</td>
<td>1.6</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.75</td>
</tr>
<tr>
<td>Bone</td>
<td>3.0</td>
</tr>
<tr>
<td>Hair</td>
<td>6.0 - 20.0</td>
</tr>
<tr>
<td>Blood</td>
<td>0.02 - 3.0a</td>
</tr>
<tr>
<td>Urine</td>
<td>0.02 - 3.0a</td>
</tr>
</tbody>
</table>

Source: HSBD (1997)

2.9 Regulations

In 1980, the Consumer Product Safety Commission (CPSC) preliminarily determined that beryllium, beryllium oxide, and beryllium sulfate were not present in consumer products under its jurisdiction. Subsequently, public comment was solicited to verify the accuracy of this information; no comments were received. Pending receipt of new information, the CPSC plans no action on this chemical. In 1973, EPA promulgated a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for extraction and production sites for beryllium and beryllium oxide and for beryllium rocket-motor firing. In 1980, EPA published a water quality criteria document on beryllium for the protection of human health under the Clean Water Act (CWA) and established regulations under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for releases of beryllium and beryllium compounds. These regulations were based on the inclusion of beryllium and its compounds on the EPA Carcinogen Assessment Group's list of potential carcinogens. The CERCLA final reportable quantity (RQ) is 10 lb for beryllium and beryllium dust and 1 lb for beryllium chloride and beryllium fluoride. RCRA mandates that wastes known to contain beryllium or beryllium compounds comply with handling and report/recordkeeping requirements. EPA does not plan to regulate beryllium in drinking water under the Safe Drinking Water Act. Beryllium and its compounds are also regulated under the Superfund Amendments and Reauthorization Act (SARA), which subjects them to reporting requirements. U.S. EPA regulations are summarized in Table 2-10.

FDA regulates beryllium in bottled water under the Federal Food, Drug and Cosmetics Act (FD&CA) (see Table 2-11).

The American Conference of Governmental Industrial Hygienists (ACGIH) has classified beryllium as A1, “a confirmed human carcinogen” (ACGIH 1992). NIOSH considers beryllium an occupational carcinogen. NIOSH recommended that exposure to beryllium and beryllium compounds should not exceed 0.5 µg/m³ (NIOSH 1992). Current OSHA standards for workers exposed to beryllium are: 2 µg/m³ eight-hr TWA, 5 µg/m³ ceiling,
and 25 µg/m³ maximum peak in 30 minutes (see Table 2-12). These standards were adopted by OSHA for toxic effects other than cancer. OSHA has proposed regulating occupational exposure to beryllium, based on its carcinogenicity as well as other toxic effects. OSHA regulates beryllium and certain beryllium compounds under the Hazard Communication Standard and as chemical hazards in laboratories.

Table 2-10. U.S. EPA regulations

<table>
<thead>
<tr>
<th>Regulatory action</th>
<th>U.S. EPA Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In accordance with the policy of section 101(b)(1) of the act and the purposes of section 160 of the Act, each applicable State implementation plan shall contain emission limitations and such other measures as may be necessary to prevent significant deterioration of air quality. Beryllium emissions must not exceed 0.0004 tons per year.</td>
</tr>
<tr>
<td></td>
<td>This part lists substances that, pursuant to section 112 of the CAA, have been designated as hazardous air pollutants, and applies to the owner or operator of any stationary source for which a standard is prescribed under this part.</td>
</tr>
<tr>
<td></td>
<td>Substances that, pursuant to section 112 of the CAA, have been designated as hazardous air pollutants. Substances for which a Federal Register notice has been published that included consideration of the serious health effects from ambient air exposure.</td>
</tr>
<tr>
<td>40 CFR 61.30 ff. – Subpart C – National Emission Standard for beryllium. Promulgated: 38 FR 8826, 04/06/73. U.S. Code: 7401, 7412, 7414, 7416, 7601. Emissions to the atmosphere from stationary sources subject to the provisions of this subpart shall not exceed 10 grams of beryllium over a 24-hr period (see paragraph [b] of 40 CFR 61.32 for exception to the rule).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The provisions of 40 CFR 61.30 are applicable to machine shops that process beryllium, beryllium oxides, or any alloy containing more than 5 wt. % beryllium, ceramic plants, incinerators, propellant plants that process beryllium ore, alloys, and waste.</td>
</tr>
<tr>
<td></td>
<td>The provisions of this subpart are applicable to rocket motor test sites. Emissions to the atmosphere from rocket-motor test sites shall not cause time-weighted atmospheric concentrations of beryllium to exceed 75 µg-min/m³ of air within the limits of 10 to 60 minutes, accumulated during any 2 consecutive weeks, in any area in which an effect adverse to public health could occur. If combustion products from the firing of beryllium propellant are collected in a closed tank, emissions from such tank shall not exceed 2 g/h and a maximum of 10 grams per day.</td>
</tr>
<tr>
<td>Regulatory action</td>
<td>Effect of regulation and other comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>40 CFR 63 – PART 63 – NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES. Promulgated: 57 FR 61992, 12/29/92. U.S. Codes: 7401 et seq.; CAA.</td>
<td>Standards that regulate specific categories of stationary sources that emit (or have potential to emit) one or more hazardous air pollutants are listed in this part pursuant to section 112(b) of the CAA.</td>
</tr>
<tr>
<td>40 CFR 63.70 – Subpart D – Regulations Governing Compliance Extensions for Early Reductions of Hazardous Air Pollutants. Promulgated: 59 FR 53110, 10/21/94.</td>
<td>The provisions of this subpart apply to an owner/operator of an existing source wishing to obtain a compliance extension from a standard issued under section 112(d) of the CAA. Beryllium is listed as a high-risk pollutant with a weighting factor of 10.</td>
</tr>
<tr>
<td>40 CFR 63.800ff. – Subpart JJ – National Emission Standards for Wood Furniture Manufacturing Operations. Promulgated: 60 FR 62936, 12/07/95.</td>
<td>The provisions of this subpart apply to each facility that is engaged in the manufacture of wood furniture or wood furniture components and that is a major source as defined in 40 CFR 63.2. Beryllium salts and beryllium compounds are prohibited from use in cleaning and wash-off solvents.</td>
</tr>
<tr>
<td>40 CFR 116 – PART 116 – DESIGNATION OF HAZARDOUS SUBSTANCES. Promulgated: 43 FR 10474, 03/13/1978. U.S. Codes: 33 U.S.C. 1251 et seq.</td>
<td>This regulation designates hazardous substances under section 311(b)(2)(a) of the FWPCA. The regulation applies to discharge of the substances identified in table 116.4 to surface waters. Beryllium fluoride, chloride, and nitrate were classified in this section as hazardous substances.</td>
</tr>
<tr>
<td>40 CFR 117 – PART 117 – DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES. Promulgated: 44 FR 50776, 08/29/79. U.S. Codes: FWPCA 311(b)(2)(A) and 501(a).</td>
<td>Discharges to water of amounts equal to or greater than the RQ must be reported to U.S. EPA. Reportable quantity (RQ) for environmental releases to water is 1 lb (0.454kg) for Beryllium fluoride, chloride, and nitrate.</td>
</tr>
<tr>
<td>40 CFR 141.21 ff. – SUBPART C – Monitoring and Analytical Requirements. Promulgated: 60 FR 34085, 06/29/95.</td>
<td>States that Atomic absorption (platform and furnace) and Inductively coupled plasma (along with mass spectrometry) should be used to analyze Beryllium levels in drinking water. Detection limits and RCLs are given.</td>
</tr>
</tbody>
</table>
U.S. EPA Regulations

<table>
<thead>
<tr>
<th>Regulatory action</th>
<th>Effect of regulation and other comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 CFR 141.31 ff. – Subpart D – Reporting, Public Notification and Record keeping. Promulgated: 59 FR 53110, 10/21/94.</td>
<td>A supplier of water shall report to the State the results of any test measurement or analysis required by this part. This part gives background information on several compounds with health concerns at certain levels of exposure. U.S. EPA has set the drinking water standard for beryllium at 0.004 ppm to protect against the risk of these adverse health effects.</td>
</tr>
<tr>
<td>40 CFR 141.50 ff. – Subpart F – Maximum Contaminant Level Goals. Promulgated: 50 FR 46901, 11/13/85.</td>
<td>The MCLG for beryllium in primary drinking water is 0.004 mg/L.</td>
</tr>
<tr>
<td>40 CFR 141.60 ff. – Subpart G – National Revised Primary Drinking Water Regulations: Maximum Contaminant Levels. Promulgated: 60 FR 33932, 06/29/95.</td>
<td>Revised maximum contaminant levels for beryllium in drinking water is 0.004 mg/L.</td>
</tr>
<tr>
<td>40 CFR 142 – PART 142 – NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION. Promulgated: 41 FR 2918, 01/20/1976. U.S. Code: 42 U.S.C. 300g, 300g-1, 300g-2, 300g-3, 300g-4, 300g-5, 300g-6, 300j-4, and 300j-9;</td>
<td>This part sets forth regulations for the implementation and enforcement of the national primary drinking water regulations contained in part 141 of this chapter.</td>
</tr>
<tr>
<td>40 CFR 172 – SUBPART B – Table of Hazardous Materials and Special Provisions. Promulgated: 61 FR 50623, 50624, 09/26/96. The reportable quantity for beryllium, beryllium chloride and beryllium compounds is 10 lb (4.54 kg). The reportable quantity for beryllium fluoride and beryllium nitrate is 1 lb (0.454 kg).</td>
<td>The Hazardous Materials Table in this section designates beryllium and beryllium compounds as hazardous materials for the purpose of transportation of those materials. beryllium’s identification number is UN 1567; beryllium nitrate is UN 2464, and beryllium compounds is UN 1567.</td>
</tr>
<tr>
<td>40 CFR 192 – PART 192 – HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS. Promulgated: 48 FR 602, 01/05/1983. U.S. Codes: 42 U.S.C. 2022, as added by the Uranium Mill Tailings Radiation Control Act of 1978. Appendix 1 lists beryllium and beryllium compounds as constituents that need to be monitored.</td>
<td>The provisions of this part control the residual radioactive material at designated processing or depository sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978, and applies to the restoration of such sites following any use of the subsurface minerals under section 104(h) of the Uranium Mill Tailings Radiation Control Act of 1978.</td>
</tr>
<tr>
<td>40 CFR 228 – PART 228 – CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING. Promulgated: 42 FR 2482, 01/11/1977. U.S. Codes: 33 U.S.C. 1412 and 1418.</td>
<td>The criteria of this part apply to the evaluation of proposed ocean dumping under Title I of the Act, and effective management of ocean disposal sites to prevent unreasonable degradation of the marine environment from all wastes being dumped in the ocean.</td>
</tr>
</tbody>
</table>
U.S. EPA Regulations

<table>
<thead>
<tr>
<th>Regulatory action</th>
<th>Effect of regulation and other comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 CFR 258 – PART 258 – CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS. Promulgated: 56 FR 51016, 10/09/91. U.S. Codes: 33 U.S.C. 1345(d) and (e); 42 U.S.C. 6907(a)(3), 6912(a), 6944(a) and 6949a(c).</td>
<td>The provisions of this part establish minimum national criteria under RCRA, as amended, for all MSWLF units and under the CWA, as amended, for MSWLF that are used to dispose of sewage sludge. The criteria ensure the protection of human health and the environment. Suggested methods of detecting beryllium and beryllium compounds in sewage sludge are U.S. EPA methods 6010 (PQL = 3 mg/L), 7090 (PQL = 50 mg/L), and 7091 (PQL = 2 mg/L).</td>
</tr>
<tr>
<td>40 CFR 261 – PART 261 - IDENTIFICATION AND LISTING OF HAZARDOUS WASTE. Promulgated: 45 FR 33119, 05/19/80. U.S. Codes: 42 U.S.C. 6905, 6912(a), 6921, 6922, 6924(y) and 6938.</td>
<td>This part identifies those solid wastes which are subject to regulation as hazardous wastes under parts 262 through 265, 268, and parts 270, 271, and 124 of this chapter and which are subject to the notification requirements of section 3010 of RCRA. General exclusion levels for K061, K062, and F006 non-wastewater HTMR residues for beryllium is 0.010 mg/L.</td>
</tr>
<tr>
<td>40 CFR 264 – PART 264 - STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES. Promulgated: 45 FR 33221, 05/19/80. U.S. Codes: 42 U.S.C. 6905, 6912(a), 6924, and 6925.</td>
<td>The purpose of this part is to establish minimum national standards that define the acceptable management of hazardous waste. The standards in this part apply to owners and operators of all facilities which treat, store, or dispose of hazardous waste, except as specifically provided otherwise in this part or part 261 of this chapter.</td>
</tr>
<tr>
<td>40 CFR 264.1200ff. – SUBPART EE – Hazardous Waste Munitions and Explosives Storage. Promulgated: 62 FR 6652, 02/12/97.</td>
<td>The requirements of this subpart apply to owners or operators, who store munitions and explosive hazardous wastes, except as §264.1 provides otherwise. The suggested method of detecting beryllium in groundwater is U.S. EPA method 6010 (PQL = 3 mg/L).</td>
</tr>
<tr>
<td>40 CFR 265.1200 ff. – SUBPART EE – Hazardous Waste Munitions and Explosives Storage. Promulgated: 62 FR 6653, 01/12/97.</td>
<td>The purpose of this subpart is to outline design and operating standards where munitions and explosive hazardous waste, including compounds containing beryllium and beryllium compounds, are stored.</td>
</tr>
<tr>
<td>40 CFR 266.100 ff. – Subpart H – Hazardous Waste Burned in Boilers and Industrial Furnaces. Promulgated: 56 FR 7208, 02/21/91.</td>
<td>Appendix V of Part 266 lists a risk specific dose of $4.2 \times 10^3 , \mu g/m^3$ for beryllium.</td>
</tr>
<tr>
<td>40 CFR 268 – PART 268 – LAND DISPOSAL RESTRICTIONS. Promulgated: 62 FR 26019, 05/12/97. U.S. Codes: 42 U.S.C. 6905, 6912(a), 6921, and 6924.</td>
<td>This part identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed.</td>
</tr>
<tr>
<td>Regulatory action</td>
<td>Effect of regulation and other comments</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>40 CFR 268.40ff. – SUBPART D – Treatment Standards. Promulgated: 62 FR 32979, 06/17/97.</td>
<td>Prohibited waste identified in the table "Treatment Standards for Hazardous Wastes" may be land disposed only if it meets the requirements found in the table. Water disposal requires that it meet certain hazardous waste concentration requirements. beryllium wastewater standard is 0.082 mg/L while the non-wastewater standard is 0.014 mg/L.</td>
</tr>
<tr>
<td>40 CFR 302 – Part 302 – Designation, Reportable Quantities, And Notification. Promulgated: 50 FR 13474, 04/04/85. U.S. Codes: 42 U.S.C. 9602, 9603, and 9604; 33 U.S.C. 1321 and 1361. beryllium and beryllium compounds have a regulatory RQ of 1lb (0.454 kg) which was set by CERCLA. No final RQ was set because this is a broad category of compounds.</td>
<td>This part designates under section 102(a) of CERCLA 1980 those substances in the statutes referred to in section 101(14) of CERCLA, identifies reportable quantities for these substances, and sets forth the notification requirements for releases of these substances. This part also sets forth reportable quantities for hazardous substances designated under section 311(b)(2)(A) of the CWA.</td>
</tr>
<tr>
<td>40 CFR 372 – PART 372 – TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW. Promulgated: 53 FR 4525, 02/16/88. U.S. Codes: 42 U.S.C. 11013, 11028. Effective date for beryllium is 1/1/87.</td>
<td>This part sets forth requirements for the submission of information relating to the release of toxic chemicals under section 313 of Title III of SARA (1986). Information collected under this part is intended to inform the general public and the communities surrounding covered facilities about releases of toxic chemicals, to assist research, to aid in the development of regulations, guidelines, and standards.</td>
</tr>
<tr>
<td>40 CFR 401 – PART 401 – GENERAL PROVISIONS. Promulgated: 47 FR 24537, 06/04/82. U.S. Codes: 33 U.S.C. 1251 et seq.</td>
<td>The provisions of this part set forth the legal authority and general definitions which will apply to all regulations issued concerning specific classes and categories of point sources of industrial effluents under parts 402 through 699. In this section beryllium and beryllium compounds are identified as a toxic pollutant by the Federal Water Pollution Control Act.</td>
</tr>
<tr>
<td>40 CFR 403 – PART 403 – GENERAL PRETREATMENT REGULATIONS FOR EXISTING AND NEW SOURCES OF POLLUTION. Promulgated: 46 FR 9439, 01/28/81. U.S. Codes: Several sections of the FWPCA and the CWA of 1977 (Public Law 95-217).</td>
<td>Establishes responsibilities of federal, state, and local government; industry; and the public to implement National Pretreatment Standards to control pollutants that pass through POTWs and contaminate sewage sludge or interfere with treatment processes.</td>
</tr>
<tr>
<td>40 CFR 403.18 – Sec. 403.18 Modification of POTW Pretreatment Programs. Promulgated: 53 FR 40615, 10/17/88</td>
<td>Appendices list 65 Toxic Pollutants, including beryllium, (51 FR 20431, 06/04/86) and industrial categories subject to National Categorical Pretreatment Standards (51 FR 20429, 06/04/86).</td>
</tr>
<tr>
<td>40 CFR 421 – PART 421 – NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY. Promulgated: 49 FR 8790, 03/08/84. U.S. Codes: 33 U.S.C. 1311, 1314(b), (c), (e), and (g), 1316(b) and (c), 1317(b) and (c), 1318, and 1361.</td>
<td>The provisions of this part apply to facilities producing primary metals from ore concentrates and recovering secondary metals from recycle wastes which discharge pollutants to waters of the U.S. or which introduce or may introduce pollutants into a POTW.</td>
</tr>
</tbody>
</table>
U.S. EPA Regulations

<table>
<thead>
<tr>
<th>Regulatory action</th>
<th>Effect of regulation and other comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 CFR 421.150 ff. – SUBPART O - Primary beryllium Subcategory. Promulgated: 50 FR 38346, 09/20/85.</td>
<td>The provisions of this subpart are applicable to discharges resulting from the production of beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide raw materials. Effluent limitations are given in the subsequent sections.</td>
</tr>
<tr>
<td>40 CFR 423 – PART 423 – STEAM ELECTRIC POWER GENERATING POINT SOURCE CATEGORY. Promulgated: 47 FR 52304, 11/19/82. U.S. Codes: 33 U.S.C. 1311; 1314(b), (c), (e), and (g); 1316(b) and (c); 1317 (b) and (c); and 1361.</td>
<td>The provisions of this part apply to discharges resulting from the operation of a generating unit by an establishment generating electricity for distribution and sale which results from a process utilizing fossil-type or nuclear fuel in conjunction with a thermal cycle that uses the steam water system as the thermodynamic medium.</td>
</tr>
<tr>
<td>40 CFR 468 – PART 468 – COPPER FORMING POINT SOURCE CATEGORY. Promulgated: 48 FR 36957,08/15/83. U.S. Code: 33 U.S.C. 1311, 1314(b), (c), (e), and (g), 1316(b) and (c), 1317(b) and (c), and 1361.</td>
<td>The provisions of this part apply to discharges resulting from the manufacture of formed copper and copper alloy products.</td>
</tr>
</tbody>
</table>

Source: The regulations in this table have been updated through the 1998 Code of Federal Regulations 40 CFR, July 1, 1996; 21 CFR, April 1, 1996; 29 CFR, July 1, 1996

Table 2-11. FDA regulations

<table>
<thead>
<tr>
<th>Regulatory action</th>
<th>Effect of regulation and other comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>21CFR165.110 ff-- Subpart B--Requirements for Specific Standardized Beverages-- Bottled water: Allowable concentration of beryllium in bottled water is 0.004 mg/L. The levels for beryllium are stayed until further notice.</td>
<td>Allowable concentrations for inorganic substances, volatile organic chemicals (VOCs) and other chemical substances are given in this subpart.</td>
</tr>
</tbody>
</table>

Source: The regulations in this table have been updated through the 1998 Code of Federal Regulations 40 CFR, July 1, 1996; 21 CFR, April 1, 1996; 29 CFR, July 1, 1996
Table 2-12. OSHA regulations for beryllium and beryllium compounds

<table>
<thead>
<tr>
<th>Regulatory action</th>
<th>OSHA Regulations</th>
<th>Effect of regulation and other comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 CFR 1910.1000—Sec. 1910.1000 Air Contaminants. Promulgated: 58 FR 40191, 07/27/93. OSH Act: Air Contaminants.</td>
<td>58 FR 40191, 07/27/93. OSH Act: Air Contaminants.</td>
<td>As beryllium, PEL 2 µg/m³ 8-hr TWA; 5 µg/m³ ceiling; 25 µg/m³ maximum peak for 30 min.</td>
</tr>
<tr>
<td>29 CFR 1910.1450—Sec. 1910.1450 Occupational Exposure to Hazardous Chemicals in Laboratories. Promulgated: 61 FR 5508, 02/13/96. OSH Act: Final rule for occupational exposure to hazardous chemicals in laboratories.</td>
<td>61 FR 5508, 02/13/96. OSH Act: Final rule for occupational exposure to hazardous chemicals in laboratories.</td>
<td>As select carcinogens (IARC Group 2A), beryllium and certain beryllium compounds are included as chemical hazards in laboratories. Employers are required to provide employee information and training and a Chemical Hygiene Plan.</td>
</tr>
</tbody>
</table>

Source: The regulations in this table have been updated through the 1998 Code of Federal Regulations 40 CFR, July 1, 1996; 21 CFR, April 1, 1996; 29 CFR, July 1, 1996
3 Human Cancer Studies

Beryllium and beryllium compounds were classified as carcinogenic to humans when evaluated by IARC (1993). Since the IARC review, three new epidemiologic studies of cancer among beryllium-exposed workers (Rooney et al. 1993; Wing et al. 1993; Loomis and Wolf 1996) and one study describing an autopsy case-series of workers with chronic beryllium disease (Williams 1996) have been published. The quality of the epidemiologic evidence concerning beryllium has improved in the last decade. Nevertheless, the absence of quantitative information on exposures to beryllium remains an important limitation of the current literature. Four other reviews of epidemiologic studies, relevant to the carcinogenicity of beryllium, were also published after the IARC evaluation (Boffetta 1993; MacMahon 1994; Steenland et al. 1996; Hayes 1997). Most support the conclusions of the 1993 IARC monograph (Boffetta 1993; Steenland et al. 1996; Hayes 1997), but MacMahon (1994) criticized the conclusion that beryllium is carcinogenic, citing cigarette smoking as an alternative explanation. Interpretations of recent evidence on beryllium have also been offered in editorials and published letters (Saracci 1991; Eisenbud 1993; Steenland and Ward 1991; BISAC 1997; Vainio and Rice 1997).

This section summarizes the content and conclusions of the IARC Working Group’s 1993 evaluation of beryllium and presents key findings of relevant epidemiologic studies published since that review.

3.1 IARC Evaluations

Human studies on the carcinogenicity of beryllium and beryllium compounds have been reviewed by four IARC Working Groups (IARC 1972, 1980, 1987, and 1993). The 1980 Working Group characterized the human evidence of carcinogenicity available at that time as limited. No new human studies were available when beryllium was next evaluated in 1987. The 1993 evaluation incorporated two cohort studies and a nested case-control study published since the previous review. After taking this new evidence into account, the Working Group classified beryllium and beryllium compounds as human carcinogens, based on sufficient evidence in epidemiologic studies of exposed workers.

The first study followed mortality through 1975 among a cohort of white men employed at two beryllium extraction, production, and fabrication facilities in the United States between 1942 and 1948. The standardized mortality ratio (SMR) for lung cancer was 1.8 (95% CI 1.2 - 2.7) among 1,222 men employed in one plant and 1.25 (95% CI 0.9 - 1.7) for 2,044 men in the other plant. The combined SMR for lung cancer in the two plants was 1.42 (95% CI 1.1 - 1.8) (Mancuso 1979; cited in IARC 1993). The excess of lung cancer was greatest for men employed during the period when exposures were highest,
before 1949, and increased with time since exposure: workers followed at least 15 years
had lung cancer SMRs of 2.0 (95% CI 1.3 - 3.1) and 1.5 (95% CI 1.0 - 2.1) in the two
plants. The SMRs cited in the IARC Working Group incorporate an adjustment for the
lack of national mortality data for the years 1965-67. This study did not include analyses
of mortality by job title or exposure category.

A subsequent re-analysis of mortality in the two plants by the same author expanded the
period of employment to 1937-48, and used a cohort of viscose rayon workers, rather
than the general population, as a referent group (Mancuso 1980; cited in IARC 1993).
The SMR for lung cancer among the 3,685 workers in both plants was 1.40 (P < 0.01).
The SMR for lung cancer was highest among men employed the longest in the beryllium
plants, but did not increase steadily with duration of employment among men with
shorter tenure: the lung cancer SMR was 1.38 (n = 52; P < 0.05) for ≤1 year, 1.06 (n =
14) for 1-4 years, and 2.22 (n = 14; P < 0.01) for >4 years (Mancuso 1980; cited in
IARC 1993).

Wagoner et al. (1980; cited in IARC 1993) conducted an expanded study of mortality
among workers at one of the two plants studied previously (Mancuso 1979, 1980),
including men employed 1942-1967. Among the 3,055 workers, the SMR for lung cancer
was 1.25 (95% CI 0.9 - 1.7). The Working Group noted that the average exposure in this
cohort may have been lower than in previous studies because the study period extends
across the year 1949, when levels of beryllium in workplaces were reduced markedly by
a new exposure limit. The risk of lung cancer increased with latency, from 0.88 among
workers with <15 years latency, to 1.16 for 15-24 years’ latency, and 1.68 (95% CI 1.0
- 2.6) for ≥25 years’ latency. The investigators attempted to assess potential confounding
by smoking using indirect adjustments. The IARC Working Group noted that these
adjustments suggested the possibility of bias in opposite directions: estimates of smoking
prevalence from a survey of a portion of the cohort suggested that smoking practices
could have increased the workers’ risk of lung cancer by 14% in the absence of any effect
of beryllium, while local lung cancer rates suggested that the use of national rates in the
analysis may have underestimated the risk by 19% (Wagoner et al. 1980; cited in IARC
1993).

Infante et al. (1980, cited in IARC 1993) analyzed the mortality of white men enrolled in
a beryllium case registry with a diagnosis of chronic beryllium disease or acute
beryllium-induced pneumonitis. The registry was established in 1952 to characterize the
epidemiology and clinical features of beryllium-related diseases, and the participants had
been employed in a variety of industries, primarily beryllium extraction and smelting,
metal production, and fluorescent tube production. Among 421 white males enrolled
between 1952 and 1975, there were 7 deaths from lung cancer, yielding an SMR of 2.12,
based on 1952 to 67 national mortality rates. The Working Group estimated that
adjustment for the gap in U.S. mortality data between 1968 and 1975 would alter the
SMR to 1.93 (95% CI 0.8 - 4.0). Most of the lung cancer deaths (6 cases) occurred
among men enrolled with a diagnosis of acute beryllium-induced pneumonitis; the
corrected SMR for this group was 2.98 (95% CI 1.0 - 6.2). The Working Group noted
that exposures were likely to have been higher among workers with beryllium-related acute pneumonitis than among men with chronic beryllium disease (IARC 1993).

The 1993 IARC evaluation also included two later cohort studies. Ward et al. (1992) followed the mortality through 1988 of 9,225 male workers (8,905 white, 320 non-white) employed as early as 1935 at seven beryllium plants in the U.S.A., including the two studied previously. Mortality from all causes and all cancers was essentially as expected, while the SMR for lung cancer was 1.26 (95% CI 1.12 - 1.42) and for non-malignant respiratory disease the SMR was 1.48 (1.21 - 1.80). Lung cancer mortality increased with time since exposure (latency), but not with duration of employment. Although lung cancer mortality was highest in the oldest plant and in the 1940s, when exposures were highest, excess lung cancer was also observed in other plants and for workers hired in the 1940s. Mortality from cancers at sites other than the lung was not increased. The investigators performed adjustments based on the use of local, rather than national, death rates and on partial data on smoking in the cohort and concluded that neither could account for the excess risk of lung cancer (Ward et al. 1992).

Steenland and Ward (1991) expanded the analysis of mortality in the previously studied U.S. Beryllium Case Registry to include 689 women and men of all races enrolled 1952 to 1980 and extended the follow-up of mortality through 1988. The SMR for lung cancer was 2.00 (n = 28, 95% CI 1.33 - 2.89). This excess was greater in those who were entered into the Registry with acute beryllium pneumonitis (SMR 2.32, 95% CI 1.35 - 3.72). The prevalence of smoking among cohort members surveyed in 1965 was lower than average for the U.S. population, so the authors concluded that smoking was unlikely to explain the increased risk for lung cancer (Steenland and Ward 1991).

Two case-control studies were included in the IARC (1993) review. Hinds et al. (1985) used a computerized job-exposure matrix to assess occupational exposures in a population-based study of incident lung cancer in Hawaii. Between 1979 and 1982, 261 new cases of primary lung cancer were diagnosed among males (race not given). Lung cancer was associated with occupational exposure to beryllium (OR 1.62, 95% CI 1.04 - 2.51 and 1.57, 95% CI 0.81 - 3.01 for low and high beryllium exposures, respectively, relative to no exposure).

Carpenter et al. (1988) conducted a nested case-control study of 89 men and women with cancer of the central nervous system, each matched to four controls, among workers at two nuclear facilities at Oak Ridge, Tennessee. Exposures to 26 chemicals, including beryllium were assessed by job title and expert judgement. The odds ratio for “ever having been exposed to beryllium” was 1.5 (95% CI 0.6 - 3.9). The strength of the association increased with both presumed exposure level and latency, but the precision of the estimated ORs was limited.

The IARC Working Group emphasized several aspects of the most recent cohort studies in order to justify their conclusion that the environment of workers producing, refining and machining beryllium and beryllium alloys is causally related to lung cancer: 1) the statistical stability of the association; the consistency of the association across several
plants and populations; 2) the greater risk among workers hired before exposure controls were introduced; 3) the increasing risk with longer latency; 4) the increased risk in plants where the risk of beryllium-related non-malignant respiratory disease was highest, and 5) the increased risk among members of the Beryllium Case Registry with beryllium-related lung disease.

Key limitations of these studies noted by the Working Group are the absence of quantitative, individual measurements of exposure to beryllium and other occupational agents and the relatively low excess risk of lung cancer.

3.2 Current epidemiologic studies
Two case-control studies and two cohort studies published since the IARC review provide some additional information about the carcinogenicity of beryllium.

3.3 Case-control studies
Rooney et al. (1993) conducted a case-control study of prostate cancer incidence and mortality in 1946-86 among men employed by the United Kingdom Atomic Energy Authority (UKAEA). In this study, 136 men with prostate cancer were matched to 404 control men by age and calendar year of first employment, survival time, last place of employment, and monitoring for internal exposure to radionuclides. Individual information about social and demographic characteristics, work history, and internal exposures to radionuclides was abstracted from UKAEA records. Exposures to specific radionuclides and other potential hazards, including beryllium, were assessed by expert judgement based on work areas. A history of work in locations where beryllium was potentially present was found in 5% of the cases and 6% of the controls, yielding an odds ratio of 0.87 (95% CI 0.03 - 2.17)

The Children’s Cancer Group (Buckley et al. 1998) conducted a case-control study of environmental and familial factors in the etiology of Ewing’s sarcoma and osteosarcoma in children based on parental exposure to beryllium. Patients were identified in the registration data of the Children’s Cancer Group. The osteosarcoma patients selected were less than 18 years of age and were diagnosed between January 1, 1982 and December 31, 1983. Children with Ewing’s sarcoma were younger than 21 years and diagnosed between January 1, 1983 and July 30, 1985. Interviews with parents were conducted between October 1983 and February 1987. The studies were conducted separately, hence the different accrual periods and age eligibilities. However, the design and study questionnaires for each study were kept similar to facilitate comparisons. The parents of 152 children with osteosarcoma and 153 children with Ewing’s sarcoma were interviewed by telephone, with controls obtained by random digit dialing, and matched to cases by age and race. This study did not find any important risk factors for either type of childhood bone tumor. No occupational category or specific exposure was associated with the occurrence of bone tumors. Although beryllium was of interest, no clear associations between maternal or paternal occupational exposures and osteosarcoma in offspring could be identified. There was no difference between cases and controls for maternal or paternal exposures to metals, welding, soldering, or mining and
manufacturing. For maternal exposure to metals, the OR for osteosarcoma was 3.50 ($P = 0.11$), and for Ewing’s sarcoma, 1.12 ($P = 0.81$). For paternal exposure to metals, the OR for osteosarcoma was 0.74 ($P = 0.34$), and for Ewing’s sarcoma, 1.09 ($P = 0.77$) (Buckley et al. 1998).

3.4 Cohort studies

Two recent cohort studies of U.S. nuclear workers also included workers exposed to beryllium. Wing et al. (1993) evaluated the association of all cancer with job titles and exposures to beryllium, mercury, and lead among white men employed at Oak Ridge National Laboratory in the United States. The primary goal of the study was to gauge whether other occupational exposures could explain previously-reported associations of cancer with exposure to ionizing radiation among the cohort. No information on the level of non-radiation exposures was available, but 609 workers were known to have worked with beryllium. Mortality from all cancers combined was increased 38% among these workers, who were almost exclusively nonsmokers. No data were presented for lung cancer or other specific cancers in relation to beryllium exposure.

Loomis and Wolf (1996) analyzed mortality among men and women of all races employed at the Y-12 nuclear materials production plant from 1947 and 1974 and followed through 1990. The plant was one of those studied previously by Carpenter et al. (1988); beryllium was known to have been used, but no quantitative measurements of exposure were available. Lung cancer mortality was elevated among all workers at the plant (SMR 1.17, 95% CI 1.01 - 1.34) and among the white males (SMR 1.20, 95% CI 1.04 - 1.38). The risk was highest among workers hired from 1947 to 54 and among those with 10 to 29 years latency and 5 to 19 years of employment. Lung cancer mortality was quantitatively associated with cumulative radiation dose in a previous study of the plant.

3.5 Other studies

Williams (1996) reported on a case-series of 30 workers in the United Kingdom who had died from chronic beryllium disease. The majority of the workers were fluorescent lamp workers and machinists who died from respiratory failure. Autopsies were conducted on 19 of the workers: most showed interstitial pulmonary fibrosis with varying degrees of cystic change, but no lung cancers were found.

3.6 Discussion

The quality of the epidemiologic evidence on the carcinogenicity of beryllium has improved substantially in the last decade. Early studies suggested an association of lung cancer with exposure to beryllium, but were limited by small numbers, short follow-up intervals, problems in estimating expected numbers of deaths due to missing national mortality data, and lack of direct measurements of exposure to beryllium and potential confounders. These problems have been addressed in recent studies. The remaining weakness of these studies is the absence of quantitative information on individual exposure; this is as likely to attenuate as to inflate observed risks.
The two cohort studies published from 1987 to 1993 strengthen the evidence for carcinogenicity. The study by Ward et al. (1992) represents a particularly significant advance relative to earlier efforts, with substantial increases in sample size and follow-up time, a larger number of plants, and use of appropriate referent mortality rates in the analysis. As in earlier research, the absence of information on beryllium exposure remained a key limitation in this study. Nevertheless, the results are consistent internally and externally, and the patterns of risk are consistent with a causal association between beryllium and lung cancer risk.

The results of cohort studies published after the 1993 IARC review (Wing et al. 1993; Loomis and Wolf 1996) are consistent with earlier findings, but add relatively little new evidence specifically concerning beryllium. Both studies focused on nuclear workers in facilities where beryllium was used in conjunction with other chemicals and where exposures to ionizing radiation were documented. One of the studies (Wing et al. 1993) examined the mortality of a group of workers known to have worked with BE and found evidence of increased mortality from cancer among them. However, neither study included quantitative information on beryllium exposures, which would play an important part in efforts to separate the effects of beryllium from those of radiation and other agents.

The population in the case-control study by Rooney et al. (1993) likewise included nuclear workers with exposures to multiple chemicals and ionizing radiation. This study’s assessment of exposure to beryllium by expert judgement represents an improvement relative to other studies with no information about exposure. However, the study considered only prostate cancer, which has not been associated with beryllium exposures in previous studies. The negative results of this study for beryllium are therefore consistent with expectations.

The case-series study of individuals with chronic beryllium disease reported by Williams (1996) differs in design from earlier follow-up studies of participants in a beryllium disease registry (Infante et al. 1980; Steenland and Ward 1991). No lung cancer was identified among the beryllium workers studied by Williams. However, the study did not include information about age and follow-up time, which would be needed to calculate mortality rates and expected numbers of deaths. Given the small size of the series (n = 30), the expected number of lung cancer cases may have been close to zero. In addition, the series was limited to workers with chronic beryllium disease, which was associated with lower rates of lung cancer in earlier studies, relative to acute beryllium disease.

Critiques of the recent epidemiologic literature on beryllium and cancer have cited the inability to control directly for cigarette smoking in any of the studies as a critical limitation (MacMahon 1994; BISAC 1997). Confounding by smoking is a potential threat to validity in any study of the role of occupational exposures in lung cancer, particularly when the magnitude of the association is modest. In the case of beryllium, however, no evidence has been presented to indicate that the prevalence of smoking in any of the exposed cohorts was substantially greater than in the referent population. In the absence
of such evidence, arguments that smoking is the most likely explanation for the observed associations (MacMahon 1994) are speculative.

Tobacco smoke may, however, be of concern as a potential modifier of the effect of beryllium. For some occupational lung carcinogens, notably asbestos and radon, the risk of cancer is markedly increased among exposed smokers. It is not currently possible to evaluate this relationship for beryllium because of the absence of individual information on beryllium exposure and smoking.

Exposure to sulfuric acid mists has also been proposed as an alternative explanation for excess lung cancer among beryllium workers (BISAC 1997). Sulfuric acid has been designated as a human carcinogen by IARC and was used in one beryllium plant that had a large influence on the results of studies by Mancuso (1979; 1980) and Ward et al. (1992). However, excess lung cancer was also observed in facilities that did not employ the sulfuric acid process used in that plant (Wagoner 1980; Ward et al. 1992). Moreover, the finding that lung cancer risk is significantly increased among workers with beryllium disease and that the risk appears to increase with the intensity of beryllium exposure supports a conclusion that beryllium is causally related to lung cancer risk. Finally, although exposure to sulfuric acid mists is associated with laryngeal cancer, the evidence supporting a relationship to lung cancer is weak (Sathiakumar et al. 1997).

Thus, the epidemiologic evidence as a whole supports a conclusion that beryllium is carcinogenic to humans. Although the reported increases in cancer risk are relatively modest, they have been observed consistently in most locations studied. Small increases in risk may result from dilution of an effect by poor specificity in classifying exposure. Existing studies of populations exposed to beryllium have used relatively crude exposure classifications, generally treating all workers in a plant as exposed, although some may have had no contact with beryllium. Risks may be larger among truly-exposed workers. This interpretation is supported by the risk of lung cancer among individuals with beryllium-related disease, whose exposure to beryllium is known. In general, cancer risks do not appear to increase with duration of employment in beryllium-processing facilities. However, the temporal patterns of risk observed in studies of beryllium worker cohorts and persons with beryllium-related lung disease suggest that excess lung cancer may have been associated with intense, short-term exposures, rather than with long-term, low-level exposures. Epidemiologic studies of workers exposed to beryllium also suggest that the risk of cancer increases with time since exposure to beryllium (latency), a pattern that is consistent with a causal role.
Table 3-1. Current case-control studies of cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Design</th>
<th>Population</th>
<th>Exposure</th>
<th>Effects</th>
<th>Potential Confounders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooney et al.</td>
<td>Case-control</td>
<td>136 men with prostate cancer diagnosed from 1946 to 1986 and 404 matched controls, all employees of United Kingdom Atomic Energy Authority.</td>
<td>Individual work history and radiation exposure were abstracted from Atomic Energy Authority records. Exposure to beryllium was assessed by expert judgement, according to work location. Exposure levels were ranked as: none or unlikely; probable but relatively low level, or probable and relatively high level. If probable, calendar years and frequency of exposure recorded.</td>
<td>Risk of prostate cancer associated with working in places assessed to be potentially contaminated with beryllium RR=0.87 (0.30 - 2.17), relative to never having worked in a place potentially contaminated with relevant substance or radiation.</td>
<td>Multiple exposures (15 specific radionuclides, 6 metals, 3 groups of chemicals, 3 physical agents, 7 other types of radiation).</td>
</tr>
<tr>
<td>Buckley et al.</td>
<td>Case-control</td>
<td>152 children with osteosarcoma and 153 children with Ewing’s sarcoma. Patients were identified in the registration data of the Children’s Cancer Group. Patients with osteosarcoma who were younger than 18 years and diagnosed from January 1, 1982 to December 31, 1983 were selected. Children with Ewing’s sarcoma were younger than 21 years and diagnosed from January 1, 1983 to July 30, 1985.</td>
<td>Parents of cases were interviewed by telephone. Controls were obtained by random digit dialing and matched to cases by age and race.</td>
<td>OR and P-value for occupational exposure of parents of children with osteosarcoma and Ewing’s sarcoma compared with controls. Maternal exposure to metals: OR = 3.50, P = 0.11 for osteosarcoma; OR = 1.12, P = 0.81 for Ewing’s disease. Paternal exposure to metals: OR = 0.74, P = 0.34 for osteosarcoma; OR = 1.09, P = 0.77 for Ewing’s disease.</td>
<td>Results not presented separately for beryllium; instead classification was exposure to metals.</td>
</tr>
</tbody>
</table>
Table 3-2. Current cohort studies of cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Design</th>
<th>Population</th>
<th>Exposure</th>
<th>Effects</th>
<th>Potential Confounders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing et al. (1993) U.S.A.</td>
<td>Historical cohort</td>
<td>8,318 white male workers employed at Oak Ridge National Laboratory, 609 workers known to have worked with beryllium.</td>
<td>All cancer RR 1.38 (95% CI 0.95 - 2.00)</td>
<td>Ionizing radiation, other metals.</td>
<td></td>
</tr>
<tr>
<td>Loomis and Wolf (1996) U.S.A.</td>
<td>Historical cohort</td>
<td>8,116 men and women of all races employed at the Y-12 nuclear materials plant, 1947 to 74 and followed to 1990</td>
<td>Beryllium known to have been used in the plant</td>
<td>Lung cancer SMR 1.17 (95% CI 1.01 - 1.34) for all workers and 1.19 (95% CI 1.03 - 1.36) for white males. Excess brain and lymphopoietic among white males.</td>
<td>Ionizing radiation, other metals, solvents, cutting fluids, no adjustment for cigarette smoking.</td>
</tr>
</tbody>
</table>
4 Studies of Cancer in Experimental Animals

4.1 Inhalation studies in rats, hamsters, rabbits, and monkeys

Groups of 60 and 33 male Charles River rats and 30 Greenacres Controlled Flora rats (more than four weeks old) were exposed by inhalation to metallic beryllium in the form of beryl ore (containing 4.14% beryllium, 63.6% crystalline silica, 18.1% Al$_2$O$_3$, and lower concentrations of other metal salts; mean particle diameter, 0.64 µm) or bertrandite ore (1.4% beryllium, 63.9% SiO$_2$, 9.8% Al$_2$O$_3$, and lower concentrations of other metals salts; mean particle diameter, 0.27 µm). Chamber concentration was 15 mg/m3 of dust, and animals were exposed for six hours per day, five days a week for up to 17 months. The beryl ore atmosphere contained 620 µg/m3 beryllium, and the bertrandite ore atmosphere contained 210 µg/m3 of beryllium. A third group of rats served as controls and was housed in inhalation chambers without exposure. Of animals killed after 12 months of exposure, 5/11 exposed to beryl ore had foci of squamous metaplasia or small epidermoid tumors. After 17 months, 18/19 had lung tumors (18 bronchiolar alveolar-cell tumors, 7 adenomas, 9 adenocarcinomas, and 4 epidermoid tumors). Exposure to bertrandite ore caused pulmonary granulomatous lesions and some proliferative changes, but lung tumors were not observed. Interpretation of this study was confounded by the presence of crystalline silica in the beryl ore sample and incomplete reporting (Wagner et al. 1969, cited in IARC 1993). Similar studies were conducted in Syrian golden hamsters and squirrel monkeys, but the IARC Working Group considered the interpretations questionable because of limited reporting of pathological findings and limited exposure durations (IARC 1993).

Male and female albino Wistar rats (27 per group) and male and female Sherman rats (109 per group) were exposed to aerosols of beryllium sulfate tetrahydrate at a beryllium concentration of 35.8 µg/m3 for eight hours a day, 5.5 days a week for up to 180 days. Control groups of 69 male and female Wistar rats and 70 male and female Sherman rats were maintained without exposure. The exposed animals developed pulmonary tumors, eight with metastases, that included 18 adenomas, 5 squamous carcinomas, 24 acinous adenocarcinomas, 11 papillary adenocarcinomas, and 7 alveolar cell adenocarcinomas. No control animal had pulmonary tumors (Schepers et al. 1957). A similar study was conducted with a group of Sprague-Dawley rats (75 per sex) exposed to beryllium sulfate tetrahydrate at a mean atmospheric concentration of 34.25 ± 23.66 µg/m3 for seven hours a day, five days a week for 72 weeks. An equal number of rats were exposed to an aerosol of distilled water and used as controls. All surviving exposed rats (43 per group) had alveolar adenocarcinomas. No tumors were found in control rats (Reeves et al. 1967, cited in IARC 1993).

Shorter beryllium inhalation exposure regimens also produced lung cancer in rats. Female rats (30 to 50 per group) were exposed to either beryllium oxide or beryllium chloride (concentrations of 0.8, 4, 30, or 400 µg/m3) for one hour per day, five days per week for four months. A group of 160 females served as controls. In this study, only malignant epithelial cell lung tumors were evaluated. Beryllium exposure caused dose-dependant incidences of malignant epithelial lung tumors, and no lung tumors were observed in
control animals. The total duration of the experiment was not reported (Litvinov et al. 1984, cited in IARC 1993).

Three groups of rabbits (sex not specified) were exposed to aerosols of beryllium oxide at beryllium concentrations of 1 µg/L (five rabbits), 6 µg/L (six rabbits), or 30 µg/L (eight rabbits) for five hours per day, five days per week for 9 to 13 months. No control group was used. Lung tumors were not reported, but one of the animals exposed to 6 µg/L for over 11 months had an osteogenic sarcoma in the pubis (Dutra et al. 1951, cited in IARC 1993).

In a group of 16 rhesus monkeys (Macaca mulatta) exposed to beryllium sulfate aerosol at a beryllium concentration of 35 µg/m³, primary anaplastic pulmonary tumors with adenomatous and epidermoid patterns were observed in three animals between six months and eight years after the beginning of exposure. Additional details were not reported (Vorwald 1967, cited in IARC 1993).

In more recent studies, groups of male and female Fischer 344/N rats received single nose-only exposures to beryllium metal sufficient to result in initial lung burdens of approximately 50, 150, or 450 µg of the metal. To this end, animals were exposed to beryllium at concentrations of 470 to 960 mg/m³ for 10 to 41 minutes. Serial sacrifices were made from 8 to 450 days after the exposure. The target lung burden of 450 µg reduced survival. Beryllium inhalation caused an increased incidence of lung tumors in rats. The most prevalent tumor was bronchiolar/alveolar adenocarcinoma having alveolar, papillary, or tubular patterns, and other tumors included adenosquamous carcinomas and squamous cell carcinomas. Substantial lung tumor multiplicity also was observed (Finch et al. 1990a; Haley et al. 1990; Finch et al. 1991, 1994a, b; all cited in Finch et al. 1996).

Tumors were observed in groups of rats receiving initial lung burdens of beryllium metal of 40, 110, 360, and 430 µg by 14 months after exposure began. Approximately 64% of the rats had lung tumors during their lifetimes (Nickell-Brady et al. 1994, cited in Finch et al. 1996).

The relative susceptibility of A/J mice and C3H/HeJ mice to beryllium-induced pulmonary carcinogenesis was assessed. Mice were exposed to beryllium metal by inhalation to result in mean initial lung burdens of 47 µg beryllium in A/J mice and 64 µg in C3H/HeJ mice. Microscopic analysis of lungs revealed that the tumor incidence in A/J mice was elevated relative to controls (46% for exposed vs. 37% for controls), and the A/J mice exhibited greater lung tumor multiplicity. Overall, tumor incidences were lower in C3H/HeJ mice than in A/J mice, and beryllium exposure had little effect (tumor incidence was 5% in beryllium-exposed animals and 10% in controls). Results of statistical analyses of the data were not reported, nor were durations of beryllium exposures (Belinsky et al. 1992, Nikula et al. 1994, both cited in Finch et al. 1996).

Male F344/N rats received single nose-only inhalation exposures to beryllium metal at concentrations sufficient to result in lung burdens of 0.32, 1.8, 10, or 100 µg of beryllium. Rats were sacrificed at 8, 16, 40, 90, 210, and 365 days after exposure. One rat
in the 1.8-µg group, sacrificed after 365 days, had a pulmonary squamous-cell carcinoma. Because the single occurrence of a lung tumor was in an animal from a lower lung burden group, the authors concluded that the tumor was not caused by exposure to beryllium metal (Finch et al. 1994c).

4.2 Intratracheal instillation in rats

Female rats received a single intratracheal instillation of 50 µg of beryllium as beryllium hydroxide; then, 10 months later, they received a single instillation of an additional 25 µg. Of the animals sacrificed at 19 months, 13/25 had pulmonary tumors (6 adenomas and 7 carcinomas; one rat had both an epidermoid carcinoma and an adenocarcinoma) (Groth et al. 1980, cited in IARC 1993).

Male Wistar rats (10 weeks old) were instilled intratracheally with beryllium oxide once a week for 15 weeks. A group of 16 rats served as untreated controls. The animals were observed until natural death, and 6/30 had lung tumors (two malignant and four benign lung adenomas) (Ishinishi et al. 1980, cited in IARC 1993).

Eight groups of inbred albino rats (gender and initial number not specified) received weekly intratracheal instillations of “high-temperature-fired beryllium oxide” (2,000°C) or “low-temperature-fired beryllium oxide” (600°C) at doses of 0.036, 0.36, 3.6, or 18 mg/kg bw. A group of 300 untreated rats served as controls. The animals were observed until natural death. Beryllium calcined at 600°C caused a dose-related increase in the incidence of malignant lung tumors (3/69, 4%; 7/81, 9%; 18/79, 23%; and 8/26, 31%). The high-temperature-treated beryllium was associated with lower incidences of malignant lung tumors (0/76; 0/84; 2/77, 3%; 2/103, 2%). No tumors were found in 104 controls (Litvinov et al. 1983, cited in IARC 1993).

4.3 Effects of beryllium metal in p53 knockout mice

Experiments were conducted to assess the sensitivity of p53+/- knockout mice to the carcinogenic effects of metallic beryllium. The p53+/- mouse and other transgenic models are currently under investigation for utility in short-term tests for the assessment of carcinogenic potential (Finch et al. 1998b).

Mice of both sexes were exposed to air (negative control), metallic beryllium (target lung burden of 60 or 15 µg), or ²³⁹PuO₂, (target lung burden of 500 or 100 Bq ²³⁹Pu) (positive control). Similar exposures of wild-type p53+/- (nontransgenic) mice also were conducted.

The incidences of lung neoplasms are shown in Table 4-1. Gender differences in pulmonary responses of transgenic mice were not apparent; hence, the sexes were pooled for statistical analysis.
Table 4-1. Incidence of mice with one or more pulmonary neoplasms following inhalation exposure to beryllium or Pu

<table>
<thead>
<tr>
<th>Sex</th>
<th>Heterozygous p53+/− mice</th>
<th>Wild-type p53+/+ mice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
<td>239PuO2 (500 Bq)</td>
</tr>
<tr>
<td>Male</td>
<td>0/15</td>
<td>1/15</td>
</tr>
<tr>
<td>Female</td>
<td>0/15</td>
<td>3/14</td>
</tr>
<tr>
<td>Combined</td>
<td>0/30<sup>a,b,c</sup></td>
<td>4/29<sup>a</sup></td>
</tr>
</tbody>
</table>

Source: Finch et al. (1998a).

^a Air vs. 500-Bq 239PuO2 p53+/− mice, P = 0.052.
^b Air vs. 100-Bq 239PuO2 p53+/− mice, P = 0.005.
^c Air vs. 60-µg beryllium p53+/− mice, P = 0.048.
^d 60-µg beryllium p53+/− mice vs p53+/+ mice, P=0.056.

For both the heterozygous (p53+/−) and homozygous (p53+/+) mice, lung-tumor responses to beryllium and to the positive control agent (239PuO2), were similar, but the latency period for tumor production was reduced in the heterozygous animals, suggesting an increased sensitivity in the transgenic animals.

The incidence of lung tumors in beryllium-exposed p53+/− mice was marginally higher than that of beryllium-exposed p53+/+ mice (P = 0.056). Five primary lung neoplasms were observed in the four neoplasm-bearing heterozygous animals in the 60-µg group, while the wild-type animals with the same lung burden developed no tumors during the 22.5 months of the experiment. Heterozygotes exposed to the lower dose of beryllium metal had no lung tumors.

A number of nonpulmonary neoplasms (osteosarcoma, lymphoma, histiocytic sarcoma) also were observed during this experiment but these occurred with similar incidences in exposed and control animals. Therefore, the tumors could not be attributed to administration of either beryllium or 239PuO2.
4.4 Intravenous injection in mice and rabbits

In a study reported as an abstract, Cloudman et al. (1949, cited in IARC 1993) administered 20 to 22 intravenous injections of either zinc beryllium silicate or beryllium oxide to mice (two injections per week). Beryllium administration caused malignant bone cancer in “some” mice. Similarly in another study (reported as an abstract) Gardner and Heslington (1946, cited in IARC 1993), intravenous administration of these beryllium salts to rabbits at total doses of 1 g caused malignant osteosarcomas, and some of the rabbits had visceral metastases. In a later study (Fodor 1977, cited in IARC 1993), intravenous administration of a beryllium oxide suspension (1% beryllium oxide in 5 mL of physiological saline) caused sarcomas (not otherwise described) in 21/29 (72%) of the animals. The IARC Working Group noted the lack of an appropriate control group and incomplete reporting of this study.

In another study, six groups comprising of 67 rabbits (mixed breeds and sexes) received intravenous injections of zinc beryllium silicate (total doses 1 to 2.1 g) or beryllium silicate (1 to 1.2 g). Injections were administered twice weekly, and the animals’ survival was reduced. A group of 10 rabbits were injected with zinc silicate alone (1.2 g) and used as untreated controls. Beryllium exposure caused osteosarcomas in 7/21 animals that survived for more than 30 weeks. The earliest malignant tumor was detected at 32 weeks, and the latest tumor occurred at 83 weeks. No tumors were observed in the control group (Barnes et al. 1950, cited in IARC 1993).

In another rabbit study, intravenous injections of beryllium oxide caused osteosarcomas in 6/6 animals that survived for more than 11 months. In this study, rabbits received 360 to 700 mg of beryllium in 20 to 26 injections (three injections per week over six to nine weeks). Six animals survived for at least one year (the total number of animals in the study was not reported), and the first bone tumor was detected after 11.5 months. All six of the surviving animals had osteosarcomas (Dutra and Largent 1950, cited in IARC 1993).

Administration of total doses of 1 g of beryllium phosphate, zinc beryllium silicate, or beryllium oxide in divided doses at one- to four-day intervals reduced survival of male and female rabbits, but 7/8 animals that survived for longer than 14 months had osteogenic sarcomas (Hoagland et al. 1950, cited in IARC 1993).

Osteosarcomas were produced by intravenous zinc beryllium silicate administration in 10/14 rabbits. Zinc beryllium silicate was administered twice weekly for 10 weeks (for a total dose of 1 g). Animals died or were sacrificed 28 to 57 weeks after the last injection. Tumors were detected 30 to 52 weeks after the last injection (Kelly et al. 1961, cited in IARC 1993).

A single intravenous dose of 1 g of beryllium phosphate caused osteosarcomas in 2/4 rabbits within 18 months; no tumors were observed in rabbits that were given a single intravenous injection of 1 g of beryllium oxide (Araki et al. 1954, cited in IARC 1993). In a similar experiment, a single intravenous dose of 1 g of beryllium oxide caused
osteosarcomas in 3/20 rabbits 15 to 18 months after administration (Komitowski 1968, cited in IARC 1993).

4.5 Intraperitoneal injection
Intraperitoneal administration of beryllium sulfate tetrahydrate at 0.02, 0.05, or 0.1 mg/mouse (three times per week for eight weeks) increased the incidences of lung tumors in A/J strain mice, but did not increase tumor multiplicity (Ashby et al. 1990, cited in IARC 1993). However, the IARC Working Group noted that the increased incidences were not statistically significant in Fisher’s exact test (IARC 1993).

4.6 Implantation and/or injection into bone
After 1 to 43 injections of 10 mg of beryllium oxide as a 1% suspension into the marrow of the femur of rabbits, dosed animals exhibited chondromas, osteomas, chondrosarcomas, and osteochondrosarcomas. Injections were administered twice weekly for up to 22 weeks, and 26/55 (47%) of the animals had bone tumors. The average time between the last injection and the appearance of the tumor was 85 days (Yamaguchi 1963, cited in IARC 1993).

Intramedullary injection of one dose of zinc beryllium silicate powder (20 mg) into the upper end of the tibia of rabbits caused osteosarcomas in 4/12 animals 12 to 15 months after the injection (Tapp 1966, cited in IARC 1993). Implantation of 10 mg of zinc beryllium silicate, beryllium oxide, or beryllium silicate under the periosteum of the tibia also caused bone tumors after 10 to 25 months (Tapp 1969, cited in IARC 1993).

Intramedullary administration of beryllium oxide, beryllium carbonate, and beryllium acetylacetonate to rabbits caused bone tumors within 10 to 17 months (Komitowski 1974, Matsuura 1974, both cited in IARC 1993). Intramedullary administration of either beryllium stearate and beryllium laurate in rabbits did not cause bone tumors (Matsuura 1974, cited in IARC 1993). The doses of beryllium salts administered in the study were not given.

Single intraosseous injections of 0.5 mL of a suspension of 1 g of zinc beryllium silicate in 15 mL of distilled water and gelatin, to yield 33 mg beryllium, caused osteogenic sarcomas in 45/65 rabbits that survived more than four months after the injection. Radiographic examinations indicated that the initial sarcomatous changes occurred after three months (Mazabraud 1975, cited in IARC 1993).

Three groups of male rabbits received implants of pellets of hydroxypropylcellulose mixed with beryllium oxide into the distal metaphysis of the femur as follows: group 1, into the internal callus one week after a fracture (300 mg); group 2, into the bone marrow cavity at a dose of 300 mg; group 3, into the bone marrow cavity at a dose of 50 mg. After 56 weeks, osteosarcomas had developed in 10/10 animals in group 1, 7/10 in group 2, and 1/10 in group 3 (Hiruma 1991, cited in IARC 1993).
4.7 Summary

The results of carcinogenesis studies in experimental animals and reviewed by IARC are summarized in Table 4-2. These studies provide evidence that beryllium and beryllium compounds are carcinogenic to rats, mice, and rabbits. Results of animal experiments have shown consistent increases in lung cancers in rats, mice, and rabbits chronically exposed to beryllium and beryllium compounds by inhalation or intratracheal instillation. Osteocarcinomas have been produced in mice and rabbits exposed to various beryllium salts by intravenous injection or implantation into the bone. IARC has concluded there is sufficient evidence of carcinogenicity in experimental animals for beryllium and beryllium compounds. This conclusion is affirmed by evidence from more recent studies in mice and rats.
Table 4-2. Animal carcinogenesis studies of beryllium metal, alloys, ores, and compounds

<table>
<thead>
<tr>
<th>Species, strain, and sex</th>
<th>Chemical and physical form</th>
<th>Exposure route, dosage, and regimen</th>
<th>Results and comments*</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, Wistar, F</td>
<td>beryllium metal (100%)</td>
<td>intratracheal instillation: 0.5 or 2.5 mg (diameter 1−2 µm) in saline x 1 occasion</td>
<td>treated: lung adenomas/adenocarcinomas (first tumor at 8−10 mo): low dose 2/21, high dose 9/16 (P < 0.008) controls: no tumors</td>
<td>Groth et al. (1980)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium metal “finely divided”</td>
<td>Intravenous injection: 40 mg x 1 occasion</td>
<td>of 24 subjects: 9 died with liver necrosis within 7 d and 10 more within 1 mo, 2 died with pulmonary infections, 2 had “characteristic bone sarcomata,” and 1 was unaffected controls: no controls</td>
<td>Barnes (1950 [letter])</td>
</tr>
<tr>
<td>Beryllium alloys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, Wistar, F</td>
<td>Be 99%:Cr Be 62%:Al 38% Be 04%:Cu Be 02%:Ni 98% Be 24%:Cu 0.4%:Co 96%</td>
<td>intratracheal instillation: 0.5 or 2.5 mg (diameter 1−2 µm) in saline x 1 occasion</td>
<td>treated: lung adenomas/adenocarcinomas (first tumor at 8−10 mo): Be:Cr, low dose 7/20, high dose 9/26 (P < 0.008), Be:Al, low dose 1/21, high dose 4/24 (P < 0.008); other alloys, no tumors controls: no tumors</td>
<td>Groth et al. (1980)</td>
</tr>
<tr>
<td>Beryllium ores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, Greenacres Controlled Flora and Charles River Caesarian, n.s.</td>
<td>beryl ore (diam. 0.64 µm) = 210 µg/m³ Be Bertrandite ore (diam. 0.27 µm) = 620 µg/m³ Be</td>
<td>inhalation: dust, 15 mg/m³/7 h/d, 5 d/wk, (up to) 17 mo</td>
<td>beryl ore: after 12 mo: 5/11 squamous metaplasia or small epidermoid tumors; after 17 mo, 18/19 lung tumors (18 bronchiolar alveolar-cell tumors [BACs]), 7 adenomas, 9 adenocarcinomas, and 4 epidermoid tumors) bertrandite ore: granulomas, but no tumors controls: no lesions of any type (IARC noted high crystalline silica content of bertrandite and incomplete reporting)</td>
<td>Wagner et al. (1969)</td>
</tr>
<tr>
<td>Hamster, Syrian golden, n.s.</td>
<td>beryl ore (diam. 0.64 µm) = 210 µg/m³ Be Bertrandite ore (diam. 0.27 µm) = 620 µg/m³ Be</td>
<td>inhalation: dust, 15 mg/m³ for 6 h/d, 5 d/wk, (up to) 17 mo</td>
<td>beryl ore and bertrandite ore: atypical proliferations in lungs after 12 mo (some thought to be BACs); lesions bigger and more adenomatous after 17 mo in the beryl ore group controls: no pulmonary lesions (IARC noted high crystalline silica content of bertrandite and incomplete reporting)</td>
<td>Wagner et al. (1969)</td>
</tr>
<tr>
<td>Species, strain, and sex</td>
<td>Chemical and physical form</td>
<td>Exposure route, dosage, and regimen</td>
<td>Results and comments*</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Monkey, Saimiri sciurea, M</td>
<td>Beryl ore (diam. 0.64 µm) = 210 µg/m³ beryllium Bertrandite ore (diam. 0.27 µm) = 620 µg/m³ beryllium</td>
<td>inhalation: dust, 15 mg/m³ 6 h/d, 5 d/wk, (up to) 23 mo</td>
<td>beryl ore and bertrandite ore: death rate exceeded controls by 11%; some bronchiolar inflammation noted in treated groups; no tumors observed controls: no pulmonary lesions (IARC noted incomplete reporting and limited duration of study)</td>
<td>Wagner et al. (1969)</td>
</tr>
<tr>
<td>Rat, Long-Evans (BLU:LE), M and F</td>
<td>beryllium sulfate</td>
<td>oral: 5 ppm (5 mg/L) in drinking water (also contained 5 ppm chromium [III] acetate, 50 ppm zinc acetate, 5 ppm copper acetate, 10 ppm manganese chloride, 1 ppm cobalt chloride, and 1 ppm sodium molybdate) given ad libitum until natural death</td>
<td>treated and controls: 20% to 30%, of both groups died from pneumonia; “no significant difference in tumor incidence was observed between treated and control groups.” (IARC noted that the dose was too low for an evaluation of carcinogenicity)</td>
<td>Schroeder & Mitchner (1975)</td>
</tr>
<tr>
<td>Rat, Wistar, M and F Rat, Sherman M and F</td>
<td>beryllium sulfate tetrahydrate</td>
<td>inhalation: aerosol, 35.8 µg/m³ 8 h/d, 5.5 d/wk, 180 d and (those surviving) then placed in normal air for up to 72 wk</td>
<td>treated: 76 lung tumors found, 8 metastatic: 8 adenomas, 5 squamous cell carcinomas, 24 acinous adenocarcinomas, 11 papillary adenocarcinomas, and 7 alveolar-cell adenocarcinomas controls: no lung tumors (IARC noted incomplete reporting of the study)</td>
<td>Schepers et al. (1957)</td>
</tr>
<tr>
<td>Rat, Sprague-Dawley CD, M and F</td>
<td>beryllium sulfate tetrahydrate (diam. 0.12 µm)</td>
<td>inhalation: aerosol, 34 µg/m³, 7 h/d, 5 d/wk, 72 wk</td>
<td>treated: 1st lung tumor seen at 9 mo; all surviving 13 mo or more had tumors (some multiple) and all were alveolar adenocarcinomas controls: no lung tumors (IARC noted incomplete reporting of the study)</td>
<td>Reeves et al. (1967)</td>
</tr>
<tr>
<td>Rat, albino, F</td>
<td>beryllium oxide or beryllium chloride</td>
<td>inhalation: aerosol, 0.8, 4, 30, or 400 µg/m³, 1 h/d, 5 d/wk, 16 wk</td>
<td>treated: malignant epithelial lung tumors were scored: respectively, for doses: beryllium oxide: 3/44, 4/39, 6/26, and 8/21; beryllium chloride: 1/44, 2/42, 8/24, and 11/19 controls: no lung tumors</td>
<td>Litvinov et al. (1984)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium oxide (diam. 0.29 µm)</td>
<td>inhalation: aerosol, 1, 6, or 30 µg/L, 5 h/d, 5 d/wk, 36 – 72 wk</td>
<td>treated: 1 metastatic osteogenic sarcoma was observed in an animal exposed to 6 µg for 235 d controls: no controls (IARC noted the small number of animals and limited study duration)</td>
<td>Dutra et al. (1951)</td>
</tr>
<tr>
<td>Species, strain, and sex</td>
<td>Chemical and physical form</td>
<td>Exposure route, dosage, and regimen</td>
<td>Results and comments</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Monkey, Rhesus (Macaca mulatta), n.s.</td>
<td>beryllium sulfate</td>
<td>inhalation: aerosol, 35 µg/m³, “for a long time”</td>
<td>treated: 3 animals developed primary anaplastic pulmonary tumors with adenomatous and epidermoid patterns between 6 mo and 8 yr after exposure controls: no controls</td>
<td>Vorwald (1967)</td>
</tr>
<tr>
<td>Rat, Wistar-derived, F</td>
<td>beryllium hydroxide</td>
<td>intratracheal instillation: 50 µg Be in distilled water x 1 occasion, followed (after 40 wk) by another 2.5 µg</td>
<td>treated: animals were sacrificed after 64 wk; 13/25 had pulmonary tumors (6 adenomas and 7 adenocarcinomas) and 1 had both epidermoid carcinoma and adenocarcinoma controls: no untreated controls (IARC noted the lack of an appropriate control group)</td>
<td>Groth et al. (1980)</td>
</tr>
<tr>
<td>Rats, Wistar, n.s.</td>
<td>beryllium oxide (low-fired, 900°C) arsenic trioxide</td>
<td>intratracheal instillation: 1 mg/wk as Be (or As), 15 wk and then observed for life</td>
<td>treated: beryllium oxide: lung tumors: 1 squamous-cell carcinoma, 1 adenocarcinoma, and 4 adenomas (“3 suspected of malignancy”) arsenic trioxide: 1 squamous-cell carcinoma controls: no lung tumors</td>
<td>Ishinishi et al. (1980)</td>
</tr>
<tr>
<td>Rats, inbred albino, n.s.</td>
<td>beryllium oxide (l) (low-fired, 600°C) beryllium oxide (h) (high-fired, 2,000°C)</td>
<td>intratracheal instillation: single doses of 0.04, 0.4, 4.0 and 18 mg/kg bw and then observed for life</td>
<td>treated: malignant epithelial lung tumors (respectively, for doses): BeO (l): 0/76, 0/84, 2/77, and 2/103 BeO(h): 3/69, 7/81, 18/79 and 8/26 controls: no lung tumors</td>
<td>Litvinov et al. (1983)</td>
</tr>
<tr>
<td>Monkey, Macaca mulatta, n.s.</td>
<td>beryllium oxide (“particles” in saline)</td>
<td>intrabronchial intubation and/or (n.s.) bronchomural injection, single dose n.s.</td>
<td>treated: “1st bronchogenic tumor detected about 4.5 yr after treatment; at about 5.5 yr, 2 monkeys developed highly neoplastic tumors with adenomatous and epidermoid patterns”</td>
<td>Vorwald (1967)</td>
</tr>
<tr>
<td>Mouse, n.s., n.s.</td>
<td>zinc beryllium silicate (8.4 mg Zn, 0.26 mg Be) zinc silicate (2.8 mg Zn) beryllium oxide (1.5 mg Be)</td>
<td>intravenous injection: 20 – 22 injections (2/wk)</td>
<td>treated: “some mice receiving Zn Be silicate developed bone tumors” controls: no tumors</td>
<td>Cloudman et al. (1949 [abstract])</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>zinc beryllium silicate (diameter ≤ 3 µm) beryllium oxide (diameter ≤ 3 µm)</td>
<td>intravenous injection: 20 doses totaling 1 g/6 wk</td>
<td>treated: Zn Be silicate: “all 7 surviving rabbits developed malignant osteosarcomas (4 of them metastatic)”; BeO: “1 rabbit, sacrificed at 1 yr, had a malignant osteosarcoma” controls: “no such tumors were induced by administration of 65 other minerals in the same way”</td>
<td>Gardner and Heslington (1946 [abstract])</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>zinc beryllium silicate (550 mg Zn, 17 mg Be) zinc silicate (390 mg Zn) beryllium oxide (390 mg Be)</td>
<td>intravenous injection: 20 – 22 injections (2/wk)</td>
<td>treated: “4 of 5 rabbits given Zn Be silicate and surviving past 1 yr developed bone tumors, 3 with metastases” controls: n.s.</td>
<td>Cloudman et al. (1949 [abstract])</td>
</tr>
<tr>
<td>Species, strain, and sex</td>
<td>Chemical and physical form</td>
<td>Exposure route, dosage, and regimen</td>
<td>Results and comments*</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>zinc beryllium silicate (2% BeO) (diameter ≤ 5 µm)</td>
<td>intravenous injection: at various concentrations in water (1.0, 1.2, or 2.0 g total), in 6 – 10 injections, 2/wk</td>
<td>treated: Zn Be silicate, Be silicate: 7/21 rabbits injected with Be silicates (surviving 30 wk) developed bone sarcomas; earliest malignant tumor seen at 32 wk and latest at 83 wk controls: no tumors found in rabbits injected with Zn silicate (IARC noted survival was poor in the study)</td>
<td>Barnes et al. (1950)</td>
</tr>
<tr>
<td>Rabbit, n.s., M and F</td>
<td>beryllium oxide (highly purified) (diameter ≤ 1 µm) calcined phosphor (containing beryllium oxide, zinc oxide, and silica in M ratio of 1:1:1) (diameter ≤ 5 µm)</td>
<td>intravenous injection: Be oxide total 360 – 700 mg Be/rabbit in 20 – 26 injections and phosphor total 64 – 90 mg Be/ rabbit in 17 – 25 injections, 3/wk, x 6 – 9 wk</td>
<td>treated: BeO: 6/6 (surviving) rabbits had osteosarcomas (some primary, some metastatic, and some multiple) after 1 yr; phosphor: 2/3 (surviving) rabbits had osteosarcomas after 1 yr controls: “about 50 untreated rabbits, kept for similar periods, developed no tumor” (IARC noted small group sizes, limited reporting, and incomplete observations)</td>
<td>Dutra and Largent (1950)</td>
</tr>
<tr>
<td>Rabbit, n.s., M&F</td>
<td>beryllium phosphate zinc beryllium silicate (2.3% BeO) zinc beryllium silicate (14% BeO) beryllium oxide</td>
<td>intravenous injection: 1% suspension in saline, at 1- or 4-d intervals, to deliver a total of 1 g of compound per rabbit</td>
<td>treated: 7/8 surviving rabbits developed osteogenic sarcomas; Be phosphate: 1 survivor received only 100 mg and had no tumor; Zn Be silicate (2.3% BeO): 3 had tumors; Zn Be silicate (14% BeO): 3 with tumors; BeO: 1 had a tumor controls: n.s. (IARC noted small group sizes and lack of appropriate controls)</td>
<td>Hoagland et al. (1950)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium phosphate beryllium oxide mixed with zinc oxide, manganese oxide, and/or silicon oxide</td>
<td>intravenous injection: single doses of 1 g per animal</td>
<td>treated: Be phosphate: 2/4 rabbits had osteosarcomas within 18 mo; BeO: no tumors found in 3 rabbits; BeO mixed with other oxides: 9/31 developed osteosarcomas controls: n.s. (IARC noted small group sizes, lack of appropriate controls, and incomplete observations)</td>
<td>Araki et al. (1954)</td>
</tr>
<tr>
<td>Rabbit, n.s., M</td>
<td>zinc beryllium silicate (3.4% BeO)</td>
<td>intravenous injection: 2/wk, 10 wk, for a total dose of 1 g (33.6 mg BeO)</td>
<td>treated: 5 rabbits developed osteogenic sarcomas after 9 to 11 mo controls: n.s. (IARC noted small group size and lack of appropriate controls)</td>
<td>Janes et al. (1954)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>zinc beryllium silicate (diameter 1 – 3 µm)</td>
<td>intravenous injection: 2/wk, 10 wk, for a total dose of 1 g</td>
<td>treated: rabbits died or were killed 28 – 57 wk after last injection; osteogenic sarcomas developed in 10/14 rabbits after 30 – 52 wk controls: n.s. (IARC noted small group size and lack of appropriate controls)</td>
<td>Kelly et al. (1961)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium oxide</td>
<td>intravenous injection: BeO in a 1% saline suspension, x 1 occasion, for a total dose of 1 g</td>
<td>treated: osteosarcomas were induced in 3/20 rabbits 15 – 18 mo after injection controls: n.s. (IARC noted the lack of appropriate controls)</td>
<td>Komitowski (1968)</td>
</tr>
<tr>
<td>Species, strain, and sex</td>
<td>Chemical and physical form</td>
<td>Exposure route, dosage, and regimen</td>
<td>Results and comments*</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium oxide</td>
<td>intravenous injection: BeO in a 1% saline suspension, 1/wk, 25 wk</td>
<td>treated: sarcomas were induced in 21/29 rabbits surviving to “the end of the experiment” controls: n.s. (IARC noted the lack of appropriate controls and incomplete reporting)</td>
<td>Fodor (1977)</td>
</tr>
<tr>
<td>Mouse, A/J, M</td>
<td>beryllium sulfate tetrahydrate (purity ≥ 99%) suspended in water</td>
<td>intraperitoneal injection: maximum total dose of 0.02, 0.05, or 0.1 mg/mouse 3/wk, 8 wk</td>
<td>treated: authors stated treatment produced significant (X² analysis) increases in lung tumor incidences at total dose of 1.2 and 2.4 mg/mouse without a significant increase in tumor multiplicity controls: water only; tumor incidence n.s. (IARC noted that the increases in tumor incidence were not significant using Fisher’s exact test)</td>
<td>Ashby et al. (1990)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium oxide</td>
<td>injection into bone: 10-mg doses (1% in saline), injected into the bone marrow of the femur, 2/wk for up to 23 wk</td>
<td>treated: 1/55 rabbits had a chondroma, 3/55 had osteomas, 15/55 had chondrosarcomas, and 7/55 had osteochondrosarcomas after 1 to 2 yr; the average period between last injection and tumor occurrence was 85 days controls: n.s.</td>
<td>Yamaguchi (1963)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>zinc beryllium silicate (powder, diameter ≤ 5 µm)</td>
<td>implantation into bone: 20 mg given as a single intramedullary injection into the right tibia; as a control, Zn oxide injected into the left tibia</td>
<td>treated: at 15 – 20 mo after implantation, 4/12 had osteogenic sarcomas (3 metastasized), 4/12 were killed at 15 – 20 mo with no evidence (clinical or radiological) of tumors, and 4/12 had died from in intercurrent infections controls: no effect was seen from Zn oxide</td>
<td>Tapp (1966)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>zinc beryllium silicate beryllium oxide beryllium silicate</td>
<td>implantation into bone: 10 mg implanted on a single occasion under the periosteum of the right tibia; as a control, Zn oxide or Zn silicate implanted on the left side</td>
<td>treated: Zn Be silicate: 1/6 rabbits developed a metastatic, osteogenic sarcoma; BeO: 2/6 had metastatic, osteogenic sarcomas; and Be silicate: 1/6 had an osteogenic sarcoma (the tumors were observed in these rabbits 10 – 25 months after implantation controls: no effect was seen from Zn oxide</td>
<td>Tapp (1969)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium oxide (diameter ~4 µm)</td>
<td>injection into bone: intramedullary injection in gelatin into the femur (amount and schedule, n.s.)</td>
<td>treated: 5/20 rabbits osteogenic sarcomas within 2nd yr; the 1st tumor was observed 13 mo after injection controls: n.s. (IARC noted the lack of appropriate controls and incomplete reporting)</td>
<td>Komitowski (1974)</td>
</tr>
<tr>
<td>Species, strain, and sex</td>
<td>Chemical and physical form</td>
<td>Exposure route, dosage, and regimen</td>
<td>Results and comments*</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium carbonate, beryllium acetate, beryllium acetylacetonate, beryllium laurate, beryllium stearate</td>
<td>injection into bone: intramedullary injection (amounts, placement, and schedule, n.s.)</td>
<td>treated: Be carbonate: 30/173 developed osteosarcomas 10 – 13 mo after implantation; Be acetate: n.s.; Be acetylacetonate: 1/10 (that survived 13 mo) developed an osteosarcoma; Be laurate: n.s.; and Be stearate: n.s. controls: n.s. (IARC noted small group sizes, except for Be carbonate, and incomplete reporting)</td>
<td>Matsuura (1974)</td>
</tr>
<tr>
<td>Rabbit, Fauve de Bourgogne, n.s.</td>
<td>zinc beryllium silicate</td>
<td>injection into bone: 1 g (33 mg Be) in gelatin suspension injected x 1 occasion into the tibial or femoral metaphysis</td>
<td>treated: 45/65 rabbits surviving more than 4 mo after injection developed osteogenic sarcomas; radiographic examination showed that the earliest sarcomatous changes occurred within 3 mo of injection controls: n.s. (IARC noted the lack of appropriate controls)</td>
<td>Mazabraud (1975)</td>
</tr>
<tr>
<td>Rabbit, n.s., n.s.</td>
<td>beryllium oxide</td>
<td>implantation into bone: pellets of hydroxypropylcellulose mixed with BeO implanted into the distal metaphysis of the femur according to experimental group: (1) internal callus artificial fracture at 300 mg, (2) bone marrow cavity at 300 mg, (3) bone marrow cavity at 50 mg, and (4) untreated</td>
<td>treated: group (1): 56 weeks post implantation, osteosarcomas had developed in 10/10 rabbits; these tumors appeared significantly earlier than those in other groups; group (2): 7/10 had osteosarcomas; group (3): 1/10 had osteosarcomas; (for all groups: 80% of rabbits with primaries had lung metastases as well) controls: n.s.</td>
<td>Hiruma (1981)</td>
</tr>
<tr>
<td>Mouse, SENECAR, M&F</td>
<td>beryllium sulfate (purity n.s.)</td>
<td>intraperitoneal injection (followed by) dermal applications of 12-O-tetradecanoylphorbol 13-acetate (TPA) co-treatment: in saline, 0, 0.01, 0.1, 1.0, 5.0, or 10.0 µg/mouse; 1 wk after Be sulfate injection, TPA applied, dermally, 2/wk for 26 wk; a positive control group was dosed with 50.5 µg/mouse benzo[a]pyrene followed by TPA treatment</td>
<td>treated: “failed to induce a significant number of mouse skin papillomas”</td>
<td>Nesnow (1985)</td>
</tr>
</tbody>
</table>

M = males; F = females; n.s. = not specified. *Significant increase (Fisher’s exact test, 1-tailed).
5 Genotoxicity

5.1 Prokaryotic systems

5.1.1 Induction of mutations in Salmonella typhimurium

Beryllium compounds (beryllium chloride, beryllium nitrate, beryllium sulfate) were not mutagenic when tested in a variety of Salmonella tester strains, in the presence or absence of exogenous metabolic activation (IARC 1993) (Appendix A, Table 19).

Beryllium sulfate was not mutagenic when tested in five S. typhimurium strains, in the presence or absence of metabolic activation by S9 liver homogenate (Ashby et al. 1990). A review of the literature by these authors, indicates that a number of earlier Salmonella studies on beryllium sulfate and beryllium nitrate failed to detect mutagenic activity. In these studies, TA1530, TA1535, TA1536, TA1537, TA1538, TA98, and TA100 strains of S. typhimurium were tested at beryllium sulfate concentrations that ranged from 25 to 5,000 µg/plate. The LT2 and TA100 strains of S. typhimurium were tested with beryllium nitrate at a concentration of 10^{-4} to 10^{-1} M.

Beryllium was non-mutagenic to S. typhimurium strains TA100 and TA98 at concentrations of > 5,000 µg/plate (beryllium chloride), > 5,000 µg/plate (beryllium nitrate), and > 0.43 µg/plate (beryllium oxide), in the presence and absence of S9 rat liver homogenate (Kuroda et al. 1991).

5.1.2 Induction of mutation in Escherichia coli

Beryllium chloride induced a forward mutation in one test with E. coli, in the absence of exogenous metabolic activation, but tested negative with beryllium sulfate for differential toxicity with or without exogenous metabolic activation (IARC 1993) (Appendix A, Table 19).

5.1.3 Induction of differential toxicity in Bacillus subtilis rec assay

Beryllium chloride (375, 750, and 1,500 µg/disk), beryllium nitrate (375, 750, and 1,500 µg/disk), and beryllium oxide (0.1 µg/disk) were tested in the B. subtilis rec assay. Evidence of a weak DNA-damaging effect was noted for beryllium chloride and beryllium nitrate. Beryllium oxide was negative in the rec assay, which was attributed to the incomplete solubility of the compound in water (Kuroda et al. 1991).

Beryllium compounds (beryllium nitrate, beryllium sulfate, beryllium oxide) were found to be DNA damaging and tested positive in the B. subtilis rec assays, in the absence of exogenous metabolic activation (IARC 1993) (Appendix A, Table 19).

5.1.4 Induction of mutation in Saccharomyces cerevisiae

Beryllium sulfate failed to induce mitotic recombination in S. cerevisiae, in the presence or absence of exogenous metabolic activation (IARC 1993) (Appendix A, Table 19).
5.2 Mammalian systems

5.2.1 In vitro assays

5.2.1.1 hprt locus forward mutation test

Beryllium chloride was positive in the hprt locus gene mutation test in Chinese hamster lung V79 cells in the absence of exogenous metabolic activation (IARC 1993) (Appendix A, Table 19).

5.2.1.2 Mammalian cell transformation assays

Beryllium compounds in the absence of exogenous metabolic activation, were found to be mutagenic causing cell transformations in murine, Syrian hamster embryo cells, rat embryo cells (beryllium sulfate), and rat tracheal epithelial cells (beryllium oxide) (IARC 1993) (Appendix A, Table 19).

5.2.1.3 Sister chromatid exchanges (SCEs)

Beryllium chloride (31 to 250 µg/mL), beryllium nitrate (31 to 500 µg/mL), and beryllium oxide (0.02 to 0.09 µg/mL) were tested for induction of SCEs in Chinese hamster lung V79 cells. Beryllium chloride and beryllium nitrate induced significant SCEs in the presence of S9 rat liver homogenate. Beryllium oxide tested negative for induction of SCEs (Kuroda et al. 1991).

Beryllium compounds were found to damage chromosomes and tested positive for SCEs in Chinese hamster lung V79 cells (0.05 and 0.25 µg/mL beryllium nitrate), Syrian hamster embryo cells (beryllium sulfate), and human lymphocytes (0.05 µg/mL beryllium sulfate); in the absence of exogenous metabolic activation (IARC 1993) (Appendix A, Table 19).

5.2.1.4 Chromosomal aberrations tests

In studies reviewed by IARC (1993), beryllium compounds (beryllium nitrate, beryllium sulfate, beryllium oxide) were found to damage chromosomes and tested positive for chromosomal aberrations in swine lymphocytes (beryllium chloride), Chinese golden hamster ovary cells (beryllium sulfate), Syrian hamster embryo cells (beryllium sulfate), and human lymphocytes (beryllium sulfate); in the absence of exogenous metabolic activation (Appendix A, Table 19).

When beryllium sulfate (0.2 and 1.0 mM) was tested for the induction of chromosomal aberrations in Chinese hamster ovary cells, it yielded equivocal results (Brooks et al. 1989). Using Chinese hamster lung cells, Ashby et al. (1990) failed to note any evidence of a clastogenic response for beryllium sulfate (0.078, 0.156, 0.313, 0.625 µg/mL), either in the presence or absence of an Aroclor-induced S9 rat liver homogenate.
5.2.1.5 DNA damage/repair tests

DNA single strand breaks

Beryllium oxide was found to damage DNA and tested positive for DNA single strand breaks in rat tracheal epithelial cells (IARC 1993) (Appendix A, Table 19).

Unscheduled DNA synthesis

Beryllium sulfate was found to be DNA damaging and tested positive for unscheduled DNA synthesis (UDS) in primary rat hepatocytes (IARC 1993) (Appendix A, Table 19).

5.2.2 In vivo assays

5.2.2.1 Host-mediated assay

Beryllium sulfate was not mutagenic in S. typhimurium and S. cerevisiae host-mediated assays in mice (IARC 1993) (Appendix A, Table 19).

5.2.2.2 Micronucleus test

Ashby et al. (1990) performed an analysis of micronuclei induction using beryllium sulfate administered by gavage in saline at doses of 1.45 g/kg or 2.3 g/kg. BeSO4 failed to induce micronucleated polychromatic erythrocytes (MPE) in the bone marrow of male CBA mice.

5.2.2.3 Oncogene transformation assays

Nickell-Brady et al. (1994) examined pulmonary adenocarcinomas induced by beryllium metal for the presence of genetic alteration in the K-ras, p53, and c-raf-1 genes. No K-ras codon 12, 13, or 61 mutations were seen in 24 lung tumors examined by direct sequencing. Using a more sensitive assay that detects mutant alleles at a sensitivity of 1x10^-3, K-ras codon 12 GGT-GTT transversions were found in 2 of 12 adenocarcinomas. The researchers suggested “these activations were a late and rare event, possibly stemming from genomic instability during tumor progression.” Nuclear immunoreactivity of p53 was not observed in any beryllium-induced tumor, nor were any mutations detected within exons 5-8 of the p53 gene. No rearrangements of the c-raf-1 protooncogene were detected by Southern blot analysis. The authors concluded that the mechanisms underlying the development of beryllium-induced lung cancer in rats did not involve gene dysfunctions commonly associated with human non-small-cell lung cancer.

5.3 Summary

Beryllium compounds were not mutagenic when tested in a variety of Salmonella tester strains. However, beryllium compounds were positive for hpmt locus gene mutation in hamster cells and caused cell transformations in mammalian cells in vitro. Beryllium compounds also induced genetic alteration in the K-ras gene, without affecting p53 or rearrangements of the c-raf-1 protooncogene, in beryllium-induced tumor cells. Beryllium compounds are clastogenic, inducing differential toxicity in B. subtilis; SCEs in hamster, rat, and human cells, in vitro; chromosomal aberrations in swine, hamster, and human cells, in vitro; and single strand chromosomal breaks and UDS in rat cells, in
vitro. However, beryllium compounds tested equivocally for the induction of forward mutation in *E. coli* and failed to induce mitotic recombination in *S. cerevisiae*, *in vitro*, or micronuclei in mice, *in vivo.*
6 Other Relevant Data

6.1 Absorption, distribution, metabolism and excretion

Data available to the IARC Working Group concerning absorption, distribution, metabolism, and excretion indicated that beryllium, when administered orally, beryllium is absorbed from the gastrointestinal tracts of mice, rats, dogs, and monkeys. After oral administration of carrier-free 7Be as a chloride, 0.6% of the dose was estimated to be absorbed in monkeys, although the urinary excretion was reported to be 3.71%. Beryllium was excreted in the urine of these species for two days post-administration (Furchner et al. 1973, cited in IARC 1993).

Continuous inhalation of beryllium sulfate by rats resulted in development of a lung burden plateau after approximately 36 weeks (Reeves and Vorwald 1967, cited in IARC 1993). Clearance from lungs included accumulation of beryllium in the tracheobronchial lymph nodes, where concentrations reached peak values at 52 weeks after cessation of inhalation exposure. Deposition in other organ systems was not reported. In a later study, however, Zorn et al. (1977, cited in IARC 1993) reported that inhalation (nose-only) of aqueous aerosols of beryllium chloride and beryllium sulfate by rats resulted in approximately 13.5% of the dose being deposited in the skeleton.

When dogs inhaled aerosols of beryllium oxide calcined at 500°C (low-fired) or 1,000°C (high-fired), clearance from the lung followed first-order kinetics. Clearance half-time was 240 days for high-fired beryllium oxide and 64 days for the low-fired compound. Beryllium was distributed to the skeleton, tracheobronchial lymph nodes, liver, and blood. Both gastrointestinal and urinary excretions of beryllium were reported (Finch et al. 1990b, cited in IARC 1993).

During inhalation carcinogenicity studies of beryl ore dusts (described in Section 4), Wagner et al. (1969, cited in IARC 1993) reported elevated levels of beryllium in skeletons of rats, hamsters, and monkeys.

Like inhaled beryllium, parenterally administered beryllium salts lead to accumulation of the metal in the skeletal system. One day after intramuscular injection of beryllium chloride to rats, the highest concentrations of beryllium were detected in skeleton, liver, kidney, lungs, and spleen. After 64 days, skeletal and splenic beryllium concentrations were still higher, indicating continued deposition in these tissues, while concentrations in other tissues were reduced (Crowley et al. 1949). Similar results were reported in a comparative study for rats, and, to a lesser extent, for rabbits (Scott et al. 1950, cited in IARC 1993).

Twenty-four hours after intravenous administration of beryllium chloride (at pH 2) to rats, nearly half (47%) the administered dose was excreted in the urine and 43% was detected in bone. Only 4% of the administered dose remained in the liver, and 0.1% was recovered from the spleen (Klemperer et al. 1952, cited in IARC 1993).
After intravenous administration of beryllium sulfate to rats, circulating beryllium in the plasma was largely bound to plasma globulins, and a small part of the dose remained in a low-molecular-weight form (Vacher and Stoner 1968, cited in IARC 1993). Similar binding of beryllium to plasma proteins has been demonstrated for guinea pigs (Stiefel et al. 1980, cited in IARC 1993). When beryllium chloride was added to normal plasma (in vitro), only 2.5% was dialyzable, indicating a high level of binding to macromolecules. Other beryllium salts, however, were more readily dialyzable from plasma (citrate, 62%; maleate, 30%; bicarbonate, 10%). Feldman et al. (1953, cited in IARC 1993) concluded that at plasma concentrations in excess 10^{-7} mol/L, most of the beryllium present is in a nondialyzable phosphate state, with the smaller, dialyzable portion being mainly citrate. A low-affinity binding site for beryllium also was observed on the outer cell surface of human and guinea pig lymphocytes, and a higher-affinity binding site was detected in the cell nucleus (Skilleter and Price 1984, cited in IARC 1993).

After beryllium sulfate was repeatedly administered intraperitoneally to rats, beryllium was found concentrated in the cells of the proximal convoluted tubules (Berry et al. 1987, 1989, cited in IARC 1993). Beryllium accumulated in hepatic lysosomes where it was dissociated into the ionic form (Be^{2+}) by lysozymes and then became detectable in proximal nuclei of rats (Levi-Setti et al. 1988, Magos 1991, both cited in IARC 1993). Beryllium exhibited an affinity for nuclei isolated from rat liver, but was not bound to DNA or histones, only to a highly phosphorylated, non-histone protein fraction (Witschi and Aldridge 1968, Parker and Stevens 1979, both cited in IARC 1993).

Snow (1992) reviewed the effects of beryllium on cellular immunity and nucleic acid metabolism and suggested that a number of biological activities of beryllium resemble those attributed to metals known to be carcinogenic such as nickel and chromium. For example, all elicit strong immune responses in the respiratory system, and all affect enzymes involved in nucleotide metabolism and can decrease the fidelity of DNA replication in vitro. Epidemiological studies of occupational exposures have not generally benefited from reliable bio-exposure data. Although beryllium can be measured in blood or urine (see section 2), temporal relationships are unclear; current or recent exposure levels are not distinguishable because urinary excretion of beryllium can continue for several years following a known exposure (Klemperer et al. 1951, De Nardi et al. 1953, both cited in Leonard and Bernard 1993).

6.2 Binding to nucleoproteins and interference with DNA synthesis

Experimental studies in guinea pigs have demonstrated that ionized beryllium can bind to nucleic acids (Lansdown 1995, Leonard and Lauwerys 1987). In addition to binding to nucleoproteins, beryllium compounds (beryllium chloride and beryllium sulfate) affect certain enzymes (DNA and RNA polymerases, deoxythymidine kinase, and deoxythymidylylde deaminase) needed for DNA synthesis. These effects can produce infidelity in DNA replication in vitro that may be manifested as genetic transformations in microorganisms and mammalian cells (Leonard and Lauwerys 1987).
6.3 Summary

After administration by inhalation, beryllium compounds are absorbed into the systemic circulation in studies involving mice, rats, guinea pigs, dogs, and monkeys. Pharmacokinetic analysis of beryllium compounds administered either by inhalation or intratracheally provided evidence that these beryllium compounds accumulate in the lung. Beryllium also accumulates in the bone after administration by inhalation or injection. Clearance from the bone is slower than from other organs. Absorbed beryllium is excreted by both gastrointestinal and urinary routes. Beryllium can bind to nucleic acids and affects certain enzymes needed for DNA synthesis.
7 References

Animal Models of Beryllium-induced Lung Disease

Gregory L. Finch, Mark D. Hoover, Fletcher F. Hahn, Kristen J. Nikula, Steven A. Belinsky, Patrick J. Haley,* and William C. Griffith

Inhalation Toxicology Research Institute, Albuquerque, New Mexico

Abstract

The Inhalation Toxicology Research Institute (ITRI) is conducting research to improve the understanding of chronic beryllium disease (CBD) and beryllium-induced lung cancer. Initial animal studies examined beagle dogs that inhaled BeO calcined at either 500 or 1000°C. At similar lung burdens, the 500°C BeO induced more severe and extensive granulomatous pneumonia, lymphocytic infiltration into the lung, and positive Be-specific lymphocyte proliferative responses in vitro than the 1000°C BeO. However, the progressive nature of human CBD was not duplicated. More recently, Strains A/J and C3H/HeJ mice were exposed to Be metal by inhalation. This produced a marked granulomatous pneumonia, diffuse infiltrates, and multifocal aggregates of interstitial lymphocytes with a pronounced T helper component and pulmonary in situ lymphocyte proliferation. With respect to lung cancer, at a mean lung burden as low as 17 µg Be/g lung, inhaled Be metal induced benign and/or malignant lung tumors in over 50% of male and female F344 rats surviving ≥ 1 year on study. Substantial tumor multiplicity was found, but K-ras and p53 gene mutations were virtually absent. In mice, however, a lung burden of approximately 60 µg (~300 µg Be/g lung) caused only a slight increase in crude lung tumor incidence and multiplicity over controls in strain A/J mice and no elevated incidence in strain C3H mice. Taken together, this research program constitutes a coordinated effort to understand beryllium-induced lung disease in experimental animal models. -- Environ Health Perspect 104(Suppl 5):973-979 (1996)

Key words: beryllium, inhalation, beagle dogs, monkeys, rats, mice, granuloma, lymphocyte proliferation, cancer

This paper was presented at the Conference on Beryllium-related Diseases held 8-10 November 1994 in the Research Triangle Park, North Carolina. Manuscript received 29 April 1996; manuscript accepted 2 May 1996.

The authors acknowledge the valuable contributions of our colleagues at the Inhalation Toxicology Research Institute (ITRI), E. Barr, W. Bechtold, J. Benson, D. Bice, C. Hobbs, R. Jones, B. Muggenburg, and D. Swafford; former colleagues R. Cuddihy, F. Eidson, A. Hannsen, J. Mewhinney, and C. Nickell-Brady; consulting pathologists W. Carlton and A. Rebar; technical support personnel in several ITRI research groups; temporary student research participants; the Technical Communications Unit; and funding support from the Assistant Secretary for Defense Programs and the Office of Health and Environmental Research, U.S. Department of Energy, under contract DE-AC04-76EV01013. Institute facilities are fully accredited by the American Association for the Accreditation of Laboratory Animal Care.

Address correspondence to Dr. G.L. Finch, Inhalation Toxicology Research Institute, PO Box 5890.
Introduction

The toxicity of beryllium (Be) and its compounds has been a topic of concern for some 60 years, even though earlier reports dealt with this issue (1). Concerns were largely driven by reports of Be-induced toxicity in humans in Europe in the 1930s and in the United States in the 1940s (2). After approximately 1950, the acute form of Be-induced lung disease was largely eliminated due to the establishment of workplace exposure limits, but the chronic form of the disease is still of concern. Chronic beryllium disease (CBD) is characterized by progressive, noncaseating granulomatous inflammation of the lung that may be fatal. CBD occurs in only approximately 3% of exposed individuals and it has been suggested that a genetic predisposition is involved (3).

Numerous animal models of Be-induced toxicity were investigated in the 1940s, despite a 1943 report by the U.S. Public Health Service (4) that erroneously exonerated Be as the causative toxic agent. The early work was brought together in 1947 with the Sixth Saranac Symposium (5), a galvanizing meeting for investigators dealing with industrial hygienic and toxicologic concerns for Be.

Over the subsequent decades, numerous reports were published from animal experiments involving Be exposures. These include the production of pneumonitis in animals inhaling Be compounds comparable to that seen in humans, the induction of osteosarcomas in rabbits injected with beryllium oxide (BeO) and zinc Be silicate (6), the production of lung tumors in rats inhaling beryllium sulfate (BeSO₄) (7), and the characterization of differing immune responses in two strains of guinea pigs (8). A full review of this work is beyond the scope of this article; other recent reviews and summaries of the literature describing the health effects (9-11) and biokinetics (12) are available.

This article provides an overview of studies of the inhalation toxicity of Be conducted at the Inhalation Toxicology Research Institute (ITRI). These studies, which began in 1982, are described below.

Studies at the Inhalation Toxicology Research Institute

The ITRI is conducting research to improve the understanding of CBD and to examine Be-induced lung cancer. Central to these efforts have been field studies of Be-containing aerosols likely to be found in the workplace, development of laboratory model aerosols mimicking workplace aerosols, detailed physicochemical characterization of these materials, and use of these aerosols in laboratory animal models. The following sections describe aerosol and physicochemical studies, efforts to develop an animal model having the key features of human CBD, and studies of Be-induced carcinogenesis.

Aerosol and Physicochemical Studies

Initial ITRI studies focused on proposed uses of Be as a plasma limiter in fusion devices and soon expanded to include the potential uses of Be in structural, navigational, and nuclear reactor systems for space. Beryllium aerosols formed under industrial and applied research conditions were collected and...
examined (13); materials included machining-generated Be metal and BeO aerosols, stock Be metal and BeO powders, and aerosols derived from electron or laser beam impaction on Be blocks, and Be particles from a research fusion device. Particles of respirable size were found in all cases; particle morphology ranged from branched-chain aggregates in the case of laser vaporization to irregular shapes produced by the other operations. Additional efforts were made to characterize aerosols produced by the machining of Be metal, BeCu, or BeNi alloys: for a given machining operation, a greater percentage of the Be metal aerosol was found in the respirable size fraction than in either alloy (14). During this period of extensive aerosol development, an overview for practicing engineers was also prepared on the history of Be dispersion, regulations and industrial hygiene practices related to Be, and perspectives on the health risks of using Be (15).

Efforts were begun to mimic these workplace and research aerosols with appropriate surrogate aerosols produced under well-controlled laboratory conditions. Model aerosols for a radioisotope-labeled 7BeO generated from the nebulization of a 7Be(OH)$_2$ suspension and calcined at either 500 or 1000°C were developed (16). A laboratory laser vaporization technique capable of generating branched-chain aggregate aerosols of either Be metal (when operated under an argon atmosphere) or BeO (when operated under air) was also developed (17). Finally, a method employing dry-powder aerosolization with size fractionation using an aerosol cyclone was developed for an industrial preparation of Be metal powder (18).

An extensive quality control program was begun to certify and compare the chemical and physical properties of the laboratory aerosols. This program involved determination of particle morphology and geometric size, aerodynamic size, specific surface area, density, dissolution characteristics, chemical form, crystallinity, and composition (19-21). The work was complemented with in vitro toxicity studies in cell cultures in which for a given Be compound, short-term toxicity appeared to be governed by the amount of specific surface area of the preparation, and thus presumably the surface available for dissolution of Be ions (22).

Important features of these laboratory model aerosols include the production of particle sizes ranging from several tenths to 2 μm in mass median aerodynamic size, thus making the aerosols of optimal size for deposition in the alveolar compartment of the lung; thorough physical and chemical characterization, as described above; and ability to generate exposure atmospheres over a wide range of concentrations, thus permitting a wide range of lung burdens to be delivered in relatively short times. This latter point is particularly true for Be metal; the aerosolization system for this material can provide mass concentrations ranging from several tenths of mg/m3 up to over 1 g/m3 in a nose-only inhalation chamber (18).

Studies of Be-induced Granulomatous Lung Disease

Studies in Dogs. Studies of Be-induced granulomatous lung disease began with an examination of the toxicokinetics of 500 and 1000°C BeO in the beagle dog. An associated goal was the possible development of a CBD model. Justification for this approach included the clear indication from the literature of the importance of BeO preparation temperature on Be disposition and toxicity following inhalation (23), and the need for biokinetic data describing the disposition of these two BeO preparations. The beagle dog was selected because it represents a good biokinetic model for the disposition of other important elements (24), is amenable for the collection of toxicokinetic data and monitoring of pulmonary responses (using periodic radiographs and intrapulmonary lavage), and has immunological responses similar to those of humans (25).
A dose-response pilot study in dogs using BeO treated during generation at 500°C indicated that granulomatous lung lesions were present 1 month after exposure (26). Additional dogs were subsequently exposed by inhalation to 7BeO that had been treated at 500°C during generation and subsequently calcined at either 500 or 1000°C. Dogs received mean lung burdens of either 17 or 50 μg/kg body weight; control dogs received a sham exposure (experimental design given in Table 1). Groups of dogs (2 dogs per time point per calcination temperature per lung burden level) were sacrificed at various times through 1 year after exposure (a total of 28 dogs) to measure 7Be content in various tissues (27), and to evaluate lung and lung-associated lymph node lesions (28). Another group of dogs was held for periodic assessment as described below. As expected, the BeO prepared at 500°C was cleared from the lung more rapidly than the 1000°C material (clearance half-times of 72 and 210 days, respectively). Beryllium cleared from the lung was either excreted (principally in feces at early times after exposure, later in urine) or translocated primarily to bone and liver. Through 1 year after exposure, lung lesions observed included macrophage hyperplasia, granulomas, fibrosis, alveolar epithelial cell hyperplasia, and lymphocytic infiltrates. These lesions were generally more extensive or severe in dogs exposed to the 500°C BeO, and peaked in relative severity at 2 months after exposure.

Twenty dogs (4 controls and 4 each per calcination temperature per lung burden) were not sacrificed, but were followed by periodic radiography and collection of blood and intrapulmonary lavage fluids for assessment of cell types and performance of standard in vitro lymphocyte proliferation assays (LPA) to detect Be-specific immune responses (28). In blood, positive LPA results were observed only sporadically in all exposure groups. Lymphocytes constituted over 50% of lung lavage cells 3 months after exposure in a group of four dogs inhaling 500°C BeO, then percentages declined to less than 30% by 7 months after exposure. The positive LPA results observed were most prominent in dogs that inhaled the 500°C BeO to achieve the 50 μg/kg lung burden. These results generally peaked 6 to 8 months after exposure, then declined. There was substantial variability among individual dogs, and an apparent shift toward more T-helper lymphocytes when lymphocyte numbers were elevated relative to controls.

Additional work using cloned lung lymphocyte T-cell lines suggested a Be-specific, major histocompatibility complex Class-II-mediated nature of the response (29).

Continued monitoring of the dogs through 2 years after exposure, however, coupled with the Be lung clearance data and the decrease in the relative severity of lung toxicity from 2 months to 1 year in the sacrificed dogs, suggested that toxic reactions to Be had largely resolved. Thus, although these results were promising, a model of the progressive nature of CBD was not developed. To determine if potential immune memory of Be might result in responses greater in either magnitude or duration than seen after the first exposure, the dogs were reexposed by inhalation to 500°C BeO approximately 2.5 years after exposure.
their first exposure to result in a mean lung burden of 74 μg/kg (30). The influx of lymphocytes, reactivity of the lymphocytes as revealed by the LPA, and lung lesions upon sacrifice 6 months after exposure were similar to those seen after the first exposure, indicating that these responses did not appear to be cumulative using this exposure regime.

Studies in Cynomolgus Monkeys. To refine and extend these observations in dogs, the immunopathologic responses to Be were examined in cynomolgus monkeys (*Macaca fascicularis*). One important reason to extend these studies to nonhuman primates was the lack at that time of appropriate antibodies against the various T-lymphocyte subpopulations in the dog. The monkeys were exposed by bronchoscopic, intrabronchiolar instillation to either BeO calcined at 500°C or to Be metal (31). A separate lung lobe received an instillation of the saline vehicle alone. The masses of Be used ranged from 0.4 to 38 μg for the BeO, and 1.0 to 148 μg for the Be metal; the differing amounts were used because they were estimated to provide roughly equimolar amounts of the Be⁺⁺ ion dissolved from the particles over the 6-month study.

The monkeys underwent bronchoalveolar lavage at various times after instillation. The animals were sacrificed at either 80 or 180 days after exposure for evaluation of lung histopathology. Compared to control lung lobes, the numbers of lymphocytes obtained from exposed lobes were elevated at 14, 30, and 90 days postexposure (dpe) in the Be metal-exposed animals, and at 60 dpe in the BeO-exposed monkeys. Be-specific *in vitro* lymphocyte proliferation occurred at 14, 60, and 90 dpe in lymphocytes from Be-exposed lung lobes only; no Be-specific lymphocyte proliferation was observed in BeO-exposed animals. Lung lesions in Be metal-exposed monkeys included focally intense, interstitial fibrosis, marked hyperplasia of the alveolar epithelium, and variable lymphocytic infiltrates. Some Be metal-exposed animals had discrete immune granulomas characterized by tightly organized lymphocytic cuffs surrounding epithelioid macrophage aggregates. When present, lesions in BeO-exposed monkeys were rare and much less severe.

Thus, lung lesions having certain features of CBD were successfully produced in the cynomolgus monkey and were accompanied by Be-specific immune responses. Furthermore, the results suggested that Be metal produced more severe lesions than the BeO prepared at 500°C. However, the experimental design precluded an examination of whether the pulmonary responses increased over time or resolved, as was observed in the dogs. Largely because of the expense of working with the nonhuman primates and the related inability to study more than a few individuals, this line of investigation was not pursued.

Studies in Rodents. To determine if mice that inhaled Be develop responses that mimic human CBD, female strains A/J and C3H/HeJ mice were exposed to a Be-metal aerosol to achieve mean initial lung burdens of 47 μg or 64 μg, respectively (32). The mice were sacrificed 28 weeks after exposure. Cells were harvested from peripheral blood, spleen, and bronchial lymph nodes of both exposed and control mice. Be-specific *in vitro* lymphocyte proliferation was assayed, but responses were seen only in the positive control samples in which the lymphocytes were exposed to phytohemagglutinin.

The right cardiac lung lobes from selected mice were inflated with a cryopreservative agent, frozen, then sections were cut and reacted with antibodies to detect mouse B, helper T, and suppressor T lymphocytes. Remaining lung lobes were fixed and sectioned for standard histopathology; this examination revealed a marked, multifocal, granulomatous pneumonia with mild interstitial fibrosis, perivascular and interstitial mononuclear (lymphocytes, plasma cells, monocytes, and macrophages) cell infiltrates, and multifocal interstitial mononuclear cell aggregates. Multinucleated giant cells were common; most were of the foreign-body type, but Langhans giant cells were also found. Immunohistochemical examination showed that these interstitial mononuclear cell aggregates were of two types: some consisted primarily of helper T cells and Be-containing macrophages (microgranulomas), while others consisted of a central zone of B cells and a peripheral zone of helper T
cells. Helper T cells, which were the majority of lymphocytes in the lungs of Be-exposed mice, were located in the aggregates described above, in the interstitium within foci of granulomatous inflammation, and in perivascular cuffs. Suppressor (CD8+) T cells were infrequent and scattered within the lesions.

A subgroup of the mice received injections of a 5-bromo-2-deoxyuridine (BrdU) solution 2 days to 1 hr before sacrifice to label the nuclei of replicating cells. This treatment revealed lymphocyte proliferation within microgranulomas, perivascular cuffs, and the lymphoid aggregates. Unfortunately, because different groups of mice received lung cryosection immunohistochemistry and the BrdU labeling, the BrdU technique could not permit the identification of either the proliferating lymphocyte subtype or Be specificity of the response.

No substantive differences in response between the two murine strains were observed; other strains have not been examined. The observed chronic lung lesions parallel those seen in human CBD cases in several important respects: morphologically, with the helper T cells constituting the primary lymphocytic component, and proliferatively, with the pronounced in situ lymphocyte replication (Table 2). However, the Be specificity of these responses must be demonstrated before the disease in mice can be considered an animal model of human CBD. Efforts in this area continue.

Table 2. Comparison of responses between human chronic beryllium disease cases and strains A/J and C3HHeJ mice inhaling beryllium metal. 2

<table>
<thead>
<tr>
<th>Response</th>
<th>Humans</th>
<th>Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microgranulomas/mixed mononuclear infiltrates</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Significant lymphocytic component</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Accumulation of helper T cells</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lymphocyte proliferation</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be-specific in vitro</td>
<td>+</td>
<td>+/?</td>
</tr>
<tr>
<td>Delayed type sensitivity</td>
<td>+</td>
<td>?</td>
</tr>
</tbody>
</table>

2Two strains of mice received a single, acute, nose-only inhalation exposure to result in mean initial lung burdens of 47 µg (for strain A/J) or 64 µg (for strain C3H) Be metal; experiment described in text. Key to responses: + = response observed; +/? = response probably occurs but has not been definitively proven; - = response not observed; existence of response was not performed; ? = existence of response not known.

Studies of Be-induced Cancer

Studies in Rats. Studies of Be metal-induced cancer began at ITRI as part of a larger program to study the cancer risks from exposures to combinations of radiation and other agents. Pertinent to this article, a study is being conducted in rats exposed to Be metal and/or plutonium dioxide (239PuO2) (33,34). The following discussion relates primarily to rats exposed only to Be metal within the larger study; the Be portion of the design of this study is given in Table 3.
Groups of F344/N rats (raised in the ITRI barrier facility) were designated for single, nose-only exposure to Be metal to result in lung burdens of approximately 50, 150, or 450 μg. This involved exposures of 10 to 41 min to Be metal mass concentrations of 470 to 960 mg/m³. Control rats received filtered air alone. Following exposure, groups of rats were designated for serial sacrifice at times ranging from 8 to 450 dpe for determination of the quantity of Be within the lungs and for assessment of presence or progression of lung lesions.

Exposure to the highest level of Be metal (target lung burden of 450 μg) proved acutely lethal to a substantial fraction of the rats (35). Thirty-seven percent of male and 49% of female rats died approximately 2 weeks after exposure. The lungs of these rats were characterized by a severe hemorrhagic pneumonia (36). This acute mortality was not observed in rats exposed to lower lung burdens of Be metal. Inhaled Be metal also decreased long-term survival in a dose-dependent manner (37). For both genders, median survival times of Be metal-exposed rats were similar to those of controls in groups receiving the lowest target lung burdens, and were approximately 80% those of controls at the highest lung burdens.

Another effect observed in this combined exposure study was a striking reduction in the lung’s ability to clear Be and other materials (35,37). Clearance of 239Pu from the lung in rats also inhaling Be metal was best modeled by a single-component, negative exponential function having a half-time of some 500 days. This effect was independent of the level of Be metal examined. In contrast, 239Pu clearance in rats not also exposed to Be was best modeled by a two-component, negative exponential, and the clearance half-time for the first component (which accounted for approximately 80% of the 239Pu lung burden) was about 35 days. For a given level of 239PuO₂ exposure, the coexposure to Be metal with the associated reduction in lung 239Pu clearance served to increase the total potential life-span radiation dose to the lung by a factor of approximately three, compared to controls. This phenomenon has subsequently been examined in more detail (below).

The most notable result from this study was the carcinogenicity of Be metal to the lungs of the F344/N rats; these data have been reported in abstract form (38,39). The most prevalent neoplasm observed was the bronchiolar/alveolar adenocarcinoma having alveolar, papillary, or tubular patterns. Other tumors observed included adenosquamous carcinomas and squamous cell carcinomas. In addition, substantial multiplicity of lung tumors within the same animal was observed.

In four groups of 30 male and 30 female rats each receiving mean Be metal initial lung burdens of 40,
I RoC Background Document for Beryllium and Beryllium Compounds

I 110, 360, and 430 \(\mu \)g Be, tumors became apparent by 14 months after exposure, and a crude incidence of 64% of the rats developed lung tumors over their lifetimes (40). An analysis in the Be-induced rat lung adenocarcinomas of genes frequently mutated in human lung cancers (the oncogenes \(K\text{-ras} \) and \(c\text{-raf-1} \), and the tumor suppressor gene \(p53 \)) revealed few alterations. Direct sequencing of exons 1 and 2 in 24 tumors did not reveal any mutations in \(K\text{-ras} \) codons 12, 13, or 61. A more sensitive technique revealed codon 12 base pair transversions in 2 of 12 tumors examined, suggesting \(K\text{-ras} \) oncogene activation was a rare, late event in the carcinogenic process. No \(p53 \) gene mutations were observed through either immunohistochemical techniques or direct sequencing of exons 5 through 8, nor were \(c\text{-raf-1} \) mutations evident by Southern blot analysis. Thus, the mechanisms underlying the production of pulmonary adenocarcinomas from inhaled beryllium in the rat do not involve gene dysfunctions common with human non-small-cell lung cancer.

As a result of the level of carcinogenicity observed in this study, additional rats (CDF(F344)/CrIBr, Charles River Laboratories, Raleigh, NC) have been exposed to lower lung burdens of Be metal (Table 3) and are being observed. Target initial lung burdens for this portion of the study range from 0.3 to 50 \(\mu \)g. The goal of this work is to define dose-response relationships between lower lung burdens of Be metal and lung cancer and to reproduce in F344/Crl rats the findings described above in F344/N rats.

Studies in Mice. The carcinogenicity of inhaled Be metal is being examined in two strains of mice: A/J mice, which are susceptible to either spontaneous or chemically induced lung cancer, and C3H/HeJ mice, a strain that is relatively resistant to lung cancer induction (41). Groups of mice were exposed to Be metal to result in group mean initial lung burdens of 47 \(\mu \)g Be (A/J) or 64 \(\mu \)g Be (C3H). Serial sacrifices were conducted to yield lung tissue for histologic examination, molecular analysis of gene changes in the carcinogenic process, and analysis of Be for dosimetry and lung clearance data.

Histopathological analyses of the lungs have been completed (42). Compared to control mice, the crude incidence of lung tumors in Be metal-exposed A/J mice is slightly elevated (46% in exposed vs 37% in controls) and in C3H/HeJ is slightly decreased (5% in exposed mice vs 10% in controls). In addition, tumor multiplicity is slightly increased in the exposed A/J mice compared to that in controls. The potential statistical significance of these data and the multiplicity and time-to-tumor data are being analyzed. Be exposure reduced survival for both strains. In a log-rank test (Breslow test; SAS P1L, SAS Institute, Cary, NC), this reduction in survival was statistically significant for strain C3H mice (\(p=0.042 \)) but only marginally significant for strain A/J mice (\(p=0.077 \)). Both exposed and control strain A/J mice appeared to have slightly greater survival times than C3H mice; however, neither of these differences were statistically significant (\(p>0.05 \)).

An additional topic of ongoing analysis in this study is the potential for mutations in the \(K\text{-ras} \) oncogene (43). Preliminary data suggest that \(K\text{-ras} \) gene mutations are more common in the mouse lung tumors than in the rat lung tumors, but mutational hotspots are lacking within the gene, which suggests that Be is not acting as a genotoxic carcinogen.

Studies of Acute and Chronic Inflammatory Lung Disease in Rats and Mice. In concert with the cancer studies in rats and mice described above, the nature of acute and chronic responses to inhaled Be metal have been examined through 1 year after exposure in both species. Male F344/N rats were exposed to Be metal to result in lung burdens ranging from 0.32 to 100 \(\mu \)g (about 0.2-85 \(\mu \)g Be/g lung tissue), then sacrificed at 8, 16, 40, 90, 210, and 365 dpe (44). The Be metal aerosol was mixed with an aerosol of \(^{85}\text{Sr} \)-labeled fused aluminosilicate particles (\(^{85}\text{Sr-FAPs} \)), a relatively insoluble particle used as a tracer particle to study clearance from the lungs. Control rats received the \(^{85}\text{Sr-FAPs} \) alone. Be exposure significantly retarded \(^{85}\text{Sr-FAP} \) lung clearance in all exposure groups, except for the lowest lung burden (0.32 \(\mu \)g) where clearance was slightly retarded but not statistically different from that in controls. In
addition, lung burdens of 10 or 100 μg Be induced minimal to mild acute and chronic inflammation, hyperplasia of the alveolar epithelium, and early-occurring fibrosis, whereas a lung burden of 1.8 μg caused only late-occurring, minimal chronic inflammation and alveolar epithelial hyperplasia. The histological changes were generally accompanied by alterations in the enzyme, protein, and cellular components of bronchoalveolar lavage fluids.

A virtually identical study was also performed in female C3H/HeJ mice (45). Mice received both \(^{85}\text{Sr}\)-FAP tracer particles and Be metal lung burdens of 1.7 to 34 μg (about 14-280 μg Be/g lung). A lung burden of 1.7 μg Be had some measurable but minimal effect on lung clearance, the 2.6-μg Be lung burden was intermediate in effect, and lung burdens of 12 or 34 μg Be induced a substantial reduction in pulmonary clearance of the \(^{85}\text{Sr}\)-FAP. Histological evaluation of the lungs revealed granulomatous pneumonia at later times, an increased number and size of interstitial lymphocytic aggregates, and interstitial infiltration of mononuclear cells. Findings were most pronounced in the two highest lung burden groups, although a minimal granulomatous pneumonia was observed in many of the mice in the 2.6-μg lung burden group. As with the rats, indications of lung damage revealed by bronchoalveolar lavage generally mirrored the lung histology results.

These studies in rats and mice provide dose-response data describing the effects of inhaled Be metal on lung toxicity. The most striking difference in lung pathology between the two species is the marked component of interstitial lymphocytic aggregates in the mouse; lymphocytes are not a substantial component of the response in rats. A comparison between the two species is shown in Figure 1, in which Be metal lung burdens are divided by control animal lung weight in an attempt to normalize the data for comparison. Another important difference between the species appears to be the levels of Be lung burdens required to induce a toxic reaction in the lung; the rats are affected by the various changes described above at weight-normalized lung burdens substantially lower than those in mice.

Discussion

As noted in the introduction, a substantial body of toxicity studies of Be in animals exists (9-11). It can be difficult, however, to comprehend the effects of Be in animals from this work. Many of the studies, particularly the early ones, are plagued by problems such as confounding diseases within the animal colonies; use of inappropriate modes of exposure; failure to quantitate dose or disposition; or use of exposure materials that were poorly characterized, poorly described, or irrelevant to workplace exposures (9).

Our studies of granulomatous lung disease indicate that dogs and monkeys respond to Be with many of the responses seen in human CBD patients. These responses include granulomatous lung lesions having a significant lymphocytic component, and the presence of *in vitro* Be-specific lymphocyte proliferative capability (46,47). However, the finding in dogs that both of these responses resolve indicates that a true, progressive model of CBD has not been achieved following the acute exposure modes used. In addition,
further work with dogs and monkeys is not promising because of the substantial expense associated with working with these large-animal models and the related inability to examine the large numbers of subjects necessary with these outbred species. The potential for developing useful models of beryllium disease in rodents appears much more promising.

Work with F344 rats indicates that the lack of significant lymphocytic response to inhaled Be metal in this species renders it unsuitable for detailed immunopathogenic study (46). In mice, however, several parallels between murine and human responses were observed, most notably including the development of granulomas and/or mononuclear infiltrates having a pronounced helper T cell component (Table 2). Efforts continue to demonstrate Be-specific lymphoproliferative and delayed hypersensitivity responses in the mouse. This work is based on the premise that the development of a laboratory animal model having the significant features of human CBD will afford opportunities to study not only the cellular and molecular mechanisms of responses involved in the progression of CBD but also to examine both the influence of the physicochemical form of Be and the exposure mode (single, chronic, multiple) on disease outcome and the potential for therapeutic intervention.

Studies of the carcinogenicity of inhaled Be metal are being conducted in both rats and mice. A striking difference in response between these species is being observed. The F344 rat develops a relatively high crude incidence and multiplicity of lung tumors. These tumors, however, essentially lack mutations in genes commonly found to be mutated in various types of human cancers, including lung cancers. On the other hand, at doses that induce substantial carcinogenicity in rats, the carcinogenic response is weak in strain A mice and absent in strain C3H mice. Clearly, continued efforts are required to understand the similarities/differences in responses of rats versus those in mice, the molecular events surrounding Be-induced carcinogenesis, and the responses of these species to Be-containing compounds other than Be metal before these findings can be extrapolated to humans.

In conclusion, ITRI studies are oriented toward understanding events involved in the development of beryllium-induced, immune-mediated, chronic granulomatous lung diseases, and lung cancer. This research program constitutes an ongoing, coordinated effort to understand beryllium-induced lung disease in experimental animal models. Use of multiple species in this program increases the scientific basis for eventual extrapolation of the results from laboratory animal models to humans.

References

[Table of Contents] [Citation in PubMed] [Related Articles]

Last Update: March 24, 1998
Beryllium and Certain Beryllium Compounds

First Listed in the Second Annual Report on Carcinogens:

Carcinogenicity

There is sufficient evidence for the carcinogenicity of beryllium (CAS No. 7446-41-7) and the following beryllium compounds in experimental animals: beryllium-aluminum alloy (12770-50-2), beryllium chloride (7787-47-5), beryllium fluoride (7787-49-7), beryllium hydroxide (13327-52-7), beryllium oxide (1304-56-9), beryllium phosphate (13598-15-7), beryllium sulfate (13510-49-1), beryllium sulfate tetrhydrate (7787-56-6), beryllium zinc silicate (39413-47-3), and beryll o (1302-52-9) (IARC V.7, 1972; IARC V.23, 1980; IARC S.4, 1982).

Beryllium metal, beryllium-aluminum alloy, beryll ore, beryllium chloride, beryllium fluoride, beryllium hydroxide, beryllium sulfate (and its tetrhydrate) and beryllium oxide, all produced lung tumors in rats exposed by inhalation or intratracheally. Single intratracheal instillations or 1-hour inhalation exposures were effective. Beryllium oxide and beryllium sulfate produced lung anaplastic carcinomas in monkeys after intrabronchial implantation or inhalation. Beryllium metal, beryllium carbonate, beryllium oxide, beryllium phosphate, beryllium silicate, and zinc beryllium silicate all produced osteosarcomas in rabbits after intravenous injection or intramedullary administration.

An IARC Working Group reported that there is limited evidence for the carcinogenicity of beryllium in humans (IARC V.23, 1980; IARC S.4, 1982; IARC S.7, 1987). There were no data available to evaluate the carcinogenicity of beryllium compounds in humans. Four early epidemiological studies and three recent studies of occupational exposure to beryllium were considered to provide limited evidence that exposure to beryllium may lead to human lung cancer. The data for most of the studies were derived from two beryllium plants and from the Beryllium Case Registry. Although 55 new cases of beryllium disease were registered between 1973 and 1977, no further data were available on the incidence of lung cancer. An assessment of the pathology of the 47 lung cancers noted in one study confirmed the post-mortem diagnosis of lung cancer in 32 of the 37 cases available for review. Of the 47 cases, 21 were reported smokers, but the smoking histories of individuals in the other cases were not given (IARC S.4, 1982).

Properties

Beryllium is a grey metal with a close-packed hexagonal crystal structure. It is insoluble in cold water and mercury, slightly soluble in hot water, in which it decomposes, and soluble in dilute acids and alkalis. Beryllium chloride occurs as white-to-colorless deliquescent crystals. It is very soluble in cold and hot water; soluble in alcohol, benzene, ether, chloroform, and carbon disulfide; and insoluble in ammonia and acetone. Beryllium fluoride occurs as a colorless amorphous mass that is readily soluble in water but only slightly soluble in alcohol. Beryllium hydroxide exists in three forms: as a metastable tetragonal crystalline solid; as a stable orthohombic crystalline solid; and in a slightly basic pH, it appears as a slimy, gelatinous substance. It is soluble in acids and alkalis but insoluble in water. Beryllium oxide (BeO) occurs as a white amorphous powder or gel which is insoluble in both cold and hot water but is soluble in acids, alkalis, and ammonium carbonate. Beryllium metaphosphate is a white porous powder or granular material that is insoluble in water. Beryllium orthophosphate is soluble in both cold and hot water and acetic acid. Beryllium sulfate occurs as colorless crystals which are insoluble in cold water and alcohol but decompose in hot water. Beryllium sulfate tetrhydrate occurs as crystals that are soluble in water, practically insoluble in ethanol, and slightly soluble in concentrated sulfuric acid. Beryll o is a colorless, blue-green, yellow, or white, transparent, hexagonal crystal that is insoluble in acid. When heated to decomposition, beryllium, beryllium-aluminum alloy, beryllium chloride, beryllium fluoride, beryllium hydroxide, beryllium oxide, beryllium sulfate, and beryllium sulfate tetrhydrate emit toxic fumes of BeO. In addition, beryllium chloride emits toxic fumes of hydrochloric acid and other chlorinated compounds, beryllium fluoride emits toxic fumes of hydrofluoric acid and other fluorinated compounds, beryllium phosphate emits toxic fumes of phosphoric oxides (PO₃), and beryllium sulfate and beryllium sulfate tetrhydrate emit toxic fumes of sulfur oxides (SO₃).

Beryllium metal is available in the United States as a technical grade with over 99.5% purity, as a commercial grade with 97% minimum purity, and as an electro-refined metal in various grades, i.e., vacuum hot pressed S-200, S-65, and I-40. Beryllium chloride and beryllium fluoride are available with 11.2% and 19.0% beryllium contents, respectively. Both contain various metallic impurities. Beryllium-aluminum alloy is available as a grade containing 62% beryllium and 38% aluminum. Beryllium hydroxide is either beryll-derived or bertrandite-derived. Depending upon the source of ore, beryllium hydroxide is available with a varying percentage of beryllium content and metallic impurities. Beryllium oxide is available as technical grade, C.P., pure, ceramic grade, and as single crystals. Commercial-grade beryllium oxide, available in the United States, has an approximate purity of 99.5%. Beryllium sulfate crystals are available with a minimum of 20% beryllium. Beryllium sulfate tetrhydrate is produced commercially in a highly purified state. Beryll ore is available in commercial grades containing 70%-90% beryll, including 10%-13% BeO.

Use

Beryll ore is processed to make beryllium and its compounds. Industry is increasing the use of beryllium for fiber optics and cellular network communication systems (USDOI, 1990). Because it is expensive, applications will be limited to those that require light-weight, high-strength, and high-thermal conductivity. The use pattern for beryllium in 1989 was estimated to be 23% as alloy and metal for aerospace and defense; 17% as alloy and oxide for electrical components; 35% as alloy and oxide in electronic components; and 25% as alloy, metal and oxide in other applications (USDOI, 1990). In 1987, 22% of the beryllium produced was used as an alloy and metal in aerospace applications and defense application; 36% was used as an alloy and oxide in electrical equipment; 20% was used as an alloy and oxide in electronic components; and 22% was used as compounds, alloys, and metal in other applications (USDOI, 1988). Beryllium is used as a window material for X-ray tubes, as a moderator material for nuclear weapons, and as a neutron reflector in high-flux reactors. It is also used in high-performance aircraft brakes, in inertial guidance systems in space optics, as an
additive in solid propellant rocket fuels, and in alloys (Sax, 1979).

It has been used in light aircraft construction (Merian, 1984). It also has potential use in casting alloys, where it refine the grain size resulting in better surface polishing, reduces melt losses, and improves casting fluidity (Kirk-Othmer V. 3, 1978; IARC V. 23, 1980).

Beryllium chloride’s primary use is in the laboratory manufacture of beryllium metal by electrolysis. It also finds use as an acid catalyst in organic reactions. Beryllium fluoride and beryllium hydroxide find commercial use as intermediates in the production of beryllium metal and beryllium alloys. Beryllium fluoride is also used in the manufacture of glass and nuclear reactors (Sax, 1987). Beryllium oxide is the most important high-purity commercial beryllium chemical produced (Kirk-Othmer V.3, 1978). Its primary use is in the manufacture of ceramics. It is often used in electronic and microelectronic applications, such as semiconductor devices and integrated circuits requiring thermal dissipation (IARC V.23, 1980; Kirk-Othmer V.3, 1978). Beryllium oxide is also used in the preparation of beryllium compounds, as an additive to glass and plastics, and as a catalyst for organic reactions and in high-temperature reactor systems. Beryllium oxide was used in the past for the manufacture of phosphors for fluorescent lamps. Beryllium metaphosphate has limited use as a raw material for special ceramic compositions and as a catalyst carrier. The primary use of beryllium sulfate tetrahydrate is as a chemical intermediate in the processing of beryl and bertrandite ores. (Sax, 1978). A former use of beryllium zinc sulfate is as an oxygen-dominated phosphor in luminescent materials (IARC V.23, 1980; Sax, 1987).

Production

In 1989, mine production of beryllium was estimated to be 450,000 lb, imports were 110,000 lb, and exports were 44,000 lb (USDOI, 1990). In 1988, 466,000 lb were mined, 103,000 lb were imported, and 81,000 lb were exported. Export and export data for 1988 and 1989 may not be comparable to earlier years due to different reporting methods. In 1987, mine production of beryllium was estimated to be 560,000 lb. It was estimated that 280,000 lb were imported, and 200,000 lb were exported in 1986. In 1986, two companies produced 522,000 lb of beryllium, of which 80,000 lb were exported. The United States imported 162,000 lb of beryllium in 1986. In 1985, 460,000 lb of beryllium were produced, 244,000 lb were imported, and 120,000 lb were exported. In 1984, 40,000 lb of the 482,000 lb of beryllium produced were exported, and 176,000 lb were imported. United States production in 1983 was reported to be 534,000 lb. Imports were 194,000 lb, and exports were 38,000 lb (USDOI, 1988; USDOI, 1987). In 1982, beryllium production was reported to be 436,000 lb, imports were 230,000 lb, and exports were 134,000 lb (USDOI, 1987). Imports of beryllium were 174,000 lb in 1981, and exports were 78,000 lb. In 1980, imports of beryllium were 148,000 lb and exports were 58,000 lb (USDOI, 1985). The 1979 TSCA Inventory reported that in 1977, three companies produced 110,000 lb of beryllium and two companies imported 500 lb with some site limitations (TSCA, 1979).

In 1987, two U.S. companies produced beryllium alloys and beryllium oxide (USDOI, 1988). In 1985, about 5.3 million lb of beryllium ore, less than 2.552 lb of beryllium oxide, and 7,352 lb of unspecified beryllium compounds were imported (USDOC Imports, 1986). In 1984, the United States imported 2.7 million lb of beryllium ore, less than 179 lb of beryllium oxide, and 43.059 lb of unspecified beryllium compounds (USDOC Imports, 1985). The 1979 TSCA Inventory reported that in 1977, three companies produced 605,000 lb of beryllium oxide and one company imported 500 lb; two companies produced 550,000 lb of beryllium sulfate, with some site limitations, and one company produced 5.5 million lb of beryllium. No data were reported for beryllium phosphate and beryllium zinc sulfate (TSCA, 1979). U.S. companies have produced beryllium and some beryllium compounds commercially since the 1940s and beryllium oxide since 1958 (IARC V. 1, 1972).

Exposure

The primary routes of potential human exposure to beryllium and certain beryllium compounds are inhalation and dermal contact. In 1970, NIOSH estimated that the number of workers potentially exposed to the dust or fumes of beryllium in the workplace was about 50,000, of which 2,500 were employed in its production (IARC V.23, 1980). The National Occupational Hazard Survey, conducted by NIOSH from 1972 to 1974, estimated that 19,867 U.S. workers may have been exposed to beryllium in the workplace (NIOSH, 1976). The National Occupational Exposure Survey (1980-1983) estimated that 19,012 total workers, including 1,778 women, may be exposed (NIOSH, 1984). The workers potentially exposed to beryllium include beryllium ore miners, beryllium alloy makers and fabricators, phosphor manufacturers, ceramic workers, missile technicians, nuclear reactor workers, electric and electronic equipment workers, and jewelers. In addition, workers involved in fluorescent powder manufacture and in the manufacture and salvage of fluorescent lamp works were previously exposed to beryllium oxide and beryllium zinc silicate. The industry abandoned the use of these compounds because of the incidence of beryllium disease (IARC V.1, 1972). The ACGIH has adopted a threshold limit value (TLV) of 0.002 mg/m³ as an 8-hr time-weighted average (TWA) (ACGIH, 1986).

The general population is potentially exposed to beryllium by inhaling air and consuming food contaminated with beryllium residues. Exposure occurs mainly through the release of beryllium into the atmosphere from the burning of coal. From 10 to 20 million lb/yr of beryllium may be emitted from coal burning and refuse incineration globally. Beryllium concentrations in U.S. coal range from 1.46 to 1.52 mg/kg (IARC V.23, 1980). In the United States, more than 80% of the beryllium emissions originate from coal-fired vessels (Merian, 1984). The EPA estimated the total release of beryllium to the atmosphere from point sources to be 5,500 lb/yr, with the principal emissions from beryllium-copper alloy production. The Toxic Chemical Release Inventory (EPA) listed 11 industrial facilities that produced, processed, or otherwise used beryllium in 1988 (TRI, 1990). In compliance with the Community Right-to-Know Program, the facilities reported releases of beryllium to the environment which were estimated to total 41,000 lb. Approximately 721,000 persons living within 12.5 miles of point sources are possibly exposed to small amounts of beryllium (median concentration, 0.005 pg/m³). In the eastern United States, urban atmospheric concentrations were measured at 0.03-0.05 mg beryllium/m³. In rural areas concentrations were 12 times lower (Merian, 1984). Beryllium occurs naturally in rocks and minerals with concentrations ranging from 0.038 to 11.4

C-2
The beryllium content of mineral oils has been estimated to be less than 100 μg/l. Small concentrations of beryllium have been reported in drinking water supplies and in food. Beryllium has also been found in tobacco (Merian, 1984). Concentrations of beryllium in cigarettes ranged from 0.47 to 0.74 mg/cigarette; 4.5%-10% of the beryllium content escaped into the smoke during smoking (IARC V.25, 1980). Additional exposure information may be found in the ATSDR Toxicological Profile for Beryllium (ATSDR, 1993c).

Regulations

In 1980 CPSC preliminarily determined that beryllium, beryllium oxide, and beryllium sulfate was not present in consumer products under its jurisdiction. Subsequently, public comment was solicited to verify the accuracy of this information; no comments were received. Pending receipt of new information, CPSC plans no action on this chemical. In 1973, EPA promulgated a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for extraction and production sites for beryllium and beryllium oxide and for beryllium rocket-motor firing. In 1980, EPA published a water quality criteria document on beryllium for the protection of human health under the Clean Water Act (CWA) and established regulations under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for releases of beryllium and beryllium compounds. These regulations were based on the inclusion of beryllium and its compounds on the EPA Carcinogen Assessment Group's list of potential carcinogens. The CERCLA final reportable quantity (RQ) is 10 lb for beryllium and beryllium dust and 1 lb for beryllium chloride and beryllium fluoride. RCRA subjects wastes known to contain beryllium or beryllium compounds to handling and recordkeeping requirements. EPA does not plan to regulate beryllium in drinking water under the Safe Drinking Water Act. Beryllium and its compounds are also regulated under the Superfund Amendments and Reauthorization Act (SARA), which subjects them to reporting requirements. FDA regulates beryllium in bottled water under the Federal Food, Drug and Cosmetics Act (FD&C). NIOSH recommended that exposure to beryllium and beryllium compounds should not exceed 0.5 μg/m³. Current OSHA standards for workers exposed to Beryllium are a 2 μg/m³ 8-hr TWA, 5 μg/m³ ceiling, and 25 μg/m³ maximum peak in 30 minutes. These standards were adopted by OSHA for toxic effects other than cancer. OSHA has proposed regulating occupational exposure to beryllium, based on its carcinogenicity as well as other toxic effects. OSHA regulates beryllium and certain beryllium compounds under the Hazard Communication Standard and as chemical hazards in laboratories.