NTP Research Report on the Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

NTP RR 16

September 2020
NTP Research Report on the Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

Research Report 16

September 2020

National Toxicology Program
Public Health Service
U.S. Department of Health and Human Services
ISSN: 2473-4756

Research Triangle Park, North Carolina, USA
Foreword

The National Toxicology Program (NTP), established in 1978, is an interagency program within the Public Health Service of the U.S. Department of Health and Human Services. Its activities are executed through a partnership of the National Institute for Occupational Safety and Health (part of the Centers for Disease Control and Prevention), the Food and Drug Administration (primarily at the National Center for Toxicological Research), and the National Institute of Environmental Health Sciences (part of the National Institutes of Health), where the program is administratively located. NTP offers a unique venue for the testing, research, and analysis of agents of concern to identify toxic and biological effects, provide information that strengthens the science base, and inform decisions by health regulatory and research agencies to safeguard public health. NTP also works to develop and apply new and improved methods and approaches that advance toxicology and better assess health effects from environmental exposures.

NTP reports the findings from many of its studies in the NTP Technical Report and Monograph series. NTP uses the Research Report series, which began in 2016, to report on work that does not fit readily into one of those two series, such as pilot studies, assay development or optimization studies, literature surveys or scoping reviews, and handbooks on NTP procedures or study specifications.

NTP Research Reports are available free of charge on the NTP website and cataloged in PubMed, a free resource developed and maintained by the National Library of Medicine (part of the National Institutes of Health). Data for these evaluations are included in NTP’s Chemical Effects in Biological Systems database or the Health Assessment and Workspace Collaborative.

For questions about the reports and studies, please email NTP or call 984-287-3211.
Table of Contents

Foreword ... ii
Tables .. iv
Figures ... iv
About This Report .. v
Peer Review .. viii
Publication Details .. ix
Acknowledgments .. ix
Conflict of Interest ... ix
Abstract ... x
Preface ... xii
Introduction .. 1
 Objective and Specific Aims ... 2
 Objective ... 2
 Specific Aims ... 2
Methods ... 3
 Problem Formulation .. 3
 PECO Statement .. 3
 Primary and Secondary Outcomes 5
 Literature Search .. 5
 Literature Search Strategy ... 5
 Searching Other Resources ... 6
 Study Selection .. 6
 Evidence Selection Criteria ... 6
 Screening Process .. 6
 Data Extraction .. 7
 Data Availability ... 8
Results .. 9
 Literature Search Results .. 9
 Human Health-relevant Studies 10
Discussion ... 31
 Limitations of the Evidence Base 32
 Limitations of the Scoping Review 33
 Summary ... 34
References ... 35
Appendix A. Literature Search Strategy A-1
Appendix B. Detailed Inclusion/Exclusion Criteria B-1
Appendix C. Data Extraction Elements for Human Studies C-1
Appendix D. Data Extraction Elements for Animal Studies ... D-1
Appendix E. List of Included Studies...E-1
Appendix F. Supplemental Figures..F-1
Appendix G. Supplemental Files...G-1

Tables

Table 1. Population, Exposure, Comparator, Outcome Statement ..4
Table 2. Epidemiological Studies Evaluating Occupational Paraquat Exposure and Parkinson’s Disease ..13
Table 3. Epidemiological Studies Evaluating Environmental Paraquat Exposure and Parkinson’s Disease ...17
Table 4. Epidemiological Studies Evaluating Paraquat Exposure and Parkinson’s Disease in the General Population ..19

Figures

Figure 1. Study Selection Diagram ..9
Figure 2. Number of Studies That Evaluated Primary Effects Following Paraquat Exposures in Mammalian Models ..23
Figure 3. Number of Studies and Direction of Effect for Primary Animal Effects Evaluated Following Oral, Dermal, or Inhalation Paraquat Exposures in Mammalian Models ..24
Figure 4. Number of Studies That Evaluated Secondary Animal Effects Following Oral, Dermal, or Inhalation Paraquat Exposures in Mammalian Models ..27
Figure 5. Number of Studies That Evaluated Secondary Animal Effects Following Paraquat Exposures via Other Routes in Mammalian Models28
Figure 6. Number of Studies That Evaluated Primary Animal Effects Following Paraquat Exposures in Nonmammalian Models ...29
Figure 7. Number of Studies That Evaluated In Vitro Effects Evaluated Following Paraquat Exposures ..30
About This Report

Authors

Windy A. Boyd¹, Robyn B. Blain², Courtney R. Skuce², Kristina A. Thayer³, Andrew A. Rooney¹

¹Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA

²ICF, Durham, North Carolina, USA

³Integrated Risk Information System, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

Contributors

Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA

Contributed to conception, design, and drafting of report
Windy A. Boyd, Ph.D.
Andrew A. Rooney, Ph.D.

ICF, Durham, North Carolina, USA

Contributed to drafting of report and figures
Robyn B. Blain, Ph.D.
Courtney R. Skuce, B.A.

Office of Research and Development, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

Contributed to conception, design, and review of draft report
Kristina A. Thayer, Ph.D. (formerly of Division of the National Toxicology Program, National Institute of Environmental Health Sciences)

Contributors

Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA

Contributed to conception or design of draft report
Brandiese E.J. Beverley, Ph.D.
John R. Bucher, Ph.D.
Stephanie D. Holmgren, MBA
Kembra L. Howdeshell, Ph.D.
Kyla W. Taylor, Ph.D.
Vickie R. Walker, B.S.

Critically reviewed protocol
Kembra L. Howdeshell, Ph.D.
Vickie R. Walker, B.S.
Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

Critically reviewed draft report and figures
John R. Bucher, Ph.D.
Kembra L. Howdeshell, Ph.D.
Christopher A. McPherson, Ph.D.
Nisha S. Sipes, Ph.D.
Kyla W. Taylor, Ph.D.
Vickie R. Walker, B.S.

Provided oversight of external peer review
Elizabeth A. Maull, Ph.D.
Mary S. Wolfe, Ph.D.

ICF, Durham, North Carolina, USA
Critically reviewed draft report and figures
Pamela A. Hartman, M.E.M.
Kelly A. Shipkowski, Ph.D.

Designed and executed literature searches
Michelle A. Cawley, M.S.

Retrieved and managed references
Canden N. Byrd, B.S.
Nicole L. Vetter, M.L.I.S.

Screened studies and extracted data
Susan B. Goldhaber, M.P.H.
Pamela A. Hartman, M.E.M.
Kelly A. Shipkowski, Ph.D.

Provided contract oversight
David F. Burch, M.E.M.

Edited and formatted report
Tyler W. Cromer, M.P.S.
Jeremy S. Frye, M.S.L.S.
Tara Hamilton, M.S.
Katherine R. Helmick, M.P.H.

Coordinated external peer review
Katherine R. Helmick, M.P.H.
River B. Williams, B.S.

U.S. Environmental Protection Agency, Washington, DC, USA
Contributed to conception or design of draft report
Austin T. Wray, Ph.D.
Critically reviewed protocol and draft report
Aaron Niman, M.P.H.
Austin T. Wray, Ph.D.
Peer Review

The National Toxicology Program (NTP) conducted a peer review of the draft *NTP Research Report on the Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease* by letter in April 2019 by the experts listed below. Reviewer selection and document review followed established NTP practices. The reviewers were charged to:

(1) Peer review the draft *NTP Research Report on the Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease* and comment on the adequacy of the scoping report in identifying and summarizing the relevant literature.

NTP carefully considered reviewer comments in finalizing this report.

Peer Reviewers

Russell L. Carr, Ph.D.
Associate Professor
Mississippi State University
Mississippi State, Mississippi, USA

Marian S. McDonagh, Pharm.D.
Professor
Oregon Health & Science University
Portland, Oregon, USA
Publication Details

Publisher: National Toxicology Program
Publishing Location: Research Triangle Park, NC
ISSN: 2473-4756
DOI: https://doi.org/10.22427/NTP-RR-16
Report Series: NTP Research Report Series
Report Series Number: 16

Acknowledgments

This work was supported by the Intramural Research Program (ES103316 and ES103317) at the National Institute of Environmental Health Sciences, National Institutes of Health and performed for the National Toxicology Program, Public Health Service, U.S. Department of Health and Human Services under contracts GS00Q14OADU417 and HHSN273201600015U.

Conflict of Interest

Individuals identified as authors in the About This Report section have certified that they have no known real or apparent conflict of interest related to paraquat dichloride or Parkinson’s disease.
Abstract

Introduction: Paraquat dichloride (commonly referred to as paraquat) is a restricted-use, broad-spectrum herbicide that is commonly used in the United States to control weeds in agricultural and horticultural crops. Because paraquat is not registered for home use, the highest exposures would likely be to those manufacturing and applying paraquat or to those living on or near farms or other areas where paraquat is manufactured or applied. Observational human studies of people who apply pesticides and data from experimental animal studies indicate that long-term, chronic exposure to paraquat might lead to central nervous system toxicity. The National Toxicology Program (NTP) identified paraquat as a potential candidate for systematic review while performing scoping activities to classify environmental exposures associated with Parkinson’s disease. Subsequently, NTP became aware that the U.S. Environmental Protection Agency (EPA) Office of Pesticide Programs (OPP) was also evaluating paraquat as part of registration review activities and collaborated with EPA to avoid duplication of effort.

Objective: The objective of these scoping activities was to identify and characterize peer-reviewed, published scientific literature relevant to paraquat exposure and neurobehavioral and neuropathological endpoints associated with Parkinson’s disease in humans and to related models in experimental animals or in vitro studies.

Methods: A scoping review was conducted that followed the NTP Office of Health Assessment and Translation (OHAT) method for systematic review through an abbreviated data extraction step. A comprehensive search strategy was used to retrieve original research records from multiple databases (i.e., Embase, PubMed, Scopus, Web of Science, and TOXLINE) through May 24, 2018. Relevant records included reports of exposure to paraquat dichloride and neurobehavioral or neuropathological endpoints relevant to Parkinson’s disease in humans (such as clinical diagnoses, movement abnormalities, and effects on dopaminergic neurons) in epidemiological studies, experimental animal models of parkinsonism, and in vitro model systems. References were screened in duplicate for relevance and categorized by exposure, outcome, species, and cell type, where appropriate. An interactive evidence map was prepared using Tableau® software to enable researchers to explore the health outcome data by key feature (e.g., outcome, study type, animal model). Finally, data extraction of quantitative results was performed using the Health Assessment Workspace Collaborative (HAWC) software for those studies that were the most directly relevant to human Parkinson’s disease (e.g., epidemiological studies reporting primary outcomes and studies of mammals exposed to paraquat via exposure routes most representative of human exposures including oral, dermal, and inhalation).

Results: The literature search identified 8,685 references, 458 of which were included after screening as relevant to describing the association between exposure to paraquat and the potential development of Parkinson’s disease with some reports consisting of multiple lines of evidence and measured endpoints. The human epidemiological evidence consisted of 24 studies with the majority conducted in agricultural workers or people living in or near agricultural areas. A total of 143 experimental animal studies reported measurement of primary health endpoints; 11 were found to have high external validity to human exposure by exposing mammals via a route similar to human exposures (i.e., oral, inhalation, dermal). Supporting mechanistic information was reported in 190 experimental animal studies measuring secondary health endpoints and 244 in vitro studies.
Discussion: Using systematic review methodologies, NTP developed a scoping review and evidence maps of published scientific literature to support potential follow-up systematic review and to identify extant research gaps. The evidence maps are interactive, sortable visualizations of quantitative data from epidemiological studies and experimental study characteristics with links to publications. A considerable body of evidence was identified as relevant to paraquat exposure and Parkinson’s disease that can be used in developing future systematic reviews as were data gaps and scientific challenges that could be addressed by future research.
Preface

NTP conducts scoping reviews to identify, categorize, and summarize the literature-based evidence evaluating whether exposure to environmental substances (e.g., chemicals, physical agents, and mixtures) may be associated with adverse health effects. These reviews serve as a foundational step in directing potential further inquiry by identifying areas that are data rich or data poor on project-specific key concepts such as: exposures, health effects, mechanisms, experimental model or study design, and evidence stream (human, experimental animal, in vitro models); however, they do not include a synthesis of the data. Depending on the goals and the available evidence, scoping reviews may include: (1) a summary of the research relating to specific questions or relatively broad topic areas, (2) a systematic evidence map—an interactive visual display of research relating to relatively broad topic areas that can be sorted, filtered, and categorized to illustrate the extent and types of evidence, or (3) both.

NTP conducts these health effects evaluations following the first three steps of the general methods outlined in the “Handbook for Conducting a Literature-Based Health Assessment Using the OHAT Approach for Systematic Review and Evidence Integration” †: (1) problem formulation, (2) literature search and selection of studies for inclusion, and (3) abbreviated data extraction to categorize published research by key concepts relevant to the goals of the review. The key feature in applying the systematic review approach to scoping reviews is the application of a transparent framework to document the methods.

†OHAT is the abbreviation for Office of Health Assessment and Translation, which is within the Division of the National Toxicology Program at the National Institute of Environmental Health Sciences.
Introduction

Parkinson’s disease is a group of motor system disorders that are due to progressive degeneration of dopaminergic neurons within the substantia nigra of the brain. Although some genetic factors are known to contribute to familial Parkinson’s disease, the cause of most cases remains unknown. Increasingly, the potential contributions of environmental factors—including exposures to pesticides, metals, and other environmental chemicals—have been investigated in observational human, experimental animal, and in vitro studies. Meta-analyses of epidemiological data have identified elevated risks of Parkinson’s disease in farmworkers and others who handle pesticides or live near areas close to pesticide use or production (Ahmed et al. 2017).

Paraquat dichloride (1,1’-dimethyl-4,4’-bipyridinium ion, hereafter referred to as paraquat) is a quaternary ammonium compound used as a broad-spectrum, fast-acting contact herbicide. Paraquat is registered for use in both agricultural and nonagricultural settings, and is used to control weeds and as a post-harvest desiccant (Bromilow 2004). It is applied as a direct spray and kills the leaves that come in direct contact with the compound.

Importantly, paraquat is a restricted-use pesticide (i.e., it can only be purchased and used by people certified to apply pesticides) and is not registered for any homeowner or residential applications in the United States. Thus, the primary route of exposure for paraquat is occupational exposure during mixing, loading, and applying paraquat or during post-application processes. However, residential exposure can occur for those living on or near farms where paraquat has been applied. Normal use patterns suggest that paraquat is not expected to be a surface water or groundwater contaminant (US EPA 1997). Whereas high-level, acute exposure to paraquat is associated with pulmonary toxicity in humans and experimental animals, low-level, chronic exposure is reported to be associated with various health effects, including central nervous system toxicity, which can lead to Parkinson’s disease (Dinis-Oliveira et al. 2008).

The association between paraquat exposure and Parkinson’s disease was identified as a potential candidate for systematic review as a result of a National Toxicology Program (NTP) scoping activity of Parkinson’s disease. The same topic was also identified as a topic for systematic review by two external groups. The U.S. Environmental Protection Agency (EPA) Office of Pesticide Programs (OPP) is evaluating paraquat as part of its pesticide registration review program and collaborated closely with NTP during the scoping process. A second academic group from Brazil also contacted NTP for advice on the planning and conduct of its separate, independent systematic review of paraquat and Parkinson’s disease (Vaccari e et al. 2019).

Because of the interest and extent of the evidence, NTP conducted this targeted scoping review of the literature on paraquat exposure and Parkinson’s disease. The literature was systematically collected and categorized to develop an interactive evidence map to enable researchers to explore the data by key Parkinson’s disease-related health effects, types of evidence, and gaps in research. The information contained in this scoping report can be used to focus and support a full systematic review by any interested group or for consideration of future research on this topic.
Objective and Specific Aims

Objective
The primary objective of this scoping review was to identify and characterize the literature relevant to paraquat exposure and neurobehavioral or neuropathological endpoints associated with Parkinson’s disease in humans and to related models in experimental animal or in vitro studies.

Specific Aims

- Identify literature reporting the effects of paraquat exposure on neurobehavioral and neuropathological endpoints associated with Parkinson’s disease or clinical symptoms of parkinsonism (i.e., tremors of the extremities, slowed movement, postural rigidity, and changes in gait) in humans, animals, and in vitro model systems.

- Extract study design information from included studies, such as evidence stream, exposure scheme, and measured effects. Data extraction files of the included studies will be shared upon release of the final report.

- Summarize the available literature and create an evidence map of the health effects and mechanistic data relevant to Parkinson’s disease (i.e., the extent and types of health effects evidence available) associated with paraquat exposure.
Methods

The systematic review techniques applied in this scoping review adhered to the framework developed by the National Toxicology Program (NTP) Office of Health Assessment and Translation (OHAT) (Rooney et al. 2014). The OHAT systematic review and evidence integration framework consists of a seven-step process in which the first three steps are relevant to producing a scoping review, and the last four steps are applicable to assessing study quality and synthesizing evidence (NTP 2015). Therefore, this scoping review was restricted to the first three steps: (1) problem formulation, (2) literature search and study selection, and (3) abbreviated data extraction. Data extraction was primarily used to capture study characteristics of all included studies; quantitative results of epidemiological and experimental mammalian studies of high external validity to human exposure (e.g., oral, inhalation, or dermal) were also extracted as reported by study authors. Qualitative evidence synthesis was limited to grouping studies according to similar study characteristics, including experimental models and exposure categories (e.g., exposed populations in epidemiological studies, exposure routes in animal studies, and in vitro model systems). Study quality assessment was beyond the aims of this evaluation, as is customary for most scoping reviews, and thus was not performed for this review.

Problem Formulation

Parkinson’s disease was first chosen by NTP as a disease-focused scoping project due to high prevalence of cases of unknown etiology, questions about environmental exposures, and potential to inform future testing efforts. While performing scoping activities, NTP identified the association between paraquat exposure and Parkinson’s disease as a potential candidate for further review. In addition, NTP was made aware that EPA OPP and a research group from the University Estadual Paulista, São Paulo, Brazil, were also initiating systematic reviews on the same topic. Thus, to support a consistent process, promote access and data sharing, and avoid duplication of effort, NTP consulted with the research group from Brazil at the project’s initiation and collaborated closely with EPA OPP throughout scoping activities. NTP, in collaboration with EPA OPP toxicologists and epidemiologists and an expert on neurotoxicity from the EPA Office of Research and Development (ORD), defined the outcomes of interest and the inclusion/exclusion criteria for the title-and-abstract screen and full-text review. A scoping review protocol was developed using the OHAT systematic review framework for the literature screen and review and for data extraction (Appendix G).

PECO Statement

A PECO (Population, Exposure, Comparator, and Outcome) statement was developed in conjunction with EPA to address and understand the potential effects of paraquat on neurological outcomes associated with Parkinson’s disease or parkinsonism in humans, animals, and in vitro model systems (Table 1). The PECO statement is used to help develop the specific research questions, search terms, and inclusion/exclusion criteria for the systematic review (Higgins and Green 2011).
Table 1. Population, Exposure, Comparator, Outcome Statement

<table>
<thead>
<tr>
<th>PECO Element</th>
<th>Evidence</th>
</tr>
</thead>
</table>
| **Populations** | **Human:** Humans, without restriction on age, sex, or life stage at exposure or outcome assessment
Animal: Experimental animals without restriction on species (including nonmammalian and invertebrate species), age, sex, or life stage at exposure or outcome assessment
In vitro: Human or animal cells, tissues, or model systems with in vitro exposure regimens; examples of cell lines typically used for in vitro Parkinson’s disease mechanistic study include SK-N-SH, SH-SY5Y, PC12, RBE, astrocytes, and dopaminergic neurons |
| **Exposure** | Exposure to paraquat dichloride (CASRN 1910-42-5) based on administered dose or concentration, biomonitoring data (e.g., urine, blood, or other specimens), environmental measures (e.g., air, water levels), or indirect measures such as job title or occupational history |
| **Comparators** | **Human:** A comparison population exposed to lower levels (or no exposure/exposure below detection levels) of paraquat
Animal: Comparable animal populations that were untreated or exposed to vehicle-only treatment in experimental animal studies
In vitro: Comparable cells or tissues exposed to vehicle-only treatment or untreated controls |
| **Outcomes** | **Human:**
Primary outcomes: Diagnosis of Parkinson’s disease and/or clinical observations, neurobehavioral, or neuropathological outcomes typically associated with Parkinson’s disease or parkinsonism following in vivo exposure, focusing on tissue level and functional abnormalities, descriptiv and/or functional assessment of the central nervous system, including the nigrostriatal (dopamine) system; examples of relevant outcomes include tremor, bradykinesia, rigidity, postural instability, and any other movement abnormalities associated with parkinsonism
Secondary outcomes: Tissue, cellular, biochemical, and/or molecular outcomes resulting from in vivo exposure that have a mechanistic association with Parkinson’s disease or are evidence of toxicity in the nervous system, but are not specific to Parkinson’s disease
Animal:
Primary outcomes: Neurobehavioral or neuropathological outcomes, focusing on whole body and tissue level abnormalities typically associated with Parkinson’s disease following in vivo exposure; endpoints include motor activity and coordination, sensorimotor reflexes, effects on cognitive function, quantitative or qualitative assessment of dopaminergic neuron counts in the substantia nigra and dopaminergic neuron terminals in the striatum, and other descriptive and/or functional assessments of the central nervous system, including the nigrostriatal (dopamine) system, which are considered hallmarks of Parkinson’s disease (e.g., detection of intracytoplasmic Lewy bodies)
Secondary outcomes: Tissue, cellular, biochemical, and/or molecular outcomes resulting from in vivo exposure that have a mechanistic association with Parkinson’s disease (e.g., dopamine and metabolite levels in the nigrostriatal pathway, tyrosine hydroxylase-positive neuron [TH+] immunoreactivity or density) or are evidence of toxicity in the nervous system, but are not specific to Parkinson’s disease (e.g., oxidative stress, inflammation, mitochondrial, and/or proteasomal dysfunction)
In vitro: In vitro assays investigating cellular responses commonly attributed to Parkinson’s disease (e.g., assessment of functionality, integrity, and viability for nerve cells critical to the nigrostriatal [dopamine] system) and mechanistic assays investigating proposed pathways for the etiology of Parkinson’s disease (e.g., enzyme interactions, cell signaling) |
Primary and Secondary Outcomes

The publications selected during the paraquat literature screen included studies that examined primary and secondary outcomes related to Parkinson’s disease. Both primary and secondary outcomes were used to evaluate the connection between pesticide exposure and the disease. Primary outcomes directly associate pesticide exposure with the manifestation of Parkinson’s disease (or symptoms of neurological disruption commonly attributed to parkinsonism), whereas secondary outcomes elucidate mechanistic connections between exposure and Parkinson’s disease or describe general toxicity in the nervous system. Secondary outcomes are considered with the corresponding primary health effects to examine support for biological plausibility of those outcomes, or support for the analysis of a causal relationship (or lack thereof), between paraquat exposure and Parkinson’s disease. In humans, primary outcomes include abnormal neurobehavioral clinical observations, clinical diagnoses consistent with parkinsonism, and neuropathological aberrations. Animal primary outcomes include abnormal neurobehavioral clinical observations, neuropathological aberrations, including degeneration of dopaminergic neurons in the substantia nigra, and changes in locomotor activity. Secondary outcomes in human and animal studies cover other tissue, cellular, biochemical, or molecular changes in the nervous system that either have a mechanistic association with Parkinson’s disease or reflect general toxicity in the nervous system that is not specific to Parkinson’s disease. Indirect measures of a primary outcome (e.g., evaluating dopaminergic neuron health based on TH+ optical density) were grouped into this category because they provided supportive rather than direct evidence of the primary outcome. In vitro studies also contribute mechanistic information and can be used to assess the biological plausibility of outcomes observed in human and animal studies. Relevant in vitro outcomes include loss of nerve cell integrity and viability or altered functionality of nerve cells critical to the nigrostriatal system, and physiological changes attributed to paraquat exposure that are hypothesized to play a role in the etiology of Parkinson’s disease but are not unique consequences of the disease (e.g. oxidative stress, proteasomal and mitochondrial dysfunction in nervous tissues, and epigenetic changes). No distinction was made between primary and secondary outcomes for in vitro studies because all in vitro data were considered supporting information for the other evidence streams.

Literature Search

Literature Search Strategy

Database search strategies were developed to identify all relevant published evidence that addresses the relationship between Parkinson’s disease and paraquat exposure. To ensure inclusion of all relevant papers, the strategy for this search was broad for the consideration of neurobehavioral and neuropathological endpoints associated with Parkinson’s disease and comprehensive for paraquat dichloride as an exposure or treatment. All searches included terms associated with paraquat including: (1) the common name of the chemical, (2) the Chemical Abstract Services Registry Number (CASRN), and (3) retrieval of synonyms from the ChemIDplus database, which currently contains chemical names and synonyms for more than 400,000 chemicals (NIH 2018). Keywords specific to Parkinson’s disease were derived from review articles on proposed mechanistic pathways for the etiology of Parkinson’s disease (Baltazar et al. 2014; Zhang et al. 2016) and through a systematic review that investigated the relationship between chemical exposure and Parkinson’s disease (Choi et al. 2016). Searches
were not limited by study design, language restrictions, or publication year. The following databases were searched most recently on May 24, 2018 (full details of the search strategies are presented in Appendix A):

- Embase (Elsevier)
- PubMed (NLM)
- Scopus (Elsevier)
- Web of Science (Thomson Reuters)
- TOXLINE

Searching Other Resources

The reference lists of all relevant published reviews identified during the initial search were hand searched to find studies that were not identified through the electronic searches. These studies were evaluated using the same inclusion and exclusion criteria used for screening the electronic search results. Relevant studies identified through these steps are marked as “identified through other sources” in the study selection flow diagram (Figure 1).

Study Selection

Evidence Selection Criteria

Inclusion/exclusion criteria were designed to identify relevant publications that comply with each aspect of the PECO statement (Table 1). The eligibility of each citation from the paraquat literature was considered using the criteria outlined in Appendix B.

Screening Process

Search results from each database were compiled in EndNote and duplicates were removed. The master reference list of original search results was filtered and sorted with the Document Classification and Topic Extraction Resource software (DoCTER), a machine-learning tool developed by ICF, to group the citations into clusters based on perceived relevance to the key questions and similarity to vetted studies. Clusters were used to prioritize manual screening in order of highest-to-lowest perceived relevance. The references in each cluster were then screened at each stage as described below for relevance and eligibility with the inclusion/exclusion criteria used by the online literature screening program, DistillerSR®, a web-based, systematic review software program with structured forms and procedures (http://systematic-review.net/).

Title-and-abstract Review

Screeners were trained using the detailed inclusion/exclusion criteria outlined in Appendix B with an initial pilot screening phase of a minimum of 150 references (actual n = 172) to improve clarity of the inclusion and exclusion instructions and to improve accuracy and consistency among screeners. Changes to the inclusion criteria resulting from the pilot phase were documented in a protocol amendment along with the date of modifications and the logic for the changes. After the pilot phase, trained screeners used updated inclusion/exclusion criteria to conduct a title-and-abstract screen of each reference in duplicate to determine study eligibility. If considered possibly relevant, studies were moved to a full-text review. In the case of screening
conflicts, screeners independently reviewed their screening results to confirm the inclusion/exclusion decision and, if needed, discussed discrepancies with the other screeners. If a true disagreement existed between screeners, the study passed to the full-text review.

Full-Text Review

After completion of the title-and-abstract screen, full-text articles were retrieved for those studies that either clearly met the inclusion criteria or for which eligibility to meet the inclusion criteria was unclear. Two screeners who participated in the title-and-abstract screening independently conducted the full-text review. True disagreements were resolved by discussion through consultation with other members of the evaluation design team and technical advisors.

Reason for exclusion at the full-text-review stage was annotated and is reported in a study selection flow diagram using reporting practices outlined in Moher et al. (2009) (Figure 1). Although more than one reason might have applied, only one of the following reasons for exclusion was documented for simplicity: (1) lacked a comparator (e.g., a control or baseline group); (2) conducted with a nonanimal model (e.g., plants, fungi, protists, or bacteria); (3) lacked neurobehavioral or neuropathological health outcome information; (4) conducted on wildlife; (5) lacked paraquat exposure; (6) mixture study lacked paraquat-only exposure; (7) was a conference abstract, grant application/registration, thesis/dissertation, or otherwise not a peer-reviewed scientific publication; or (8) study was only available in non-English language.

Multiple Publications of Same Data

During full-text review, publications were examined for overlapping data by comparing author affiliations, study designs, cohort names, enrollment criteria, and enrollment dates. No publications with overlapping data were identified in this review.

Data Extraction

Data were extracted from the full-text records of individual studies by one member of the scoping review team and checked by a second member for completeness and accuracy. Any discrepancies in data extraction were resolved by discussion or consultation with a third member of the team.

Two levels of data extraction were performed during scoping activities depending on study type and design: abbreviated data extraction of study characteristics of all included studies to capture study characteristics including species tested, routes and levels of exposure, and endpoints measured; and full data extraction including quantitative health effects data from epidemiological studies and experimental animal studies of high external validity to human exposures reporting primary outcomes.

Secondary outcomes reported in experimental mammalian animal studies and all outcomes reported in nonmammalian animal and in vitro models were included only as supporting information because the measured effects were less specific to Parkinson’s disease than those measured for primary outcome studies in mammals. Instead, only abbreviated data extraction was performed on these studies. These characteristics were identified in the full-text record and coded into Microsoft Excel spreadsheets to facilitate data visualization and summary using Tableau® software.
Full data extractions of included epidemiology studies and experimental studies of mammals exposed to paraquat via oral, dermal, or inhalation exposure routes, both reporting primary outcomes, were conducted using the Health Assessment Workspace Collaborative (HAWC) (https://hawc.readthedocs.io/en/latest/), a free and open-source, web-based software application. Partial data extraction for other studies was performed using Microsoft Excel. Full data extraction included information on author affiliations and funding, characteristics of the model organism, exposure methodology and conditions, the route of administration, comparators, and quantitative and qualitative data on health effects. Data extraction elements collected from epidemiological studies are listed in Appendix C and those from animal studies in Appendix D.

Data Availability

Interactive versions of each figure can be accessed directly using the link included beneath each figure. In addition, all interactive figures and additional study details can be viewed online and data can be downloaded from Tableau in Microsoft Excel format here: https://doi.org/10.22427/NTP-DATA-RR-16 (NTP, 2019b). Full data extraction results are available for download from HAWC in Microsoft Excel format here: https://hawcproject.org/assessment/475/ (NTP, 2019a).
Results

Literature Search Results

The screening results and reasons for exclusion are outlined in the study selection diagram (Figure 1). The electronic database searches retrieved 8,685 references, which resulted in 7,042 after duplicate removal. Review of reference lists of relevant published review articles yielded an additional 1,329 articles, which resulted in 124 references after duplicate removal. Thus, a total of 7,166 individual references were screened for relevance and eligibility in the title-and-abstract screen. Of these, 6,152 studies were excluded as not relevant to PECO and 120 records had no primary data, such as review articles and commentaries. This resulted in 894 studies reviewed in the full-text screen, of which 426 were excluded as not relevant to PECO along with 10 reviews, leaving 458 total included studies after screening (Figure 1). Five included articles were identified by the review of reference lists rather than through electronic database searches: three human primary-endpoint studies, one animal secondary study, and one in vitro study.

Figure 1. Study Selection Diagram

*Several included articles contain data for multiple evidence streams.
Human Health-relevant Studies

Figure 1 illustrates the breakdown of included studies by evidence stream and primary or secondary data. A total of 25 human epidemiological studies (24 primary endpoint studies and 1 secondary endpoint study) were identified that satisfied the PECO inclusion criteria along with 143 experimental animal studies reporting primary endpoints, 190 experimental animal studies reporting secondary endpoints, and 244 in vitro studies. Because some included studies reported data from multiple evidence streams or both primary and secondary outcomes, these numbers do not add up to the total number of studies considered relevant (i.e., 458). A list of included studies after full-text review is itemized in Appendix E of this scoping review report and high-level summaries of studies within each evidence stream (i.e., human, experimental animal, and in vitro) are provided in the following sections.

Human Studies

The epidemiological studies that evaluated the association between paraquat exposure and primary outcomes of Parkinson’s disease, including Parkinson’s disease diagnosis or clinical symptoms of parkinsonism, consisted of analysis of incidence in a prospective cohort study, 3 cross-sectional analyses of prevalence in this prospective cohort, 19 case-control studies, a retrospective cohort study, and an ecological study (Figure F-1). Many related publications or follow-up analyses were based on the same study populations as described in more detail in the following sections. All studies evaluated Parkinson’s disease, although researchers defined and captured the outcomes differently, most commonly by self-report of diagnosis, but also by clinical observations of neurological effects associated with parkinsonism. Two studies reporting unique outcome assessment approaches included a retrospective cohort that evaluated mortality in workers at a paraquat manufacturing plant (Tomenson and Campbell 2011) and one that investigated the onset of Parkinson’s disease (i.e., before or after the age of 68) in residents living near agriculture areas in California (Gatto et al. 2010). The majority of the studies (n = 17) were conducted in the United States; others were conducted in the Netherlands, France, Canada, Taiwan, and the United Kingdom.

Epidemiological studies were grouped by potential levels of exposure using the following exposure types as proxies for levels of exposure: (1) occupational studies that included pesticide applicators, farmers, and others who used paraquat on the job and were estimated to be exposed to the highest levels of paraquat (Table 2; Figure F-2); (2) environmental exposure studies in which residences and/or workplaces of participants were near agricultural areas or other situations with moderate paraquat exposure levels (Table 3; Figure F-3); and (3) general population studies that were more representative of typical exposures to people who do not work directly with paraquat or live in areas associated with higher usage of paraquat, although these studies might include subjects who used paraquat at work (Table 4; Figure F-4). Brief descriptions of epidemiological studies are provided in the following sections to provide an overview of the key studies and results.

Occupational Studies

The Agricultural Health Study (AHS) is a prospective cohort study of more than 50,000 licensed pesticide applicators and more than 30,000 of their spouses living in North Carolina and Iowa in the United States (https://www.aghealth.nih.gov/about/). All AHS participants are asked at enrollment, and at 5-year follow-up evaluation, to report whether they had ever been diagnosed
with Parkinson’s disease by a physician and at what age they were first diagnosed. A subset of participants completed a supplemental questionnaire that included additional information on paraquat and other pesticides suspected to be associated with Parkinson’s disease (Kamel et al. 2007). An increase in odds ratio that was not statistically significant was observed for prevalent cases of Parkinson’s disease (83 subjects who reported physician-diagnosed Parkinson’s disease at enrollment; adjusted odds ratio [adjOR] 1.8; 95% confidence interval [CI] 1.0–3.4) for the paraquat-exposed workers, but not with incident cases (78 reported diagnosis during follow-up; adjOR 1.0; 95% CI 0.5–1.9) (Figure F-2).

Most of the self-reported Parkinson’s disease cases were subsequently invited to participate in the Farming and Movement Evaluation (FAME) studies, which were nested case-control studies within AHS that confirmed self-reported Parkinson’s disease cases by follow-up assessments, including clinical evaluation of movement disorders and completion of additional exposure assessment questionnaires designed to capture lifetime paraquat exposures (Tanner et al. 2011). All four FAME studies that were included as relevant to this scoping review (i.e., evaluated exposure to paraquat alone) reported significant increases in odds ratio for prevalent Parkinson’s disease with paraquat exposure (Furlong et al. 2015; Goldman et al. 2012; Kamel et al. 2014; Tanner et al. 2011) (Figure F-2). Compared with participants who had never applied paraquat (n = 396 unexposed; 87 of 110 cases and 309 of 358 controls), pesticide applicators who had been exposed to paraquat (n = 72; 23 of 110 cases and 49 of 358 controls) were at a higher risk of Parkinson’s disease (adjOR 2.5; 95% CI 1.4–4.7) (Tanner et al. 2011). An even greater risk of Parkinson’s disease was observed in pesticide applicators with a homozygous GSTT1 deletion who had been exposed to paraquat, although the number of exposed cases and controls were fewer (adjOR 11.1; 95% CI 3.0–44.6; n = 9 exposed cases and 6 exposed controls with deletion) (Goldman et al. 2012). In addition, a higher odds ratio for Parkinson’s disease was observed with longer duration of paraquat exposure in those with a homozygous GSTT1 deletion (Goldman et al. 2012). Furlong et al. (2015) reported a greater risk in workers who used gloves ≤50% of the time (adjOR 3.9; 95% CI 1.5–10.2) than in those who used gloves more consistently (adjOR 1.6; 95% CI 0.6–4.2). Finally, Kamel et al. (2014) observed a higher risk with exposure to paraquat in subjects with low total dietary fat consumption (adjOR 4.7; 95% CI 1.7–12.6) compared with those who consumed higher total levels of fat in their diets (adjOR 1.4; 95% 0.5–3.7). The increase in Parkinson’s disease risk with low-fat diets was related to lower consumption of unsaturated fats, including monounsaturated fatty acids (MUFAs; adjOR 3.8; 95% CI 1.4–10.4), polyunsaturated fatty acids (PUFAs; adjOR 4.2; 95% CI 1.5–11.6), and linoleic acid (adjOR 3.8; 95% CI 1.4–10.3). The paraquat exposure in subjects with a high-fat diet was significant when focusing on saturated fats only (adjOR 3.1; 95% CI 1.2–8.0).

The Agriculture and Cancer (AGRICAN) cohort is another large prospective cohort that follows active and retired agricultural workers from France. Researchers conducted a cross-sectional analysis using the AGRICAN enrollment questionnaire and reported a significant increase in prevalence of self-reported diagnosis of Parkinson’s disease at enrollment in subjects exposed to paraquat (adjOR 1.43; 95% CI 1.17–1.75), but this increase was eliminated after adjusting for co-exposures to active ingredients of other pesticides (adjOR 1.01; 95% CI 0.41–2.49) (Pouchieu et al. 2018). An increase in odds ratio by duration in years compared with unexposed subjects was observed; however, the results were not statistically significant.

Other studies in subjects exposed occupationally to paraquat did not observe significant associations between paraquat exposure and Parkinson’s disease. Similar to the FAME analyses,
these studies reported few cases of the disease and many involved co-exposures to other pesticides. Tanner et al. (2009) evaluated occupations, including pesticide use among farmers, as a risk factor for Parkinson’s disease in North America. Paraquat exposure occurred in 9 of the 519 cases and 4 of the 511 controls; however, 6 of the 13 subjects exposed to paraquat were also exposed to other pesticides. A cross-sectional analysis of 310 workers (238 with exposure to paraquat and 72 unexposed controls matched for similar physical activity levels in their occupations) selected from participants of a previous cohort study conducted by the Washington State Department of Health from 1972 to 1976 found no significant associations between paraquat exposure and parkinsonism based on prevalence ratios (estimated using a general linear model due to high prevalence of parkinsonism among participants) categorized by exposed versus unexposed, tertile of years of exposure, or tertile of acre-years of exposure (Engel et al. 2001). Outcome assessment consisted of confirmed clinical symptoms of parkinsonism rather than Parkinson’s disease diagnosis; notably, only one participant self-reported a diagnosis of Parkinson’s disease. A retrospective cohort of workers in a paraquat manufacturing plant did not find an increase in mortality from Parkinson’s disease, as only 1 of 307 total deaths identified the disease as the underlying cause of death (Tomenson and Campbell 2011). Similarly, in a case-control study in British Columbia, occupational paraquat exposure did not significantly increase the risk of idiopathic parkinsonism using cardiovascular disease patients as controls (adjOR 1.11; 95% CI 0.32–3.87; 6 cases, 5 controls) or voters as controls (adjOR 1.25; 95% CI 0.34–4.63; 6 cases, 4 controls) (Hertzman et al. 1994). A hospital-based case-control study in the Netherlands did not find a significant association between paraquat exposure and Parkinson’s disease using a crop-exposure matrix based on both self-reported exposure and corrected, active-ingredient exposure (van der Mark et al. 2014).

A single occupational exposure study reported the secondary outcome oxidative stress (Ranjbar et al. 2002). Oxidative stress was evaluated in paraquat formulation workers and compared with age-matched volunteers from Tehran University with no direct pesticide exposure. Paraquat workers had higher levels of plasma lipid peroxidation and lower levels of plasma antioxidant capacity and thiol levels. This study was not included in any summary figures or tables as it did not contain primary outcome data.
Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

Table 2. Epidemiological Studies Evaluating Occupational Paraquat Exposure and Parkinson’s Disease

<table>
<thead>
<tr>
<th>Country; State/Region</th>
<th>Study Population</th>
<th>Study Design (n)</th>
<th>Exposure Assessment</th>
<th>Outcome Assessment</th>
<th>Results</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States; Iowa and North Carolina</td>
<td>Pesticide workers and spouses in Agricultural Health Study cohort</td>
<td>Prospective cohort (incidence: 78 cases [11 exposed], 55,931 controls [7,382 exposed]) Cross-sectional (prevalence: 83 cases [14 exposed], 79,557 controls [11,266 exposed])</td>
<td>Ever exposed to paraquat based on self-reporting of duration and frequency of pesticide use, as well as, ever used paraquat</td>
<td>Parkinson’s disease (incidence and prevalence)</td>
<td>(\text{ns adjOR for ever use of paraquat (incidence)})</td>
<td>(Kamel et al. 2007)</td>
</tr>
<tr>
<td>United States; Iowa and North Carolina</td>
<td>FAME participants(^a)</td>
<td>Case-control (110 cases [23 exposed], 358 controls [49 exposed])</td>
<td>Ever exposed to paraquat based on computer-assisted telephone interviews to obtain detailed information on pesticide use from age 14 onward</td>
<td>Parkinson’s disease Diagnosis determined by agreement of two neurologists after independent review of all available diagnostic information</td>
<td>(\text{↑* adjOR for ever use of paraquat})</td>
<td>Tanner et al. (2011)</td>
</tr>
<tr>
<td>United States; Iowa and North Carolina</td>
<td>FAME participants(^a)</td>
<td>Case-control (87 cases [21 exposed], 343 controls [52 exposed])</td>
<td>Estimated exposure using computer-assisted telephone interviews to determine ever use of paraquat and cumulative lifetime years of use</td>
<td>Parkinson’s disease Diagnosis determined by consensus of two movement disorder specialists using all available information and applying NINDS/UK Brain Bank criteria</td>
<td>(\text{Paraquat use (Y/N): (\text{↑* adjOR for ever use of paraquat})}) (\text{Paraquat use (years–lifetime): (\text{↑' adjOR for ever use of paraquat (\leq 4 years)})}) (\text{↑' adjOR for ever use of paraquat (>4 years)}) Homozygous deletion genotype for GSTT1: (\text{ns adjOR for paraquat exposure by genotype (9 exposed cases with deletion, 6 exposed controls with deletion), but there was a significant interaction between paraquat exposure and genotype})</td>
<td>Goldman et al. (2012)</td>
</tr>
<tr>
<td>Country; State/Region</td>
<td>Study Population</td>
<td>Study Design (n)</td>
<td>Exposure Assessment</td>
<td>Outcome Assessment</td>
<td>Results</td>
<td>Study</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>United States; Iowa and North Carolina</td>
<td>FAME participants*</td>
<td>Case-control (89 cases [18 exposed, males only], 336 controls [46 exposed, males only])</td>
<td>Occupational exposure to paraquat was assessed via telephone interview; interviewers collected a complete occupational history and information on pesticide use from age 14 onward</td>
<td>Parkinson’s disease</td>
<td>↗* adjOR for paraquat exposure with low total fat diet, ↗* adjOR for paraquat exposure with high saturated fat diet</td>
<td>Kamel et al. (2014)</td>
</tr>
<tr>
<td>United States; Iowa and North Carolina</td>
<td>FAME participants*</td>
<td>Case-control (69 cases [22 exposed], 237 controls [48 exposed])</td>
<td>Estimated exposure based on complete occupational history to evaluate paraquat exposure in each job held from age 14 to reference data; determination of hygiene practices and personal protective equipment use was also self-reported</td>
<td>Parkinson’s disease</td>
<td>Case status determined by agreement of two movement disorder specialists following established criteria and using information from medical records and the in-home evaluation</td>
<td>Furlong et al. (2015)</td>
</tr>
<tr>
<td>United States; Washington</td>
<td>Pesticide workers who were previous participants in a Washington State Department of Health cohort during 1972–1976 (US EPA 1976)</td>
<td>Cross-sectional (310 workers [238 with exposure to paraquat and 72 unexposed controls matched for similar physical activity levels in their occupation])</td>
<td>Estimated exposure based on self-administered questionnaire on occupational pesticide use throughout their working career and years of use</td>
<td>Parkinsonism</td>
<td>ns adjPR for paraquat exposure, tertile years of exposure, and acre-years</td>
<td>Engel et al. (2001)</td>
</tr>
<tr>
<td>Country; State/Region</td>
<td>Study Population</td>
<td>Study Design (n)</td>
<td>Exposure Assessment</td>
<td>Outcome Assessment</td>
<td>Results</td>
<td>Study</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>North America; 7 in United States and 1 in Canada</td>
<td>Parkinson’s patients and hospital controls from 8 centers</td>
<td>Case-control (519 cases [9 exposed], 511 controls [4 exposed])</td>
<td>Ever exposed was assessed based on occupational history information for all jobs held for at least 3 months acquired via computer-assisted telephone interview</td>
<td>Parkinson’s disease diagnosed by the enrolling investigator based on clinical features and Unified Parkinson’s Disease Rating Scale score</td>
<td>ns adjOR for paraquat exposure (large OR, but not significant due to wide CI)</td>
<td>Tanner et al. (2009)</td>
</tr>
<tr>
<td>Canada; Okanagan Valley, British Columbia</td>
<td>Residents in horticultural region</td>
<td>Case-control (127 cases [6 exposed], 245 controls [5 cardiac disease controls exposed, 4 voter controls exposed])</td>
<td>Exposure to paraquat assessed via questionnaire; exposure defined as handling paraquat or working in an area that had been recently sprayed</td>
<td>Idiopathic parkinsonism diagnosed by a neurologist based on patients having two of the following symptoms: resting tremor, rigidity, bradykinesia, and loss of postural reflexes</td>
<td>ns adjOR for paraquat exposure (cardiac disease controls) ns adjOR for paraquat exposure (voter controls)</td>
<td>Hertzman et al. (1994)</td>
</tr>
<tr>
<td>France</td>
<td>Agriculture workers in Agriculture and Cancer cohort</td>
<td>Cross-sectional (∼149,810 participants, Parkinson’s disease reported in 1,732 participants; 244 cases exposed and 25,298 non-cases exposed)</td>
<td>Exposure was assessed using the French crop-exposure matrix PESTIMAT, which reconstitutes pesticide use since 1950 in the main crops</td>
<td>Parkinson’s disease self-reported of doctor-diagnosed Parkinson’s disease, age range at diagnosis, and having at least two parkinsonian symptoms (tremor in hands or feet; rigidity of arms or legs; slowness or tightening in daily living, walking, or speaking)</td>
<td>ns adjOR for paraquat exposure (1–25 years) ns adjOR for paraquat exposure (26–46 years) ns adjOR for ever paraquat exposure (when adjusted for co-exposure between active ingredients)</td>
<td>Pouchieu et al. (2018)</td>
</tr>
<tr>
<td>Country; State/Region</td>
<td>Study Population</td>
<td>Study Design (n)</td>
<td>Exposure Assessment</td>
<td>Outcome Assessment</td>
<td>Results</td>
<td>Study</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>United Kingdom; Widnes</td>
<td>Paraquat production workers</td>
<td>Cohort (retrospective) (968 workers [1 case of Parkinson’s disease])</td>
<td>Workers at a paraquat manufacturing plant in Widnes; although there were some monitoring data, there was insufficient sampling information available to perform a quantitative exposure assessment</td>
<td>Parkinson’s disease (cause of death)</td>
<td>No significant change in standardized mortality ratio either with Parkinson’s disease mentioned as cause of death or as an underlying cause of death</td>
<td>Tomenson and Campbell (2011)</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Parkinson’s patients and controls from 5 hospitals</td>
<td>Case-control (444 cases [33 exposed], 876 controls [58 exposed])</td>
<td>Exposure estimated to specific active ingredient by linking self-reported crops cultivated at the subject’s farm to a crop-exposure matrix</td>
<td>Parkinson’s disease</td>
<td>ns adjOR for exposure based on median of the distribution of the different exposures among controls</td>
<td>van der Mark et al. (2014)</td>
</tr>
</tbody>
</table>

FAME = farming and movement evaluation; adjOR = adjusted odds ratio; adjPR = adjusted prevalence rate; CI = confidence interval; ns = no change; † = increase; †* = significant increase; †ǂ = significant trend.

*Studies examining FAME participants were nested case-control studies.

*Agriculture and Cancer is a prospective cohort, but results were from the baseline questionnaire only; therefore, the study is considered a cross-sectional analysis. Additional study details available in Figure F-2.
Table 3. Epidemiological Studies Evaluating Environmental Paraquat Exposure and Parkinson’s Disease

<table>
<thead>
<tr>
<th>Country; State/Region</th>
<th>Study Population</th>
<th>Study Design</th>
<th>Exposure Assessment</th>
<th>Outcome Assessment</th>
<th>Results</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States; California</td>
<td>Parkinson’s Environment and Genes Study (PEG) participants, Central Valley, CA residents</td>
<td>Case-control (368 cases [149 paraquat only], 341 controls [152 paraquat only])</td>
<td>Average annual exposure estimated using self-reported residence and workplace address histories combined with pesticide use data from California Department of Pesticide Regulation and land use maps from California Department of Water Resources</td>
<td>Parkinson’s disease</td>
<td>Exposure status (1974–1999): ns adjOR for paraquat-only exposure</td>
<td>Costello et al. (2009)</td>
</tr>
<tr>
<td>United States; California</td>
<td>PEG participants, Central Valley, CA residents</td>
<td>Case-control (368 cases [79 exposed], 341 controls [60 exposed])</td>
<td>Estimated ambient exposure for historical residential addresses inhabited between 1974 and 1999 using GIS modeling; exposure from private well water was estimated based on a combination of pesticide use and application data and self-reports of private wells as drinking water sources at a residential address</td>
<td>Parkinson’s disease</td>
<td>ns adjOR for any of the paraquat exposure</td>
<td>Gatto et al. (2009)</td>
</tr>
<tr>
<td>United States; California</td>
<td>PEG participants, Central Valley, CA residents</td>
<td>Case-control (333 cases, 336 controls [number of exposed ranged from 4 to 105, depending on exposure [high], age of onset, and genotype])</td>
<td>Estimated ambient exposure from pesticide application to agricultural crops using a GIS-based exposure assessment tool using geocoded lifetime address data, historical pesticide use data from the California Department of Pesticide Regulation, and land use data</td>
<td>Parkinson’s disease</td>
<td>No significant changes in adjusted OR, but trend for increased OR with high paraquat exposure, with onset of Parkinson’s disease ≤68 years old, and with α-synuclein variations</td>
<td>Gatto et al. (2010)</td>
</tr>
<tr>
<td>Country; State/Region</td>
<td>Study Population</td>
<td>Study Design (n)</td>
<td>Exposure Assessment</td>
<td>Outcome Assessment</td>
<td>Results</td>
<td>Study</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>United States; California</td>
<td>PEG participants</td>
<td>Case-control (362 cases [81 workplace, 109 residential paraquat-only], 341 controls [78 workplace, 125 residential paraquat only])</td>
<td>Average annual exposure estimated using residence and workplace address histories combined with pesticide use data from California Department of Pesticide Regulation and land use maps from California Department of Water Resources</td>
<td>Parkinson’s disease</td>
<td>ns adjOR for paraquat exposure</td>
<td>Wang et al. (2011)</td>
</tr>
<tr>
<td>United States; California</td>
<td>PEG participants</td>
<td>Case-control (357 cases [169 exposed], 754 controls [291 exposed])</td>
<td>Average annual exposure estimated using residence and workplace address histories combined with pesticide use data from California Department of Pesticide Regulation and land use maps from California Department of Water Resources</td>
<td>Idiopathic Parkinson’s disease</td>
<td>♦* adjOR for ambient residential and workplace exposures</td>
<td>Lee et al. (2012)</td>
</tr>
<tr>
<td>United States; California</td>
<td>PEG participants</td>
<td>Case-control (619 cases [245 exposed], 854 controls [296 exposed])</td>
<td>Ambient exposure was estimated using a GHS model combined with pesticide use data and land use maps from California</td>
<td>Parkinson’s disease</td>
<td>♦* adjOR for ambient residence and workplace paraquat exposure</td>
<td>Sanders et al. (2017)</td>
</tr>
</tbody>
</table>

Additional study details available in Figure F-3.

OR = odds ratio; adjOR = adjusted odds ratio; ns = no change; ♦ = increase; ♦* = significant increase.
Table 4. Epidemiological Studies Evaluating Paraquat Exposure and Parkinson’s Disease in the General Population

<table>
<thead>
<tr>
<th>Country; State/Region</th>
<th>Study Population</th>
<th>Study Design (n)</th>
<th>Exposure Assessment</th>
<th>Outcome Assessment</th>
<th>Results</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States; Nebraska</td>
<td>Residents of Nebraska</td>
<td>Ecological (6,557 cases [numbers of exposed in each quartile not reported])</td>
<td>Estimated from GIS modeling using combination of land use data, pesticide usage databases, and historical pesticide use surveys</td>
<td>Parkinson’s disease</td>
<td>Higher risk of Parkinson’s disease in Q3 (medium-high) and Q4 (high) exposure to paraquat compared with Q1 (low exposure group), but trend for risk was not significant (i.e., Q4 risk was not higher compared with Q3)</td>
<td>Wan and Lin (2016)</td>
</tr>
<tr>
<td>United States; Texas</td>
<td>Parkinson’s patients and controls from East Texas neurology practice</td>
<td>Case-control (100 cases [4 exposed], 84 controls [1 exposed])</td>
<td>Exposure estimated from self-reported lifetime use of paraquat</td>
<td>Parkinson’s disease</td>
<td>ns OR for ever personally used/mixed or applied paraquat (large OR, but not significant due to wide CI)</td>
<td>Dhillon et al. (2008)</td>
</tr>
<tr>
<td>United States; Washington</td>
<td>Group Health Cooperative (GHC) of Washington State</td>
<td>Case-control (250 cases [2 exposed], 388 controls [2 exposed])</td>
<td>Paraquat exposure was based on self-reported occupational and home-based pesticide use during structured interview; occupational pesticide exposure based on checklist of common chemical agents, whereas home-based pesticide exposure was based on a checklist of commercial brand name products (paraquat was listed under chemicals for occupational exposure, but not specifically listed for home-based use)</td>
<td>Parkinson’s disease</td>
<td>Paraquat exposure vs. no exposure: ns adjOR for any paraquat exposure</td>
<td>Firestone et al. (2005)</td>
</tr>
<tr>
<td>Country; State/Region</td>
<td>Study Population</td>
<td>Study Design (n)</td>
<td>Exposure Assessment</td>
<td>Outcome Assessment</td>
<td>Results</td>
<td>Study</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| United States;
Washington | GHC of Washington State | Case-control (404 cases, 526 controls; 252 male cases [2 exposed], 326 male controls [3 exposed]; 152 female cases [0 exposed], 200 female controls [0 exposed]) | Paraquat exposure was based on self-reported workplace exposure to various toxicants from a checklist of other things including paraquat | Parkinson’s disease | Paraquat exposure vs. no exposure: ns adjOR for any paraquat exposure in males; OR could not be calculated for females | Firestone et al. (2010) |
| British Columbia | Parkinson’s patients and controls from a mountainous rural area | Case-control (57 cases [4 exposed], 122 controls [0 exposed]) | Exposure estimated based on self-reporting of private well-water use, occupational history, and past chemical handling (e.g., question asked ever handled paraquat) | Parkinson’s disease | No OR could be calculated | Hertzman et al. (1990) |
| The Netherlands | Parkinson’s patients and controls from five hospitals | Case-control (352 cases [181 exposed], 607 controls [322 exposed]) | Exposure estimated using a spatio-temporal model to assign environmental pesticide exposure to residential addresses (based on crop cultivation within 100 m of the residence, then split into two different distance categories 0–50 m and >50–100 m) | Parkinson’s disease | ns adjOR for ever exposure to paraquat or by tertile regardless of distance category | Brouwer et al. (2017) |
| Taiwan, Province of
China; Taipei | Parkinson’s patients and hospital controls | Case-control (120 cases [31 exposed], 240 controls [22 exposed]) | Exposure estimated based on self-reporting of residential and farming history, drinking water sources, and pesticide use/exposure (subjects were asked to identify specific herbicides/pesticides and chemicals they had used) | Parkinson’s disease | * OR for ever paraquat use; * adjOR for paraquat use >20 years | Liou et al. (1997) |

OR = odds ratio; adjOR = adjusted odds ratio; CI = confidence interval; ns = no change;  = increase; * = significant increase.
Additional study details available in Figure F-4.
Environmental and General Population Studies

For this review, the epidemiological studies that did not specifically investigate occupational exposures were divided into environmental exposures where locations of residences or workplaces might be expected to contain moderate levels of paraquat (Table 3) and those with paraquat exposures representative of the general population with the lowest levels of paraquat exposures expected (Table 4). Few significant associations were observed in the studies classified in either of these categories (Figure F-3 and Figure F-4). The Parkinson’s Disease, Environment, and Gene (PEG) Study recruited participants between 2001 and 2007 and between 2010 and 2015 and assessed the potential relationship between environmental susceptibility (including exposure to pesticides such as paraquat) and genetics in rural Parkinson’s disease patients. The PEG study used a population-based approach to identify Parkinson’s disease cases in three counties (Fresno, Tulare, and Kern) of California. Six resulting articles evaluated the association between paraquat exposure and Parkinson’s disease in participants from the study. It was not clear in every case whether the report was officially a PEG study because some reports noted that cases were enrolled in the PEG study, whereas others cited a common reference for methods (Kang et al. 2005) but did not refer to the PEG study by name. The majority of these studies did not observe significantly higher adjusted odds ratios with paraquat exposure (Costello et al. 2009; Gatto et al. 2009; Gatto et al. 2010; Wang et al. 2011). Although Gatto et al. (2010) did not report any significant findings with paraquat exposure, adjusted odds ratios tended to increase with higher paraquat exposure for those subjects with onset of Parkinson’s disease at ≤68 years old, and with α-synuclein gene variations (adjOR 3.15; 95% CI 0.74–13.37).

Indications of increased risk with paraquat exposure were reported in some PEG studies. Lee et al. (2012) evaluated ambient residential and workplace exposures to paraquat and observed a significant increase in risk (adjOR 1.36; 95% CI 1.02–1.81). High paraquat exposures at residences or workplaces in subjects containing two risk genotypes (i.e., base excision repair single nucleotide polymorphisms in APEX1 and OGG1 genes) were observed to significantly increase risk (Sanders et al. 2017).

Two other studies in locations other than California found significant associations between paraquat exposure and Parkinson’s disease. In a study in Taiwan evaluating environmental risk factors for Parkinson’s disease, duration of paraquat use of >20 years was associated with a significant increased risk (adjOR 6.44; 95% CI 2.41–17.2) (Liou et al. 1997). An ecological study cross-referenced a statewide registry of patients diagnosed with Parkinson’s disease in Nebraska with land use and pesticide exposure databases to perform a spatial analysis of paraquat exposure levels and risk of Parkinson’s disease (Wan and Lin 2016). While the two highest quartiles of paraquat exposures were associated with higher risk than the lowest quartile, the risk did not increase significantly between the two highest exposure groups (i.e., the response did not increase in a concentration-dependent manner).

Animal Studies

Animal models do not develop Parkinson’s disease per se and instead were categorized by neurocognitive effects that might be expected to correlate with parkinsonism symptoms in humans including primary effects such as motor activity, motor coordination, motor skills, number of dopaminergic neurons (i.e., number of tyrosine hydroxylase-positive [TH+] neurons), as well as other cognitive effects such as anxiety and memory. Secondary effects included mechanistic data such as levels of dopamine, density of TH immunoreactivity, or other
biochemical changes associated with Parkinson’s disease, as well as general effects to the nervous system such as measurements of oxidative stress levels.

A total of 143 experimental studies in laboratory animals were identified as measuring primary endpoints and 190 as measuring secondary endpoints (Figure 1); 119 studies reported both primary and secondary endpoints. Primary endpoints were measured in 113 mammalian studies (Figure 2). A variety of neurological effects were investigated, including 66 studies that estimated the number of dopaminergic cells by measuring the number of TH+ neurons. Changes in locomotor activity were the most often reported neurobehavioral effects, including locomotion (34 studies) and distance traveled (6 studies) followed by effects on motor skills (34 studies). Some studies reported qualitative results that were not eligible for quantitative data extraction but might provide relevant information about the link between paraquat exposure and parkinsonism (e.g., descriptive histopathology of the brain in 13 studies). The majority of the animal studies with endpoints specific for parkinsonism did not report administration of paraquat via a route that would be relevant to human exposures (i.e., oral, dermal, or inhalation) with 83 of the 113 studies using intraperitoneal injection and most others using subcutaneous or other methods of administration (including intracranial in a couple of cases) (Figure 2).
Figure 2. Number of Studies That Evaluated Primary Effects Following Paraquat Exposures in Mammalian Models

Numbers indicate the counts of studies that have investigated the identified endpoints; no indication of direction or significance of effect is provided. Some studies might have characterized multiple health effects or multiple routes of exposure and therefore could be listed multiple times. Row and column totals and grand total shown in the figure represent counts of distinct references. The endpoint movement: locomotion under Muscular Effects and the endpoint behavior: exploratory under Psychomotor Effects are interlinked and sometimes measured using the same open field test. However, exploratory behavior is used for endpoints that measured a specific behavior that reflected more than simple locomotor movement. This may include specific patterns of movement or other designations of exploration given by study authors.

Interactive figure and additional study details in Tableau (NTP, 2019b).
High External Validity Study Designs

Because humans are exposed to paraquat through diet or direct contact via inhalation or skin, study designs that administered paraquat through these routes and measured primary effects in mammals were considered to be the most informative to human exposure scenarios and Parkinson’s disease (i.e., high external validity). Eleven studies in rats and mice reported administration of paraquat via dermal (n = 1), oral (n = 9), inhalation (n = 0), and intranasal (n = 1) exposures and evaluated a primary health effect, with most measuring neuromuscular effects including locomotor activity, motor skills, and cognitive behavior (Figure 3). Several studies using orally exposed rats or mice reported data for secondary animal effects and will be discussed in the following section on secondary effects.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Subeffect</th>
<th>↑</th>
<th>↓</th>
<th>NS</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscular Effects</td>
<td>Movement: gait</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Movement: locomotion</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Nervous System Effects</td>
<td>Nerve degeneration: total number of TH+ neurons</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Psychomotor Effects</td>
<td>Behavior: exploratory</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Emotional effects: anxiety</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Learning: spatial memory</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Motor skills</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 3. Number of Studies and Direction of Effect for Primary Animal Effects Evaluated Following Oral, Dermal, or Inhalation Paraquat Exposures in Mammalian Models

Some studies might have characterized multiple health effects and therefore could be represented multiple times. Row and column grand totals represent counts of distinct references. The endpoint movement: locomotion under Muscular Effects and the endpoint behavior: exploratory under Psychomotor Effects are interlinked and sometimes measured using the same open field test. However, exploratory behavior is used for endpoints that measured a specific behavior that reflected more than simple locomotor movement. This may include specific patterns of movement or other designations of exploration given by study authors.

Interactive figure and additional study details in Tableau (NTP, 2019b). Study data for these 11 studies are available on HAWC (NTP, 2019a).

Comparing across these studies, paraquat was reported to elicit neuromuscular effects more often in mice relative to rats. Two oral gavage studies in mice evaluated locomotor activity and observed decreases in activity (Fredriksson et al. 1993; Ren et al. 2009). Both studies used C57BL/6 mice, but the doses differed: Fredriksson et al. (1993) administered 0.07 and/or 0.36 mg/kg over two days depending on the age of the mice and Ren et al. (2009) administered 10 mg/kg/day for 4 months. A third oral gavage study noted effects on learning and spatial memory in C57BL/6 mice, as indicated by an increase in escape latency in the probe test of the Morris water maze (Lou et al. 2016). This study, however, evaluated latency to find the platform, which could have been affected by motor activity and was not discussed, even though some animals died. Chen et al. (2010) evaluated learning and spatial memory in Kunming mice using the Morris water maze. Mice were exposed to 0.89, 2.67, or 8 mg/kg/day via oral gavage, and the study reported both an increased latency to reach the platform (on multiple training days) and a decrease in the number of times passing the platform (as part of the spatial probe test). The study did not report whether motor activity was affected, nor any mortality or clinical signs in the
animals. An oral gavage dose of 20 mg/kg/day to male Swiss mice was found to cause a significant change in motor skills as indicated by decreased latency to fall from the rotarod test (Satpute et al. 2017). Doses of 10–20 mg/kg/day in drinking water did not have significant effects on motor skills in female C57BL/6 mice (Naudet et al. 2017), or male wild-type CuZnSOD mice when tested at 4 months or 2 years of age (Peled-Kamar et al. 1997). Two studies investigated the number of TH+ neurons in C57BL/6 mice but did not report a significant change with doses up to 21.5 mg/kg/day in females exposed via diet for 13 weeks (Minnema et al. 2014) or male mice exposed to 20 mg/kg/day via intranasal inoculation for 30 days (Rojo et al. 2007) (Figure 3).

No significant effects on motor skills were noted in male AP rats orally exposed to 5 mg/kg/day paraquat (Widdowson et al. 1996). Dermal administration of 40 mg/kg/day paraquat to female Wistar rats did not cause a significant change in locomotor activity, but did decrease motor skills as measured by climbing on blocks less frequently (Luty et al. 1997). Luty et al. (1997) also observed no differences in exploration, as measured by interest in blocks, or anxiety, as measured by washing and defecations, in female Wistar rats dermally administered 40 mg/kg/day for 28 days. However, interest in blocks and defecations significantly decreased after 14 days of treatment (note: defecations were also lower prior to paraquat exposure). Two additional studies in rats that administered paraquat via relevant exposure routes reported qualitative histopathology only and were not displayed in the figures (Caroleo et al. 1996; Li et al. 2015).

Secondary Effects in Mammals

Effects that were classified as secondary effects included indirect measures of dopaminergic neurons, modifications of α-synuclein levels, mitochondrial dysfunction, and general measures of oxidative stress (Figure 4 and Figure 5). Of the 11 studies in rats and mice that administered paraquat via exposure routes relevant to human exposures (dermal, oral, inhalation, and intranasal), 9 also assessed relevant secondary animal effects. An additional 5 studies using relevant exposure routes evaluated secondary animal effects only and are included in Figure 4 for a total of 14 studies. Oxidative stress parameters were examined in rats and mice, along with changes in levels of dopamine, dopamine metabolites, and other neurotransmitters. Glial or astrocyte activity, as well as alpha-synuclein and expression of glial fibrillary acidic protein, were also described in mice. Other endpoints evaluated included mitochondrial dysfunction and lipid peroxidation.

Studies using exposure routes less relevant to humans also evaluated a wide variety of secondary endpoints in various mammalian models (Figure 5). Rats and mice were the most-studied species with the majority of rodent studies focused on effects on dopamine, gene expression, and oxidative stress. Other more general mechanisms such as oxidative stress and changes in genes or protein levels have also been evaluated following paraquat exposure. However, as was observed with the primary effects, the route of exposure for most of these studies was injection (interactive Figure 5 (NTP, 2019b)).

Alternative Model Organisms

Several nonmammalian organisms have also been used as models to investigate paraquat exposures to primary outcomes (Figure 6) and secondary outcomes (Figure F-5), modeling some aspects of Parkinson’s disease. Similar to the rodent studies discussed earlier, the specific
endpoints used to measure paraquat effects in these studies vary between species and studies, but the most-often-studied primary endpoint category was locomotor activity (Figure 6). With 20 studies describing the primary effects of paraquat on *Drosophila*, the species has been used as a model for Parkinson’s disease. These studies often investigated genetic changes reported to be associated with Parkinson’s disease with climbing being the primary measured effect on locomotor activity. Ten studies evaluated primary effects in other nonmammalian species, including zebrafish and *Caenorhabditis elegans*. The main primary endpoint category in these models was also locomotor activity (Figure 6).
Figure 4. Number of Studies That Evaluated Secondary Animal Effects Following Oral, Dermal, or Inhalation Paraquat Exposures in Mammalian Models

Numbers indicate the counts of studies that have investigated the identified endpoints; no indication of direction or significance of effect is provided. Some studies might have characterized multiple health effects or species and therefore could be represented multiple times. Row and column grand totals represent counts of distinct references. Interactive figure and additional study details in Tableau (NTP, 2019b).

As with primary effects, *Drosophila* were used in a number of secondary effects studies (n = 28) to evaluate different mechanistic aspects of paraquat, including modification effects of different genes known to play a role in human familial and sporadic Parkinson’s disease (e.g., *DJ-1* [parkin] and *LRKK2* [leucine-rich repeat kinase 2]). Most of these studies evaluated dopamine levels or some other measure to address changes in dopamine (e.g., dopamine metabolites, density of TH immunoreactivity) (Figure F-5).
Figure 5. Number of Studies That Evaluated Secondary Animal Effects Following Paraquat Exposures via Other Routes in Mammalian Models

Numbers indicate the counts of studies that have investigated the identified endpoints; no indication of direction or significance of effect is provided. Some studies might have characterized multiple health effects or species and therefore could be represented multiple times. Row and column grand totals represent counts of distinct references. Interactive figure and additional study details in Tableau (NTP, 2019b).
Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

Figure 6. Number of Studies That Evaluated Primary Animal Effects Following Paraquat Exposures in Nonmammalian Models

Numbers indicate the counts of studies that have investigated the identified endpoints; no indication of direction or significance of effect is provided. Some studies might have characterized multiple health effects or species and therefore could be represented multiple times. Row and column grand totals represent counts of distinct references. The endpoints Behavior – exploratory activity and Behavior – locomotor activity are interlinked and sometimes measured using the same open field test. However, exploratory behavior is used for endpoints that measured a specific behavior that reflected more than simple locomotor movement. This may include specific patterns of movement or other designations of exploration given by study authors. Interactive figure and additional study details in Tableau (NTP, 2019b).

In Vitro Studies
Two hundred and forty-four studies were identified to have in vitro data potentially relevant to mechanistic links between paraquat exposure and Parkinson’s disease either specifically or to the nervous system in general (Figure 1); 68 of these studies only used paraquat as a positive control to induce oxidative stress and are not further characterized in this report. The most-studied outcome categories included oxidative stress, cell viability, mitochondrial effects, and changes in gene expression, which are the same categories that were most reported in the animal in vivo secondary effects (Figure 7). These most-studied categories are also general effects, whereas the endpoints that might provide more specific mechanistic information for Parkinson’s disease (e.g., TH+ neurons/dopamine and metabolite levels, α-synuclein) were less studied with a total of 16 studies each of dopaminergic neuron counts (TH+ neurons) and protein aggregation (mainly α-synuclein). The vast majority of human in vitro studies reported use of tumor cell lines including mostly SH-SY5Y, a neuroblastoma cell line originally derived from a bone marrow metastasis (48 of 80 total human in vitro studies), and the parent line of SH-SY5Y, SK-N-SH (seven studies). Only one study used primary human brain cells (HA1800 astrocytes), whereas three used Parkinson’s disease patient-derived primary fibroblasts. Similarly, very few human in vitro studies used stem cells, including neural progenitor cells (n = 6), iPSC astrocytes (n = 1), and transformed neuroblasts (n = 1). The number of studies reporting rat in vitro models were second to human models with a total of 74 studies using a variety of rat models, including the tumor cell line PC12 (n = 20), a cell line isolated from an adrenal gland tumor of embryonic origin composed partially of neuroblasts that can be differentiated into neurons with some dopaminergic characteristics (Malagelada and Greene 2008). PC12 cells were most often used to study general categories, such as oxidative stress and cell viability. Other commonly reported in vitro models derived from rat or mouse included mesencephalic models, such as the transformed rat cell line N27 (n = 17), and primary cultures of neurons and mixed cell types. Other rodent in...
vitro models included ex vivo studies of brain tissue cultures and brain slices, and subcellular fractionations of organelles, such as brain mitochondria and synaptosomes.

Figure 7. Number of Studies That Evaluated In Vitro Effects Evaluated Following Paraquat Exposures

Numbers indicate the counts of studies that have investigated the identified endpoints; no indication of direction or significance of effect is provided. Some studies might have characterized multiple health effects or species and therefore could be represented multiple times. Row and column grand totals represent counts of distinct references. The “Rat × Mouse” column includes studies using either a hybrid cell line or a combination of rat and mouse cells.

Interactive figure and additional study details in Tableau (NTP, 2019b).
Discussion

Using systematic review methodologies, this scoping review of peer-reviewed, published scientific literature identified a sizable body of evidence comprising 458 studies that provide information about the association between exposure to paraquat and potential development of Parkinson’s disease (Figure 1). Interactive evidence maps were developed to allow readers to sort and explore the published scientific literature by study type, exposure scenarios, and measured endpoints. These maps include eight Tableau figures with qualitative summaries of the characteristics of each line of evidence, as well as three HAWC figures with quantitative summaries of the epidemiological evidence. All or part of this evidence base could be followed and updated over time to monitor the field and scientific advances.

A total of 24 human studies investigating the association between paraquat exposure and primary effects of Parkinson’s disease were identified, with the majority being case-control studies (Figure F-1). The largest studies focused on occupational exposures including the Agricultural Health Study (AHS), a large prospective cohort of agricultural workers in the United States, and the nested case-control studies in the Farming and Movement Evaluation (FAME) cohort, which reported significant associations between paraquat exposures and prevalence of Parkinson’s disease (Furlong et al. 2015; Goldman et al. 2012; Kamel et al. 2014; Kamel et al. 2007; Tanner et al. 2011). In these studies, paraquat exposures and co-exposures to other pesticides were captured by questionnaires. Although no formal study quality assessment was performed, some characteristics of the overall evidence base were noted. For example, most epidemiological studies reported few cases of Parkinson’s disease and were conducted in locations with higher environmental exposures (e.g., residences or workplaces near agricultural fields); few studies with exposures representative of the general population were identified.

Whereas human studies evaluated self-reported or clinician-confirmed cases of Parkinson’s disease or symptoms of parkinsonism, evidence in experimental animals and in vitro model systems comprised models of parkinsonism symptoms or known/suspected mechanisms leading to Parkinson’s disease in humans. To develop the inclusion criteria for these studies, the National Toxicology Program (NTP) worked closely with the U.S. Environmental Protection Agency (EPA) Office of Pesticide Programs (OPP) to identify primary outcomes that were most directly related to human Parkinson’s disease, such as loss of dopaminergic neurons and neuromuscular deficits, as well as secondary outcomes that were more mechanistic in nature, such as decreases in dopamine and other biochemical changes associated with Parkinson’s disease, and more general responses including changes in gene expression and oxidative stress levels.

A total of 143 experimental animal studies reported primary endpoints with 113 studies reporting effects observed in mammals (Figure 2) and 30 studies in nonmammalian models (Figure 6). The experimental designs across these studies differed with a variety of dosing regimens and measured health endpoints with some specifically designed to model some component of Parkinson’s disease and others that were not. The most commonly reported outcome categories were neuromuscular effects, including effects on locomotor activity, as well as dopaminergic neuron degeneration. In most of these studies, paraquat was administered via injection, whereas humans are mainly exposed via dermal, inhalation, or oral routes and 11 studies in rats and mice reported the use of these more human-relevant exposure routes (Figure 3). *Drosophila*, zebrafish, and *C. elegans* were the primary nonmammalian species used to investigate mechanistic aspects.
of Parkinson’s disease, including consequences of genetic changes and \(\alpha \)-synuclein accumulation. As was noted with primary endpoint studies in mammals, studies on these nonmammalian species mostly evaluated locomotor activity (Figure 6). Secondary effects studies in these species might provide key mechanistic information on the potential development of Parkinson’s disease after exposures to paraquat (Figure F-2) but require follow-up studies in mammals or humans to verify relevance.

In addition to alternative whole organism models, various in vitro model systems were used to investigate the mechanisms of paraquat exposures on endpoints potentially relevant to the development of Parkinson’s disease (Figure 7). Overall, 244 in vitro studies were included at the full-text level with 68 of these studies describing the use of paraquat as a positive control used to induce oxidative stress. Of the remaining 176 studies that were investigating paraquat’s effects on cells, the general effects of cell death, oxidative stress, and mitochondrial stress were among the most measured. These studies might provide important information about how oxidative stress could contribute to Parkinson’s disease. More recently, a variety of in vitro models have been reported, including primary cell cultures and stem cells, which might include mixed cell types or genotypes from Parkinson’s disease patients and could allow for chronic exposures and more relevant endpoint measurements, such as neurite outgrowth versus cytotoxicity.

Limitations of the Evidence Base

Key information gaps and scientific challenges were identified in the corpus of available scientific literature that describe associations between paraquat exposures and development of Parkinson’s disease. However, it should be noted that individual study quality assessment was not included in this scoping review.

Gaps and challenges identified in the human evidence include:

- Most epidemiological studies were small case-control studies with very few cases of paraquat-exposed participants, and even fewer reported or confirmed cases of Parkinson’s disease; this is particularly true for studies that might be more representative of the general population in the United States.
- Most cases of Parkinson’s disease are self-reported, prevalent cases (i.e., participants report prior diagnosis or symptoms) rather than clinician-confirmed incident cases (i.e., newly diagnosed cases). Incidence might be difficult to measure due to the progressive nature of Parkinson’s disease such that initial symptoms might go unnoticed or unreported (e.g., disrupted sleep, slight tremor).
- Females were not included in most epidemiological studies, except in the few that included spouses of agricultural workers, namely those associated with the AHS. Thus, the vast majority of reported cases were male and even population-based studies did not include female cases.
- Occupational studies included co-exposures to other pesticides and reported significant associations for one or more, including rotenone, although adjustment for co-exposures was often lacking (Furlong et al. 2015; Kamel et al. 2014; Tanner et al. 2011). Pouchieu et al. (2018) observed a significant association between paraquat and Parkinson’s disease, but this study was eliminated when the authors adjusted for co-exposure between active ingredients. Studies of environmental exposure based on the
PEG cohort also had potential co-exposures to other pesticides. Studies that adjusted for exposure to other pesticides or included subjects only exposed to paraquat in the analysis did not observe an association between paraquat exposure and Parkinson’s disease.

- Exposure was mainly self-reported via questionnaires. Participants in environmental and general population studies might not be aware of paraquat exposures, and cases in retrospective studies might be prone to recall bias.

Gaps and challenges identified in the animal and in vitro evidence include:

- Animal models do not specifically develop Parkinson’s disease. Instead, deficits in dopaminergic neurons and associated neuromuscular and neurobehavioral deficits after exposures to paraquat are used to model parkinsonism.
- The paraquat exposure regimes and measured health effects endpoints varied widely across the animal and in vitro data.
- The majority of mammalian studies reported exposure to paraquat via injection, whereas humans are exposed to paraquat via dermal, oral, and inhalation routes.
- Exposure scenarios in animals might have been sufficiently high and acute, such that the effects on activity or muscle coordination might be more indicative of general toxicity than of Parkinson’s disease-like behaviors.
- Despite the challenges noted above, it is important to note that acute exposures to some compounds such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) via injections lead to parkinsonism in animals, including humans; thus, these studies might provide mechanistic information about paraquat’s potential effects and the effects of oxidative stress on dopaminergic neurons in general.
- Most in vitro studies reported the use of tumor-derived cell lines to study general stress responses.

Limitations of the Scoping Review

Case reports or case series were not included in this review because they do not include non-exposed comparators and most describe high, acute exposures to paraquat, such as those in accidental poisonings with unclear connections to Parkinson’s disease. Although not included here, case reports might be useful for determining mechanistic insight as long as the limitations noted above are considered. For example, a case series in China reported acute exposures of subjects to paraquat mainly after suicide attempts (Wu et al. 2012). Results included significant abnormalities in the MRI scans of brains from two surviving patients with neurological symptoms, with some results still abnormal a year later.

A total of 45 reports were excluded at the full-text level because they were published in a language other than English. These reports might contain additional useful data that could contribute to a full systematic review.

It should be noted that this scoping review was limited to data from the published scientific literature. Inclusion of proprietary pesticide literature and unpublished studies were beyond the
scope of this review but would potentially increase the knowledge base of any future health hazard evaluations.

Summary

In summary, a relatively large body of evidence was identified that collectively describes the potential association between paraquat exposure and Parkinson’s disease. Several recommendations can be drawn from this evidence to inform future research. Future epidemiological studies could include biomonitoring of specific pesticide exposures to separate paraquat’s effects from those of other chemicals and mixtures. Inclusion of higher numbers of paraquat-exposed and incident Parkinson’s disease cases from the general population (including women exposed to paraquat and/or with symptoms of Parkinson’s disease) would allow findings to be further generalized beyond occupational settings. To increase the direct relevance of experimental animal studies to human Parkinson’s disease, future laboratory animal studies could include administration of paraquat via a route that is more relevant to the general human population (oral or inhalation) and include measurement of neuromuscular or neurobehavioral endpoints and direct counts of dopaminergic neurons. Investigating the effects of longer-term paraquat exposures in vitro on endpoints with clear linkages to Parkinson’s disease (such as loss in neuron numbers and accumulation of α-synuclein) in primary human cell models might provide critical mechanistic information linking these exposures to neurological deficits observed in humans and animals.

This scoping review along with associated online interactive figures and visualizations were used to support an ongoing systematic review of paraquat and Parkinson’s disease as part of a registration review of paraquat dichloride by EPA OPP (Docket ID EPA-HQ-OPP-2011-0855).
References

DC: U. S. Environmental Protection Agency, ESP, Human Effects Monitoring Branch, Technical Services Division.

Appendix A. Literature Search Strategy

Table A-1. Literature Search Strategy

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embase</td>
<td>Limits; original search: None
Limits; search update: 2017 to present OR added since April 1, 2017; Embase or Embase Classic; no automatic term mapping
Search Terms: (paraquat OR 1910-42-5 OR gramoxone OR methyl-viologen OR paragreen-A) AND (alpha-synuclein OR apoptosis OR astrocyte OR astrocytes OR ataxia OR autophagy OR axon OR axonal OR axons OR bradykinesia OR brain OR central-nervous OR dendrite OR dendrites OR dendritic OR dj-1 OR dopamine OR dopaminergic OR gait OR ganglia OR glial OR gliosis OR glutamate OR glutamates OR Glutamic Acids OR glutathione OR Lewy bodies OR lewy body OR locomotion OR locomotor-activity OR lrrk2 OR Mesencephalon OR Mesencephalons OR microglia OR microglial OR microglials OR midbrain OR mitochondria OR Mitochondrial OR Mitochondrion OR motor-activity OR mpp OR mtp OR NADPH-oxidase OR nerve OR nerves OR nervous OR neural OR neurobehavior OR neurobehavioral OR neurobehaviour OR neurobehavioural OR neuroblastic OR neurodegeneration OR neurodegenerative OR neuroglia OR neurological OR neuromotor OR neuron OR neuronal OR neuronopath OR neurons OR neuropathies OR neuropathology OR neuropathy OR neurotoxic OR neurotoxicity OR neurotransmitter OR neurotransmitters OR nigral OR nigrostriatal OR nitric-oxide OR nitrosative-stress OR oxidative-stress OR paralysis-agitans OR parkin OR parkinson OR parkinsons OR parkinsonian OR parkinsonism OR pink1 OR reactive-oxygen-species OR rigidity OR snpc OR striatal OR striatum OR substantia-nigra OR synapse OR synapses OR synaptic OR synuclein OR synucleins OR tau OR tauopathies OR tauopathy OR tauopathology OR Thioredoxin-Disulfide OR thioredoxin-reductase OR tremor OR tremors OR Tyrosine 3-Monooxygenase OR tyrosine-hydroxylase OR ubiquitin)</td>
</tr>
<tr>
<td>Database</td>
<td>Limits; original search: None</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>

| Date of original search: | April 6, 2017; 3,501 results |
| Date of search update: | May 24, 2018; 307 results |
Database and Search Parameters

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web of Science</td>
<td>Original search and search update parameters: All terms searched in Title,</td>
</tr>
<tr>
<td></td>
<td>Abstract, or Keywords; Indexes=SCI-EXPANDED, SSCI, CPCI-S, CPCI-SSH, BKCI-S,</td>
</tr>
<tr>
<td></td>
<td>BKCI-SSH, CCR-EXPANDED, IC; Timespan=All years</td>
</tr>
<tr>
<td></td>
<td>Search Terms: (paraquat OR 1,1'-Dimethyl-4,4'-bipyridinium-dichloride OR 1910-</td>
</tr>
<tr>
<td></td>
<td>42-5 OR gramoxone OR methyl-viologen OR paragreen-A) AND (alpha-synuclein OR</td>
</tr>
<tr>
<td></td>
<td>apoptosis OR astrocyte OR astrocytes OR ataxia OR autophagy OR axon OR axonal OR</td>
</tr>
<tr>
<td></td>
<td>axons OR bradykinesia OR brain OR central-nervous OR dendrite OR dendrites OR</td>
</tr>
<tr>
<td></td>
<td>dentritic OR dj-1 OR dopamine OR dopaminergic OR gait OR ganglia OR glial OR</td>
</tr>
<tr>
<td></td>
<td>gliosis OR glutamate OR glutamates OR Glutamic Acids OR glutathione OR Lewy bodies</td>
</tr>
<tr>
<td></td>
<td>OR lewy body OR locomotion OR locomotor-activity OR lrrk2 OR Mesencephalon OR</td>
</tr>
<tr>
<td></td>
<td>Mesencephalons OR microglia OR microglial OR microglials OR midbrain OR</td>
</tr>
<tr>
<td></td>
<td>mitochondria OR Mitochondrial OR Mitochondrion OR motor-activity OR mpp OR mptp</td>
</tr>
<tr>
<td></td>
<td>OR NADPH-oxidase OR nerve OR nerves OR nervous OR neural OR neurobehavior OR</td>
</tr>
<tr>
<td></td>
<td>neurobehavioural OR neurobehaviour OR neurobehavioural OR neurobehaviour OR</td>
</tr>
<tr>
<td></td>
<td>neurodegenerative OR neuroglia OR neurological OR neuromotor OR neuron OR</td>
</tr>
<tr>
<td></td>
<td>neuronal OR neuronopathy OR neurons OR neuropathies OR neuropathology OR</td>
</tr>
<tr>
<td></td>
<td>neuroopathy OR neurotoxic OR neurotoxicity OR neurotransmitter OR</td>
</tr>
<tr>
<td></td>
<td>neurotransmitters OR nigral OR nigrostriatal OR nitric-oxide OR nitrosative-stress</td>
</tr>
<tr>
<td></td>
<td>OR oxidative-stress OR paralysis-agitans OR parkin OR parkinson OR parkinsons</td>
</tr>
<tr>
<td></td>
<td>OR parkinson's OR parkinsonian OR parkinsonism OR pink1 OR reactive-oxygen-</td>
</tr>
<tr>
<td></td>
<td>species OR rigidity OR snpc OR striatal OR striatum OR substantia-nigra OR</td>
</tr>
<tr>
<td></td>
<td>synapse OR synapses OR synaptic OR synuclein OR synucleins OR tau OR tauopathies</td>
</tr>
<tr>
<td></td>
<td>OR tauopathy OR tauopathy OR Thioredoxin-Disulfide OR thioridoxin-reductase OR</td>
</tr>
<tr>
<td></td>
<td>tremor OR tremors OR Tyrosine 3-Monoxygenase OR tyrosine-hydroxylase OR</td>
</tr>
<tr>
<td></td>
<td>ubiquitin)</td>
</tr>
</tbody>
</table>

A-3
Database Search Parameters

<table>
<thead>
<tr>
<th>Database</th>
<th>Original search and search update parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOPUS</td>
<td>All terms searched in Title, Abstract, or Keywords; Indexes=SCI-EXPANDED, SSCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, CCR-EXPANDED, IC; Timespan=All years</td>
</tr>
</tbody>
</table>

Search Terms; original search: (paraquat OR 1,1'-Dimethyl-4,4'-bipyridinium-dichloride OR 1910-42-5 OR gramoxone OR methyl-viologen OR paragreen-A)

Search Terms; search update: (paraquat OR 1,1'-Dimethyl-4,4'-bipyridinium-dichloride OR 1910-42-5 OR gramoxone OR methyl-viologen OR paragreen-A) AND (alpha-synuclein OR apoptosis OR astrocyte OR astrocytes OR ataxia OR autophagy OR axon OR axonal OR axons OR bradykinesia OR brain OR central-nervous OR dendrite OR dendrites OR dendritic OR dj-1 OR dopamine OR dopaminergic OR gait OR ganglia OR glial OR gliosis OR glutamate OR glutamates OR Glutamic Acids OR glutathione OR Lewy bodies OR lewy body OR locomotion OR locomotor-activity OR lrrk2 OR Mesencephalon OR Mesencephalons OR microglia OR microglial OR microglials OR midbrain OR mitochondria OR Mitochondrial OR Mitochondrion OR motor-activity OR mpp OR mptp OR NADPH-oxidase OR nerve OR nerves OR nervous OR neural OR neurobehavior OR neurobehavioral OR neurobehaviour OR neurobehavioural OR neuroblastoma OR neurodegeneration OR neurodegenerative OR neurogia OR neurological OR neuromotor OR neuron OR neuronal OR neuronopathy OR neurons OR neuropathies OR neuropathology OR neuropathy OR neurotoxic OR neurotoxicity OR neurotransmitter OR neurotransmitters OR nigral OR nigrostriatal OR nitric-oxide OR nitrosative-stress OR oxidative-stress OR paralysis-agitans OR parkin OR parkinson OR parkinson's OR parkinsonian OR parkinsonism OR pink1 OR reactive-oxygen-species OR rigidity OR snpc OR striatal OR striatum OR substantia-nigra OR synapse OR synapses OR synaptic OR synuclein OR synucleins OR tau OR tauopathies OR tauopathy OR Thiooxidin-Disulfide OR thiooxidin-reductase OR tremor OR tremors OR Tyrosine 3-Monooxygenase OR tyrosine-hydroxylase OR ubiquitin)
Database

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXLINE</td>
<td>Original search and search update parameters: All terms searched in Title, Abstract, or Keywords; Limits; original search: Exclude PubMed Records; Search exact words Limits; search update: Exclude PubMed Records; Do NOT add chemical synonyms and CASRNs to search; Search exact words Search Terms: (paraquat OR 1,1'-Dimethyl-4,4'-bipyridinium-dichloride OR 1910-42-5 OR gramoxone OR methyl-viologen OR paragreen-A) AND (alpha-synuclein OR apoptosis OR astrocyte OR astrocytes OR ataxia OR autophagy OR axon OR axonal OR axons OR bradykinesia OR brain OR central-nervous OR dendrite OR dendrites OR denticate OR dj-1 OR dopamine OR dopaminergic OR gait OR ganglia OR glial OR gliosis OR glutamate OR glutamates OR Glutamic Acids OR glutathione OR Lewy bodies OR lewy body OR locomotion OR locomotor-activity OR lrrk2 OR Mesencephalon OR Mesencephalons OR microglia OR microglial OR microglials OR midbrain OR mitochondria OR Mitochondrial OR Mitochondrion OR motor-activity OR mpp OR mptp OR NADPH-oxidase OR nerve OR nerves OR nervous OR neural OR neurobehavior OR neurobehavioral OR neurobehaviour OR neurobehavioural OR neuroblastoma OR neurodegeneration OR neurodegenerative OR neuroglia OR neurological OR neuromotor OR neuron OR neuronal OR neuronopathy OR neurons OR neuropathies OR neuropathy OR neurotoxic OR neurotoxicity OR neurotransmitter OR neurotransmitters OR nigral OR nigrostriatal OR nitric-oxide OR nitrosative-stress OR oxidative-stress OR paralysis-agitants OR parkin OR parkinson OR parkinsons OR parkinson's OR parkinsonian OR parkinsonism OR pink1 OR reactive-oxygen-species OR rigidity OR snpc OR striatal OR striatum OR substantia-nigra OR synapse OR synapses OR synaptic OR synuclein OR synucleins OR tau OR tauopathies OR tauopathy OR Thioredoxin-Disulfide OR thioredoxin-reductase OR tremor OR tremors OR Tyrosine 3-Monoxygenase OR tyrosine-hydroxylase OR ubiquitin)</td>
</tr>
</tbody>
</table>
Appendix B. Detailed Inclusion/Exclusion Criteria

Table B-1. Detailed Inclusion and Exclusion Criteria to Determine Study Eligibility

<table>
<thead>
<tr>
<th>Evidence Stream</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria (or Blank if None)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants/Population (Human Studies or Experimental Model Systems)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>No restrictions on sex, age, life stage (including in utero exposure) at time of exposure or outcome assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No restrictions on country of residence/origin, lifestyle, race/ethnicity, or occupation</td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>No restrictions on sex, age, species (including Drosophila and C. elegans), or life stage at exposure or outcome assessment</td>
<td>Studies in non-animal organisms (e.g., plants, fungi, protists, bacteria)</td>
</tr>
<tr>
<td>In Vitro</td>
<td>Studies involving an in vitro exposure system and neurological measures directed at cellular, biochemical, and molecular mechanisms that might explain how exposure to paraquat leads to Parkinson’s disease</td>
<td></td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>Exposure to paraquat dichloride (CASRN 1910-42-5) based on administered dose or concentration, biomonitoring data (e.g., urine, blood, or other specimens), environmental measures (e.g., air, water levels), or indirect measures (e.g., job title)</td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>Exposure to paraquat dichloride based on administered dose or concentration or biomonitoring data (e.g., urine, blood, or other specimens)</td>
<td>No restrictions on route of administration</td>
</tr>
<tr>
<td>In Vitro</td>
<td>Exposure to paraquat dichloride based on administered dose or concentration</td>
<td></td>
</tr>
<tr>
<td>Comparators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>Humans exposed to lower levels (or no exposure/exposure below detection levels) of paraquat dichloride</td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>Study must include vehicle or untreated control group</td>
<td></td>
</tr>
<tr>
<td>In Vitro</td>
<td>Study must include vehicle or untreated control group</td>
<td></td>
</tr>
</tbody>
</table>
Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

<table>
<thead>
<tr>
<th>Evidence Stream</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria (or Blank if None)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Primary outcomes (following in vivo exposure to paraquat dichloride):
Diagnosis of Parkinson’s disease and/or clinical observations, neurobehavioral, or neuropathological outcomes typically associated with Parkinson’s disease following in vivo exposure; focusing on tissue level and functional abnormalities, descriptive and/or functional assessment of the central nervous system, including the nigrostriatal (dopamine) system; examples of relevant neurobehavioral outcomes include tremor, bradykinesia, rigidity, and postural instability</td>
<td>Studies reporting on toxicity in organs or tissues not associated with the central or peripheral nervous system</td>
</tr>
<tr>
<td>Secondary outcomes (following in vivo exposure to paraquat dichloride):
Targeted molecular assays that investigate proposed cellular, biochemical, and/or molecular pathways for the etiology of Parkinson’s disease following in vivo exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>Primary outcomes (following in vivo exposure to paraquat dichloride):
Neurobehavioral or neuropathological outcomes, focusing on whole body and tissue level abnormalities typically associated with Parkinson’s disease following in vivo exposure; endpoints might include motor activity and coordination, sensorimotor reflexes, effects on cognitive function, quantitative or qualitative assessment of dopaminergic neuron counts in the substantia nigra and dopaminergic neuron terminals in the striatum, and other descriptive and/or functional assessments of the central nervous system, including the nigrostriatal (dopamine) system, which are considered hallmarks of Parkinson’s disease (e.g., detection of intracytoplasmic Lewy bodies)</td>
<td>Studies reporting on toxicity in organs or tissues not associated with the central or peripheral nervous system</td>
</tr>
<tr>
<td>Secondary outcomes (following in vivo exposure to paraquat dichloride):
Targeted molecular assays that investigate proposed cellular, biochemical, and/or molecular pathways for the etiology of Parkinson’s disease following in vivo exposure, including measures of oxidative stress, inflammation, mitochondrial and/or proteasomal dysfunction, dopamine and metabolite levels in the nigrostriatal pathway, or other key molecular initiating events related to parkinsonism</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

<table>
<thead>
<tr>
<th>Evidence Stream</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria (or Blank if None)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Vitro</td>
<td>Following in vitro exposure to paraquat dichloride:</td>
<td>Studies reporting on toxicity unrelated to the central or peripheral nervous system</td>
</tr>
<tr>
<td></td>
<td>In vitro assays investigating either cellular responses commonly attributed to Parkinson’s disease (e.g., assessment of functionality, integrity, and viability for nerve cells critical to the nigrostriatal [dopamine] system) or generic cellular responses commonly attributed to paraquat exposure but are not unique to Parkinson’s disease (e.g., measures of oxidative stress and mitochondria dysfunction in nerve cells, epigenetic changes)</td>
<td>Mechanistic assays investigating proposed pathways for the etiology of Parkinson’s disease (e.g., enzyme interactions, cell signaling)</td>
</tr>
</tbody>
</table>

Publications (e.g., Language Restrictions, Use of Conference Abstracts)

<table>
<thead>
<tr>
<th>Human, Animal, In Vitro</th>
<th>Study must contain original data</th>
<th>Articles with no original data (e.g., editorial or review(^b))</th>
<th>Studies published in abstract form only (grant awards, conference abstracts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studies published in a language other than English will be collected and categorized by health effect or mechanism to the extent they can be categorized without full translation as extensive translation and level of effort are beyond the goals of this scoping review</td>
<td>Retracted articles</td>
<td>Non-English language articles that cannot be categorized based on English abstract</td>
</tr>
</tbody>
</table>

\(^a\)These criteria were developed from the PECO statement outlined in Table 1.

\(^b\)Relevant reviews are used as background and for reference scanning.
Appendix C. Data Extraction Elements for Human Studies

Table C-1. Data Extraction Elements for Human Studies

<table>
<thead>
<tr>
<th>Element Type</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding</td>
<td>Funding source(s) Reporting of conflict of interest by authors and/or translators (*reporting bias)</td>
</tr>
<tr>
<td>Subjects</td>
<td>Study population name/description Dates of study and sampling timeframe Geography (country, region, state, etc.) Demographics (sex, race/ethnicity, age or life stage and exposure and outcome assessment) Number of subjects (target, enrolled, n per group in analysis, and participation/follow-up rates) (*missing data bias) Inclusion/exclusion criteria/recruitment strategy (*selection bias) Description of reference group (*selection bias)</td>
</tr>
<tr>
<td>Methods</td>
<td>Study design (e.g., prospective or retrospective cohort, nested case-control study, cross-sectional, population-based case-control study, intervention, case report) Length of follow-up (*information bias) Health outcome category, e.g., neurodevelopment Health outcome, e.g., memory (*reporting bias) Diagnostic or methods used to measure health outcome (*information bias) Confounders or modifying factors and how considered in analysis (e.g., included in final model, considered for inclusion but determined not needed (*confounding bias) Substance name and CASRN Exposure assessment (e.g., blood, urine, hair, air, drinking water, job classification, residence, administered treatment in controlled study) (*information bias) Methodological details for exposure assessment (e.g., high-performance liquid chromatography-mass spectrometry/mass spectrometry, limit of detection) (*information bias) Statistical methods (*information bias)</td>
</tr>
<tr>
<td>Results</td>
<td>Exposure levels (e.g., mean, median, measures of variance as presented in paper, such as standard deviation, standard error of the mean, 75th/90th/95th percentile, minimum/maximum); range of exposure levels, number of exposed cases Statistical findings (e.g., adjusted β, standardized mean difference, adjusted odds ratio, standardized mortality ratio, relative risk) or description of qualitative results. When possible, OHAT will convert measures of effect to a common metric with associated 95% confidence intervals. Most often, measures of effect for continuous data are expressed as mean difference, standardized mean difference, and percent control response. Categorical data are typically expressed as odds ratio, relative risk (also called risk ratio), or β values, depending on what metric is most commonly reported in the included studies and on OHAT’s ability to obtain information for effect conversions from the study or through author query.</td>
</tr>
</tbody>
</table>
Element Type Element

If not presented in the study, statistical power can be assessed during data extraction using an approach that can detect a 10% to 20% change from response by control or referent group for continuous data, or a risk ratio or odds ratio of 1.5 to 2 for categorical data, using the prevalence of exposure or prevalence of outcome in the control or referent group to determine sample size. For categorical data where the sample sizes of exposed and control or referent groups differ, the sample size of the exposed group will be used to determine the relative power category. Recommended sample sizes to achieve 80% power for a given effect size (i.e., 10% or 20% change from control) will be compared with sample sizes used in the study to categorize statistical power as “appears to be adequately powered” (sample size for 80% power met), “somewhat underpowered” (sample size is 75% to <100% of number required for 80% power), “underpowered” (sample size is 50% to <75% of number required for 80% power), or “severely underpowered” (sample size is <50% of number required for 80% power).

Observations on dose response (e.g., trend analysis, description of whether dose-response shape appears to be monotonic, non-monotonic)

<table>
<thead>
<tr>
<th>Other</th>
<th>Documentation of author queries, use of digital rulers to estimate data values from figures, exposure unit, and statistical result conversions, etc.</th>
</tr>
</thead>
</table>
Appendix D. Data Extraction Elements for Animal Studies

Table D-1. Data Extraction Elements for Animal Studies

<table>
<thead>
<tr>
<th>Element Type</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding</td>
<td>Funding source(s)</td>
</tr>
<tr>
<td></td>
<td>Reporting of conflict of interest by authors and/or translators (*reporting bias)</td>
</tr>
<tr>
<td>Animal Model</td>
<td>Sex</td>
</tr>
<tr>
<td></td>
<td>Species</td>
</tr>
<tr>
<td></td>
<td>Strain</td>
</tr>
<tr>
<td>Treatment</td>
<td>Chemical name and CASRN</td>
</tr>
<tr>
<td></td>
<td>Source of chemical</td>
</tr>
<tr>
<td></td>
<td>Purity of chemical (*information bias)</td>
</tr>
<tr>
<td></td>
<td>Dose levels or concentration (as presented and converted to mg/kg bw/d when possible)</td>
</tr>
<tr>
<td></td>
<td>Other dose-related details, such as whether administered dose level was verified by measurement, information on internal dosimetry (*information bias)</td>
</tr>
<tr>
<td></td>
<td>Vehicle used for exposed animals</td>
</tr>
<tr>
<td></td>
<td>Route of administration (e.g., oral, inhalation, dermal, injection)</td>
</tr>
<tr>
<td></td>
<td>Age or life stage at start of dosing and at health outcome assessment</td>
</tr>
<tr>
<td></td>
<td>Duration and frequency of dosing (e.g., hours, days, weeks when administration was ended, days per week)</td>
</tr>
<tr>
<td>Methods</td>
<td>Study design (e.g., single treatment, acute, subchronic (e.g., 90 days in a rodent), chronic, multigenerational, developmental, other)</td>
</tr>
<tr>
<td></td>
<td>Guideline compliance (i.e., use of EPA, OECD, NTP or another guideline for study design, conducted under good laboratory practice (GLP) guideline conditions, non-GLP but consistent with guideline study, non-GLP peer-reviewed publication)</td>
</tr>
<tr>
<td></td>
<td>Number of animals per group (and dams per group in developmental studies) (*missing data bias)</td>
</tr>
<tr>
<td></td>
<td>Randomization procedure, allocation concealment, blinding during outcome assessment (*selection bias)</td>
</tr>
<tr>
<td></td>
<td>Method to control for litter effects in developmental studies (*information bias)</td>
</tr>
<tr>
<td></td>
<td>Use of negative controls and whether controls were untreated, vehicle-treated, or both</td>
</tr>
<tr>
<td></td>
<td>Endpoint health category (e.g., reproductive)</td>
</tr>
<tr>
<td></td>
<td>Endpoint (e.g., infertility)</td>
</tr>
<tr>
<td></td>
<td>Diagnostic or method to measure endpoint (*information bias)</td>
</tr>
<tr>
<td></td>
<td>Statistical methods (*information bias)</td>
</tr>
<tr>
<td>Results</td>
<td>Measures of effect at each dose or concentration level (e.g., mean, median, frequency, measures of precision or variance) or description of qualitative results. When possible, OHAT will convert measures of effect to a common metric with associated 95% confidence intervals. Most often, measures of effect for continuous data will be expressed as percent control response, mean difference, or standardized mean difference. Categorical data will be expressed as relative risk (also called risk ratio).</td>
</tr>
</tbody>
</table>
Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

<table>
<thead>
<tr>
<th>Element Type</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-observed-effect level (NOEL), lowest-observed-effect level (LOEL), benchmark dose (BMD) analysis, statistical significance of other dose levels, or other estimates of effect presented in paper. Note: The NOEL and LOEL are highly influenced by study design, give no quantitative information about the relationship between dose and response, and can be subject to author’s interpretation (e.g., a statistically significant effect might not be considered biologically important). Also, a NOEL does not necessarily mean zero response. Ideally, the response rate or effect size at specific dose levels is used as the primary measure to characterize the response.</td>
<td></td>
</tr>
<tr>
<td>If not presented in the study, statistical power can be assessed during data extraction using an approach that assesses the ability to detect a 10% to 20% change from control group’s response for continuous data, or a relative risk or odds ratio of 1.5–2 for categorical data, using the outcome frequency in the control group to determine sample size. Recommended sample sizes to achieve 80% power for a given effect size, i.e., 10% or 20% change from control, will be compared with sample sizes used in the study to categorize statistical power. Studies will be considered adequately powered when sample size for 80% power is met.</td>
<td></td>
</tr>
<tr>
<td>Observations on dose response (e.g., trend analysis, description of whether dose-response shape appears to be monotonic, non-monotonic).</td>
<td></td>
</tr>
<tr>
<td>Data on internal concentration, toxicokinetics, or toxicodynamics (when reported).</td>
<td></td>
</tr>
</tbody>
</table>

Other

Documentation of author queries, use of digital rulers to estimate data values from figures, exposure unit, statistical result conversions, etc.
Appendix E. List of Included Studies

Table of Contents

E.1. Human Studies: Primary Endpoints ... E-2
E.2. Human Studies: Secondary Endpoints ... E-4
E.3. Animal Studies: Primary Endpoints ... E-4
E.4. Animal Studies: Secondary Endpoints ... E-16
E.5. In Vitro Studies ... E-33
E.1. Human Studies: Primary Endpoints

Certain studies in this list are also included in the Animal Studies: SecondaryEndpoints list and in the In Vitro Studies list if they contained data relating to those endpoints in addition to human primary endpoints.

E.2. Human Studies: Secondary Endpoints

E.3. Animal Studies: Primary Endpoints

Certain studies in this list are also included in the Animal Studies: Secondary Endpoints list and in the In Vitro Studies list if they contained data relating to those endpoints in addition to animal primary endpoints.

Minnema DJ, Travis KZ, Breckenridge CB, Sturgess NC, Butt M, Wolf JC, Zadory D, Beck MJ, Mathews JM, Tisdel MO et al. 2014. Dietary administration of paraquat for 13 weeks does not
result in a loss of dopaminergic neurons in the substantia nigra of C57BL/6J mice. Regul Toxicol Pharm. 68(2):250-258. https://doi.org/10.1016/j.yrtph.2013.12.010

Phom L, Achumi B, Alone DP, Muralidhara, Yenisetti SC. 2014. Curcumin's neuroprotective efficacy in Drosophila model of idiopathic Parkinson's disease is phase specific: Implication of

E-14

Certain studies in this list are also included in the Human Studies: Primary Endpoints list, the Animal Studies: Primary Endpoints list, and the In Vitro Studies list if they contained data relating to those endpoints in addition to animal secondary endpoints.

Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

E.5. In Vitro Studies

Certain studies in this list are also included in the Human Studies: Primary Endpoints list, the Animal Studies: Primary Endpoints list, and the Animal Studies: Secondary Endpoints list if they contained data relating to those endpoints in addition to in vitro endpoints.

E-39

Peng J, Stevenson FF, Doctrow SR, Andersen JK. 2005. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the

Thakar JH, Hassan MN. 1988. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sci. 43(2):143-149. https://doi.org/10.1016/0024-3205(88)90291-3

https://doi.org/10.1080/15287390500226987

Appendix F. Supplemental Figures

Figures

Figure F-1. Number of Epidemiological Studies of Parkinson's Disease-related Outcomes Following Paraquat Exposure .. F-2
Figure F-2. Occupational Paraquat Exposure and Parkinsonism Outcomes .. F-4
Figure F-3. Environmental Paraquat Exposure and Parkinsonism Outcomes .. F-5
Figure F-4. General Population Paraquat Exposure and Parkinsonism Outcomes F-6
Figure F-5. Number of Studies that Evaluated Secondary Animal Effects Following Paraquat Exposures in Nonmammalian Models .. F-7
Figure F-1. Number of Epidemiological Studies of Parkinson's Disease-related Outcomes Following Paraquat Exposure

Some studies might have characterized multiple populations or used multiple study designs and therefore could be listed multiple times. Row and column totals and grand total shown in the figure represent counts of distinct references.

Interactive figure and additional study details in Tableau (NTP, 2019b).

Created using Tableau.
<table>
<thead>
<tr>
<th>Study</th>
<th>Population Name</th>
<th>Parkinsonism Outcome</th>
<th>Population Description</th>
<th>Metric</th>
<th>Comparison Set</th>
<th>Exposure Group</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koseki et al. 2007</td>
<td>Pesticide workers and spouses in Agricultural Health Study (AHS) cohort</td>
<td>Parkinson’s disease</td>
<td>78 reported PD, 15,331 did not report PD</td>
<td>adjOR</td>
<td>ever/never use paraquat</td>
<td>never use paraquat</td>
<td>48.616</td>
</tr>
<tr>
<td>Furlong et al. 2015</td>
<td>Farming and Movement Evaluation (FAME) participants</td>
<td>Parkinson’s disease</td>
<td>68 cases, 237 controls</td>
<td>adjOR</td>
<td>paraquat (glue cont. crowing hygiene)</td>
<td>ever use paraquat</td>
<td>7.393</td>
</tr>
<tr>
<td>Goldman et al. 2012</td>
<td>Farming and Movement Evaluation (FAME) participants</td>
<td>Parkinson’s disease</td>
<td>67 cases, 343 controls</td>
<td>adjOR</td>
<td>paraquat exposure (homzygous deletion genotypes for GSTT1)</td>
<td>never use paraquat</td>
<td>102</td>
</tr>
<tr>
<td>Koseki et al. 2014</td>
<td>Farming and Movement Evaluation (FAME) participants</td>
<td>Parkinson’s disease</td>
<td>88 cases, 336 controls (males only)</td>
<td>adjOR</td>
<td>paraquat exposure (dietary fat intake)</td>
<td>never use paraquat</td>
<td>115</td>
</tr>
<tr>
<td>Tenner et al. 2011</td>
<td>Farming and Movement Evaluation (FAME) participants</td>
<td>Parkinson’s disease</td>
<td>110 cases, 358 controls</td>
<td>adjOR</td>
<td>paraquat use</td>
<td>ever use paraquat</td>
<td>396</td>
</tr>
<tr>
<td>van der Mark et al. 2014</td>
<td>Parkinson’s patients and controls from five hospitals</td>
<td>Parkinson’s disease</td>
<td>444 cases, 875 controls</td>
<td>adjOR</td>
<td>paraquat exposure</td>
<td>never use paraquat</td>
<td>1,229</td>
</tr>
</tbody>
</table>

F-3
Figure F-2. Occupational Paraquat Exposure and Parkinsonism Outcomes

Interactive figure and additional study details in HAWC (NTP, 2019a).
Created using HAWC.
Tomenson and Campbell (2011) is not included in this visualization because study results are provided as standardized mortality ratios and not odds ratios.
Kamel et al. (2007) is classified here as a prospective cohort study but includes a prospective analysis (incidence) and cross-sectional analysis (prevalence).
Pouchieu et al. (2018) is classified here as a cross-sectional analysis. The study evaluates the AGRICAN cohort, but results were from the baseline questionnaire only.
Scoping Review of Paraquat Dichloride Exposure and Parkinson’s Disease

Figure F-3. Environmental Paraquat Exposure and Parkinsonism Outcomes

Interactive figure and additional study details in HAWC (NTP, 2019a). Created using HAWC. For Lee et al. (2012), the result is significant, but authors did not provide a p value.
Figure F-4. General Population Paraquat Exposure and Parkinsonism Outcomes

Interactive figure and additional study details in [HAWC](NTP, 2019a).

Created using HAWC.

Hertzman et al. (1990) is not included in this visualization. Hertzman et al. reported that odds ratios could not be calculated because four Parkinson’s disease patients and no controls reported paraquat contact.

Wan and Lin (2016) is also not included in this visualization because it is an ecological spatial analysis with results not comparable with results from other studies.
Figure F-5. Number of Studies that Evaluated Secondary Animal Effects Following Paraquat Exposures in Nonmammalian Models

Some studies might have characterized multiple health effects or species and therefore could be listed multiple times. Row and column totals and grand total shown in the figure represent counts of distinct references. Interactive figure and additional study details in Tableau (NTP, 2019b). Created using Tableau.
Appendix G. Supplemental Files

The following supplemental files are available at https://doi.org/10.22427/NTP-DATA-RR-16.

G.1. Protocol Information

Protocol
parkinsons_protocol_508.pdf

G.2. Tableau Dataset

Excel Data File
ohat_parkinsondataset.xlsx