1	Title: Systematic Review and Evidence Integration for Literature-Based Environmental Health
2	Science Assessments
3	Authors: Andrew A. Rooney, Abee L. Boyles, Mary S. Wolfe, John R. Bucher, and Kristina A.
4	Thayer
5	Affiliation: Office of Health Assessment and Translation, Division of the National Toxicology
6	Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of
7	Health (NIH), Research Triangle Park, North Carolina, USA
8	Corresponding Author: Andrew A. Rooney, address: NIEHS, P.O. Box 12233, Mail Drop
9	K2-04, RTP, NC 27709; express mail address: 530 Davis Drive, Morrisville, NC, 27560; phone:
10	(919) 541-2999; email: <u>Andrew.Rooney@nih.gov</u>
11	Running Title: Framework for Systematic Review
12	Key Words: hazard identification, systematic review, human health risk assessment, risk of bias,
13	weight of evidence
14	Acknowledgements: We appreciate the valuable advice and comments on the development of
15	this systematic review framework from a number of technical experts, the public, the NTP
16	Executive Committee, and the NTP Board of Scientific Counselors.
17	Competing Financial Interests: The authors have no competing financial interests.

19 Abstract

BACKGROUND: Systematic review methodologies provide objectivity and transparency to the
 process of collecting and synthesizing scientific evidence for reaching conclusions on specific
 research questions. There is increasing interest in applying these procedures to address
 environmental health questions.

OBJECTIVES: To develop a systematic review framework to address environmental health
 questions by extending approaches developed for clinical medicine to handle the breadth of data
 relevant to environmental health sciences (e.g., human, animal, and mechanistic studies).

METHODS: The Office of Health Assessment and Translation (OHAT) adapted guidance from systematic-review authorities and sought advice during development of the OHAT Approach through consultation with technical experts in systematic review and human health assessments as well as scientific advisory groups and the public. The method was refined by considering expert and public comments and through application to case studies.

RESULTS AND DISCUSSION: Presented here is a 7-step framework for systematic review and evidence integration for reaching hazard identification conclusions: problem formulation and protocol development, search for and select studies for inclusion, extract data from studies, assess the quality or risk of bias of individual studies, rate the confidence in the body of evidence, translate the confidence ratings into levels of evidence, and integrate the information from different evidence streams (human, animal, and "other relevant data" including mechanistic or *in vitro* studies) to develop hazard identification conclusions. 39 CONCLUSION: The principles of systematic review can be successfully applied to environmental
 40 health questions to provide greater objectivity and transparency to the process of developing
 41 conclusions.

42 Introduction

43 Systematic review methodologies increase the objectivity and transparency in the process of
44 collecting and synthesizing scientific evidence on specific questions. The product of a systematic
45 review can then be used to inform decisions, reach conclusions, or identify research needs. There
46 is increasing interest in applying the principles of systematic review to questions in
47 environmental health (EFSA 2010; NRC 2011, 2013a; Rhomberg et al. 2013; Woodruff and
48 Sutton 2011).

49 While systematic review methodologies are well established in clinical medicine to 50 assess data for reaching health care recommendations (AHRQ 2013; Guyatt et al. 2011a; Higgins 51 and Green 2011; Viswanathan et al. 2012), these approaches are most developed for human 52 clinical trials, and therefore, typically consider small datasets of similar study design in 53 developing conclusions. Questions in environmental health require the evaluation of a broader 54 range of relevant data including experimental animal and mechanistic studies as well as 55 observational human studies. Also, there is a need to integrate data from multiple evidence 56 streams (human, animal, and "other relevant data" including mechanistic or *in vitro* studies) in 57 order to reach conclusions regarding potential health effects from exposure to substances in our 58 environment.

The National Toxicology Program (NTP) Office of Health Assessment and Translation
 (OHAT) conducts literature-based evaluations to assess the evidence that environmental

61 chemicals, physical substances, or mixtures (collectively referred to as "substances") cause 62 adverse health effects and provides opinions on whether these substances may be of concern 63 given levels of current human exposure (Bucher et al. 2011). Building on a history of rigorous 64 and objective scientific review, OHAT has been working to incorporate systematic-review 65 procedures in its evaluations since 2011 through a process that has included adoption of current 66 practice as well as methods development (Birnbaum et al. 2013; NTP 2012a, b, 2013c). This 67 article explains the framework developed by OHAT with procedures to integrate multiple 68 evidence streams including observational human study findings, experimental animal toxicology 69 results, and other relevant data in developing hazard identification conclusions or state-of-the-70 science evaluations regarding health effects from exposure to environmental substances. The 7-71 step framework outlines methods to increase transparency and consistency in the process, but it 72 also presents opportunities to increase efficiencies in data management and data display that 73 facilitate the process of reaching and communicating hazard identification conclusions.

74 Methods

75 In 2011, OHAT began exploring systematic-review methodology as a means to enhance 76 transparency and increase efficiency in summarizing and synthesizing findings from studies in its 77 literature-based health assessments. OHAT used a multi-pronged strategy to develop the OHAT 78 Approach working with advisors to adapt and extend existing methods from clinical medicine 79 and obtaining input from technical experts and the public on early drafts (Supplemental Material, 80 Table S1). The methods development process is described in detail in Supplemental Material. In 81 brief, OHAT reviewed guidance from authoritative systematic-review groups (AHRQ 2013; 82 Guyatt et al. 2011a; Higgins and Green 2011) in developing an initial draft and sought additional 83 advice through web-based discussions and consultation with technical experts, the NTP

84 Executive Committee, the NTP Board of Scientific Counselors, and the public (NTP 2012a, b,

2013a, b, c, g). The resulting OHAT Approach has been refined based on the input received and
through application to case studies.

87 **Results**

The OHAT framework is a 7-step process (Figure 1). It includes all of the recommended
elements for conducting and reporting a systematic review (outlined in the PRISMA statement
on Preferred Reporting Items for Systematic Reviews and Meta-Analyses)(Moher et al. 2009).
The specific procedures for performance of each step are described in a detailed protocol that is
developed for each evaluation (NTP 2013e, f).

93 Step 1: Problem Formulation and Protocol Development

94 Prior to conducting an evaluation, the scope and focus of the topic is defined through 95 consultation with subject-matter experts. For OHAT, objective(s) are typically to identify a 96 potential health hazard or to assess the state of the science in order to identify research needs on 97 topics of importance to environmental health. The objectives of the evaluation must be clearly 98 stated including the key questions to be addressed. The evaluation is structured to answer these 99 key questions that guide the systematic-review process for the literature search, study selection, 100 data extraction, and synthesis. The questions define the Populations, Exposures, Comparators, 101 Outcomes, Timings, and Settings of interest (PECOTS) eligibility criteria for the evaluation 102 (e.g., see discussion in AHRQ 2013). PECOTS is the environmental equivalent of AHRQ's 103 PICOTS expansion of the original PICO approach developed for clinical evaluations that focuses 104 on Interventions rather than Exposures, and did not initially include Timing or Setting in the inclusion criteria (Whitlock et al. 2010). 105

106 A concept document, or brief proposal, and a specific, detailed protocol for OHAT 107 evaluations are developed through an iterative process in which information is obtained by 108 outreach to federal partners, technical experts, the public, and through consultation with the NTP 109 Board of Scientific Counselors (NTP 2013d). Through this process, the protocol is developed a 110 priori and guidance in the protocol forms the basis for scientific judgments throughout the 111 evaluation. However, it is important to acknowledge that the protocol can be modified to address 112 unanticipated issues that might arise while conducting the review (e.g., see FDA 2010; Khan et 113 al. 2001). Revisions to the protocol are documented and justified with notation of when in the 114 process the revisions were made.

115 Step 2: Search for and Select Studies for Inclusion

Search for Studies: A comprehensive search of the primary scientific literature is performed. 116 117 The search covers multiple databases (including, but not limited to, PubMed, TOXNET, Scopus, 118 Embase, etc.) with sufficient details of the search strategy documented in the protocol such that it 119 could be reproduced. The protocol also lists the dates of the search, frequency of updates, and 120 any limits placed on the search (e.g., language or date of publication). The protocol establishes 121 requirements for consideration of data from meeting abstracts or other unpublished sources. If a 122 study that may be critical to the evaluation has not been peer reviewed, and the authors agree to 123 make all study materials available, the NTP will have it peer reviewed by independent scientists 124 with relevant expertise. The peer review requirement assures that studies considered in the 125 evaluation have been reviewed by subject matter experts and the information from this review 126 would be available in Step 4 when evaluating individual study quality.

Select Studies for Inclusion: All references identified in the search are screened for relevance to
the key question(s) of the evaluation based on the PECOTS eligibility criteria established when

formulating the problem in Step 1. The protocol establishes criteria for including or excluding references based on, for example, applicable outcomes, relevant exposures, and types of studies. These criteria contain sufficient detail to develop an inclusion and exclusion checklist such that use of scientific judgment during the literature-selection process is limited. If major limitations in a specific study type or design for addressing the question are known in advance (e.g., unreliable methods to assess exposure or health outcome), the basis for excluding those studies must be described *a priori* in the protocol.

The protocol also outlines the specific plans for reviewing studies for inclusion, resolving 136 137 conflicts between reviewers, and documenting the reasons that studies were excluded. Two 138 reviewers independently screen all references at the title and abstract level and resolve 139 differences by reaching agreement through discussion. References that meet the inclusion criteria 140 are retrieved for full text review, as are those with insufficient information to determine 141 eligibility from just the title and abstract. Procedures for full text review are tailored to the scope 142 of the review and follow procedures established in the protocol. Reporting the number of 143 references retrieved, duplicates removed, and studies excluded as references move through the 144 screening process by creating a flow diagram is one of several required elements for reporting 145 based on the PRISMA statement (Liberati et al. 2009; Moher et al. 2009) that we have include in 146 this framework.

147 Step 3: Extract Data from Studies

Relevant data from individual studies selected for inclusion are extracted or copied from the publication to a database to facilitate critical evaluation of the results including data summary and display using separate data collection forms for human, animal, and *in vitro* studies. For each study, one member of the evaluation team performs the data extraction and quality assurance

procedures are undertaken as specified in the protocol (e.g., review and confirmation by another
team member). Following completion of an evaluation, the data extracted and summarized will
be made publicly available in the NTP Chemical Effects in Biological Systems (CEBS) database
(http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm).

156 Step 4: Assess the Quality or Risk of Bias of Individual Studies

Despite the critical importance of assessing the credibility of individual studies when developing 157 158 literature-based evaluations, the meaning of the term "quality" varies widely across the fields of 159 systematic review, toxicology, and public health (see discussion in Viswanathan et al. 2012). 160 Broadly defined, study quality includes: (1) reporting quality-how well or completely a study 161 was reported, (2) internal validity or risk of bias-how credible are the findings based on the 162 design and apparent conduct of a study, and (3) external validity or directness and 163 applicability-how well a study addresses the topic under review (see Cochrane Collaboration 164 2013 for detailed definitions). Study quality assessment tools that mix different aspects of study 165 quality or provide a single summary score are discouraged (Balshem et al. 2011; Higgins and 166 Green 2011; Liberati et al. 2009; Viswanathan et al. 2012).

167 The OHAT risk-of-bias tool adapts guidance from the Agency for Healthcare Research 168 and Quality (AHRQ) (Viswanathan et al. 2012). Individual risk-of-bias questions are designated 169 as only applicable to certain types of study designs (e.g., human controlled trials, experimental 170 animal studies, cohort studies, case-control studies, cross-sectional studies, and case series or 171 case reports), with a subset of the questions applying to each study design (**Table 1**).

Published tools do not address risk-of-bias criteria for animal studies because risk-of-bias
tools, as with systematic review methods in general, have been focused on guidelines for clinical

174	medicine. OHAT evaluates risk of bias in experimental animal studies using criteria similar to
175	those applied to human randomized controlled trials, because these study designs are similar in
176	their ability to control timing and dose of exposure and to minimize the impact of confounding
177	factors. Using the same set of questions for all study types, including experimental animal
178	studies, allows for comparison of particular risk-of-bias issues across a body of evidence and
179	facilitates comparison of the strengths and weaknesses of different bodies of evidence.
180	All references are independently assessed for risk of bias for each outcome of interest by
181	two reviewers who answer all of the applicable questions with one of four options (definitely
182	low, probably low, probably high, or definitely high risk of bias (CLARITY Group at McMaster

183 University 2013) following pre-specified criteria detailed in the protocol. Discrepancies between184 the reviewers are resolved by reaching agreement through discussion.

185 Step 5: Rate the Confidence in the Body of Evidence

186 For each outcome, the confidence in the body of evidence is rated by considering the strengths 187 and weaknesses of a collection of studies with similar study design features. Ratings reflect 188 confidence that the study findings accurately reflect the true association between exposure and 189 effect including aspects of external validity (or directness and applicability) for the studies. The 190 OHAT method is based on the Grading of Recommendations Assessment, Development and 191 Evaluation Working Group (GRADE, http://www.gradeworkinggroup.org/) guidelines which 192 have been adopted by the Cochrane Collaboration (Schünemann et al. 2012) and AHRQ 193 approaches (Balshem et al. 2011; Lohr 2012), which are conceptually very similar. The method 194 uses four descriptors to indicate the level of confidence in the separate bodies of evidence 195 (Table 2). In the context of identifying research needs, a conclusion of "High Confidence" 196 indicates that further research is very unlikely to change the confidence in the apparent

202 For each outcome, studies are given an initial confidence rating that reflects the presence 203 or absence of key study-design features (Figure 1 for Step 5 schematic). Then studies that have 204 the same number of features are considered together as a group to begin the process of rating 205 confidence in a body of evidence for that outcome. The initial rating of each group is 206 downgraded for factors that decrease confidence and upgraded for factors that increase 207 confidence in the results. Then, confidence across all studies with the same outcome is assessed 208 by considering the ratings for all groups of studies with that outcome and the highest rating for 209 that outcome moves forward.

210 While confidence ratings for each outcome are developed for groups of studies, the 211 number of studies comprising the group will vary and in some cases this group may be 212 represented by only one study. Therefore, it is worth noting that a single, well conducted study 213 may provide evidence of toxicity or a health effect associated with exposure to the substance in 214 question (e.g., see Germolec (2009) and Foster (2009) for explanation of the NTP levels of 215 evidence for determination of "toxicity" for individual studies). If a sufficient body of very 216 similar studies is available, a quantitative meta-analysis may be completed to generate an overall 217 estimate of effect, but this is not required. Finally, confidence conclusions are developed across 218 multiple outcomes for those outcomes that are biologically related.

It is recognized that the scientific judgments involved in developing these confidence ratings are inherently subjective. A key advantage of the systematic review process for this step and throughout an evaluation is that it provides a framework to document and justify the decisions made, and thereby provides for greater transparency in the scientific basis of judgments made in reaching conclusions.

224 Initial confidence set by key features of study design for each outcome

225 An initial confidence rating is determined by the ability of the study design to address causality 226 as reflected in the confidence that exposure preceded and was associated with the outcome (Figure 1, Step 5, column 1). This ability is reflected in the presence or absence of four key 227 228 study-design features that determine initial confidence ratings, and studies are differentiated 229 based on whether or not: (1) the exposure to the substance is controlled, (2) the exposure 230 assessment represents exposures occurring prior to development of the outcome, (3) the outcome 231 is assessed on the individual level (i.e., not population aggregate data), and (4) a comparison or 232 control group is used within the study. The first key feature, "controlled exposure" reflects the 233 ability of experimental studies in humans and animals to largely eliminate confounding by 234 randomizing allocation of exposure. Therefore, these studies will usually have all four features 235 and receive an initial rating of "High Confidence." Observational studies do not have controlled 236 exposure and are differentiated by the presence or absence of the three remaining study-design 237 features. For example, prospective cohort studies usually have all three remaining features and 238 receive an initial rating of "Moderate Confidence," while a case report may have only one key 239 feature and receive an initial rating of "Very Low Confidence" (see Supplemental Material, 240 Table S2 for key features for standard study designs and discussion). The presence or absence of 241 these study design features capture and discriminate studies on an outcome-specific basis

(experimental, prospective, etc.) but do not replace consideration of risk of bias elements orexternal validity in other steps.

244 Downgrade confidence rating

245 Five properties of the body of evidence (risk of bias, unexplained inconsistency, indirectness, 246 imprecision, and publication bias) are considered to determine if the initial confidence rating 247 should be downgraded (Figure 1, Step 5, column 2). For each of the five properties, a judgment 248 is made and documented regarding whether or not there are substantial issues that decrease the 249 confidence rating in each aspect of the body of evidence for the outcome. Factors that would 250 downgrade confidence by one versus two levels are specified in the protocol. The reasons for 251 downgrading confidence may not fit neatly into a single property of the body of evidence. If the 252 decision to downgrade for two properties is borderline, the body of evidence is downgraded once 253 to account for both partial concerns. Similarly, the body of evidence is not downgraded twice for 254 what is essentially the same limitation that could be considered applicable to more than one 255 property of the body of evidence.

256 Risk of bias of the body of evidence: Risk-of-bias criteria were described in Step 4 257 where study-quality issues for individual studies are evaluated on an outcome-specific 258 basis. In this step, the previous risk-of-bias assessments for individual studies now serve 259 as the basis for an overall risk-of-bias conclusion for the entire body of evidence. 260 Downgrading for risk of bias should reflect the entire body of studies and therefore the 261 decision to downgrade should be applied conservatively. The decision to downgrade 262 should be reserved for cases where there is substantial risk of bias across most of the 263 studies comprising the body of evidence (Guyatt et al. 2011e).

Unexplained inconsistency: Inconsistency, or large variability in the magnitude or direction of estimates of effect across studies that cannot be explained, reduces confidence in the body of evidence. Large inconsistency across studies should be explored, preferably through *a priori* hypotheses that might explain the heterogeneity.

268 Indirectness: Indirectness can refer to external validity or indirect measures of the health 269 outcome. Indirectness can lower confidence in the body of evidence when the population, 270 exposure, or outcome(s) measured differs from those that are of most interest. Concerns 271 about directness could apply to the relationship between: (1) a measured outcome and a 272 health effect (i.e., upstream biomarker of a health effect), (2) the route of exposure and 273 the typical human exposure, (3) the study population and the population of interest 274 (Guyatt et al. 2011c; Lohr 2012), (4) timing of the exposure relative to the appropriate 275 biological window to affect the outcome, or (5) timing of outcome assessment and the 276 duration of time required after an exposure for the development of the outcome 277 (Viswanathan et al. 2012).

278 Note that the administered dose or exposure level is not considered a factor under 279 indirectness for developing a confidence rating for the purpose of hazard identification. 280 While exposure level is an important factor when considering the relevance of study 281 findings to human health effects at known human exposure levels, in the OHAT 282 evaluation process, this consideration occurs after hazard identification as part of 283 reaching a "level of concern" conclusion (Jahnke et al. 2005; Medlin 2003; Shelby 2005; 284 Twombly 1998). The accuracy of an exposure metric (e.g., market basket survey vs. 285 individual blood levels of a substance) is also not considered a factor under indirectness,

and the confidence in the exposure assessment is considered in the risk-of-bias evaluationof individual studies on an outcome basis in Step 4.

Imprecision: Imprecision is the lack of certainty in an estimate of effect for a specific outcome. A precise estimate enables the evaluator to determine whether or not there is an effect (i.e., it is different from the comparison group). Confidence intervals for the estimates of effect provide the primary evidence used in considering the imprecision of the body of evidence (Guyatt et al. 2011b).

293 Publication bias: Publication bias is addressed specifically in rating the body of 294 evidence, and selective reporting within a study is covered in the risk-of-bias criteria 295 addressing these limitations (Guyatt et al. 2011d). Funnel plots provide a useful tool to 296 visualize asymmetrical or symmetrical patterns of study results for assessing publication 297 bias when there is a sufficient body of studies for a specific outcome (e.g., Ahmed et al. 298 2012). There is empirical evidence that studies with negative results (null findings for 299 clinical trials) are less likely to be in the published literature (Hopewell et al. 2009). 300 Negative studies may also be affected by "lag bias" or longer time to publication (Stern 301 and Simes 1997), and therefore it is important to carefully consider data sets limited to 302 few positive studies with small sample size that might indicate a lag time between early 303 positive studies and lagging negative studies. While some publication bias is expected, 304 downgrading is reserved for when serious concern for publication bias significantly 305 decreases confidence in the body of evidence.

306 *Upgrade confidence rating*

307 Four properties of the body of evidence (large magnitude of effect, dose response, residual

308 confounding increases confidence, and cross-species/population/study consistency) are

309 considered to determine if the confidence rating should be upgraded (Figure 1, Step 5, 310 column 3). For each of the four properties, a judgment is made and documented regarding 311 whether or not there are substantial factors that increase the confidence rating in the body of 312 evidence for the outcome. As discussed in downgrading, two borderline upgrades could be 313 combined for one upgrade and the body should not be upgraded twice for essentially the same 314 attribute. Factors that would upgrade confidence by one versus two levels are specified in the 315 protocol.

316 **Large magnitude of effect:** A large magnitude of effect is defined as an observed effect 317 that is sufficiently large such that it is unlikely to have occurred as a result of bias from 318 potential confounding factors.

319 **Dose response:** A plausible dose–response relationship between level of exposure and 320 the outcome increases confidence in the result because it reduces concern that the result 321 could be due to chance. In addition to considering dose-response within a study with a 322 range of exposure levels, multiple studies with varied exposure levels can contribute to an overall picture of the dose response. It is important to recognize that prior knowledge 323 324 may lead to an expectation for a non-monotonic dose response. Therefore, the plausibility 325 of the observed biological response should be considered in evaluating the dose–response 326 relationship.

Residual confounding increases confidence: This element refers to consideration of residual confounding, healthy worker effect, or effect modification that would bias the effect estimate towards the null. If a study reports an effect or association despite the presence of residual confounding that would diminish the association, confidence in the association is increased. This confounding can push in either direction, and therefore

- confidence in the results are increased when there is an indication that a body of evidenceis potentially biased by factors counter to the observed effect.
- 334 **Cross-species/population/study consistency:** Three types of consistency in the body of 335 evidence can increase confidence in the results: <u>across animal studies</u>-consistent results 336 reported in multiple experimental animal models or species; <u>across dissimilar</u> 337 <u>populations</u>-consistent results reported across populations (human or wildlife) that differ 338 in factors such as time, location, and/or exposure; and <u>across study types</u>-consistent 339 results reported from studies with different design features.
- 340 **Other**: Additional factors specific to the topic being evaluated (e.g., particularly rare 341 outcomes) may result in increasing a confidence rating. These other factors would be 342 specified and defined in the protocol.

343 *Combine confidence conclusions for all study types and multiple outcomes*

344 Conclusions are based on the evidence with the highest confidence when considering evidence 345 across study types and multiple outcomes. Confidence ratings are initially set based on key 346 design features of the available studies for a given outcome (e.g., for experimental studies 347 separately from observational studies). The studies with the highest confidence rating form the 348 basis for the confidence conclusion for each evidence stream. As outlined previously, consistent 349 results across studies with different design features increase confidence in the combined body of 350 evidence and can result in an upgraded confidence rating moving forward to Step 6. If the only 351 available body of evidence receives a "Very Low Confidence" rating, then conclusions for those 352 outcomes will not move on to Step 6.

After confidence conclusions are developed for a given outcome, conclusions for
 multiple outcomes are developed. The project-specific definition of an outcome and the grouping

of biologically related outcomes used in this step follow the definitions developed *a priori* in the protocol; deviations are taken with care, justified, and documented. When outcomes are sufficiently biologically related that they may inform confidence on the overall health outcome, confidence conclusions may be developed in two steps. Each outcome would first be considered separately. Then, the related outcomes would be considered together and re-evaluated for properties that relate to downgrading and upgrading the body of evidence.

361 Step 6: Translate the Confidence Ratings into Level of Evidence for Health 362 Effect

363 The level of evidence is assessed separately within the human, experimental animal, and to the 364 extent possible and necessary, other relevant data sets. The conclusions for the level of evidence 365 for health effects reflect the overall confidence in the association between exposure to the 366 substance and the outcome (effect or no effect); **Figure 1** for Step 6 schematic). The strategy 367 uses four terms to describe the level of evidence for health effects. These descriptors reflect both 368 the confidence in the body of evidence for a given outcome and the direction of effect. There are 369 three descriptors used in Step 6 ("High Level of Evidence," "Moderate Level of Evidence," and 370 "Low Level of Evidence") that directly translate from the confidence-in-the-evidence ratings that 371 exposure to the substance is associated with a heath effect, and a fourth designation ("Evidence 372 of No Health Effect") to indicate confidence that the substance is not associated with a health 373 effect (see Supplemental Table 3 for definitions of the level of evidence for health effects 374 descriptors). Because of the inherent difficulty in proving a negative, the conclusion "Evidence 375 of No Health Effect" is only reached when there is high confidence in the body of evidence. In 376 the context of evidence potentially supporting a conclusion of no health effect, a low or moderate 377 level of evidence results in a conclusion of inadequate evidence to reach a conclusion.

Although the conclusions describe associations, a causal relationship is implied and the ratings describe the level of evidence for health effects in terms of confidence in the association or the estimate of effect determined from the body of evidence. **Table 3** outlines how the Bradford Hill considerations on causality (Hill 1965) are related to the process of evaluating the confidence in the body of evidence and then integrating the evidence (similar to GRADE approach as described in Schünemann et al. 2011).

384 Step 7: Integrate the Evidence to Develop Hazard Identification Conclusions

The highest level of evidence for a health effect from each of the evidence streams is combined 385 in the final step of the evidence assessment process to determine the hazard identification 386 387 conclusion. Hazard identification conclusions may be reached on individual outcomes (health 388 effects) or groups of biologically related outcomes, as appropriate, based on the evaluation's 389 objectives and the available data. The rationale for such conclusions is documented as the 390 evidence is combined within and across evidence streams, and the conclusions are clearly stated 391 as to which outcomes are incorporated into each conclusion. The five hazard identification 392 conclusion categories are:

393 • Known to be a hazard to humans
394 • Presumed to be a hazard to humans
395 • Suspected to be a hazard to humans
396 • Not classifiable as a hazard to humans
397 • Not identified to be a hazard to humans

In Step 7, the evidence streams for human studies and non-human animal studies, which
have remained separate through the previous steps, are integrated along with other relevant data.
Hazard identification conclusions are reached by integrating the highest level-of-evidence
conclusion for a health effect(s) from the human and the animal evidence streams. On an
outcome basis, this approach applies to whether the data support a health effect conclusion or
evidence of no health effect.

When the data support a health effect, the level-of-evidence conclusion for human data
from Step 6 ("High," "Moderate," or "Low") is considered together with the level of evidence
for non-human animal data to reach one of four hazard identification conclusions (Step 7 in **Figure 1**). If one evidence stream (either human or animal) has no studies, then conclusions are
based on the remaining evidence stream alone (which is equivalent to treating the missing
evidence stream as "Low" in Step 7 **Figure 1**).

Any impact of other relevant data on the hazard identification conclusion derived by integrating the human and non-human animal streams is considered next (Step 7 in **Figure 1**). Other relevant data could include, but are not limited to, mechanistic data, *in vitro* data, or data based on upstream indicators of a health effect. Note that mechanistic data or another type of other relevant data is not required to reach a final hazard identification conclusion.

If other relevant data provide strong support for biological plausibility of the relationship
 between exposure and the health effect, the hazard identification conclusion may be
 upgraded (indicated by black "up" arrows in Step 7 graphic in Figure 1) from that
 initially derived by considering the human and non-human animal evidence together. It is
 envisioned that strong evidence for a relevant biological process from mechanistic or *in*

420	vitro data could result in a conclusion of "suspected" in the absence of human
421	epidemiology or experimental animal data.
422	• If other relevant data provide strong opposition for biological plausibility of the
423	relationship between exposure and the health effect, the hazard identification conclusion
424	may be downgraded (indicated by gray "down" arrows in Step 7 graphic in Figure 1).
425	When the data provide evidence of no health effect, the level-of-evidence conclusion for
426	human data from Step 6 is considered together with the level-of-evidence for health effects
427	conclusion for non-human animal data. And again, any impact of other relevant data on the
428	hazard identification conclusion is considered.
429	• If the human level-of-evidence conclusion of no health effect is supported by animal
430	evidence of no health effect, the hazard identification conclusion is "not identified."
431	The outcome of the evaluation includes any hazard identification conclusions reached or
432	data needs identified along with a detailed rationale outlining how human, animal, and other
433	relevant data contributed to the conclusions. Draft OHAT evaluations undergo peer review and
434	public comment as part of the overall process for finalization and publication
435	(http://ntp.niehs.nih.gov/go/38138).

436 **Discussion**

437 Aspects of systematic review methodology designed to increase objectivity and transparency
438 may add to the time and investment required to develop literature-based evaluations, and NTP is
439 mindful of these concerns. In applying the OHAT Approach to case studies (NTP 2013e, f), NTP
440 found that Steps 2-4 were the most time intensive: selecting studies, extracting data, and

441	assessing the quality of individual studies. While not formally part of the systematic review
442	process, data management resources were used to increase transparency and efficiency in
443	developing the case studies so that time invested in the early steps was recouped in later steps by
444	entering study information into a database. Summary tables and graphics were readily made from
445	the database to facilitate decision making in Steps 6 and 7 when evaluating confidence in a body
446	of studies and integrating evidence streams to develop conclusions. The value of these
447	efficiencies and further development of these web-based systems for data display, data
448	management, and data sharing cannot be understated.

449 **Conclusions**

450 Applying systematic-review methodologies to environmental health questions is gaining a 451 critical mass (EFSA 2010; NRC 2013a, b; Woodruff and Sutton 2011). The OHAT Approach 452 provides a practical method for applying the principles of systematic review to address 453 environmental health questions. Moving forward, OHAT will apply this framework in future 454 evaluations (<u>http://ntp.niehs.nih.gov/go/evals</u>). As evaluations are completed and practices in the 455 field of systematic review evolve, OHAT may refine and amend its "evergreen" approach and 456 post updates to the framework (NTP 2013b). The protocols and the data compiled as part of an 457 evaluation (e.g., study-level health effects data and risk-of-bias assessment) will be publicly 458 available following its completion to increase transparency and facilitate data sharing with 459 government agencies, scientific community, and the public. The scientifically rigorous and 460 objective procedures, which have been a hallmark of OHAT literature-based health assessments, 461 will be strengthened by implementation of the OHAT approach for systematic review and 462 evidence integration (NTP 2013g).

463	The application of the procedures of systematic review to environmental health questions
464	has the potential to bring an increase in objectivity and transparency similar to what it has
465	already done for clinical medicine. Developing evaluations with this approach can improve
466	communication and clarity about how hazard identification conclusions are reached by
467	documenting the source of the data considered, the methods of quality assessment used, and the
468	scientific judgments made during evidence integration.

469 **References**

- 470
- Ahmed I, Sutton AJ, Riley RD. 2012. Assessment of publication bias, selection bias, and unavailable data in meta analyses using individual participant data: a database survey. Br Med J 344:d7762.
- 473 AHRQ (Agency for Healthcare Research and Quality). 2013. AHRQ training modules for the systematic reviews
- 474 methods guide. Available: <u>http://www.effectivehealthcare.ahrq.gov/index.cfm/tools-and-resources/slide-library/</u>
- 475 [accessed 11 October 2013].
- Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. 2011. GRADE guidelines: 3. Rating
 the quality of evidence. J Clin Epidemiol 64:401-406.
- Birnbaum LS, Thayer KA, Bucher JR, Wolfe MS. 2013. Implementing systematic review at the National
 Toxicology Program. Environ Health Perspect 121:A108-109.
- Bucher JR, Thayer K, Birnbaum LS. 2011. The Office of Health Assessment and Translation: a problem-solving
 resource for the National Toxicology Program. Environ Health Perspect 119:A196-197.
- 482 CLARITY Group at McMaster University. 2013. Tools to assess risk of bias in cohort studies, case control studies,
- randomized controlled trials, and longitudinal symptom research studies aimed at the general population. Available:
 <u>http://www.evidencepartners.com/resources/</u> [accessed 15 January 2013].
- 485 Cochrane Collaboration. 2013. Glosssary of Chochrane terms. Available: <u>http://www.cochrane.org/glossary</u>
 486 [accessed 15 January 2013].
- 487 EFSA (European Food Safety Authority). 2010. Application of systematic review methodology to food and feed 488 safety assessments to support decision making. EFSA Journal: 1-90. Available:
- 489 http://www.efsa.europa.eu/en/efsajournal/pub/1637.htm.
- 490 FDA (Food and Drug Administration). 2010. Guidance for industry: Adaptive design clinical trials for drugs and
- 491 biologics: Draft guidance. Silver Spring, MD: 1-50. Available:
- 492 <u>http://www.fda.gov/downloads/Drugs/.../Guidances/ucm201790.pdf</u> [accessed 29 December 2012].
- Foster PM. 2009. Explanation of levels of evidence for reproductive system toxicity. Research Triangle Park, NC.
 Available: <u>http://ntp.niehs.nih.gov/go/18711</u> [accessed 15 January 2013].
- 495 Germolec D. 2009. Explanation of levels of evidence for immune system toxicity. Research Triangle Park, NC.
 496 Available: <u>http://ntp.niehs.nih.gov/go/9399</u> [accessed 15 January 2013].
- Guyatt GH, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. 2011a. GRADE guidelines: 1. Introduction GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383-394.
- 499 Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. 2011b. GRADE guidelines 6. Rating the 500 quality of evidence--imprecision. J Clin Epidemiol 64:1283-1293.
- 501 Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. 2011c. GRADE guidelines: 8. Rating the 502 quality of evidence--indirectness. J Clin Epidemiol 64:1303-1310.
- 503 Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, et al. 2011d. GRADE guidelines: 5. Rating the 504 quality of evidence--publication bias. J Clin Epidemiol 64:1277-1282.
- 505 Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. 2011e. GRADE guidelines: 4. Rating the 506 quality of evidence-study limitations (risk of bias). J Clin Epidemiol 64:407-415.
- Higgins J, Green S. 2011. Cochrane Handbook for Systematic Reviews of Interventions. Available: <u>www.cochrane-</u>
 <u>handbook.org</u> [accessed 3 February 2013].
- 509 Hill AB. 1965. The environment and disease: Association or causation? Proc Roy Soc Med 58:295-300.
- 510 Hopewell S, Loudon K, Clarke MJ, Oxman AD, Dickersin K. 2009. Publication bias in clinical trials due to
- 511 statistical significance or direction of trial results. Cochrane Database Syst Rev:1-26.

- 512 Jahnke GD, Jannucci AR, Scialli AR, Shelby MD. 2005. Center for the evaluation of risks to human reproduction--
- the first five years. Birth Defects Res B Dev Reprod Toxicol 74:1-8.
- 514 Khan K, ter Riet G, Glanville J, Sowden A, Kleijnen J, eds. 2001. Undertaking Systematic Reviews of Research on
- 515 Effectiveness: CRD's Guidance for those Carrying Out or Commissioning Reviews (CRD Report Number 4) (2nd
- 516 edition). York (UK): NHS Centre for Reviews and Dissemination: University of York.
- 517 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. 2009. The PRISMA statement for
- 518 reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and 519 elaboration. J Clin Epidemiol 62:e1-34.
- 520 Lohr KN. 2012. Grading the strenth of evidence. In: The Agency for Healthcare Research and Quality (AHRQ)
- 521 Training Modules for Systematic Reivews Methods Guide. Available:
- 522 <u>http://www.effectivehealthcare.ahrq.gov/index.cfm/slides/?pageAction=displaySlides&tk=18</u> [accessed 13 July 2012].
- Medlin J. 2003. New arrival: CERHR monograph series on reproductive toxicants. Environ Health Perspect
 111:A696-698.
- 526 Moher D, Liberati A, Tetzlaff J, Altman DG. 2009. Preferred reporting items for systematic reviews and meta-527 analyses: The PRISMA statement. J Clin Epidemiol 62:1006-1012.
- 528 NRC (National Research Council). 2011. Committee to Review of the Environmental Protection Agency's Draft
- 529 IRIS Assessment of Formaldehyde. The National Academies Press: 1-190. Available:
- 530 <u>http://www.nap.edu/openbook.php?record_id=13142</u> [accessed 30 July 2012].
- 531 NRC (National Research Council). 2013a. Critical Aspects of EPA's IRIS Assessment of Inorganic Arsenic -
- Interim Report. The National Academies Press: 1-117. Available: <u>http://www.nap.edu/catalog.php?record_id=18594</u>
 [accessed 7 November 2013].
- 534 NRC (National Research Council). 2013b. Review of the IRIS Process. Available:
 535 <u>http://www8.nationalacademies.org/cp/projectview.aspx?key=49458</u> [accessed 1 November 2013].
- NTP (National Toxicology Program). 2012a. Board of Scientific Counselors December 11, 2012 meeting. Meeting
 materials. Available: http://ntp.niehs.nih.gov/go/9741 [accessed 21 February 2013].
- NTP (National Toxicology Program). 2012b. Board of Scientific Counselors June 21-22, 2012 meeting. Meeting
 materials. Available: http://ntp.niehs.nih.gov/go/9741 [accessed 16 June 2013].
- 540 NTP (National Toxicology Program). 2013a. Webinar on the assessment of data quality in animal studies. March 20,
 541 2013. Available: <u>http://ntp.niehs.nih.gov/go/38752</u> [accessed 7 April 2013].
- 542 NTP (National Toxicology Program). 2013b. Draft OHAT Approach for Systematic Review and Evidence
- Integration for Literature-based Health Assessments February 2013. RTP, NC: Office of Health Assessment and
 Translation. Available: <u>http://ntp.niehs.nih.gov/go/38138</u> [accessed 10 March 2013].
- NTP (National Toxicology Program). 2013c. Board of Scientific Counselors June 25, 2013 meeting. Meeting
 materials. Available: http://ntp.niehs.nih.gov/go/9741 [accessed 1 November 2013].
- 547 NTP (National Toxicology Program). 2013d. OHAT Evaluation Process. Available:
- 548 <u>http://ntp.niehs.nih.gov/go/38138</u> [accessed 16 June 2013].
- 549 NTP (National Toxicology Program). 2013e. Draft Protocol for Systematic Review to Evaluate the Evidence for an
- Association Between Perfluorooctanoic Acid (PFOA) or Perfluorooctane Sulfonate (PFOS) Exposure and
- 551 Immunotoxicity. RTP, NC: Office of Health Assessment and Translation. Available:
- 552 <u>http://ntp.niehs.nih.gov/go/38673</u> [accessed 9 April 2013].
- 553 NTP (National Toxicology Program). 2013f. Draft Protocol for Systematic Review to Evaluate the Evidence for an
- Association Between Bisphenol A (BPA) and Obesity. RTP, NC: Office of Health Assessment and Translation.
 Available: <u>http://ntp.niehs.nih.gov/go/38673</u> [accessed 9 April 2013].
- 556 NTP (National Toxicology Program). 2013g. OHAT Implementation of Systematic Review. Available:
- 557 <u>http://ntp.niehs.nih.gov/go/38673</u> [accessed 16 June 2013].

- Rhomberg LR, Goodman JE, Bailey LA, Prueitt RL, Beck NB, Bevan C, et al. 2013. A survey of frameworks for
 best practices in weight-of-evidence analyses. Crit Rev Toxicol 43:753-784.
- 560 Schünemann H, Hill S, Guyatt G, Akl EA, Ahmed F. 2011. The GRADE approach and Bradford Hill's criteria for 561 causation. J Epidemiol Community Health 65:392-395.
- 562 Schünemann HJ, Oxman AD, Vist GE, Higgins JPT, Deeks JJ, P. G, et al. 2012. Chapter 12: Interpreting results
- and drawing conclusions. In: Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated
- 564 March 2011], (Higgins JPT, Green S, eds):The Cochrane Collaboration.
- Shelby MD. 2005. National Toxicology Program Center for the Evaluation of Risks to Human Reproduction:
 guidelines for CERHR expert panel members. Birth Defects Res B Dev Reprod Toxicol 74:9-16.
- Stern JM, Simes RJ. 1997. Publication bias: evidence of delayed publication in a cohort study of clinical research
 projects. Br Med J 315:640-645.
- 569 Twombly R. 1998. New NTP centers meet the need to know. Environ Health Perspect 106:A480-483.
- 570 Viswanathan M, Ansari M, Berkman ND, Chang S, Hartling L, McPheeters LM, et al. 2012. Assessing the risk of
- 571 bias of individual studies when comparing medical interventions. Agency for Healthcare Research and Quality
- 572 (AHRQ). Available: <u>http://www.effectivehealthcare.ahrq.gov/index.cfm/search-for-guides-reviews-and-</u>
 573 reports/?pageaction=displayproduct&productid=998 [accessed 3 January 2013].
- 574 Whitlock EP, Lopez SA, Chang S, Helfand M, Eder M, Floyd N. 2010. AHRQ series paper 3: identifying, selecting,
- and refining topics for comparative effectiveness systematic reviews: AHRQ and the effective health-care program.
 J Clin Epidemiol 63:491-501.
- 577 Woodruff TJ, Sutton P. 2011. An evidence-based medicine methodology to bridge the gap between clinical and 578 environmental health sciences. Health Aff 30:931-937.
- 579
- 580
- 581

582			
583	Tables		
584			
585			
586			

Table 1. OHAT Risk-of-bias Questions

588	The OHAT risk-of-bias questions are applied to evaluate the risk of bias of studies on an outcome basis. The study design determines
589	which questions are applicable as indicated in the table by an "X" for each question that applies to a given study design. Risk-of-bias
590	ratings are developed by answering each applicable question with one of four options (definitely low, probably low, probably high, or
591	definitely high risk of bias).
592	
593	
594	
595	
596	

Table 1: OHAT Risk-of-bias Questions. The OHAT risk-of-bias questions are applied to evaluate the risk of bias of studies on an outcome basis. The study design determines which questions are applicable as indicated in the table by an "X" for each question that applies to a given study design. Risk-of-bias ratings are developed by answering each applicable question with one of four options (definitely low, probably low, probably high, or definitely high risk of bias). Answering "Yes" indicates lower risk of bias, while "No" indicates higher risk of bias for that question)			ாயாசா பாபா மாசு Trials ²	Cohort	Case-control	Cross-sectional ³	Case Series
Selection BIAS							
Was administered dose or exposure level adequately randomized? Randomization requires that each human subject or animal had an equal chance of being assigned to study group including controls (e.g., use of random number table or computer generated randomizat	any ion).	х	x				
 Was allocation to study groups adequately concealed? Allocation concealment requires that research personnel do not know which administered dose or exposure level is assigned at the start of a study. Human studies also require that allocation be concealed from human subjects prior to entering the study. Note: 1) a question under performance bias addresses blinding of personnel and human subjects to treatment during the study; 2) a question under detection bias addresses blinding of outcome assessors. 			x				
Were the comparison groups appropriate? Comparison group appropriateness refers to having similar baseline characteristics between the groups aside from the exposures and outcomes under study.				x	x	x	
Confounding BIAS							
Did the study design or analysis account for important confounding and modifying variables? Note: a parallel question under detection bias addresses reliability of the measurement of confounding variables.		x	x	x	x	x	x
Did researchers adjust or control for other exposures that are anticipated to bias results?			Х	х	х	Х	Х
Performance BIAS							
Were experimental conditions identical across study groups?		Х					
Did researchers adhere to the study protocol?		Х	х	х	х	Х	Х
Were the research personnel and human subjects blinded to the study group during the study? Blinding requires that study scientists do not know which administered dose or exposure level the hu subject or animal is being given (i.e., study group). Human studies require blinding of the human subj when possible.	man ects	х	x				

Table 1 OHAT Risk-of-bias Questions continued	Experimental Animal ¹	Human Controlled Trials ²	Cohort	Case-control	Cross-sectional ³	Case Series
Attrition/Exclusion BIAS						
Were outcome data complete without attrition or exclusion from analysis? Attrition rates are required to be similar and uniformly low across groups with respect to withdrawal or exclusion from analysis.	x	x	x	x	x	
Detection BIAS						
Were the outcome assessors blinded to study group or exposure level? Blinding requires that outcome assessors do not know the study group or exposure level of the human subject or animal when the outcome was assessed.	x	x	x	x	x	x
Were confounding variables assessed consistently across groups using valid and reliable measures? Consistent application of valid, reliable, and sensitive methods of assessing important confounding or modifying variables is required across study groups. Note, a parallel question under selection bias addresses whether design or analysis account for confounding.	x	x	x	x	x	x
Can we be confident in the exposure characterization? Confidence requires valid, reliable, and sensitive methods to measure exposure applied consistently across groups.	x	x	x	x	х	x
Can we be confident in the outcome assessment? Confidence requires valid, reliable, and sensitive methods to assess the outcome and the methods should be applied consistently across groups.	x	x	x	x	x	x
Selective Reporting BIAS						
Were all measured outcomes reported?	X	X	Х	Х	Х	Х
Other						
Were there no other potential threats to internal validity (e.g., statistical methods were appropriate)? On a project specific basis, additional questions for other potential threats to internal validity can be added and applied to study designs as appropriate.						
¹ Experimental animal studies are controlled exposure studies. Non-human animal observational studies could be evaluated using th human studies such as cross-sectional study design.	e desigr	feature	es of o	bserva	tional	·

599 600 601 ²Human Controlled Trials (HCTs): studies in humans with a controlled exposure, including Randomized Controlled Trials (RCTs) and non-randomized experimental studies.

602 603 ³Cross-sectional studies include population surveys with individual data (e.g., National Health and Nutrition Examination Survey or NHANES) and population surveys with aggregate data (i.e., air pollution exposure estimated by zip code).

Table 2. Confidence Ratings in the Bodies of Evidence

Confidence Rating	Definition
High Confidence (++++)	High confidence in the association between exposure to the substance and the outcome. The true effect is <u>highly likely to be</u> reflected in the apparent relationship.
Moderate Confidence (+++)	Moderate confidence in the association between exposure to the substance and the outcome. The true effect <u>may be</u> reflected in the apparent relationship.
Low Confidence (++)	Low confidence in the association between exposure to the substance and the outcome. The true effect <u>may be different</u> than the apparent relationship.
Very Low Confidence (+)	Very low confidence in the association between exposure to the substance and the outcome. The true effect <u>is highly likely to be</u> different than the apparent relationship.

Table 3. Aspects of the Hill considerations on causality within the OHAT Approach

Hill Consideration	Relationship to the OHAT Approach
Strength	Considered in upgrading the confidence rating for the body of evidence for large magnitude of effect and downgrading the confidence rating for imprecision .
Consistency	Considered in upgrading confidence rating for the body of evidence for consistency across study types , across dissimilar populations , or across animal species ; and in integrating the body of evidence among human, animal, and other relevant data; also in downgrading confidence rating for the body of evidence for unexplained inconsistency .
Temporality	Considered in initial confidence ratings by key features of study design, for example experimental studies have an initial rating of "High Confidence" because of the increased confidence that the controlled exposure preceded outcome.
Biological gradient	Considered in upgrading the confidence rating for the body of evidence for evidence of a dose–response relationship.
Biological plausibility	Considered in examining non monotonic dose–response relationships and developing confidence rating conclusions across biologically related outcomes, particularly outcomes along a pathway to disease. Other relevant data that inform plausibility such as physiologically based pharmacokinetic and mechanistic studies are considered in integrating the body of evidence. Also considered in downgrading the confidence rating for the body of evidence for indirectness .
Experimental evidence	Considered in setting initial confidence ratings by key features of study design and downgrading the confidence rating for risk of bias .

609

610

611 Figure Legend

- 612 Figure 1. The OHAT Approach for Systematic Review and Evidence Integration for Literature-
- 613 Based Environmental Health Science Assessments

614