DRAFT

Report on Carcinogens
Background Document for

Formaldehyde

September 3, 2009

U.S. Department of Health and Human Services
Public Health Service
National Toxicology Program
Research Triangle Park, NC 27709

This DRAFT background document is distributed solely for the purpose of public comment and predissemination peer review. It should not be construed to represent final NTP determination or policy.
FOREWORD

The Report on Carcinogens (RoC) is prepared in response to Section 301 of the Public Health Service Act as amended. The RoC contains a list of identified substances (i) that either are known to be human carcinogens or are reasonably be anticipated to be human carcinogens and (ii) to which a significant number of persons residing in the United States are exposed. The Secretary, Department of Health and Human Services (HHS), has delegated responsibility for preparation of the RoC to the National Toxicology Program (NTP), which prepares the report with assistance from other Federal health and regulatory agencies and nongovernmental institutions.

Nominations for (1) listing a new substance, (2) reclassifying the listing status for a substance already listed, or (3) removing a substance already listed in the RoC are reviewed in a multi-step, scientific review process with multiple opportunities for public comment. The scientific peer-review groups evaluate and make independent recommendations for each nomination according to specific RoC listing criteria. This background document was prepared to assist in the review of formaldehyde. The scientific information used to prepare Sections 3 through 5 of this document must come from publicly available, peer-reviewed sources. Information in Sections 1 and 2, including chemical and physical properties, analytical methods, production, use, and occurrence may come from published and/or unpublished sources. The NTP will provide a reference for all published and unpublished sources used in this document. For each study cited in the background document from the peer-reviewed literature, information on funding sources (if available) and the authors’ affiliations will be provided in the reference section. Any interpretive conclusions, comments, or statistical calculations made by the authors or peer reviewers of this document that are not contained in the original citation are identified in brackets []. This draft document will be peer reviewed in a public forum by an ad hoc expert panel of scientists from public and private sectors with relevant expertise and knowledge selected by the NTP in accordance with the Federal Advisory Committee Act and HHS guidelines and regulations. This document will be finalized based on the peer-review recommendations of the expert panel and public comments received for this draft document.
A detailed description of the RoC nomination review process and a list of all substances under consideration for listing in or delisting from the RoC can be obtained by accessing the 12th RoC at http://ntp.niehs.nih.gov/go/9732. The most recent RoC, the 11th Edition (2004), is available at http://ntp.niehs.nih.gov/go/19914.
CONTRIBUTORS

Project Managers, Authors, and Principal Reviewers

National Toxicology Program (NTP) and National Institute of Environmental Health Sciences (NIEHS)

Ruth Lunn, Dr.P.H. Director, Report on Carcinogens Center
Gloria Jahnke, D.V.M. Health Scientist, Report on Carcinogens Center
Diane Spencer, M.S. Health Scientist, Report on Carcinogens Center
C.W. Jameson, Ph.D. Report on Carcinogens Center (former Director; currently at CWJ Consulting, LLC)

SRA International, Inc. (Support provided through NIEHS Contract Number NO1-ES-35505)

Sanford Garner, Ph.D. Principal Investigator
Stanley Atwood, M.S., DABT
Greg Carter, M.E.M.
Andrew Ewens, Ph.D.
Dana Greenwood, B.S.
Jennifer Ratcliffe, Ph.D.

Consultants

Tania Desrosiers, M.P.H. University of North Carolina
Joe Haseman, Ph.D. Independent Consultant

Administrative Support

Ella Darden, B.S. SRA International, Inc.
Tracy Saunders, B.S. SRA International, Inc.
Jenaya Brown Report on Carcinogens Center, NIEHS
Criteria for Listing Agents, Substances or Mixtures in the Report on Carcinogens

U.S. Department of Health and Human Services
National Toxicology Program

The criteria for listing an agent, substance, mixture, or exposure circumstance in the RoC are as follows:

Known To Be Human Carcinogen:
There is sufficient evidence of carcinogenicity from studies in humans*, which indicates a causal relationship between exposure to the agent, substance, or mixture, and human cancer.

Reasonably Anticipated To Be Human Carcinogen:
There is limited evidence of carcinogenicity from studies in humans*, which indicates that causal interpretation is credible, but that alternative explanations, such as chance, bias, or confounding factors, could not adequately be excluded,

or

there is sufficient evidence of carcinogenicity from studies in experimental animals, which indicates there is an increased incidence of malignant and/or a combination of malignant and benign tumors (1) in multiple species or at multiple tissue sites, or (2) by multiple routes of exposure, or (3) to an unusual degree with regard to incidence, site, or type of tumor, or age at onset,

or

there is less than sufficient evidence of carcinogenicity in humans or laboratory animals; however, the agent, substance, or mixture belongs to a well-defined, structurally related class of substances whose members are listed in a previous Report on Carcinogens as either known to be a human carcinogen or reasonably anticipated to be a human carcinogen, or there is convincing relevant information that the agent acts through mechanisms indicating it would likely cause cancer in humans.

Conclusions regarding carcinogenicity in humans or experimental animals are based on scientific judgment, with consideration given to all relevant information. Relevant information includes, but is not limited to, dose response, route of exposure, chemical structure, metabolism, pharmacokinetics, sensitive sub-populations, genetic effects, or other data relating to mechanism of action or factors that may be unique to a given substance. For example, there may be substances for which there is evidence of carcinogenicity in laboratory animals, but there are compelling data indicating that the agent acts through mechanisms which do not operate in humans and would therefore not reasonably be anticipated to cause cancer in humans.

*This evidence can include traditional cancer epidemiology studies, data from clinical studies, and/or data derived from the study of tissues or cells from humans exposed to the substance in question that can be useful for evaluating whether a relevant cancer mechanism is operating in people.
Executive Summary

Introduction

Formaldehyde is a high-production-volume chemical with a wide array of uses. The predominant use of formaldehyde in the United States is in the production of industrial resins (mainly urea-formaldehyde, phenol-formaldehyde, polyacetal, and melamine-formaldehyde resins) that are used to manufacture products such as adhesives and binders for wood products, pulp and paper products, plastics, and synthetic fibers, and in textile finishing. Formaldehyde is also used as a chemical intermediate. Resin production and use as a chemical intermediate together account for over 80% of its use. Other, smaller uses of formaldehyde that may be important for potential human exposure include use in agriculture, medical use as a disinfectant and preservative (for pathology, histology, and embalming), and use in numerous consumer products as a biocide and preservative.

Formaldehyde (gas) is listed in the *Eleventh Report on Carcinogens* (RoC) as *reasonably anticipated to be a human carcinogen* based on limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in laboratory animals (NTP 2005a); it was first listed in the 2nd RoC (NTP 1981). Formaldehyde (all physical forms) was nominated by NIEHS for possible reclassification in the 12th RoC based on the 2004 review by the International Agency for Research on Cancer (IARC 2006), which concluded that there was sufficient evidence for the carcinogenicity of formaldehyde in humans.

Human Exposure

Formaldehyde has numerous industrial and commercial uses and is produced in very large amounts (billions of pounds per year in the United States) by catalytic oxidation of methanol. Its predominant use, accounting for roughly 55% of consumption, is in the production of industrial resins, which are used in the production of numerous commercial products. Formaldehyde is used in industrial processes primarily as a solution (formalin) or solid (paraformaldehyde or trioxane), but exposure is frequently to formaldehyde gas, which is released during many of the processes. Formaldehyde gas is also created from
the combustion of organic material and can be produced secondarily in air from
photochemical reactions involving virtually all classes of hydrocarbon pollutants. In
some instances, secondary production may exceed direct air emissions. Formaldehyde is
also produced endogenously in humans and animals.

Formaldehyde is a simple, one-carbon molecule that is rapidly metabolized, is
endogenously produced, and is also formed through the metabolism of many xenobiotic
agents. Because of these issues, typical biological indices of exposure, such as levels of
formaldehyde or its metabolites in blood or urine, have proven to be ineffective measures
of exposure. Formaldehyde can bind covalently to single-stranded DNA and protein to
form crosslinks, or with human serum albumin or the N-terminal valine of hemoglobin to
form molecular adducts, and these reaction products of formaldehyde might serve as
biomarkers for exposure to formaldehyde.

Occupational exposure to formaldehyde is highly variable and can occur in numerous
industries, including the manufacture of formaldehyde and formaldehyde-based resins,
wood-composite and furniture production, plastics production, histology and pathology,
embalming and biology laboratories, foundries, fiberglass production, construction,
agriculture, and firefighting, among others. In fact, because formaldehyde is ubiquitous, it
has been suggested that occupational exposure to formaldehyde occurs in all work places.

Formaldehyde is also ubiquitous in the environment and has been detected in indoor and
outdoor air; in treated drinking water, bottled drinking water, surface water, and
groundwater; on land and in the soil; and in numerous types of food.

The primary source of exposure is from inhalation of formaldehyde gas in indoor settings
(both residential and occupational); however, formaldehyde also may adsorb to respirable
particles, providing a source of additional exposure. Major sources of formaldehyde
exposure for the general public have included combustion sources (both indoor and
outdoor), automobile emissions, off-gassing from numerous construction and home
furnishing products, off-gassing from numerous consumer goods, and cigarette smoke.
Ingestion of food and water can also be a significant source of exposure to formaldehyde.
Numerous agencies, including the Department of Homeland Security, CPSC, EPA, FDA, HUD, the Mine Safety and Health Administration, OSHA, the Pipeline and Hazardous Materials Safety Administration, ACGIH, and NIOSH, have developed regulations and guidelines to reduce exposure to formaldehyde.

Human Cancer Studies

A large number of epidemiological studies have evaluated the relationship between formaldehyde exposure and carcinogenicity in humans. The studies fall into the following main groups: (1) historical cohort studies and nested case-control studies of workers in a variety of industries that manufacture or use formaldehyde, including the chemical, plastics, fiberglass, resins, and woodworking industries, as well as construction, garment, iron foundry, and tannery workers; (2) historical cohort studies of health professionals, including physicians, pathologists, anatomists, embalmers, and funeral directors; and (3) population-based or occupationally-based case-control incidence or mortality studies of specific cancer endpoints. In addition, several studies have re-analyzed data from specific cohort or case-control studies or have conducted pooled analyses or meta-analyses for specific cancer endpoints.

The largest study available to date is the combined cohort mortality study of mixed industries conducted by the National Cancer Institute (NCI). This cohort includes 26,561 male and female workers, enrolled from ten different formaldehyde-producing or using industries, employed before 1966 and followed most recently to 1994 and 2004, most of the workers were exposed to formaldehyde (Hauptmann *et al.* 2003, 2004 and Beane Freeman *et al.* 2009). Quantitative exposure data were used to construct job exposure matrices for individual workers, some of whom experienced peak exposures to formaldehyde > 4 ppm. This cohort is the only study in which exposure-response relationships for peak, average, cumulative, and duration of exposures and mortality for multiple cancer sites were investigated. Two other large cohort studies are available: (1) a large multi-plant cohort study (N = 14,014) of workers in six chemical manufacturing plants in the United Kingdom (Coggon *et al.* 2003), which calculated SMRs among ever-exposed and highly exposed workers for formaldehyde, and (2) a NIOSH cohort of garment workers (N = 11,039), which evaluated mortality for duration of exposure, time...
since first exposure, and year of first exposure to formaldehyde for selected cancer sites. The other cohorts (both for industrial and professional health workers) were smaller, and in general only reported mortality or incidence for ever-exposed workers in external (SMR or PMR) analyses, although some of the studies of professional health workers attempted indirect measures of exposure (such as length in a professional membership) as a proxy for exposure duration. In general, the majority of the nested case-control and other studies attempted to look at exposure-response relationships, but most were semi-quantitative. Since most of the cohorts have relatively low statistical power to evaluate rare cancers such as sinonasal and nasopharyngeal cancer, case-control studies are generally more informative for these outcomes. Findings across studies for cancer sites that have been the principal focus of investigation are summarized below.

Sinonasal cancers

There are two major histological types of sinonasal cancer (adenocarcinomas and squamous-cell carcinomas). Sinonasal cancers are rare, and the majority of cohort studies have insufficient numbers of exposed workers to be informative; many of the cohort studies did not report findings or did not observe any deaths for this specific endpoint. Increased risks of sinonasal cancers were observed among male (SPICR = 2.3, 95% CI = 1.3 to 4.0, 13 exposed cases) and female (SPICR = 2.4, 95% CI = 0.6 to 6.0, 4 exposed cases) Danish workers exposed to formaldehyde (Hansen and Olsen 1995, 1996) and among formaldehyde-exposed workers in the NCI cohort (SMR = 1.19, 95% CI = 0.38 to 3.68, 3 deaths) (Hauptmann et al. 2004). No increase in risk was found among formaldehyde-exposed workers in the large cohort of British chemical workers, based on two observed deaths (Coggon et al. 2003). Of the six case-control studies reviewed, four (Olsen et al. 1994, Olsen and Asnaes 1986, Hayes et al. 1986, Roush et al. 1987, and Luce et al. 1993) reported an association between sinonasal cancers and formaldehyde exposure; statistically significant risks were found in three studies (for ever exposed or individuals with higher measures of exposure) (Olsen et al. 1994, Hayes et al. 1986, Luce et al. 1993). Stronger associations were found for adenocarcinomas, and higher risks of adenocarcinomas were found among individuals with higher average and cumulative exposure, duration of exposure, and earlier dates of first exposure (Luce et al. 1993).
Wood dust is an established cause of sinonasal cancer, particularly adenocarcinomas (NTP 2005) and is a possible confounder in studies of woodworking industry workers; however, elevated risks for formaldehyde exposure were found among workers with low or no exposure to wood dust (Hayes et al. 1986, Olsen et al. 1994, Olsen and Asnaes 1986, Luce et al. 1993) and a possible synergistic effect was suggested in the latter two studies. A pooled analysis of 12 case-control studies of sinonasal cancer from seven countries (Luce et al. 2002) found an increase in adenocarcinomas among formaldehyde-exposed cases, adjusted for wood dust exposure, with increasing level of estimated exposure (OR = 3.0, 95% CI = 1.5 to 5.7, 91 exposed cases for men and OR = 1.5, 95% CI = 0.6 to 3.8, 6 exposed cases for women; both in the highest exposure groups). For squamous-cell carcinomas, the association with formaldehyde exposure was weaker, except among men with 30 or more years of exposure (OR = 1.4, 95% CI = 0.9 to 2.3, number of cases not specified; not adjusted for wood dust exposure).

Nasopharyngeal cancers

As in the case of sinonasal cancer, nasopharyngeal cancers are rare, and the majority of cohort studies have insufficient numbers of exposed workers to be informative. Several cohort studies did not report findings for nasopharyngeal cancer, or observed one or no cases or deaths, for this tumor site. A statistically significant increase in mortality from nasopharyngeal cancer was observed in the large NCI cohort (SMR = 2.10, 95% CI = 1.05 to 4.21, 8 exposed cases, one subsequently reclassified as oropharyngeal cancer) (Hauptmann et al. 2004). Statistically non-significantly elevated risks were observed among white embalmers from the United States (SMR = 1.89, 95% CI = 0.39 to 5.48, 3 deaths) (Hayes et al. 1990), and among male Danish workers exposed to formaldehyde (SPICR = 1.3, 95% CI = 0.3 to 3.2, 4 exposed cases) (Hansen and Olsen 1995, 1996). In the British chemical workers cohort, one death was observed (SMR not reported) (Coggon et al. 2003).

Exposure-response relationships between formaldehyde exposure and nasopharyngeal cancers risk were evaluated in the large NCI cohort study. Among seven exposed deaths, relative risks of nasopharyngeal cancers increased with peak exposure ($P_{\text{trend}} < 0.001$), average exposure ($P_{\text{trend}} = 0.066$) and cumulative exposure ($P_{\text{trend}} = 0.025$); tests for trend
among combined, exposed, and unexposed workers were $P_{\text{trend}} = 0.044, 0.126, \text{ and } 0.029$, respectively. Adjustment for duration of exposure to a number of potentially confounding substances did not substantively alter the findings. An analysis adjusted for plant type found statistically significant trends among exposed workers for peak and cumulative exposure and duration of exposure. Marsh and colleagues studied one of the plants, in which five of the nasopharyngeal cancer deaths had occurred, separately (Marsh et al. 2002, 2007a). These authors also reanalyzed the nasopharyngeal cancer findings in the NCI cohort (Marsh et al. 2007b) and concluded that external employment in metal working may have partly explained the findings for nasopharyngeal cancers in this cohort.

Six of the seven available case-control studies reported increases in nasopharyngeal cancers in association with probable exposure to formaldehyde or at higher levels or duration of estimated exposure (Olsen et al. 1984 [women only], Vaughan et al. 1986, Roush et al. 1987, West et al. 1993, Vaughan et al. 2000, and Hildesheim et al. 2001). Risks of nasopharyngeal cancers increased with exposure duration and cumulative exposure in two population based case-control studies (Vaughan et al. 2000, Hildesheim et al. 2001). In a meta-analysis of case-control and cohort studies (Collins et al. 1997), a statistically significant increased risk for nasopharyngeal cancers and formaldehyde exposure was estimated (mRR = 1.3, 95% CI = 1.2 to 1.5), and a pooled analysis of SMRs from three cohort mortality studies (Bosetti et al. 2008) reported an overall increase in the SMR of 1.33 (95% CI = 0.61 to 2.53, 9 deaths).

Other head and neck cancers, and respiratory cancer

Most cohort studies reported risk estimates for cancers of the buccal cavity, pharynx, larynx, and lung or combinations of these cancers. Most of these studies, including two of the three larger cohorts (Pinkerton et al. 2004 and Coggon et al. 2003), three of the professional health worker studies (Hayes et al. 1990, Walrath and Freumieni 1983 and 1984), and two of the smaller industrial cohorts (Anjelkovich et al. 1995 and Hansen and Olsen 1995, 1996) found elevated (between approximately 10% and 30%) but statistically non-significant risks for cancers of the buccal cavity or buccal cavity and pharynx combined; risk estimates were usually based on small numbers of deaths or
cases. In the NCI cohort, no association between buccal cavity and formaldehyde exposure was observed; however, a statistically significant increased risk for all upper respiratory cancers combined was found among workers with the highest average exposure (> 1 ppm) compared with the lowest exposure group (RR = 2.21, 15 deaths) (Hauptmann et al. 2004). Relative risks increased somewhat with increasing average and peak (but not cumulative) exposure, but the trends were not statistically significant. Most of the case-control studies that reported on head and neck cancers found elevated (usually statistically non-significant) risks for formaldehyde exposure and cancers of the buccal cavity and pharynx (or parts of the pharynx) (Vaughan et al. 1986, Merletti et al. 1991, Gustavsson et al. 1998, Laforest et al. 2000, Marsh et al. 2002, Wilson et al. 2004). Positive exposure-response relationships with probability and duration of exposure for cancers of the hypopharynx and larynx combined were reported by Laforest et al. (2000) and for combined probability and intensity of exposure and salivary cancer by Wilson et al. (2004). No clear association between formaldehyde exposure and hypopharyngeal or laryngeal cancer was observed by Berrino et al. (2003) or for combined head and neck cancers by Tarvainen et al. (2008). Most of the cohort studies and two of the three available case-control studies found no association between formaldehyde exposure and laryngeal cancer. Bosetti et al. (2008) calculated a combined estimated RR (using a weighted average of SMRs and/or PMRs) for combined buccal cavity and pharynx of 1.09 (95% CI = 0.88 to 1.34, 88 deaths) among industrial workers and 0.96 (95% CI = 0.75 to 1.24, 61 deaths) among health professional workers exposed to formaldehyde in a pooled analysis of 10 occupational cohort mortality studies.

Five of the industrial cohort studies reported increases in the risk of lung or respiratory system cancers (Andjelkovich et al. 1995, Bertazzi et al. 1986, Dell and Teta 1995, Hansen and Olsen 1996 [women only]) including the large cohort of British chemical workers, which reported a statistically significant increased risk (SMR = 1.22, 95% CI = 1.12 to 1.32, 594 deaths, all workers) (Coggon et al. 2003). In this study, risks increased with increasing exposure level ($P_{trend} < 0.001$) but not with duration of exposure. No association was observed in the other two large cohorts (Pinkerton et al. 2004, Hauptmann et al. 2004), in several of the smaller occupational cohorts (Hansen and Olsen 1995, 1996 [in men, although a small increase was seen in women], Edling et al.
1987b, Stellman et al. 1998, Stern et al. 1987), or in the six studies of health professional workers. Findings from case-control studies were also mixed: statistically significant increased risks were found among fiberglass manufacturing workers who were ever exposed to formaldehyde (OR = 1.61, 95% CI = 1.02 to 2.57, 591 cases) (Marsh et al. 2001) and among formaldehyde-exposed individuals in a population-based case-control study (Coggon et al. 1984), although risks were not increased among workers with higher exposure. Three studies reported statistically non-significant elevated risks for lung cancer, but no clear exposure response patterns were observed (Gerin et al. 1989, Andjelkovich et al. 1994, Chiazze et al. 1997). No association of lung cancer with formaldehyde exposure was reported in three other occupational case-control studies and one population-based study (Bond et al. 1986, Jensen and Andersen 1982, Partanen et al. 1990, Brownson et al. 1993). In a pooled analysis of 14 occupational mortality studies of formaldehyde exposure, which included an analysis of lung cancers, Bosetti et al. (2008) calculated a combined RR of 1.06 (95% CI = 0.92 to 1.23, 1,459 deaths) among industrial workers and 0.63 (95% CI = 0.47 to 0.84, 562 deaths) among health professional workers.

Lymphohematopoietic cancers

Among workers in the NCI cohort study, peak exposure to formaldehyde was associated with increased mortality for several types of lymphohematopoietic cancer (Beane Freeman et al. 2009). With respect to all lymphohematopoietic cancers combined and leukemias, relative risks increased with increasing peak exposure and statistically significant increased risks were found among workers with the highest peak exposure (≥4ppm) vs. the lowest exposed category for all lymphohematopoietic cancers (OR = 1.37, 95% CI = 1.03 to 1.81, 108 deaths, $P_{\text{trend}} = 0.02$) and statistically non-significant increases in risk were observed for all leukemia and peak exposure ≥4ppm (RR = 1.42, 95% CI = 0.92 to 2.18, 48 deaths, $P_{\text{trend}} = 0.02$) and for myeloid leukemia (RR = 1.78, 95% CI = 0.87 to 3.64, 19 deaths, $P_{\text{trend}} = 0.13$). No association was found with cumulative or average exposure. Leukemias observed in the earlier (1984) NCI follow-up (Hauptmann et al. 2003) were re-analyzed by Marsh and Youk (2004) using different exposure
assessments; these authors reported no statistically significant trends with exposure, although risks remained elevated for all leukemias (combined) and myeloid leukemia.

Increases in all lymphohematopoietic cancers were also observed in other studies. Each of the studies of health professionals found elevated mortality for all lymphohematopoietic cancers combined and for leukemia (Hall et al. 1991, Hayes et al. 1990, Stroup et al. 1986, Levine et al. 1984 and Walrath and Fraumeni 1983, 1984). Most estimates were statistically non-significant, except for those of Hayes et al. (1990), and Stroup et al. (1986), where statistically significant excess mortality was found for all leukemia or myeloid leukemia. An excess of leukemia, especially myeloid leukemia, was also found among garment workers in the large NIOSH cohort (Pinkerton et al. 2004), but not in the British chemical workers cohort (Coggon et al. 2003). In the NIOSH cohort, risks for leukemia, myeloid leukemia, and acute myeloid leukemia were higher among workers with longer duration of exposure (> 10 yrs), longer time since first exposure (> 20 years), and among those exposed prior to 1963 (when formaldehyde exposure was thought to be higher). In the smaller industrial cohort studies, some studies reported excesses for lymphohematopoietic cancers combined (Bertazzi et al. 1986, Stellman et al. 1998) or leukemia (Hansen and Olsen 1995, 1996, Stern et al. 1987), but others observed no associations among formaldehyde-exposed workers for all lymphohematopoietic cancers (Pinkerton et al. 2004, Andjelkovich et al. 1995) or leukemia (Stellman et al. 1998). Of the three available case-control studies, a population-based study found no association between leukemia and exposure to formaldehyde (Blair et al. 2001), and two nested case control studies reported statistically non-significant increases in risk based on small numbers of exposed cases (Partanen et al. 1993, and Ott et al. 1989).

Few cohort studies reported findings for other types of lymphohematopoietic cancers. Most of the cohort studies had relatively low power to detect effects, and either did not report findings or did not evaluate exposure-response relationships. The NCI study was the only cohort that observed an association between formaldehyde exposure and Hodgkin’s lymphoma (Beane Freeman et al. 2009). Among exposed workers, relative risks increased with increasing peak ($P_{\text{trend}} = 0.01$) and average exposure ($P_{\text{trend}} = 0.05$),
but not with cumulative exposure; statistically significant risks were found for the highest
peak (≥ 4.0 ppm) vs. lowest formaldehyde exposure category (RR = 3.96, 95% CI = 1.31
to 12.02, 11 deaths). In external analyses, a statistically non-significant elevation in
mortality was observed (SMR = 1.4, 95% CI = 0.96 to 2.10, 25 deaths). For non-
Hodgkin’s lymphoma (NHL), almost all the cohort studies that reported results observed
no increases in mortality or incidence. Two nested case-control studies (Partanen et al.
1993, Ott et al. 1989) reported increases in NHL risk, but these studies had very small
numbers of exposed cases. In the population case-control studies, the risk of NHL
increased with increasing probability and intensity combined (P < 0.001) in a large U.S.
study (Wang et al. 2008), but most of the other studies found no clear association (Gerin
exposure was associated with a statistically significant increase in risk in the NCI cohort
(RR= 2.04, 95% CI = 1.01 to 4.12, 21 deaths, Pr\text{_}\text{trend} = 0.08) (Beane Freeman et al. 2009),
and increased risks were seen among British chemical workers (Coggon et al. 2003),
abrasive materials workers (Edling et al. 1987b), and U.S. embalmers (Hayes et al.
1990). Other studies did not find associations. Small but non-significant increases in risks
were also observed in three case-control studies (Boffetta et al. 1989, Heineman et al.

Bosetti et al. 2008 conducted a pooled analysis of 12 cohort mortality studies and
reported a pooled estimated RR for all lymphohematopoietic cancers of 0.85 (95% CI =
0.74 to 0.96, 234 deaths) for industrial workers and 1.31 (95% CI = 1.16 to 1.48, 263
deaths) for health professional workers. The corresponding pooled RRs for leukemia
were 0.90 (95% CI = 0.75 to 1.07, 122 deaths) and 1.39 (95% CI = 1.15 to 1.68, 106
deaths), respectively. A meta-analysis by Collins and Lineker (2004) of leukemia and
formaldehyde exposure among 12 cohort and case-control studies reported an mRR of
1.1 (95% CI = 1.0 to 1.2). Zhang et al. (2009a) conducted a meta-analysis of data from 26
studies of occupations with known high formaldehyde exposures, and found an mRR of
1.25 (95% CI = 1.09 to 1.43) for all lymphohematopoietic cancers (19 studies), an mRR
of 1.31 (95% CI = 1.02 to 1.67, P = 0.02, 9 studies) for multiple myeloma, and an mRR
of 1.54 (95% CI =1.18 to 2.00, P < 0.001, 15 studies) for leukemia in association with
formaldehyde exposure. The highest risk in the latter group was among myeloid
leukemias (mRR = 1.90, 95% CI = 1.31 to 2.76, $P = 0.001$, 6 studies).

Other cancer sites

In general, few of the cohort studies reported consistently elevated risks for cancers at
other sites. [Not all studies reported findings for all cancer sites and few studies included
women.] Few case-control studies of other cancer endpoints have been conducted. An
excess of mortality from brain and central nervous system cancers have been reported in
all six of the cohort studies of health professionals; statistically significant SMR/PMRs
(1.68 to 2.7) were reported in three studies (Stroup et al. 1986, Walrath and Fraumeni
1983, 1984). Higher risks were found among workers with longer employment as
estimated by length of professional membership (Stroup et al. 1986). No increases in
these cancers have been observed in the industrial cohort studies that have reported
findings, although a small increased risk was reported among garment workers exposed
20 years since first exposure (SMR = 1.20, CI not reported, 13 deaths), and among those
whose first exposure was prior to 1963 (Pinkerton et al. 2004). A pooled analysis of
cohorts by Bosetti et al. (2008) found an increase of 1.56 (95% CI = 1.24 to 1.96, 74
deaths) among professional health workers but not among industrial cohorts.

Several industrial studies have reported increases in stomach, colon, rectal, and kidney
cancers, and a case-control study of pancreatic cancer (Kernan et al. 1999) suggested an
increase in this endpoint at higher levels of formaldehyde exposure. Two meta-analyses
of pancreatic cancer (Ojajarvi et al. 2000, Collins et al. 2001) showed no consistent
increase in risk across studies, with the possible exception of a statistically significant
increase among pathologists, anatomists and embalmers.

Studies in Experimental Animals

Formaldehyde has been tested for carcinogenicity in mice, rats, and hamsters. Studies
reviewed include chronic and subchronic inhalation studies in mice, rats, and hamsters;
chronic and subchronic drinking-water studies in rats; and one chronic skin-application
study in mice. No chronic studies in primates were found, but one subchronic inhalation
study and one acute/subacute inhalation study in monkeys were reviewed.
Formaldehyde exposure resulted in nasal tumors (primarily squamous-cell carcinoma) in rats when administered chronically by inhalation (Kerns et al. 1983, Appelman et al. 1988, Woutersen et al. 1989, Sellakumar et al. 1985, Monticello et al. 1996, Kamala et al. 1997). Only two inhalation studies in mice or hamsters were found. No tumors were reported in C3H mice exposed to formaldehyde at 200 mg/m³ for 1 hour/day, 3 days/week, for 35 weeks (Horton et al. 1963), but squamous-cell carcinoma of the nasal cavity occurred in 2 of 120 B6C3F₁ male mice exposed at 14 ppm for 6 hours/day, 5 days/week, for 104 weeks (Kerns et al. 1983). The authors concluded that the tumors were exposure-related, although the increase was not statistically significant. No tumors were reported in Syrian golden hamsters exposed at 10 ppm for life (Dalbey 1982) or 2.95 ppm for 26 weeks (Rusch et al. 1983). No tumors occurred in monkeys exposed at 2.95 ppm for 26 weeks (Rusch et al. 1983) or 6 ppm for 6 weeks (Monticello et al. 1989); however, squamous metaplasia and hyperplasia in the nasal passages and respiratory epithelia of the trachea and major bronchi occurred.

Male rats administered formaldehyde in drinking water at 5,000 ppm for 32 weeks developed forestomach tumors (squamous-cell papillomas) in one study (Takahashi et al. 1986); however, in two other drinking-water studies, no tumors were reported in either male or female rats administered formaldehyde at concentrations ranging from 20 to 5,000 ppm for two years (Til et al. 1989, Tobe et al. 1989). In another study, male and female breeder rats administered formaldehyde at 2,500 ppm in drinking water had slightly increased incidences of hemolymphoreticular neoplasms (Soffritti et al. 1989). Offspring of these breeder rats exposed transplacentally beginning on gestation day 13 and postnatally via drinking water for life showed increased incidences of benign and malignant tumors of the gastrointestential tract, particularly intestinal leiomyosarcoma.

Male rats administered formaldehyde at concentrations up to 1,500 ppm showed increased incidences (compared with control groups given tap water or tap water containing 15 mg/L methanol) of the number of animals bearing malignant tumors, hemolymphoreticular neoplasms (leukemia and lymphoma combined), and testicular tumors (interstitial-cell adenoma) (Soffritti et al. 2002a). Female rats showed higher incidences of mammary-gland adenocarcinoma and hemolymphoreticular neoplasms than the tap-water control group; however, the incidences were not significantly higher than in
the tap-water-plus-methanol control group. In addition, some rare stomach and intestinal
tumors occurred in a few male and female rats in the exposed groups but not in the
control groups.

Other studies examined the promoting effects of formaldehyde when administered after
initiation with DBMA, DEN, MNU, or MNNG or cocarcinogenic effects when
administered with coal tar, benzo[a]pyrene, wood dust, and hydrogen chloride. Some of
these studies did not show an enhanced tumor response. However, a few studies,
including a skin-painting study in mice (Iverson et al. 1986), a drinking-water study in
rats (Takahashi et al. 1986), and inhalation studies in rats (Albert et al. 1982, Holmstrom
et al. 1989a) and hamsters (Dalbey et al. 1986), indicated that formaldehyde could act as
a tumor promoter or act as a cocarcinogen when administered with other substances.

Adsorption, distribution, metabolism, and excretion

Formaldehyde is a metabolic intermediate that is essential for the biosynthesis of purines,
thymidine, and some amino acids. The metabolism of formaldehyde is similar in all
mammalian species studied. Differences in distribution following inhalation exposure can
be related to anatomical differences. For example, rats are obligate nose breathers while
monkeys and humans are oronasal breathers. Thus, in humans, some inhaled
formaldehyde will bypass the nasal passages and deposit directly into the lower
respiratory tract. The endogenous concentrations in the blood of humans, rats and
monkeys are about 2 to 3 μg/g and do not increase after ingestion or inhalation of
formaldehyde from exogenous sources. Although formaldehyde is rapidly and almost
completely absorbed from the respiratory or gastrointestinal tracts, it is poorly absorbed
from intact skin. When absorbed after inhalation or ingestion, very little formaldehyde
reaches the systemic circulation because it is rapidly metabolized at the site of absorption
to formate, which is excreted in the urine or oxidized to carbon dioxide and exhaled.
Although the metabolic pathways are the same in all tissues, the data indicate that route
of absorption does affect the route of elimination. When inhaled, exhalation is the
primary route of elimination; however, when ingested, urinary excretion as formate is
more important. Unmetabolized formaldehyde reacts non-enzymatically with sulphydryl
groups or urea, binds to tetrahydrofolate and enters the single-carbon intermediary metabolic pool, or reacts with macromolecules to form crosslinks (primarily between protein and single-stranded DNA).

Toxic effects

Formaldehyde is a highly reactive chemical that causes tissue irritation and damage on contact. Because of its reactivity and rapid metabolism, toxicity is generally limited to local effects. *In vitro* studies have demonstrated that formaldehyde is cytotoxic and affects cell viability, cell differentiation and growth, cell proliferation, gene expression, membrane integrity, mucociliary action, apoptosis, and thiol and ion homeostasis. Furthermore, cells depleted of glutathione are more susceptible to formaldehyde toxicity.

Formaldehyde concentrations that have been associated with various toxic effects in humans show wide interindividual variation and are route dependent. Symptoms are rare at concentrations below 0.5 ppm; however, upper airway and eye irritation, changes in odor threshold, and neurophysiological effects (e.g., insomnia, memory loss, mood alterations, nausea, fatigue) have been reported at concentrations ≤ 0.1 ppm. The most commonly reported effects include eye, nose, throat and skin irritation. Other effects include allergic contact dermatitis, histopathological abnormalities (e.g., hyperplasia, squamous metaplasia, and mild dysplasia) of the nasal mucosa, occupational asthma, reduced lung function, and altered immune response. Some studies suggest that long-term exposure to formaldehyde can decrease the number of white blood cells, and possibly lower platelet and hemoglobin, and other studies have shown that formaldehyde exposure affects changes in the percentage of lymphocyte subsets. Higher rates of spontaneous abortion and low birth weights have been reported among women occupationally exposed to formaldehyde. Oral exposure is rare, but there have been several suicides and attempted suicides where individuals drank formaldehyde. These data indicate that the lethal dose is 60 to 90 mL. Formaldehyde ingestion results in severe corrosive damage to the gastrointestinal tract followed by CNS depression, myocardial depression, circulatory collapse, metabolic acidosis, and multiple organ failure.
The toxic effects of formaldehyde in experimental animals include irritation, cytotoxicity, and cell proliferation in the upper respiratory tract, ocular irritation, pulmonary hyperactivity, bronchoconstriction, gastrointestinal irritation, and skin sensitization. Histopathological lesions of the upper respiratory tract and cell proliferation have not been reported at concentrations less that 2 ppm. Other reported effects include oxidative stress, neurotoxicity, immunotoxicity, testicular toxicity, and decreased liver, thyroid gland, and testis weights.

Carcinogenicity of metabolites and analogues

Formic acid (formate + H\(^+\)), the major metabolite of formaldehyde, has not been tested for carcinogenic effects. Acetaldehyde, an analogue of formaldehyde, is listed as *reasonably anticipated to be a human carcinogen* by the NTP. Acetaldehyde induced respiratory tract tumors in rats (adenocarcinoma and squamous-cell carcinoma of the nasal mucosa) and laryngeal carcinoma in hamsters. In addition, epidemiological data provide some evidence that acetaldehyde may be associated with oral, esophageal, pharyngeal, laryngeal, and bronchial tumors in humans. Glutaraldehyde and benzaldehyde have also been tested for carcinogenicity in 2-year bioassays by the NTP. Glutaraldehyde was not considered to be carcinogenic in rats and mice, and benzaldehyde was not considered to be carcinogenic in rats. The NTP concluded that there was some evidence of carcinogenicity for benzaldehyde in mice based on an increased incidence of squamous-cell papillomas and hyperplasias in the forestomach of male and female mice.

Genetic and related effects

Formaldehyde is a direct-acting genotoxic compound that affects multiple gene expression pathways, including those involved in DNA synthesis and repair and regulation of cell proliferation. Most studies in bacteria were positive for forward or reverse mutations without metabolic activation and for microsatellite induction. Studies in non-mammalian eukaryotes and plants also were positive for forward and reverse mutations, dominant lethal and sex-linked recessive lethal mutations, and DNA single-strand breaks. *In vitro* studies with mammalian and human cells were positive for DNA adducts, DNA-protein crosslinks, unscheduled DNA synthesis, single-strand breaks, mutations, and cytogenic effects (chromosomal aberrations, sister chromatid exchange,
and micronuclei induction). In *in vivo* studies, formaldehyde caused DNA-protein cross links (in the nasal mucosa and fetal liver but not bone marrow), DNA strand breaks (lymphocytes and liver), dominant lethal mutations, chromosomal aberrations (pulmonary lavage cells and bone marrow in one of two studies), and micronuclei induction in the gastrointestinal tract; however it did not induce sister chromatid exchange or chromosomal aberrations in lymphocytes. *P53* mutations were detected in nasal squamous-cell carcinomas from rats. Inhalation exposure of formaldehyde also induced DNA-protein cross links in the nasal turbinates, nasopharynx, trachea, and bronchi of rhesus monkeys. In mice, formaldehyde exposure did not cause dominant lethal mutations, micronuclei induction, or chromosomal aberrations when exposed by intraperitoneal injection, but did induced heritable mutations when exposed by inhalation.

In studies of lymphocytes humans exposed to formaldehyde, increased frequencies of chromosomal aberrations were observed in seven of twelve reviewed studies, sister chromatid aberrations in six of thirteen studies, and micronuclei induction in fifteen of sixteen studies reviewed. Increased frequencies of micronuclei were also observed in the buccal or oral epithelium, nasal epithelium in all but one of the available studies. DNA-protein cross links and DNA strand breaks have also been observed in lymphocytes from medical personnel exposed to formaldehyde.

Mechanistic considerations

Although the biological mechanisms associated with formaldehyde-induced cancer are not completely understood, it is important to recognize that chemicals can act through multiple toxicity pathways and mechanisms to induce cancer or other health effects. Potential carcinogenic modes of actions for formaldehyde include DNA reactivity (covalent binding), gene mutation, chromosomal breakage, aneuploidy, and epigenetic effects.

Studies evaluating nasal tumors in rats have shown that, regional dosimetry, genotoxicity, and cytotoxicity are believed to be important factors. Computational fluid dynamics models have been developed to predict and compare local flux values in the nasal passages of rats, monkeys, and humans. Regions of the nasal passages with the highest
flu values are the regions most likely affected by formaldehyde exposure. Similar flux values were predicted for rats and monkeys for regions of the nasal passages with elevated cell proliferation rates, thus providing support for the hypothesis that formaldehyde flux is a key factor for determining toxic response. Furthermore, DNA-protein crosslinks and cell-proliferation rates are correlated with the site specificity of tumors. Cell proliferation is stimulated by the cytotoxic effects of formaldehyde. Increased cell proliferation may contribute to carcinogenesis by increasing the probability of spontaneous or chemically induced mutations. The dose-response curves for DNA-protein crosslinks, cell proliferation, and tumor formation show similar patterns with sharp increases in slope at concentrations greater than 6 ppm. The observed sequence of nasal lesions is as follows: rhinitis, epithelial dysplasia, squamous metaplasia and hyperplasia, and squamous-cell carcinoma.

Biological mechanisms have been proposed for the possible association between lymphohematopoietic cancers and formaldehyde exposure. Proposed mechanisms for formaldehyde-induced leukemia are: (1) direct damage to stem cells in the bone marrow, (2) damage to circulating stem cells, (3) damage to pluripotent stem cells present in the nasal turbinate or olfactory mucosa. Evidence in support of the potential for DNA damage to circulating hematopoietic stem cells is that DNA-protein crosslinks have been identified in the nasal passages of laboratory animals exposed to formaldehyde and increased micronuclei have been identified in the nasal and oral mucosa of formaldehyde-exposed humans. In addition, olfactory epithelial cells obtained from rat nasal passages contain hematopoietic stem cells, which have been shown to re-populate the hematopoietic tissue of irradiated rats. However, some authors have questioned the biologically plausibility of an association between formaldehyde exposure and leukemia, because formaldehyde is rapidly metabolized and would not enter the systemic circulation. They state that formaldehyde does not cause bone marrow toxicity or pancytopenia, which are common features of known leukemogen, and that the genotoxic and carcinogenic effects in animals and humans are limited to local effects.
Abbreviations

ACGIH: American Conference of Governmental Industrial Hygienists
ADC: adenocarcinoma
ADCN: adenocarcinoma
ADH: alcohol dehydrogenase
AGT: O^6-alkylguanine DNA alkyltransferase (also known as MGMT)
AIPH: 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride
ALDH: aldehyde dehydrogenase
AML: Acute myelogenous leukemia
ANOVA: analysis of variance
AOPC: all other pharyngeal cancers
ATSDR: Agency for Toxic Substances and Disease Registry
b.w.: body weight
BCF: bioconcentration factor
BEAM: Boston Exposure Assessment in Microenvironments
BEI: biological exposure indices
BLS: Bureau of Labor Statistics
BMCR: binucleated micronucleated cell rate
BRCA1: breast cancer 1, early onset gene
BrdUrd: 5-bromodeoxyuridine
C: control
CA: chromosomal aberrations
Cal/OSHA: California Division of Occupational Safety and Health
CAS: Chemical Abstracts Service
CBI: covalent binding index
CC1b: Clara-cell specific protein
CDC: Centers for Disease Control and Prevention
CEH: *Chemical Economics Handbook*
CFD: computational fluid dynamics
CHO: Chinese hamster ovary
CLL: chronic lymphocytic leukemia
cm: centimeter
CMBN: cytokinesis-blocked micronucleus assay
CML: chronic myeloid leukemia
CNS: central nervous system
CPBI: cytokinesis proliferation block index
CR: creatinine
CYP: cytochrome P450
Cyt-B: cytochalasin B
Da: Dalton
DC: decarboxylase
dm: decimeter
DNA: deoxyribonucleic acid
DOT: Department of Transportation
dpm: disintegrations per minute
E.U.: European Union
E: exposed
EBV: Epstein-Barr virus
EPA: Environmental Protection Agency
EPHX: epoxide hydrolase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTR</td>
<td>expanded simple tandem repeats</td>
</tr>
<tr>
<td>ETS</td>
<td>environmental tobacco smoke</td>
</tr>
<tr>
<td>F</td>
<td>female</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FDH</td>
<td>formaldehyde dehydrogenase</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in-situ hybridization</td>
</tr>
<tr>
<td>FR</td>
<td>frequency ratios</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GGT</td>
<td>gamma-glutamyl transpeptidase</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>GPA</td>
<td>glycoporphin A</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
</tr>
<tr>
<td>GSTM1</td>
<td>glutathione S transferase M1</td>
</tr>
<tr>
<td>GSTT1</td>
<td>glutathione S transferase T1</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HA</td>
<td>hydroxylapatite</td>
</tr>
<tr>
<td>HazDat</td>
<td>Hazardous Substances Release and Health Effects Database</td>
</tr>
<tr>
<td>HCHO</td>
<td>formaldehyde</td>
</tr>
<tr>
<td>HE</td>
<td>human erythrocytes</td>
</tr>
<tr>
<td>HEL</td>
<td>human embryonic lung</td>
</tr>
<tr>
<td>HFC</td>
<td>high-frequency cells</td>
</tr>
<tr>
<td>Hg</td>
<td>mercury</td>
</tr>
<tr>
<td>HIC</td>
<td>highest ineffective concentration</td>
</tr>
<tr>
<td>HID</td>
<td>highest ineffective dose</td>
</tr>
</tbody>
</table>
HMMECs: human mucosal microvascular endothelial cells
HPLC: high performance liquid chromatography
HR: hazard ratio
HSA: human serum albumin
HSDB: Hazardous Substances Data Bank
Hz: Hertz
i.p.: intraperitoneal
IARC: International Agency for Research on Cancer
ICAM: intercellular adhesion molecule
ICD: International Classification of Diseases
IFN: interferon
IgG: immunoglobin G
IgM: immunoglobin M
IMIS: Integrated Management Information System
IRR: incidence rate ratio
IUPAC: The International Union of Pure and Applied Chemistry
JEM: job-exposure matrix
kBq: 1,000 becquerel (units of radioactivity)
kg: kilogram
K_{oc}: soil organic carbon-water partitioning coefficient
K_{ow}: octanol-water partition coefficient
L: liter
LC: liquid chromatography
LD_{50}: lethal dose for 50% of the population
LEC: lowest effective concentration
LED: lowest effective dose
LH: lymphohematopoietic
LHC: lymphohematopoietic cancer
LWAE: lifetime weighted average exposure
M: male or molar
m³: cubic meter
MA: mandelic acid
MAK: maximum workplace concentration
MAPKs: mitogen-activated protein kinases
mCi: millicurries
MDF: medium density fiberboard
MDS: myelodysplastic syndrome
mEH: microsomal epoxide hydrolase
MF: melamine-formaldehyde
mg: milligram, 10^{-3} gram
MGMT: O^6-methylguanine DNA methyltransferase (also known as AGT)
mL: milliliter
mm: millimeter
mM: millimolar
MM: multiple myeloma
MN: micronuclei
mol wt: molecular weight
mRNA: messenger RNA
mRR: meta relative risk
MS: mass spectrometry
MTT: methylthiazole tetrazolium
MUF: melamine-urea-formaldehyde
N: sample size
NA: not available
NA-AAF: \(N\)-acetoxy-2-acetylaminofluorene
NAcT: \(N\)-acetyltransferase
NADPH: nicotinamide adenine dinucleotide phosphate, reduced form
NALT: nasal associated lymph tissue
NAP: not applicable
NCEs: micronucleated normochromatic erythrocytes
NCHS: National Center for Health Statistics
NCI: National Cancer Institute
ND: not detected
NDMA: \(N\)-nitrosodimethylamine
NDT: not determined
NF-\(\kappa \)B: nuclear factor kappa B
ng: nanogram
NGF: nerve growth factor
NHANES: National Health and Nutrition Examination Survey
NHL: non-Hodgkin’s lymphoma
NI: not identified
NIEHS: National Institute of Environmental Health Sciences
NIOSH: National Institute for Occupational Safety and Health
NLM: National Library of Medicine
NMR: nuclear magnetic resonance
NNK: 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone
NOS: not otherwise specified
NPC: nasopharyngeal cancer
NQ: not quantified
NR: not reported
NRC: National Response Center
NS: not significant
NT: not tested
NTP: National Toxicology Program
OH: hydroxyl
OHPC: oro- or hypopharyngeal
OPC: oropharyngeal
OR: odds ratio
OSB: oriented strandboard
OSHA: Occupational Safety and Health Administration
OVA: ovalbumin
PAH: polycyclic aromatic hydrocarbon
PAMA: phenacylmercapturic acid
PBL: peripheral blood lymphocytes
PBPK: physiologically based pharmacokinetic model
CE: micronucleated polychromatic erythrocytes
PCMR: proportionate cancer mortality ratio
PCR: polymerase chain reaction
PEL: permissible exposure limit
PF: phenol-formaldehyde
PGA: phenylglyoxylic acid
PHA: phytohemagglutinin
PHEMA: phenylhydroxyethyl mercapturic acids
PMR: proportionate mortality ratio
ppb: parts per billion
ppbv: parts per billion by volume
ppm: parts per million
r: correlation coefficient
REL: recommended exposure limit
RLU: relative light units
RNA: ribonucleic acid
RoC: Report on Carcinogens
RR: relative risk
RTECS: Registry of Toxic Effects of Chemical Substances
s.c.: subcutaneous
SCC: squamous-cell carcinoma
SCE: sister chromatid exchange
SD: standard deviation
SDH: sorbitol dehydrogenase
SE: standard error of the mean
SEER: Surveillance, Epidemiology and End Results program
SIR: standardized incidence ratio
SMR: standardized mortality ratio
SNC: sinonasal
SOC: Standard Occupational Classification
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCMI</td>
<td>Synthetic Organic Chemical Manufacturing Industry</td>
</tr>
<tr>
<td>SPICR</td>
<td>standardized proportionate incidence cancer ratio</td>
</tr>
<tr>
<td>SSB</td>
<td>single-strand breaks</td>
</tr>
<tr>
<td>STEL</td>
<td>short-term exposure limit</td>
</tr>
<tr>
<td>TLV</td>
<td>threshold-limit value</td>
</tr>
<tr>
<td>TRI</td>
<td>Toxics Release Inventory</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid stimulating hormone</td>
</tr>
<tr>
<td>TWA</td>
<td>time-weighted average</td>
</tr>
<tr>
<td>UDS</td>
<td>unscheduled DNA synthesis</td>
</tr>
<tr>
<td>UF</td>
<td>urea-formaldehyde</td>
</tr>
<tr>
<td>UFFI</td>
<td>urea-formaldehyde foam insulation</td>
</tr>
<tr>
<td>USITC</td>
<td>United States International Trade Commission</td>
</tr>
<tr>
<td>VCAM</td>
<td>vascular cell adhesion molecule</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic chemical</td>
</tr>
<tr>
<td>VPT</td>
<td>vinylphenol</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XO</td>
<td>xanthine oxidase</td>
</tr>
<tr>
<td>XPC</td>
<td>xeroderma pigmentosum, complementation group C</td>
</tr>
<tr>
<td>XPD</td>
<td>xeroderma pigmentosum, complementation group D</td>
</tr>
<tr>
<td>XPG</td>
<td>xeroderma pigmentosum, complementation group G</td>
</tr>
<tr>
<td>XRCC</td>
<td>X-ray repair cross-complementing group</td>
</tr>
<tr>
<td>yr</td>
<td>year</td>
</tr>
<tr>
<td>(\gamma)-GT</td>
<td>gammaglutamyl transpeptidase</td>
</tr>
<tr>
<td>(\mu)g</td>
<td>microgram; (10^{-6}) gram</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction .. 1
1.1 Chemical identification .. 2
1.2 Physical-chemical properties .. 2
1.3 Formaldehyde Polymers .. 4
1.4 Metabolites and analogues .. 5

2 Human Exposure .. 7
2.1 Use .. 8
2.2 Production .. 13
2.2.1 Industrial production .. 13
2.2.2 Other production sources ... 15
2.2.3 Endogenous production .. 15
2.3 Biological indices of exposure ... 16
2.4 Occupational exposure .. 19
2.4.1 Formaldehyde and formaldehyde-based resin production .. 22
2.4.2 Wood-based products and paper production ... 25
2.4.3 Manufacture of textiles and garments .. 35
2.4.4 Foundries ... 38
2.4.5 Production of formaldehyde-based plastic products ... 40
2.4.6 Embalming .. 43
2.4.7 Histology ... 47
2.4.8 Construction-related exposures .. 49
2.4.9 Fiberglass and mineral-wool insulation manufacturing ... 51
2.4.10 Firefighting and other combustion-related exposures .. 52
2.4.11 Agriculture and aquaculture .. 55
2.4.12 Office buildings and nonindustrial work places ... 56
2.4.13 Other occupational exposures .. 58
2.5 Environmental occurrence and fate ... 59
2.5.1 Air .. 60
2.5.2 Water ... 77
2.5.3 Land and soil ... 83
2.5.4 Food ... 83
2.6 Exposure estimates .. 87
2.7 Regulations and Guidelines .. 88
2.7.1 Regulations ... 88
2.7.2 Guidelines ... 90
2.8 Summary .. 91

3 Human Cancer Studies .. 94
3.1 Description of head and neck cancers ... 95
3.2 Cohort standardized and proportionate mortality and incidence studies ... 97
3.2.1 National Cancer Institute (NCI) Cohort: mixed industries 103
3.2.2 National Institute for Occupational Safety and Health (NIOSH) cohort: garment industry ... 116
3.2.3 British Chemical Workers Study .. 118
3.2.4 Studies of fiberglass workers ... 120
3.2.5 Studies of woodworking and related industries 124
3.2.6 Miscellaneous studies: abrasive material manufacturing, Iron foundry, mixed industry and chrome leather tannery workers 129
3.2.7 Studies of resin, chemical, and plastics manufacturing workers 133
3.2.8 Studies of health professionals, embalmers, and funeral directors 137

3.3 Case-control studies ... 145
3.3.1 Cancers of the paranasal sinuses and nasal cavity 146
3.3.2 Cancer of the nasopharynx ... 155
3.3.3 Other head and neck cancers .. 164
3.3.4 Lung cancer .. 173
3.3.5 Lymphohematopoietic malignancies .. 178
3.3.6 Cancers at other sites .. 185

3.4 Summary by tumor site .. 191
3.4.1 Cancers of the paranasal sinuses and nasal cavity 192
3.4.2 Cancer of the nasopharynx ... 203
3.4.3 Other head and neck cancers .. 215
3.4.4 Respiratory cancers or lung cancer ... 229
3.4.5 Lymphohematopoietic cancers ... 239
3.4.6 Cancers of the brain and central nervous system 256
3.4.7 Cancer at other sites .. 260

3.5 Summary .. 264
3.5.1 Sinonasal cancers .. 265
3.5.2 Nasopharyngeal cancers .. 266
3.5.3 Other head and neck cancers, and respiratory cancer 267
3.5.4 Lymphohematopoietic cancers ... 269
3.5.5 Other cancer sites .. 272

4 Studies of Cancer in Experimental Animals .. 274
4.1 Inhalation ... 274
4.1.1 Mice .. 275
4.1.2 Rats ... 277
4.1.3 Hamsters ... 288
4.1.4 Monkeys .. 289
4.1.5 Summary of inhalation studies ... 290

4.2 Oral and dermal administration ... 294
4.2.1 Drinking-water studies ... 294
4.2.2 Skin application .. 302
List of Tables

Table 1-1. Chemical identification of formaldehyde... 2
Table 1-2. Physical and chemical properties of formaldehyde.. 3
Table 1-3. Chemical identification and physical and chemical properties of paraformaldehyde and trioxane.. 5
Table 1-4. Some low-molecular weight formaldehyde analogues.. 6
Table 2-1. Formaldehyde exposure levels associated with formaldehyde production and formaldehyde-based resin production... 24
Table 2-2. Formaldehyde exposure levels associated with the production of wood-based composites.. 27
Table 2-3. Formaldehyde exposure levels associated with the manufacture of plywood and laminates .. 30
Table 2-4. Formaldehyde exposure levels associated with wood furniture manufacturing 32
Table 2-5. Formaldehyde exposure levels associated with the manufacture of paper and paper products .. 34
Table 2-6. Formaldehyde exposure levels associated with the textile and garment industries... 37
Table 2-7. Formaldehyde exposure levels associated with foundries...................................... 40
Table 2-8. Formaldehyde exposure levels associated with production of plastics and plastic products .. 42
Table 2-9. Formaldehyde exposure levels associated with embalming or autopsies or in anatomy laboratories ... 45
Table 2-10. Formaldehyde exposure levels associated with histology and pathology laboratories.. 49
Table 2-11. Formaldehyde levels associated with construction-related activities.................... 51
Table 2-12. Formaldehyde exposure levels associated with fiberglass manufacturing............. 52
Table 2-13. Formaldehyde exposure levels associated with firefighting and other combustion sources .. 54
Table 2-14. Formaldehyde exposure levels associated with agriculture and aquaculture 56
Table 2-15. Formaldehyde exposure levels in offices and other nonindustrial work places 57
Table 2-16. Occurrence of formaldehyde in outdoor air in the United States............................ 65
Table 2-17. Formaldehyde off-gassing emission rates from building materials, home furnishings, and consumer products... 68
Table 2-18. Occurrence of formaldehyde in U.S. residential indoor air..................................... 72
Table 2-19. Formaldehyde levels associated with cigarette smoke .. 76
Table 2-20. Formaldehyde concentrations in drinking water... 79
Table 2-21. Formaldehyde levels in U.S. environmental water .. 82
Table 2-22. Formaldehyde levels in food .. 84
Table 2-23. Estimated formaldehyde exposure levels ... 87
Table 3-1. Summary of cohort studies and nested case-control studies 98
Table 3-2. Lymphohematopoietic (LH) cancers in formaldehyde-exposed workers (NCI cohort and peak exposure: 1994 and 2004 updates) ... 108
Table 3-3a. Summary of cohort studies of formaldehyde exposure and cancer of the sinus and nasal cavities (SNC) .. 197
Table 3-3b. Summary of case-control studies investigating formaldehyde exposure and sinonasal cancer .. 199
Table 3-4a. Summary of cohort studies of formaldehyde exposure and nasopharyngeal cancers.. 208
Table 3-4b. Summary of case-control studies (including nested case-control studies) and cancer registry studies of formaldehyde exposure and nasopharyngeal cancer. .. 211
Table 3-5a. Summary of cohort studies of formaldehyde exposure and cancers of the oral cavity, pharynx, and larynx ... 219
Table 3-5b. Summary of case-control studies (including nested case-control studies) and cancer registry studies of formaldehyde exposure and cancers of the oral cavity, pharynx, and larynx ... 223
Table 3-6a. Summary of cohort studies of formaldehyde exposure and cancers of the lung 232
Table 3-6b. Summary of case-control studies (including nested case-control) investigating formaldehyde exposure and lung or respiratory cancer 235
Table 3-7a. Summary of cohort studies of formaldehyde exposure and lymphohematopoietic cancers... 246
Table 3-7b. Summary of case-control studies (including nested case-control) investigating formaldehyde exposure and lymphohematopoietic cancers 251
Table 3-8. Summary of industrial SMR and PMR studies of formaldehyde exposure and Brain and CNS cancers .. 258
Table 4-1. Histologic changes in the lungs of C3H mice exposed to formaldehyde by inhalation for up to 35 weeks .. 276
Table 4-2. Neoplastic responses in the nasal cavity of male Wistar rats exposed to formaldehyde by inhalation for 4 to 13 weeks .. 280
Table 4-3. Nasal tumors in F344 rats exposed to formaldehyde by inhalation for up to 24 months ... 281
Table 4-4. Apparent sites of origin of squamous-cell carcinomas in the nasal passages of F344 rats exposed to formaldehyde by inhalation for up to 24 months 282
Table 4-5. Neoplastic responses in the nasal cavity of male albino Wistar rats, with and without damaged nasal mucosa, exposed to formaldehyde by inhalation for 3 or 28 months .. 284
Table 4-6. Neoplastic responses in the nasal cavity of male F344 rats exposed to formaldehyde by inhalation for up to 24 months .. 287
Table 4-7. Proliferative lesions and neoplastic responses in the nasal cavity of male F344 rats exposed to formaldehyde by inhalation for up to 28 months

Table 4-8 Summary of inhalation studies of formaldehyde in experimental animals

Table 4-9. Non-neoplastic responses in Wistar rats given formaldehyde in drinking water for 24 months

Table 4-10. Tumor incidences in Sprague-Dawley rats exposed to formaldehyde in drinking water at two different ages for up to 104 weeks

Table 4-11. Total malignant tumors in Sprague-Dawley rats exposed to formaldehyde in drinking water for up to 104 weeks

Table 4-12a. Incidences of mammary, testicular, and hemolymphoreticular tumors in Sprague-Dawley rats exposed to formaldehyde in drinking water for up to 104 weeks

Table 4-12b. Incidences of stomach and intestinal tumors in Sprague-Dawley rats exposed to formaldehyde in drinking water for up to 104 weeks

Table 4-13. Summary of oral and dermal carcinogenicity studies of formaldehyde in experimental animals

Table 4-14. Incidences of squamous-cell lung tumors in C3H mice exposed to formaldehyde and coal tar by inhalation

Table 4-15. Skin tumor promotion study of formaldehyde in Oslo hairless mice

Table 4-16. Proliferative and neoplastic lesions in the nasal cavity of male Sprague-Dawley rats exposed to formaldehyde and hydrogen chloride

Table 4-17. Effects of formaldehyde on gastric carcinogenesis in male Wistar rats initiated with MNNG

Table 4-18. Effects of formaldehyde on induction of respiratory-tract tumors by DEN in male Syrian hamsters

Table 4-19. Co-exposure carcinogenicity studies of formaldehyde and other substances in experimental animals

Table 4-20. Summary of neoplasms associated with formaldehyde exposure in experimental animals

Table 5-1. Disposition of inhaled 14C-formaldehyde in male F344 rats (% radioactivity ± SD)

Table 5-2. Concentrations of formaldehyde in human blood before and after exposure to 1.9 ppm for 40 minutes

Table 5-3. Formaldehyde and formic acid concentrations detected in body fluids and tissues following formaldehyde ingestion

Table 5-4. Distribution of 14C-labelled formaldehyde in rodents and monkeys during the first 72 h after topical administration

Table 5-5. Formaldehyde concentrations associated with various health effects

Table 5-6. Irritant effects of formaldehyde following acute inhalation exposures

Table 5-7. Effects on the nasal mucosa from chronic exposure to formaldehyde
Table 5-8. Studies of occupational asthma and formaldehyde exposure 345
Table 5-9. Effects of formaldehyde exposure on peripheral lymphocyte subsets in anatomy students ... 352
Table 5-10. Summary of blood cell counts in Chinese workers with formaldehyde exposure reported by Tang et al. (2009) ... 356
Table 5-11. Reproductive effects of formaldehyde in humans .. 358
Table 5-12. Seminiferous tubular diameter and height in Wistar rats 369
Table 5-13. Mean seminiferous tubular diameters and testosterone serum levels after 13-week exposure to formaldehyde by inhalation in rats .. 370
Table 5-14. In vivo effect of formaldehyde on spermatozoa .. 371
Table 5-15. Genetic effects of formaldehyde in bacteria .. 375
Table 5-16. Genetic effects of formaldehyde in non-mammalian eukaryotes 376
Table 5-17. In vitro studies of DNA adducts, DNA-protein crosslinks and strand breaks in mammalian systems .. 380
Table 5-18. In vivo studies of DNA-protein crosslinks and strand breaks in mammalian systems ... 385
Table 5-19. In vitro studies of cytogenetic effects of formaldehyde in mammalian cells 389
Table 5-20. Cytogenetic effects of formaldehyde in mammals .. 391
Table 5-21. Mutagenic effects of formaldehyde in mammalian systems 392
Table 5-22. Other genetic effects of formaldehyde in mammalian systems 393
Table 5-23. DNA-protein crosslinks and pantropic p53 protein levels in medical workers exposed to formaldehyde ... 395
Table 5-24. Distribution of autopsy service and pathology department workers with mutagenic or toxic urine samples ... 399
Table 5-25. Chromosomal aberrations in peripheral blood lymphocytes from humans exposed to formaldehyde .. 405
Table 5-26. Sister chromatid exchange in peripheral blood lymphocytes from humans exposed to formaldehyde ... 412
Table 5-27. Micronuclei in various cell types from humans exposed to formaldehyde 420
Table 5-28. Formaldehyde exposure, DNA-protein crosslinks, and nasal tumor incidence 428
Table 5-29. Formaldehyde exposure, cell proliferation, and nasal tumor incidence 445

List of Figures

Figure 1-1. Chemical structure of formaldehyde ... 2
Figure 1-2. Chemical structures of hydrated and polymeric formaldehyde 4
Figure 2-1. Major uses of formaldehyde in the United States ... 12
Figure 2-2. Formaldehyde production in the United States .. 14
Figure 3-1. Upper respiratory system ... 96
Figure 4-1. Midsagittal section of the rat nose showing the anatomical levels typically examined in inhalation studies ... 275
Figure 5-1. Metabolism and fate of formaldehyde .. 334
Figure 5-2. Biological reactions of formaldehyde ... 335
Figure 5-3. Sagital (A) and cross-section (B) through the rat nose. 441
1 Introduction

Formaldehyde is a high-production-volume chemical with a wide array of uses. The predominant use of formaldehyde in the United States is in the production of industrial resins (mainly urea-formaldehyde [UF], phenol-formaldehyde [PF], polyacetal, and melamine-formaldehyde [MF] resins) that are used to manufacture products such as adhesives and binders for wood products, pulp and paper products, plastics, and synthetic fibers, and in textile finishing. Formaldehyde is also used as a chemical intermediate.

Resin production and use as a chemical intermediate together account for over 80% of its use. Other, smaller uses of formaldehyde that may be important for potential human exposure include use in agriculture, medical use as a disinfectant and preservative (for pathology, histology, and embalming), and use in numerous consumer products as a biocide and preservative.

Formaldehyde is present in outdoor air as a result of its formation from the combustion of organic materials (e.g., in automobiles, forest fires, and power plants), its formation from the breakdown of hydrocarbons in the air, and releases from industrial facilities. In indoor air, it is present as a result of off-gassing from formaldehyde-containing materials such as wood products, carpets, fabrics, paint, and insulation, and it is formed from combustion sources such as wood stoves, gas stoves, kerosene heaters, open fireplaces, and furnaces, through cooking, and in cigarette smoke. It has been found in numerous foods and beverages, including drinking water.

Formaldehyde (gas) is listed in the Eleventh Report on Carcinogens (RoC) as reasonably anticipated to be a human carcinogen based on limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in laboratory animals (NTP 2005a); it was first listed in the 2nd RoC (NTP 1981). Formaldehyde (all physical forms) was nominated by NIEHS for possible reclassification in the 12th RoC based on the 2004 review by the International Agency for Research on Cancer (IARC 2006), which concluded that there was sufficient evidence for the carcinogenicity of formaldehyde in humans.
1.1 Chemical identification

Formaldehyde is the simplest aldehyde. It is a highly reactive gas and is formed by oxidation or incomplete combustion of hydrocarbons (ChemIDPlus 2009a). Figure 1-1 shows the chemical structure of formaldehyde, and Table 1-1 provides some chemical identifying information.

![Chemical structure of formaldehyde](image)

Figure 1-1. Chemical structure of formaldehyde

Commercially, formaldehyde is most often available as 30% to 50% (by weight) aqueous solutions commonly referred to as formalin (IARC 2006), to which have been added stabilizers, generally up to 15% methanol or lower concentrations (usually several hundred milligrams per liter) of various amine derivatives. In the absence of stabilizers, formaldehyde in solution oxidizes slowly to form formic acid and polymerizes to form oligomers, including paraformaldehyde (HSDB 2009a).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Information</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS Registry number</td>
<td>50-00-0</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>IUPAC systematic name</td>
<td>methanal</td>
<td>IARC 2006</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>CH$_2$O</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Fannoform, Formalith, formalin, formic aldehyde, Lysoform, methanal, methyl aldehyde, methylene oxide, Morbicid, oxomethane, oxymethylene, Superlysoform</td>
<td>HSDB 2009a</td>
</tr>
</tbody>
</table>

1.2 Physical-chemical properties

Formaldehyde exists at room temperature as a flammable, nearly colorless gas with a pungent, suffocating odor (ATSDR 1999, HSDB 2009a). Formaldehyde gas is generally stable in the absence of water, but it is flammable and can be ignited by heat, sparks, or flame. Vapors form explosive mixtures with air. Formaldehyde gas reacts violently with strong oxidizing agents and with bases and reacts explosively with nitrogen dioxide at...
around 180°C (Akron 2009). It reacts with hydrochloric acid to form bis(chloromethyl) ether (which is listed in the RoC as known to be a human carcinogen). In its pure state, formaldehyde is not easily handled, because it is extremely reactive and polymerizes readily.

The physical and chemical properties of formaldehyde are summarized in Table 1-2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Information</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>30.0</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>–92</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>–19.5</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>0.815 at –20°C/4°C</td>
<td>O'Neil et al. 2006</td>
</tr>
<tr>
<td>Vapor pressure (mm Hg)</td>
<td>3.890 at 25°C</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Vapor density</td>
<td>1.067 (air = 1)</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Critical temperature (°C)</td>
<td>137.2 to 141.2</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Solubility water at 20°C acetone, alcohol, benzene, ether</td>
<td>400 g/L soluble</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Octanol-water partition coefficient (log K_{ow})</td>
<td>0.35</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Dissociation constant (pK_a)</td>
<td>13.27 at 25°C</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Henry's law constant</td>
<td>3.4×10^{-7} atm-m^3/mol</td>
<td>HSDB 2009a</td>
</tr>
<tr>
<td>Unit conversion (air concentrations)</td>
<td>mg/m$^3 = 1.23 \times$ ppm</td>
<td>IARC 2006</td>
</tr>
</tbody>
</table>

The primary form of formaldehyde in dilute aqueous solutions is its monomeric hydrate, methylene glycol (Figure 1-2), and the primary forms in concentrated solutions are oligomers and polymers of polyoxymethylene glycols (IARC 2006). Formaldehyde can also exist as paraformaldehyde, a polymer with 8 to 100 units of formaldehyde, and as 1,3,5-trioxane, a cyclic trimer (Figure 1-2).
1.3 Formaldehyde Polymers

Paraformaldehyde is a white crystalline powder with the odor of formaldehyde. It has the molecular formula \((\text{CH}_2\text{O})_n\) and is a mixture of linear polyoxymethylene glycols containing 90% to 99% formaldehyde (HSDB 2009b, O'Neil et al. 2006). Paraformaldehyde dissolves slowly in cold water and more readily in hot water, with evolution to formaldehyde. It is soluble in fixed alkali hydroxide solution, but insoluble in alcohol and ether. Paraformaldehyde is used as an engineering plastic because it has good resistance to wear, chemicals, and temperature, a low coefficient of friction, and good mechanical properties of strength and stiffness (Inventro 2009). Trioxane is a white crystalline solid with a chloroform-like odor and the molecular formula \((\text{CH}_2\text{O})_3\) (HSDB 2009c). It is stable and easily handled. In acidic solutions, it will decompose to formaldehyde. Both paraformaldehyde and trioxane are used as low-water-content sources of formaldehyde. Table 1-3 shows chemical identifying information and some physical and chemical properties of paraformaldehyde and trioxane.
Table 1-3. Chemical identification and physical and chemical properties of paraformaldehyde and trioxane

<table>
<thead>
<tr>
<th>Characteristic/Property</th>
<th>Paraformaldehyde</th>
<th>1,3,5-Trioxane</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS Registry number</td>
<td>30525-89-4</td>
<td>110-88-3</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>(CH₂O)_n</td>
<td>C₃H₆O₃</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Aldicide, Paraform, polyacetal, polyformaldehyde, polymethylene oxide, polyoxymethylene</td>
<td>metaformaldehyde, s-trioxane, trioxymethylene</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>30.03 (monomer)</td>
<td>90.08</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>164 (decomposes)</td>
<td>64</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>slowly sublimes, forming formaldehyde gas</td>
<td>114.5 @ 759 mm Hg</td>
</tr>
<tr>
<td>Density</td>
<td>1.46 at 15°C</td>
<td>1.17 @ 65°C</td>
</tr>
<tr>
<td>Vapor pressure (mm Hg)</td>
<td>10.5 at 25°C</td>
<td>NR</td>
</tr>
<tr>
<td>Vapor density</td>
<td>1.03</td>
<td>3.1</td>
</tr>
<tr>
<td>Water solubility at 18°C</td>
<td>2 x 10⁻⁵ mg/L</td>
<td>1.7 x 10⁻⁵ mg/L</td>
</tr>
<tr>
<td>Octanol-water partition coefficient (log Kᵪₒ)</td>
<td>NR</td>
<td>-0.43</td>
</tr>
<tr>
<td>Dissociation constant (pKₐ)</td>
<td>15.50 at 25°C</td>
<td>NR</td>
</tr>
<tr>
<td>Henry’s law constant</td>
<td>NR</td>
<td>1.97 x 10⁻⁷</td>
</tr>
</tbody>
</table>

Source: HSDB 2009b,c unless otherwise noted.
NR = not reported.
^O’Neil et al. 2006.
^PolymerProcessing 2009 and HSDB 2009b
^Mallinckrodt 2009.
^ScienceLab 2009a.
^ScienceLab 2009b.
^The higher-molecular-weight polymers are insoluble in water (ScienceLab 2009b).
^ChemIDPlus 2009b.

1.4 Metabolites and analogues

Formaldehyde is an endogenous metabolic product of N-, O-, and S-demethylation reactions and an essential metabolic intermediate in all cells (ATSDR 1999, Feick et al. 2006, IARC 2006). It is oxidized to formate, primarily by glutathione-dependent formaldehyde dehydrogenase. Formate may be excreted in the urine, further metabolized to carbon dioxide and water, or incorporated into the folic acid metabolic pathway for synthesis of nucleic and amino acids. Further discussion of formaldehyde metabolism and other biological reactions is provided in Section 5.2.
Analogues of formaldehyde include other low-molecular-weight aldehydes, such as acetaldehyde, propionaldehyde, butyraldehyde, \(n \)-pentanal, glutaraldehyde, and benzaldehyde. The chemical structures and molecular weights of these compounds are shown in Table 1-4, and carcinogenicity data for these analogues are discussed in Section 5.4.

Table 1-4. Some low-molecular weight formaldehyde analogues

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular weight</th>
<th>Chemical structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>58.1</td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>72.1</td>
<td></td>
</tr>
<tr>
<td>(n)-Pentanal</td>
<td>86.1</td>
<td></td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>100.1</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>106.1</td>
<td></td>
</tr>
</tbody>
</table>
2 Human Exposure

Formaldehyde is an important chemical with numerous industrial and commercial uses. Annual U.S. industrial production in the early to mid 2000s averaged nearly 5 million tons. In addition to intentional industrial production, formaldehyde is produced unintentionally from human activities and from natural sources through the breakdown of hydrocarbons and other precursors. Formaldehyde is also produced endogenously in humans and other animals. Workers can be exposed to formaldehyde during its production or during the production or use of derivative products. The general population can be exposed to formaldehyde primarily from breathing indoor or outdoor air, from ingestion of food and water, from tobacco smoke, and from use of cosmetic products containing formaldehyde. In the natural environment, formaldehyde has been detected in indoor and outdoor air, surface water, rainwater, fog water, groundwater, soil, and food. Numerous U.S. federal agencies, including the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), Department of Housing and Urban Development (HUD), and Occupational Safety and Health Administration (OSHA), have enacted regulations aimed at reducing formaldehyde exposures.

This section begins with a discussion of formaldehyde’s various uses (Section 2.1). Section 2.2 discusses industrial production of formaldehyde and formalin, natural sources of formaldehyde, and endogenous production of formaldehyde in living organisms. Section 2.3 discusses the issues surrounding biological indices of exposure to formaldehyde. Occupational exposure levels are presented in Section 2.4 and environmental levels in Section 2.5. Section 2.6 provides data from studies that have estimated intake of formaldehyde by the general public from various sources. Section 2.7 provides regulations and guidelines that have been established with the intent of reducing exposure. Section 2 concludes with a summary (Section 2.8).

Several organizations have prepared review articles on formaldehyde (e.g., IARC, WHO, ATSDR); the most recent being a 2006 IARC monograph. These review articles have been used extensively in this section for information for the period before 2006. In addition to the review articles, an extensive literature search was conducted as recently as
March 2009, and that literature was reviewed for inclusion. Throughout this section, when data are cited from a review article, the primary citation is provided when available.

The occupational epidemiology studies presented in Section 3 of this document include a number of international studies; therefore, international occupational exposure data are included in Section 2.4 (Occupational Exposure) in addition to U.S. data. For environmental media, only U.S. levels are provided with the exception of levels that have been measured in food and bottled water because a possibility of exposure to these substances exists for the U.S. general public.

2.1 Use

Formaldehyde has many and varied uses; however, its predominant use in the United States is in the production of industrial resins, accounting for over 50% of formaldehyde use in the early to mid 2000s (Bizzari 2007, ICIS 2007). Other major uses include as a chemical intermediate (~29%), various agricultural uses (~5%), paraformaldehyde production (~3%), production of chelating agents (~3%), and various minor uses (~5%) such as in the medical field, in funeral homes, in histology, and in numerous consumer products (see Figure 2-1).

The predominant formaldehyde-based industrial resins consumed in the United States are urea-formaldehyde (UF) resins, accounting for 22% of the total formaldehyde consumed in 2006 (Bizzari 2007). The largest use of UF resins is as a wood adhesive in the manufacture of composite wood products, mainly particleboard and medium-density fiberboard (MDF). Bizzarri (2007) reported that UF resins account for over 95% of the adhesives used in manufactured particleboard and that 45% of U.S. UF consumption in 2006 was for particleboard manufacture. Wood adhesives made of UF resins are also used to produce MDF, hardwood plywood, and other composite-wood products. UF resins have also been used in the production of glass fiber roofing mats, as urea-formaldehyde foam for insulation (UFFI) in buildings, and in mining, where hollow areas are filled with foam (ATSDR 1999).
Three other major resins are produced from formaldehyde: phenol-formaldehyde (PF) resins, polyacetal resins, and melamine-formaldehyde (MF) resins. In the United States, PF resins accounted for roughly 18%, polyacetal resins for nearly 12%, and MF resins for roughly 3% of total formaldehyde consumption in 2006 (Bizzari 2007). Forecasts of U.S. demand through 2011 show little change in these patterns. Demand for PF, MF, and polyacetal resins is expected to grow between 0.1% and 3% annually through 2011, while consumption of UF resins is expected to decline by approximately 0.3% annually, primarily as a result of decreased particleboard production in the United States (Bizzari 2007).

Formaldehyde is also used as a chemical intermediate in the production of other chemicals and products. In 2006, the predominant chemicals produced from formaldehyde (based on the amount of formaldehyde consumed in production) were 1,4-butanediol (10% of total U.S. consumption) and methylenebis(4-phenyl isocyanate) (11% of total U.S. consumption) (Bizzari 2007). Formaldehyde is also used in the manufacture of chelating agents (2.7% of total U.S. consumption in 2006), primarily in the manufacture of ethylenediaminetetraacetic acid (EDTA) (57%), diethylenetriamine pentaacetic acid (DTPA) (20%), hydroxyethylthiylenediaminetriacetic acid (HEDTA) (7%), and nitrilotriacetic acid (NTA) (16%) (Bizzari 2007).

Formaldehyde has many other varied uses that account for a small percentage of its total consumption. It has been used as a disinfectant in hospital wards and operating rooms and is used as a tissue preservative and disinfectant in embalming fluids (ATSDR 1999, Dascalaki et al. 2008, IARC 2006). It is used as an antimicrobial in many cosmetic products, at reported levels of up to 0.5% in lotions, creme rinses, and bubble-bath oils, and up to 4.5% in nail hardeners. Other cosmetic products that may contain formaldehyde include suntan lotions, hand creams, bath products, mascara and eye make-up, cuticle softeners, nail creams, vaginal deodorants, shaving creams, soaps, shampoos, hair preparations, deodorants, and mouthwashes. The Agency for Toxic Substances and Disease Registry (ATSDR 1999) also noted that trace levels of formaldehyde may exist in cosmetic products as a result of its use as a disinfectant for the equipment used to manufacture the product. Formaldehyde has been used as a preservative in many
consumer goods, including household cleaning agents, dishwashing liquids, fabric
softeners, shoe-care agents, car shampoos and waxes, and carpet-cleaning agents; these
products generally contain less than 1% formaldehyde. It has been found in moist toilet
tissues for babies at levels exceeding 100 μg/g (100 ppm) (WHO 2002). It also has been
added to fingerpaint as a preservative and has been measured at levels of 441 to
793 mg/kg in two types of fingerpaints; formaldehyde was undetectable (limit of
detection = 189 ng) in two other types (Garrigós et al. 2001). It has been used in pet-care
products at levels less than 0.5% and in various glues, epoxies, and adhesives intended
for household use at levels up to 9% (HPD 2009).

In the food industry, formaldehyde has been used for preserving dried foods, disinfecting
containers, preserving fish and certain oils and fats, and modifying starch for cold
swelling (ATSDR 1999). Formaldehyde has been used as a bacteriostatic agent in cheese
and other foods and in juice production, and paraformaldehyde has been implanted into
maple syrup tap holes to deter bacterial growth. Formaldehyde has been used as a
chemical germicide to control bacterial contamination in water distribution systems
(IARC 2006). It has also been used in the animal feed industry as a preservative and to
improve handling characteristics of feed (WHO 2002).

Although formaldehyde has many medical uses, consumption of formaldehyde in this
industry is relatively small, reflecting only about 1.5% of total U.S. volume in the late
1980s (ATSDR 1999). Formaldehyde is used as an antibacterial agent delivered via
hydrolysis of formaldehyde-releasing prodrugs, such as methenamine, used to treat
application, and other techniques for administration of formalin solutions (typically 4%
formalin) have been used to treat radiation proctitis (Haas et al. 2007, Leiper and Morris
2007). The synergy between doxorubicin and formaldehyde-releasing prodrugs in killing
cancer cells has been shown to be due predominantly to formaldehyde (Rephaeli et al.
2007). Rephaeli et al. reported that these prodrugs also protected neonatal rat
cardiomyocytes and adult mice against the toxicity of doxorubicin.
Other reported minor medicinal applications for formaldehyde have included its use
during vasectomies, as a treatment for athlete’s foot, as a sterilant for *Echinococcus*
tapeworm cysts prior to their surgical removal, and in dentistry (IARC 1982, 2006).

Formaldehyde has had many uses in agriculture, including use as a fumigant, for
prevention of mildew in spelt wheat and rot in oats, as a preservative in fodder, as a
preplanting soil sterilant in mushroom houses, as a germicide and fungicide for plants
and vegetables, as an insecticide for flies and other insects, as a disinfectant in brooding
houses, in the production of herbicides, for seed treatment, and in the manufacture of
controlled-release fertilizers (used in agriculture and on residential lawns) (ATSDR 1999,
WHO 2002). Formaldehyde is also used to produce glyphosate, which is the active
ingredient in the herbicide Roundup (Bizzari 2007).

Additional uses of formaldehyde have been reported for the manufacture of glass mirrors,
explosives, artificial silk, and dyes; as a bactericide in coating agents and other chemicals
used in paper mills; for tanning and preserving animal hides; for hardening gelatin plates
and papers, toning gelatin-chloride papers, and chrome printing and developing in the
photography industry; as a biocide for latex, an adhesive additive, and an anti-oxidizer
additive for synthetic rubber in the rubber industry; as a biocide in oil-well drilling fluids
and as an auxiliary agent in petroleum refining; in chemical toilets; in the manufacture of
crease-resistant and flame-retardant fabrics; as an anticorrosive agent for metals; and in
formaldehyde-based resins often used as core binders in foundries (ATSDR 1999, WHO
2002).
Because formaldehyde is fairly easy to make, is costly to transport, and can become unstable during transport, it usually is produced to satisfy captive requirements for the production of derivatives or to supply local merchant sales (Bizzari 2007). The uses for formaldehyde vary regionally within the United States. Almost all formaldehyde produced in the West is consumed for wood adhesives; formaldehyde produced in the Gulf region is used primarily in chemical derivatives and to a lesser extent for wood adhesives; and production in the South and Southeast is used primarily for wood adhesives and to a lesser extent in chemical derivatives.

Paraformaldehyde is a high-formaldehyde-content product that is commercially available as 91% or 95% prills; roughly 2.6 metric tons of 37% formaldehyde are required to produce 1 metric ton of paraformaldehyde (Bizzari 2007). The main applications for paraformaldehyde are foundry resins and applications where the presence of water could
interfere with a production process. Being a solid, paraformaldehyde is preferred over
aqueous formaldehyde for shipping over long distances (Bizzari 2007).
Paraformaldehyde has been used as a fumigant to decontaminate laboratories and to
disinfect sickrooms, clothing, and linen; in pesticide applications; for making varnish
resins, thermosets, and foundry resins; in the synthesis of chemical and pharmaceutical
products; in the preparation of disinfectants and deodorants; and in the production of
textile products. In 2006, the production of paraformaldehyde accounted for almost 3%

Formaldehyde is also marketed in solid form as its cyclic trimer, trioxane (Bizzari 2007).
In acidic solutions, trioxane decomposes to generate three formaldehyde molecules
(HSDB 2009c). Trioxane and hexamine (C₆H₁₂N₄) are the main components of solid fuel
tablets, commonly known as Esbit, which are used by campers, hobbyists, the military,
and relief organizations primarily for boiling water and cooking (ZenStoves 2009).
Trioxane is also used in the production of polyacetal resins (Bizzari 2007) and has many
other potential industrial applications (BASF 2006).

Some preservatives break down and release formaldehyde as the active agent (WHO
2002). The levels of decomposition and formaldehyde release depend mainly on
temperature and pH. Products most often containing formaldehyde releasers are industrial
and household cleaning agents, soaps, shampoos, paints, lacquers, and cutting fluids,
based on a review of the Danish Product Register Data Base (WHO 2002). Examples of
formaldehyde-releasing antimicrobial agents used in metalworking fluids are
tris(hydroxymethyl)nitromethane and hexahydro-1,3,4, tris(2-hydroxyethyl)-S-triazine
(NIOSH 2001). No data were found on formaldehyde levels resulting from formaldehyde
releasers.

2.2 Production

2.2.1 Industrial production
Formaldehyde has been produced commercially since 1889 by catalytic oxidation of
methanol. Currently, the two predominant production processes are a silver catalyst
process and a metal oxide catalyst process (Bizzari 2007).
Formaldehyde is produced and consumed at various concentrations; the data on industrial levels presented here are based on a concentration of 37% unless otherwise noted. In 2006, worldwide formaldehyde production was around 28 million metric tons [31 million tons], with Western Europe being the highest producer, at 7.8 million metric tons [8.6 million tons], and China the second-highest producer, at 7 million metric tons [7.7 million tons] (Bizzari 2007). In the United States, production has gradually but steadily increased from 0.9 million metric tons [1 million tons] in 1960 to 4.5 million metric tons [5 million tons] in 2006. Figure 2-2 shows U.S. formaldehyde production from 1960 through 2006. Bizzari reported in 2007 that U.S. formaldehyde production capacity was 5.4 million metric tons [6 million tons] per year.

![Figure 2-2. Formaldehyde production in the United States](source: Bizzari 2007)

In the United States in 2009, formaldehyde was reported to be produced at 39 manufacturing plants (SRI 2009a) by an estimated 12 companies [estimate based on Bizzari 2007], and paraformaldehyde and trioxane were each produced at one U.S. manufacturing facility (SRI 2009b, 2009c). In 2009, 36 suppliers of formaldehyde, 25
suppliers of paraformaldehyde, and 11 suppliers of trioxane were identified in the United States; identified internationally were 152 formaldehyde suppliers in 25 countries, 59 paraformaldehyde suppliers in 15 countries, and 21 trioxane suppliers in 9 countries (ChemSources 2009a, 2009b, 2009c).

Because of transportation and storage issues associated with formaldehyde, it usually is produced close to the point of consumption; international trade in formaldehyde is therefore minimal, accounting for approximately 2% of worldwide production in 2006 (Bizzari 2007). In the United States, formaldehyde imports in 2006 were about 10,000 metric tons [11,000 tons], or roughly 0.2% of consumption, while exports were about 14,000 metric tons [15,400 tons], or about 0.3% of production.

2.2.2 Other production sources
In addition to intentional industrial production, formaldehyde is produced unintentionally from natural sources and from human activities. Combustion processes account either directly (i.e., release of formaldehyde) or indirectly (i.e., release of chemicals that are reduced to formaldehyde in the environment) for most of the formaldehyde entering the environment (ATSDR 1999, Howard 1989). Combustion sources include automobiles and other internal combustion engines, power plants, incinerators, refineries, forest fires, wood stoves, and cigarettes. Photochemical oxidation of hydrocarbons and other precursors released from combustion processes can be a significant indirect source of formaldehyde. Formaldehyde may also be produced in the atmosphere by the oxidation of methane; this is probably the predominant source of formaldehyde in regions remote from hydrocarbon emissions. Formaldehyde is also formed in the early stages of decomposition of plant residues in soil (IARC 2006).

2.2.3 Endogenous production
In humans and other animals, formaldehyde is an essential metabolic intermediate in all cells and is produced endogenously from serine, glycine, methionine, and choline, and from the demethylation of N-, O-, and S-methyl compounds (IARC 2006) (see Section 5.1). Zhang et al. (2009a) reported that the endogenous concentration of formaldehyde in the blood of humans, monkeys, and rats is approximately 2 to 3 mg/L.
2.3 Biological indices of exposure

Direct measures of exposure to formaldehyde normally would involve determination of formaldehyde or its major metabolite formic acid (or formate) in blood or urine of exposed individuals. Neither formaldehyde nor formate has been very useful for direct biological monitoring, for several reasons. Levels of both of these molecules show large intrapersonal and interpersonal variation even in the absence of formaldehyde exposure (ATSDR 1999). Because both formaldehyde and formate are simple one-carbon molecules that are rapidly metabolized and incorporated into the one-carbon pathway or oxidized to carbon dioxide (Shaham et al. 2003), most of the formaldehyde taken into the body becomes unidentifiable as the parent molecule or major metabolite. A further complication is the formation of formaldehyde in vivo from the metabolism of many xenobiotics, including carbon tetrachloride, endrin, paraquat, dioxins, and dichloromethane (ATSDR 1999). Formate can also be part of the metabolic pathways of chemicals such as methanol, halomethanes, and acetone (ATSDR 1999, Shaham et al. 2003).

Formaldehyde can bind covalently to single-stranded DNA and protein to form crosslinks or with human serum albumin (HSA) or the N-terminal valine of hemoglobin to form molecular adducts, and these reaction products of formaldehyde might serve as biomarkers for exposure to formaldehyde. Pala et al. (2008) reported a significant relationship between levels of exposure to airborne formaldehyde and formaldehyde-HSA conjugate (FA-HSA); however, no relationship was observed between exposure levels and chromosomal aberrations, micronuclei, or sister chromatid exchanges. Metabolism of formaldehyde and adduct formation are discussed in Section 5, and the potential for these molecules as biomarkers for formaldehyde exposure is described in the remainder of this section.

Shaham et al. (1996a, 1997) conducted a pilot study to investigate the use of DNA-protein crosslinks as a biomarker for formaldehyde exposure in humans. DNA-protein crosslinks were measured in white blood cells from 12 exposed workers (physicians and technicians) and 8 unexposed controls. The workers had been exposed to formaldehyde from 2 to 31 years, with a mean of 13 years. Formaldehyde concentrations were
measured in the room air and in personal samples. Concentrations ranged from about 1.4 to 3.1 ppm \([1.7 \text{ to } 3.8 \text{ mg/m}^3]\). The levels of crosslinks were significantly higher \((P = 0.03)\) in exposed workers than in controls and significantly higher \((P < 0.05)\) in the most-exposed workers (technicians) than in less-exposed workers (physicians). Furthermore, the years of exposure and levels of crosslinks were linearly related. Smoking did not influence the results. The authors concluded that DNA-protein crosslinks can be used as a method for biological monitoring of formaldehyde exposure.

Shaham et al. (2003) conducted a follow-up study of the relationship of DNA-protein crosslinks to occupational exposure to formaldehyde. This study also investigated effects on p53 protein expression (see Section 5.5.4.1). The workers included physicians, laboratory assistants and technicians, and hospital orderlies at 14 hospital pathology departments, and the workers had a mean exposure period of 15.9 years (range = 1 to 51 years). The exposed group included 59 men and 127 women, who were further divided into low- and high-exposure subgroups. The low-exposure group, which consisted of laboratory assistants and technicians, had exposure levels ranging from 0.04 to 0.7 ppm \([0.05 \text{ to } 0.86 \text{ mg/m}^3]\), while the high-exposure group, which consisted of physicians and orderlies, had exposure levels ranging from 0.72 to 5.6 ppm \([0.88 \text{ to } 6.9 \text{ mg/m}^3]\). [Note that characterization of the exposure levels of physicians and technicians as being high or low differed between the two studies by Shaham et al.] The control group included 213 administrative workers (127 men and 86 women) at the same hospitals. Age distribution, sex, origin, and education differed significantly between the exposed and control groups; therefore, the data were adjusted for these variables. DNA-protein crosslinks were measured in the mononuclear-cell fraction of peripheral blood. The adjusted mean number of crosslinks was significantly higher \((P < 0.01)\) in the total exposed group than in the control group. The mean number of crosslinks did not differ significantly by level of exposure or median years of exposure \((\leq 16 \text{ vs. } > 16 \text{ years})\).

Pharmacokinetic modeling suggests that the rate of formation of DNA-protein crosslinks is dose-dependent (IARC 2006), and it has been suggested that this rate can serve as a surrogate for the delivered dose of formaldehyde (Casanova et al. 1991, Shaham et al.)
DNA-protein crosslinks are also a marker for effect of exposure and are discussed further in Section 5.

Madison et al. (1991) reported that levels of immunoglobulin M (IgM) and immunoglobulin G (IgG) isotypes to FA-HSA were significantly higher in a group of subjects exposed to formaldehyde from an urea-formaldehyde spill than in a non-exposed group (see Section 5.3.2.4 for additional details). Carraro et al. (1999) later developed an indirect competitive enzyme immunoassay to titrate serum anti–FA-HSA antibodies using FA-HSA adducts conjugated \textit{in vitro}. The assay was used to examine two groups of roughly 90 healthy adults each, using adducts with a different ratio of formaldehyde to HSA for each group (5:1 and 10:1). The assay was more sensitive and specific with the 10:1 adduct than with the 5:1 adduct. The authors noted that the results of this study supported the assertion that the FA-HSA adduct is a good marker for formaldehyde exposure and concluded that this assay appeared to be able to evaluate immunological response against this adduct, in particular when the adduct with the 10:1 ratio was used. They suggested that the assay could be a useful tool for investigating formaldehyde exposure; however, no follow-up to this study was found in the literature.

Bono et al. (2006) found that the prevalence of N-methylenvaline (a molecular adduct formed by addition of formaldehyde to the N-terminal valine of hemoglobin) in blood was significantly higher in exposed workers than in non-exposed controls, and that levels of N-methylenvaline in blood were positively related to formaldehyde exposures. The authors concluded that its measurement in blood could be useful as a biomarker for occupational exposure to formaldehyde. For this study, 21 volunteers occupationally exposed to formaldehyde were recruited from a plywood factory and a laminate factory; 30 non-exposed workers served as a control group. The procedure for each subject consisted of the administration of a questionnaire, application of a passive sampler for one eight-hour working day, collection of a venous blood sample for N-methylenvaline determination, and collection of a urine sample to investigate the presence of cotinine (a biomarker for tobacco smoke exposure). Formaldehyde levels in personal air samples were significantly higher ($P = 0.0001$) for workers at both factories than for the controls, whereas the difference between the two factories was not statistically significant.
exposure levels were 0.092 mg/m3 for the plywood factory and 0.076 mg/m3 for the factory producing laminates. N-Methylenvaline distribution in blood showed a direct positive relationship to formaldehyde exposure ($r = 0.465$), and prevalence of the molecular adduct (as nanomoles per gram of globin) was significantly higher ($P < 0.04$) in the exposed group than in the control group.

Li et al. (2007a) investigated the formation of antibodies against formaldehyde-protein conjugates in rats as a potential biological marker for formaldehyde exposure. Male Sprague-Dawley rats were exposed to formaldehyde in their drinking water (1.6 mg/mL) for up to 6 months. Blood samples were collected at 3 and 6 months, and antibodies were measured in the serum. Antibodies were detected in half the animals at both 3 and 6 months, but the antibody titer was higher at 6 months. The antibodies were highly specific and did not cross-react with malondialdehyde or other albumin adducts. The antibody against formaldehyde-albumin adducts also recognized formaldehyde-human albumin conjugates, but only with about one-third the binding affinity. The authors concluded that anti-formaldehyde-protein conjugate antibodies are a potential biomarker for formaldehyde exposure.

2.4 Occupational exposure

No current data were found on the number of U.S. employees who are exposed to formaldehyde; however, in the late 1980s, the Occupational Safety and Health Administration (OSHA) estimated that over 2 million U.S. workers were exposed to formaldehyde, with about 45% of these working in the garment industry (ATSDR 1999). OSHA estimated that about 1.9 million workers were exposed to formaldehyde at concentrations between 0.1 and 0.5 ppm [0.12 and 0.61 mg/m3], about 123,000 at concentrations between 0.5 and 0.75 ppm [0.61 and 0.92 mg/m3], about 84,000 at concentrations between 0.75 and 1 ppm [0.92 and 1.23 mg/m3], and about 107,000 at concentrations greater than 1 ppm [1.23 mg/m3]. It has been suggested that because formaldehyde is ubiquitous, occupational exposure occurs in all workplaces (WHO 2002).
OSHA (1990) stated that formaldehyde exposure can occur in three ways: (1) exposure to liquid or solid formaldehyde (paraformaldehyde) and the accompanying vapors, (2) exposure to formaldehyde during primary processing of formaldehyde resins and other chemicals manufactured from formaldehyde, and (3) exposure to formaldehyde released from products that contain formaldehyde-based resins. In occupational environments, formaldehyde occurs mainly as a gas; however, formaldehyde particulates can be inhaled when paraformaldehyde or powdered resins are used, or when formaldehyde adsorbs to other particulates such as wood dust (IARC 1995). Dermal exposure also is possible when formalin solutions or liquid resins come in contact with the skin; however, no data were found on dermal exposures.

IARC (2006) noted that in the past, the highest continuous exposures have been measured during the varnishing of furniture and wooden floors, in the finishing of textiles, in the garment industry, during the treatment of furs, and in certain jobs within manufactured board mills and foundries. Short-term exposures to high levels have been reported for embalmers, pathologists, and paper workers. Lower levels have usually been encountered during the manufacture of synthetic vitreous fibers, abrasives, and rubber, and in formaldehyde production industries. A very wide range of exposure levels has been observed in the production of resins and plastic products.

Lavoué et al. (2008) extracted OSHA personal exposure monitoring data for formaldehyde (N = 5,228) from the U.S. Integrated Management Information System (IMIS) in order to develop a retrospective assessment of formaldehyde exposure and to determine what factors affect exposure levels. The authors noted that overall, short-term measurements were higher than time-weighted average (TWA) measurements. Short-term measurements decreased 18% per year until 1987, the year in which the OSHA permissible exposure limit (PEL) was implemented (see Section 2.7.1), and then 5% per year after that. TWA measurements decreased at a rate of 5% per year until 1987 and 4% per year thereafter.

Formaldehyde concentrations from IMIS were analyzed with a linear mixed-effects model, and TWA and short-term levels were estimated for numerous industries. The
highest estimated TWA concentrations were for the reconstituted wood products,
structural wood members, and wood dimension and flooring industries (geometric mean
= 0.2 mg/m³), and the highest estimated short-term levels were for the funeral service and
crematory and reconstituted wood products industries (geometric mean = 0.35 mg/m³).
The authors noted that very low and very high temperatures were associated with higher
exposure levels.

In a review of formaldehyde exposure in China, Tang et al. (2009) noted that the wood
processing industry had the highest average industrial formaldehyde air concentration,
caused in part by unventilated workshops and a lack of employee safety precautions.

This section provides information on various industries where occupational exposure to
formaldehyde occurs: these include formaldehyde and formaldehyde-based resin
production, wood-based products and paper production, manufacture of textiles and
garments, foundries, production of formaldehyde-based plastics, embalming, histology,
construction activities, fiberglass and mineral wool insulation production, firefighting and
combustion-related exposures, agriculture, office-building exposures, and other
exposures. Tables are provided with exposure levels; where available, information on
sources of exposure and exposure reduction methods is included in the text. In addition to
the review articles discussed above (i.e., WHO 1989, ATSDR 1999, and IARC 2006),
Tang et al. (2009) performed an extensive review of occupational exposure to
formaldehyde in China, and this article is used throughout the occupational exposure
section. As with the other review articles, the primary reference is provided for the data
from Tang et al.

Often, information on the specific resin used in a process was not provided in the source
document; where available, this information is provided with the exposure levels. Within
the exposure-level tables, the data generally are sorted by industry and then by year of
publication of the study. Throughout the tables in this section, concentrations are
presented in units of milligrams per cubic meter. If the concentrations were presented in
parts per million in the source document, values were multiplied by a conversion factor
of 1.23.
2.4.1 Formaldehyde and formaldehyde-based resin production

As noted in Section 2.2.1, most industrial production of formaldehyde is in the form of formalin; an aqueous solution of formaldehyde with small amounts of stabilizers such as methanol added to prevent polymerization. The predominant industrial use of formaldehyde is in the production of urea-, phenol-, and melamine-formaldehyde resins, which are used primarily as binders for wood products such as particleboard, MDF, plywood, and wood-molding compounds and as laminates for flooring, cabinets, countertops, furniture, and similar items (Bizzari 2007). Another major use of formaldehyde is for the production of polyacetal resins, which are used widely in the production of plastics, industrial machinery, automotive components, and various consumer and industrial goods (Bizzari 2007, IARC 2006) (see Section 2.5.5).

Jobs with potential exposure during the production of formaldehyde or formaldehyde-based resins include machine operator, reception and shipping clerk, maintenance worker, laboratory technician, foreman, and office worker (IRSST 2006). Tasks that may result in formaldehyde exposure include collecting product samples for analysis, maintenance and repair operations, filter replacement, bagging, and filling trucks and barrels. The main factors that affect occupational exposures to formaldehyde include the condition of the piping and equipment, the presence and efficiency of fume hoods or local collection systems at the source of the emissions, and the efficiency of the general ventilation system.

IARC (2006) reported that mean air levels of formaldehyde were less than 1 ppm [1.23 mg/m³] during the manufacture of formaldehyde and ranged from less than 1 ppm [1.23 mg/m³] to more than 10 ppm [12.3 mg/m³] during the manufacture of formaldehyde-based resins. Table 2-1 presents exposure data for formaldehyde and formaldehyde-based resin production. IARC (2006) noted that while obvious differences have been seen in formaldehyde air levels among factories producing formaldehyde-based resins, no consistent seasonal variation has been demonstrated. Workers in formaldehyde production may also be exposed to methanol, carbon monoxide, carbon dioxide, and hydrogen as process gases.
In Canada, formaldehyde production is done in a continuous closed circuit and is completely automated (IRSST 2006); however, no information was found on processes used in the United States for formaldehyde or formaldehyde-resin production or the potential for releases to air.

The major steps that can be taken to reduce exposure in this industrial sector include confining operations that may result in formaldehyde exposure, such as sample collection, barrel filling, filter cleaning, and tanker-truck filling operations, and installing hoods above the emission sources. Ensuring proper general ventilation with outside air will also help reduce exposure levels, and personal protective equipment should be used where exposure levels are high (IRSST 2006).
Table 2-1. Formaldehyde exposure levels associated with formaldehyde production and formaldehyde-based resin production

<table>
<thead>
<tr>
<th>Industry (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde production (2001)</td>
<td>48</td>
<td>1.07 (0.5–3.5)</td>
<td>Li and Chen 2002²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Formaldehyde production (1988–1997)</td>
<td>196</td>
<td>1.2 (0.01–2.1)</td>
<td>Zhang et al. 1999⁵</td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>1.3 (0.02–1.8)</td>
<td>China</td>
</tr>
<tr>
<td>Formaldehyde workshops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1994)</td>
<td>22</td>
<td>0.985 (NR)</td>
<td>Cheng et al. 1995⁵</td>
</tr>
<tr>
<td>(1995)</td>
<td>NR</td>
<td>NR (0–2.88)</td>
<td>Huan et al. 2001⁵</td>
</tr>
<tr>
<td>(1995)</td>
<td>NR</td>
<td>NR (0–3.66)</td>
<td>Huan et al. 2001⁵</td>
</tr>
<tr>
<td>(1996)</td>
<td>12</td>
<td>2.53 (0.24–8.03)</td>
<td>Wang et al. 1997⁵</td>
</tr>
<tr>
<td>(2006)</td>
<td>21</td>
<td>0.029 (0.022–0.044)</td>
<td>Yang 2007⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Factory producing formaldehyde and resins (1979–1985)</td>
<td>62</td>
<td>0.3 (0.05–0.5)</td>
<td>Holmström et al. 1989⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td>Formaldehyde manufacture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1983)</td>
<td>15</td>
<td>0.7 (0.04–2.3)⁶</td>
<td>Stewart et al. 1987⁵</td>
</tr>
<tr>
<td>Plant 2 summer</td>
<td>9</td>
<td>0.9 (0.7–1.0)⁶</td>
<td>United States</td>
</tr>
<tr>
<td>Plant 10 summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde production (1980s)</td>
<td>9</td>
<td>0.3 (NR)</td>
<td>Rosen et al. 1984⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td>Paraformaldehyde packaging (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal sampling</td>
<td>10</td>
<td>0.66 (< 0.30–1.02)</td>
<td>Blade 1983⁴</td>
</tr>
<tr>
<td>Area sampling</td>
<td>8</td>
<td>1.4 (0.34–4.08)</td>
<td>United States</td>
</tr>
<tr>
<td>Formaldehyde production (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production operator</td>
<td>NR</td>
<td>1.68</td>
<td>NIOSH 1980⁴</td>
</tr>
<tr>
<td>Laboratory technician</td>
<td>NR</td>
<td>1.57</td>
<td>United States</td>
</tr>
<tr>
<td>Industry (year measured)</td>
<td>N</td>
<td>Exposure level mean (range) (mg/m³)</td>
<td>Reference Location</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Formaldehyde-based resin production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furan resin production</td>
<td>3</td>
<td>2.9 (1.3–4.2)</td>
<td>Heikkila et al. 1991b Finland</td>
</tr>
<tr>
<td>Maintenance</td>
<td>4</td>
<td>3.6 (1.8–6.9)</td>
<td></td>
</tr>
<tr>
<td>UF resin production</td>
<td>7</td>
<td>0.9 (0.7–1.1)</td>
<td></td>
</tr>
<tr>
<td>Resin production (NR)</td>
<td>NR</td>
<td>0.3 (0.05–0.5)</td>
<td>Holmström et al. 1989a" United States</td>
</tr>
<tr>
<td>Plant 1 summer</td>
<td>24</td>
<td>4.2 (0.3–16.2)c</td>
<td>Stewart et al. 1987a b United States</td>
</tr>
<tr>
<td>Plant 6 summer</td>
<td>6</td>
<td>0.3 (0.1–0.3)c,f</td>
<td></td>
</tr>
<tr>
<td>Plant 7 summer</td>
<td>9</td>
<td>0.3 (0.1–0.4)c</td>
<td></td>
</tr>
<tr>
<td>Plant 7 winter</td>
<td>9</td>
<td>0.7 (0.5–1.1)c</td>
<td></td>
</tr>
<tr>
<td>Plant 8 summer</td>
<td>13</td>
<td>0.7 (0.3–1.0)c,e,f,g</td>
<td></td>
</tr>
<tr>
<td>Plant 8 winter</td>
<td>9</td>
<td>0.1 (0.1–0.3)c,e,f,g</td>
<td></td>
</tr>
<tr>
<td>Plant 9 summer</td>
<td>8</td>
<td>17.5 (5.0–37.5)c,e,f,g</td>
<td></td>
</tr>
<tr>
<td>Plant 9 winter</td>
<td>9</td>
<td>2.1 (1.4–3.1)c</td>
<td></td>
</tr>
<tr>
<td>Plant 10 summer</td>
<td>23</td>
<td>0.9 (0.4–1.5)c,e,f,g</td>
<td></td>
</tr>
<tr>
<td>Resin production (1980s)</td>
<td>22</td>
<td>0.6 (NR)</td>
<td>Rosen et al. 1984ab Sweden</td>
</tr>
<tr>
<td>Resin and plastic materials production (NR)</td>
<td>NR</td>
<td>1.67 (NR)a</td>
<td>NIOSH 1980ada United States</td>
</tr>
</tbody>
</table>

NR = not reported.

bCited in IARC 2006.
cMean and range of geometric means.
eCited in ATSDR 1999.
fSome of the sampling results were affected by simultaneous occurrence of phenol, which interferes with the measurement method, leading to artificially low values.
gSome of the sampling results were affected by a simultaneous occurrence of particulates “that contained nascent formadehyde (leading to high values).”
hData also presented in Table 2-8.

2.4.2 Wood-based products and paper production

The predominant use for formaldehyde-based resins is in the production of wood-based composites; UF, MF, melamine-urea-formaldehyde (MUF), and PF resins all can be used, depending on the product being manufactured. Plywood and other laminated wood products often are referred to as composite-wood products; however, in this section, they are discussed separately from other wood-based composites, because of important
differences in manufacturing processes and exposure potential. Wood furniture and paper-product manufacturing also are discussed in this section.

2.4.2.1 Wood-based composites

The product class of wood-based composites includes particleboard, fiberboard, and oriented strandboard (OSB), which are differentiated primarily by the type of wood fiber used (i.e., from large particles to small fibers). Regardless of the type of fiber used, the manufacturing process is basically the same: (1) the wood fiber is bonded together with a thermosetting resin to form a mat, (2) the mat is hot-pressed, and (3) the pressed mat is then cooled and allowed to mature (IRSST 2006). The wood fibers typically are bonded with UF, MF, MUF, or PF resins. During hot-pressing, the mat is heated and compacted to the desired density and thickness, and the resin polymerizes to bind the particles and stabilize the panel.

UF resins are primarily used in the manufacture of products where dimensional uniformity and surface smoothness are of primary concern. Conner (2001) reported that over 70% of the UF resin produced is used by the forest industry in the production of particleboard (61%), MDF (27%), hardwood plywood (5%), and as a laminating adhesive (7%). The popularity of UF resins results from a number of factors, including low cost, ease of use, water solubility, hardness, and lack of color. However, moist conditions, especially when combined with heat, lead to a reversal of the bond-forming reactions and result in the release of formaldehyde. For this reason, UF resins are unsuitable for most outdoor uses and are used almost exclusively for products intended for indoor use. MF and MUF resins are more resistant to breakdown in moist environments; however, melamine is much more expensive than urea. MF resins are used primarily for decorative laminates. PF resins are the most resistant to breakdown from moisture and thus typically are used in products requiring some degree of outdoor exposure durability, such as OSB. PF resins also have a darker color, making them generally less suitable for decorative products such as paneling and furniture (USDA 1999).

The major determinants of worker exposure levels are the type of resin used and the molar ratio of formaldehyde to the other components (IRSST 2006). IRSST noted that the emission rate is highest for UF resin and lowest for PF resin. Other parameters that
affect exposure levels include process operating conditions, such as temperature, pressing
time, panel thickness, and maturation time; the presence and efficiency of fume hoods or
other collection systems; and the level of general ventilation. Production areas and
processes associated with formaldehyde exposure include gluing (both glue preparation
and application), board press operations, board cooling operations, maturing and drying,
and storage. Jobs that may result in formaldehyde exposure include resin preparer, press
operator, finisher, laminator, laboratory technician, and maintenance and office
personnel. The main means of controlling exposure to formaldehyde are substitution
(e.g., isocyanate-based products can be used for some applications but have high
toxicity), the use of resins with lower emission rates, confinement of production steps
that produce formaldehyde emissions, the use of hoods and capture devices, good general
ventilation, and the use of personal protection where formaldehyde levels are high.

Process- and product-related changes over the past few decades have led to general
reductions in levels of occupational exposure to formaldehyde, which is reflected in the
data presented by Kauppinen and Niemelä (1985) (as cited in IARC 2006) (see
Table 2-2). Lower mean exposure levels were seen for all operations that were assessed
during the 1975 to 1984 time period when compared with the 1965 to 1974 time period.
These data indicate that tasks with the highest exposure levels include glue preparation,
hot pressing, and sawing.

Table 2-2. Formaldehyde exposure levels associated with the production of wood-
based composites

<table>
<thead>
<tr>
<th>Industry (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particleboard production</td>
<td>332</td>
<td>0.56 (NR)</td>
<td>Lavoue et al. 2007</td>
</tr>
<tr>
<td>MDF production</td>
<td>42</td>
<td>0.41 (NR)</td>
<td>Compiled data from various locations</td>
</tr>
<tr>
<td>OSB production</td>
<td>2</td>
<td>0.05 (NR)</td>
<td></td>
</tr>
<tr>
<td>Fiberboard production</td>
<td>60</td>
<td>0.42 (0.11–0.86)</td>
<td>Geng et al. 2004²</td>
</tr>
<tr>
<td>(2003)</td>
<td>NR</td>
<td>0.41 (0.14–3.2)</td>
<td>Jiang et al. 2006³</td>
</tr>
<tr>
<td>(2005)</td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Industry (year measured)</td>
<td>N</td>
<td>Exposure level mean (range) (mg/m³)</td>
<td>Reference Location</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>-----------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Blocking</td>
<td>40</td>
<td>1.13 (0.35–2.6) 0.18 (NR)</td>
<td>Fan et al. 2004b</td>
</tr>
<tr>
<td>(2002)</td>
<td></td>
<td></td>
<td>Shi et al. 2006b</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>(2005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberboard sawing and sanding (1990s)</td>
<td>46</td>
<td>0.04–0.13 (0.01–0.17)c</td>
<td>Chung et al. 2000d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>OSB plant (1990s)c</td>
<td>20</td>
<td>≤ 0.06 (NR)</td>
<td>Herbert et al. 1995d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>Particleboard mill (NR)</td>
<td>9</td>
<td>3.0 (1.5–4.3)</td>
<td>Malaka and Kodama 1990d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indonesia</td>
</tr>
<tr>
<td>Blockboard mill (NR)</td>
<td>6</td>
<td>0.6 (0.5–0.7)</td>
<td>Malaka and Kodama 1990d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indonesia</td>
</tr>
<tr>
<td>Chipboard production (1980–1988)</td>
<td>24</td>
<td>1.9 (< 0.01–10)</td>
<td>Triebig et al. 1989d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Particleboard and molded plastics plant (NR)</td>
<td>NR</td>
<td>0.85 (0.21–3.6)f</td>
<td>Horvath et al. 1988g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Two particleboard plants and a laminate plant (1980s)</td>
<td>NR</td>
<td>NR (0.1–1.11)b</td>
<td>Edling et al. 1988g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td>Particleboard sanding (NR)</td>
<td>NR</td>
<td>NR (0.23–0.96)</td>
<td>Stumpf et al. 1986g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Particleboard mills (1965–1984)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glue preparation 1975–1984</td>
<td>10</td>
<td>2.7 (0.4–6.0)</td>
<td>Kauppinen and Niemela 1985d</td>
</tr>
<tr>
<td>Blending 1965–1974</td>
<td>10</td>
<td>1.2 (0.1–2.5)</td>
<td>Finland</td>
</tr>
<tr>
<td>Blending 1975–1984</td>
<td>8</td>
<td>0.9 (< 0.1–1.7)</td>
<td></td>
</tr>
<tr>
<td>Forming 1965–1974</td>
<td>26</td>
<td>2.1 (< 0.6–5.7)</td>
<td></td>
</tr>
<tr>
<td>Forming 1975–1984</td>
<td>32</td>
<td>1.7 (0.1–5.9)</td>
<td></td>
</tr>
<tr>
<td>Hot press 1965–1974</td>
<td>35</td>
<td>4.2 (1.4–11.7)</td>
<td></td>
</tr>
<tr>
<td>Hot press 1975–1984</td>
<td>61</td>
<td>2.1 (0.25–5.7)</td>
<td></td>
</tr>
<tr>
<td>Sawing 1965–1974</td>
<td>17</td>
<td>5.9 (0.9–11.3)</td>
<td></td>
</tr>
<tr>
<td>Sawing 1975–1984</td>
<td>36</td>
<td>1.2 (< 0.1–4.1)</td>
<td></td>
</tr>
<tr>
<td>Coating 1965–1974</td>
<td>7</td>
<td>1.2 (0.6–2.2)</td>
<td></td>
</tr>
<tr>
<td>Coating 1975–1984</td>
<td>12</td>
<td>0.5 (0.1–1.5)</td>
<td></td>
</tr>
<tr>
<td>Particleboard and MDF production (1980s)</td>
<td>40</td>
<td>0.3–0.4 (NR)</td>
<td>Rosen et al. 1984d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td>Cork compression (1985)</td>
<td>28</td>
<td>3.01 (0.33–46.14)</td>
<td>Gao et al. 1988b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
</tbody>
</table>

NR = not reported.

aMedian geometric mean from data compiled from 13 studies.
2.4.2.2 Plywood and other laminated veneer

This industrial sector involves the manufacture of plywood, veneer, laminated wood, and panel coating and generally involves gluing together panels of wood veneer or other materials. Regardless of the end product, the process generally consists of five steps: gluing, pressing, drying, finishing, and storage. Adhesives used in this industry can be made of UF, MF, MUF, or PF resins. UF, MF, or MUF resins are used primarily for decorative products intended for indoor use, while PF resins are used for structural plywood (softwood plywood) and weather-resistant materials (USDA 1999, WSDE 1998). Methods of applying the adhesives include spraying, curtain coating, roller coating, extrusion, and foaming (USDA 1999). The veneer panels are laid up by hand, machine, or a combination of both. The glue is then allowed to partially cure under pressure. Pressing operations can include cold pressing (pressing at ambient temperatures), hot pressing (pressing at high temperatures), or a combination of the two. Hot pressing is used for some UF glues and for all PF glues (WSDE 1998). Pressing times range from a few minutes to several hours depending on the temperature of the press, the size of the product, and the type of glue used.

Sources of exposure within this sector include glue preparation and application, press operations, drying and storage, maintenance operations, finishing operations, and packaging and transportation operations. The main factors that affect worker exposure include the type of resin and the molar ratio used; process operating conditions, such as temperature, amount of pressure applied and duration of pressing, panel thickness, and type of wood coating; the presence and efficiency of fume hoods and local collection systems; and the efficiency of the general ventilation system (IRSST 2006). Measures to control exposure include product substitution (e.g., isocyanate resins are available, but their toxicity is high), the use of resins with lower emission rates (PF resins release less...
formaldehyde during curing than UF resins), confinement of production steps that produce formaldehyde emissions, installation of fume hoods above the sources of emissions, sufficient levels of ventilation in the finishing and storage areas to dissipate residual formaldehyde emissions, and the use of personal protection where exposure levels are high.

Numerous process- and product-related changes over the past few decades have led to general reductions in occupational exposure levels, as can be seen in Table 2-3. Of particular interest are data reported for several different processes for the periods 1965–74 and 1975–84 by Kauppinen (1986) (as cited in IARC 2006); mean exposure levels for all operations assessed during 1975–84 had decreased from 1965–74. Based on these data, tasks with the highest exposure levels include glue preparation and hot pressing, and major exposure-level reductions were seen for these tasks.

Table 2-3. Formaldehyde exposure levels associated with the manufacture of plywood and laminates

<table>
<thead>
<tr>
<th>Industry (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plywood panels production</td>
<td>8</td>
<td>0.092 (NR)</td>
<td>Bono et al. 2006</td>
</tr>
<tr>
<td>Laminates production</td>
<td>13</td>
<td>0.076 (NR)</td>
<td>NR</td>
</tr>
<tr>
<td>Plywood mill (2000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryers</td>
<td>14</td>
<td>0.07³ (NR)</td>
<td>Fransman et al. 2003b</td>
</tr>
<tr>
<td>Composers</td>
<td>2</td>
<td>0.03³ (NR)</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Pressing</td>
<td>5</td>
<td>0.16³ (NR)</td>
<td></td>
</tr>
<tr>
<td>Finishing end</td>
<td>1</td>
<td>0.04³ (NR)</td>
<td></td>
</tr>
<tr>
<td>Patching</td>
<td>6</td>
<td>0.07 (0.03–0.10)</td>
<td>Mäkinen et al. 1999³</td>
</tr>
<tr>
<td>Feeding of drying machine</td>
<td>6</td>
<td>0.06 (0.01–0.15)</td>
<td>Finland</td>
</tr>
<tr>
<td>Forklift driving</td>
<td>6</td>
<td>0.07 (0.02–0.20)</td>
<td></td>
</tr>
<tr>
<td>Scaring [scarfing]</td>
<td>6</td>
<td>0.14 (0.07–0.24)</td>
<td></td>
</tr>
<tr>
<td>Assembly (machine 1)</td>
<td>4</td>
<td>0.30 (0.10–0.81)</td>
<td></td>
</tr>
<tr>
<td>Assembly (machine 2)</td>
<td>6</td>
<td>0.15 (0.10–0.27)</td>
<td></td>
</tr>
<tr>
<td>Hot pressing</td>
<td>5</td>
<td>0.13 (0.08–0.23)</td>
<td></td>
</tr>
<tr>
<td>Glue preparation</td>
<td>2</td>
<td>0.15 (0.07–0.23)</td>
<td></td>
</tr>
<tr>
<td>Finishing</td>
<td>4</td>
<td>0.09 (0.07–0.14)</td>
<td></td>
</tr>
<tr>
<td>Carrying plywood piles</td>
<td>2</td>
<td>0.06 (0.05–0.07)</td>
<td></td>
</tr>
<tr>
<td>Finishing</td>
<td>2</td>
<td>0.05 (0.01–0.07)</td>
<td></td>
</tr>
<tr>
<td>Industry (year measured)</td>
<td>N</td>
<td>Exposure level mean (range) (mg/m³)</td>
<td>Reference Location</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Plywood factory (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warehouse</td>
<td>3</td>
<td>0.39 (0.21–0.60)</td>
<td>Ballarin et al. 1992<sup>c</sup></td>
</tr>
<tr>
<td>Shearing press</td>
<td>8</td>
<td>0.10 (0.08–0.14)</td>
<td>Italy</td>
</tr>
<tr>
<td>Sawmill</td>
<td>1</td>
<td>0.09 (1 sample)</td>
<td></td>
</tr>
<tr>
<td>Plywood mill (NR)</td>
<td>40</td>
<td>0.8 (0.3–2.8)</td>
<td>Malaka and Kodama 1990<sup>b</sup></td>
</tr>
<tr>
<td>Winter</td>
<td>27</td>
<td>0.3<sup>a</sup> (0.1–0.5)</td>
<td>Stewart et al. 1987a<sup>b</sup></td>
</tr>
<tr>
<td>Summer</td>
<td>26</td>
<td>0.1<sup>a</sup> (0.01–0.6)</td>
<td>United States</td>
</tr>
<tr>
<td>Plywood mills (1964–1984)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glue prep 1965–1974</td>
<td>15</td>
<td>2.7 (0.7–6.2)</td>
<td>Kauppinen 1986<sup>b</sup></td>
</tr>
<tr>
<td>Glue prep 1975–1984</td>
<td>19</td>
<td>0.9 (0.1–2.8)</td>
<td>Finland</td>
</tr>
<tr>
<td>Assembly 1965–1974</td>
<td>32</td>
<td>1.9 (<0.1–5.4)</td>
<td></td>
</tr>
<tr>
<td>Assembly 1975–1984</td>
<td>55</td>
<td>0.7 (0.03–8.3)</td>
<td></td>
</tr>
<tr>
<td>Hot press 1965–1974</td>
<td>41</td>
<td>2.5 (<0.1–9.5)</td>
<td></td>
</tr>
<tr>
<td>Hot press 1975–1984</td>
<td>43</td>
<td>0.6 (0.07–2.6)</td>
<td></td>
</tr>
<tr>
<td>Sawing 1965–1974</td>
<td>5</td>
<td>0.6 (0.4–1.0)</td>
<td></td>
</tr>
<tr>
<td>Sawing 1975–1984</td>
<td>12</td>
<td>0.1 (0.03–0.3)</td>
<td></td>
</tr>
<tr>
<td>Coating 1965–1974</td>
<td>7</td>
<td>1.2 (0.6–2.2)</td>
<td></td>
</tr>
<tr>
<td>Coating 1975–1984</td>
<td>28</td>
<td>0.4 (0.03–0.7)</td>
<td></td>
</tr>
<tr>
<td>Plywood production (1980s)</td>
<td>47</td>
<td>0.4 (NR)</td>
<td>Rosen et al. 1984<sup>b</sup></td>
</tr>
</tbody>
</table>

NR = not reported.
^a Geometric mean.
^b Cited in IARC 2006.
^c Cited in IARC 2006 and ATSDR 1999; data presented are from the original article, because of discrepancies between data presented in the IARC and ATSDR papers.

2.4.2.3 Wood furniture

Most furniture is manufactured from either wood-based composite or hardwood, and the manufacturing process can be generalized into four steps: (1) processing (sawing, sanding, assembly, inspection), (2) painting, staining, or varnishing (mixing, applying, drying, sanding, repair), (3) upholstery and installation of hardware, and (4) packaging and shipping (IRSST 2006). IRSST (2006) noted that most of the adhesives used in the industry do not emit formaldehyde; although wood-based composites and veneers may emit some formaldehyde, the main source of formaldehyde in this industry originates from finishes used on the furniture. Formaldehyde-based resins often are used to
crosslink more flexible resins, providing finishes that have good scratch and chemical
resistance for use in furniture surface coatings (TIG 2005).

Exposure determinants include the type of varnish used; process operating conditions,
such as the nature of the spraying systems, drying time, and the location of operations;
work methods employed; the presence and efficiency of varnishing booths and other
local collection systems at the source; and the efficiency of the general ventilation system
(IRSSST 2006). Tasks that can result in formaldehyde exposure include paint preparation,
application of primers and varnishes, sanding between coats, unloading of furniture from
ovens, repair tasks, installation of hardware, cleaning of application guns, and
maintenance. Sources of formaldehyde release include releases from varnish use and
storage, paint booths, furniture drying operations, and furniture storage. Jobs that may
result in exposure include laborer, painter, finish operator, repair and maintenance
personnel, finisher/shipper, supervisor, and office personnel.

Exposure control measures can include product substitution (i.e., use of formaldehyde-
free coatings), confinement of operations with high emissions (e.g., preparation and
application of varnish and paint in booths), good local and general ventilation, good work
methods (such as proper use of capture devices), and the use of personal protection where
formaldehyde levels are high (IRSSST 2006). Table 2-4 provides formaldehyde levels that
have been measured in the wood furniture manufacturing industry.

Table 2-4. Formaldehyde exposure levels associated with wood furniture
manufacturing

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood processing (1995)</td>
<td>104</td>
<td>3.07 (0.7–19.2)</td>
<td>Feng et al. 1996a</td>
</tr>
<tr>
<td>(1990–1998)</td>
<td>72</td>
<td>0.92 (NR)</td>
<td>Pan et al. 2000a</td>
</tr>
<tr>
<td>(1990–1998)</td>
<td>90</td>
<td>0.87 (NR)</td>
<td>Pan et al. 2000a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Operation (year measured)</td>
<td>N</td>
<td>Exposure level mean (range) (mg/m³)</td>
<td>Reference Location</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td>------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Woodworking shops (1990s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilated workshop</td>
<td>14</td>
<td>0.52 (0.34–0.66)</td>
<td>Abdel Hameed et al. 2000b Egypt</td>
</tr>
<tr>
<td>Unventilated workshop</td>
<td>14</td>
<td>0.79 (0.59–1.03)</td>
<td></td>
</tr>
<tr>
<td>Manufacture of furniture (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Painting</td>
<td>43</td>
<td>0.2 (2.25)c</td>
<td>Vinzentz and Laursen 1993b Denmark</td>
</tr>
<tr>
<td>Gluing</td>
<td>68</td>
<td>0.15 (2.87)c</td>
<td></td>
</tr>
<tr>
<td>Gluing</td>
<td>73</td>
<td>0.4 (0.09–1.2)</td>
<td>Heikkila et al. 1991b Finland</td>
</tr>
<tr>
<td>Machining in finishing department</td>
<td>9</td>
<td>0.4 (0.1–1.1)</td>
<td></td>
</tr>
<tr>
<td>Varnishing</td>
<td>150</td>
<td>1.4 (0.1–7.9)</td>
<td></td>
</tr>
<tr>
<td>Furniture factory (NR)</td>
<td>NR</td>
<td>0.25d (0.2–0.5)</td>
<td>Holmström et al. 1989b NR</td>
</tr>
<tr>
<td>Furniture factories, finishing with paints (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint mixer/supervisor</td>
<td>6</td>
<td>0.3 (0.2–0.5)</td>
<td>Alexandersson and Hedenstierna 1988b Sweden</td>
</tr>
<tr>
<td>Mixed duties on the line</td>
<td>5</td>
<td>0.5 (0.3–0.6)</td>
<td></td>
</tr>
<tr>
<td>Assistant painter</td>
<td>3</td>
<td>0.6 (0.2–0.9)</td>
<td></td>
</tr>
<tr>
<td>Spray painter</td>
<td>10</td>
<td>0.5 (0.2–1.3)</td>
<td></td>
</tr>
<tr>
<td>Feeder/receiver</td>
<td>13</td>
<td>0.3 (0.1–0.9)</td>
<td></td>
</tr>
<tr>
<td>Furniture factory (1975–1984)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding painting machine</td>
<td>14</td>
<td>1.4 (0.4–3.3)</td>
<td>Priha et al. 1986b Finland</td>
</tr>
<tr>
<td>Spray painting</td>
<td>60</td>
<td>1.2 (0.3–5.0)</td>
<td></td>
</tr>
<tr>
<td>Spray painting assistant</td>
<td>10</td>
<td>1.2 (0.3–2.0)</td>
<td></td>
</tr>
<tr>
<td>Curtain painting</td>
<td>18</td>
<td>1.4 (0.3–7.5)</td>
<td></td>
</tr>
<tr>
<td>Before drying of varnished furniture</td>
<td>34</td>
<td>1.8 (0.1–5.2)</td>
<td></td>
</tr>
<tr>
<td>After drying of varnished furniture</td>
<td>14</td>
<td>1.7 (0.3–6.6)</td>
<td></td>
</tr>
<tr>
<td>Furniture factory, varnishing (1980s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0.9 (NR)</td>
<td>Rosen et al. 1984b Sweden</td>
</tr>
<tr>
<td>Wood furniture manufacture (NR)</td>
<td>> 33</td>
<td>0.14–3.3 (0.01–7.68)f</td>
<td>Herrick et al. 1983g NR</td>
</tr>
<tr>
<td>Cabinetmaking (NR)</td>
<td>48</td>
<td>max. = < 0.1</td>
<td>Sass-Kortsak et al. 1986b Canada</td>
</tr>
</tbody>
</table>

NR = not reported.

bCited in IARC 2006.
cGeometric mean and standard deviation.
dMedian.
eCited in ATSDR 1999.
fRange of means and full range across four datasets.
gCited in WHO 1989.
2.4.2.4 Paper products

Formaldehyde-based products can be used for various purposes in paper production. UF and MF resins can be added to fiber slurries before pressing to increase paper strength, and UF, MF, and PF resins often are used as coatings for various types of paper products (IARC 2006, TIG 2005). UF resins are used as adhesives in paper bags, cardboard, and sandpaper, and formaldehyde is used as a bactericide in some paper-coating agents.

In paper-coating operations, the primary sources of emissions are from the dipping or coating operations and from drying ovens (WSDE 1998), which is reflected in the data presented in Table 2-5. Emissions from storage tanks and from areas where resin blends are prepared can also be a source of exposure. In a large epidemiological study of workers in 12 countries employed in the production departments of paper and paperboard mills and recycling plants, the highest exposure levels were observed during the calendering or on-machine coating operations (IARC 2006).

<table>
<thead>
<tr>
<th>Industry (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulp and paper industry (1950–1994)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulping, refining of stock</td>
<td>25</td>
<td>0.6 (0.0–3.8)</td>
<td>Korhonen et al. 2004a</td>
</tr>
<tr>
<td>Newsprint and uncoated paper machine</td>
<td>7</td>
<td>0.18 (0.05–0.57)</td>
<td></td>
</tr>
<tr>
<td>Fine and coated paper machine</td>
<td>51</td>
<td>1.4 (0.01–12.2)</td>
<td></td>
</tr>
<tr>
<td>Paperboard machine</td>
<td>8</td>
<td>0.6 (0.2–2.7)</td>
<td></td>
</tr>
<tr>
<td>Paper/paperboard machine</td>
<td>228</td>
<td>0.5 (0.0–8.1)</td>
<td></td>
</tr>
<tr>
<td>Calendering or on-machine coating</td>
<td>166</td>
<td>5.2 (0.0–61.5)</td>
<td></td>
</tr>
<tr>
<td>Winding, cutting, and grading</td>
<td>111</td>
<td>0.3 (0.0–1.4)</td>
<td></td>
</tr>
<tr>
<td>Repulping of waste paper</td>
<td>8</td>
<td>0.3 (0.06–0.5)</td>
<td></td>
</tr>
<tr>
<td>Paper mill (1968–1973)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gluing, hardening, lamination, and rolling of paper</td>
<td>12</td>
<td>1.1 (0.4–3.1)</td>
<td>FIOH 1994a</td>
</tr>
<tr>
<td>Impregnation of paper with phenol resin</td>
<td>38</td>
<td>9.1 (< 1.1–40.6)</td>
<td>Finland</td>
</tr>
<tr>
<td>Paper storage, diesel truck traffic</td>
<td>5</td>
<td>0.4 (0.25–0.5)</td>
<td></td>
</tr>
<tr>
<td>Paper mill (1975–1984)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating of paper</td>
<td>30</td>
<td>0.9 (0.5–39)</td>
<td>Heikkila et al. 1991a</td>
</tr>
<tr>
<td>Gum paper production</td>
<td>4</td>
<td>0.5 (0.3–0.8)</td>
<td>Finland</td>
</tr>
<tr>
<td>Impregnation of paper with amino resin</td>
<td>6</td>
<td>3.9 (0.6–16)</td>
<td></td>
</tr>
<tr>
<td>Impregnation of paper with phenol resin</td>
<td>20</td>
<td>0.1 (0.06–0.4)</td>
<td></td>
</tr>
<tr>
<td>Industry (year measured)</td>
<td>N</td>
<td>Exposure level mean (range) (mg/m³)</td>
<td>Reference Location</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Lamination and impregnation of paper with MF and PF resins (1983)</td>
<td>53</td>
<td>0.9b (< 0.01–9.1)</td>
<td>Stewart et al. 1987a² United States</td>
</tr>
<tr>
<td>Summer</td>
<td>39</td>
<td>0.4b (0.06–0.9)</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper production (1980s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminated paper</td>
<td>23</td>
<td>0.4 (NR)</td>
<td>Rosen et al. 1984a⁴ Sweden</td>
</tr>
<tr>
<td>Offset paper</td>
<td>8</td>
<td>0.2 (NR)</td>
<td></td>
</tr>
<tr>
<td>Paper and paperboard manufacture, coating preparation (NR)</td>
<td>11</td>
<td>0.61, 1.2 (< 0.01–3.6)c</td>
<td>NIOSH 1980a⁴ United States</td>
</tr>
<tr>
<td>Manufacture of treated paper products (NR)</td>
<td>101</td>
<td>0.41, 0.7c (0.17–1.19)c</td>
<td>NIOSH 1979b⁶ United States</td>
</tr>
<tr>
<td>Paper and paperboard manufacture, resin impregnation (NR)</td>
<td>62</td>
<td>0.06–0.1 (0.01–0.34)c</td>
<td>NIOSH 1976b⁶ United States</td>
</tr>
<tr>
<td>Map printing (1985)</td>
<td>28</td>
<td>0.64 (0.04–1.79)</td>
<td>Gao et al. 1988f China</td>
</tr>
</tbody>
</table>

NR = not reported.
²Cited in IARC 2006.
³Geometric mean. The authors noted that the simultaneous occurrence of phenol in summer interfered with the measurement method, resulting in artificially low values, and that occurrence of particulates (regardless of season) resulted in some high values due to off-gassing of formaldehyde from dust.
⁴Range of means (or medians if denoted) and full range across two or three sets of data.
⁵Cited in WHO 1989.
⁶Median.

2.4.3 Manufacture of textiles and garments

Formaldehyde-based resins are used in the textile industry during the chemical finishing stage to impart crease-resistant and flame-retardant properties and to prevent shrinkage (IRSST 2006). Formaldehyde-based resins have been used for crease resistance since the 1950s. Early resins contained substantial amounts of extractable formaldehyde; however, modifications in the resins have decreased free formaldehyde levels from about 0.4% to 0.01% or less, which has also resulted in lower occupational exposure levels (IARC 2006). IARC (2006) reported the results of a study in which formaldehyde air levels increased from 0.1 to 1.0 ppm [0.12 to 1.2 mg/m³] when formaldehyde content in the fabric increased from 0.015% to 0.04%. In another study, formaldehyde air levels in cutting rooms decreased from over 10 ppm [12.3 mg/m³] in 1968 to less than 2 ppm [2.5 mg/m³] in 1973 as a result of improvements in resin treatment processes (IARC 2006).
The finishing process involves impregnating the fabric in an aqueous solution and then pressing it to remove the excess solution (IRSST 2006). The main factors that affect worker exposure to formaldehyde include the types of processes and products used, the presence and efficiency of fume hoods and emission collection systems, and the level of general ventilation. Jobs that may result in formaldehyde exposure include resin preparer, process operators (various types), colorist, and maintenance worker. The main means of controlling exposure include use of formaldehyde-free finishes, the use of fume hoods at the source of emissions, sufficient general ventilation, and the use of personal protective equipment where formaldehyde levels are high.

In addition to gaseous formaldehyde exposure, workers can be exposed to formaldehyde bound to dust. IARC (2006) presented results of a study in a garment production facility in the United States where formaldehyde gas levels ranged from 26 to 36 μg/m³ [0.026 to 0.036 mg/m³] and levels of formaldehyde bound to dust ranged from 0.2 to 0.7 μg/m³ [0.0002 to 0.0007 mg/m³]. Workers in this industry may also be exposed to ammonia, dimethylthiourea, textile dyes, flame retardants, carrier agents, textile-finishing agents, and solvents (IARC 2006). The use of formaldehyde in garments can also result in formaldehyde exposure in retail shops and potentially of end users (IARC 2006, ATSDR 1999). Formaldehyde exposure levels associated with textile and garment manufacture are presented in Table 2-6.
Table 2-6. Formaldehyde exposure levels associated with the textile and garment industries

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textile Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textile and shoe industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resin collar (1989, summer)</td>
<td>18</td>
<td>NR (0.22–0.62)</td>
<td>Tao et al. 1990a</td>
</tr>
<tr>
<td>Resin collar (1989, winter)</td>
<td>9</td>
<td>NR (1.39–5.59)</td>
<td>Tao et al. 1990b</td>
</tr>
<tr>
<td>Paint/production (2000)</td>
<td>56</td>
<td>1.92 NR (0.4–4.3)</td>
<td>Pan et al. 2001a</td>
</tr>
<tr>
<td>Textile mills (1980s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crease-resistance treatment</td>
<td>29</td>
<td>0.2 (NR)</td>
<td>Rosen et al. 1984b</td>
</tr>
<tr>
<td>Flame-retardant treatment</td>
<td>2</td>
<td>1.5 (NR)</td>
<td>Sweden</td>
</tr>
<tr>
<td>Textile manufacture (NR)</td>
<td>19</td>
<td>0.64, 0.83 (0.13–1.6)</td>
<td>NIOSH 1981d</td>
</tr>
<tr>
<td>Textile plant (1975–1978)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finishing department mixing</td>
<td>8</td>
<td>1.1 (< 0.2– > 6.0)</td>
<td>Nousiainen and Lindqvist 1979a</td>
</tr>
<tr>
<td>Crease-resistance treatment</td>
<td>52</td>
<td>0.5 (< 0.2– > 4.0)</td>
<td>Finland</td>
</tr>
<tr>
<td>Flame-retardant treatment</td>
<td>67</td>
<td>2.5 (< 0.2– > 11.0)</td>
<td></td>
</tr>
<tr>
<td>Other finish treatment</td>
<td>17</td>
<td>0.4 (max. = 1.5)</td>
<td></td>
</tr>
<tr>
<td>Fabric store</td>
<td>6</td>
<td>1.1 (0.1–1.6)</td>
<td></td>
</tr>
<tr>
<td>Textile warehouse (NR)</td>
<td>22</td>
<td>0.30, 0.37 (0.05–0.88)</td>
<td>NIOSH 1979a</td>
</tr>
<tr>
<td>Textile facilities (NR)</td>
<td>43</td>
<td>0.84, 0.96 (< 0.12–1.68)</td>
<td>NIOSH 1979b</td>
</tr>
<tr>
<td>Garment Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garment manufacturing (NR)</td>
<td>32</td>
<td>0.19–0.3 (0.17–0.37)</td>
<td>Echt and Burr 1997b</td>
</tr>
<tr>
<td>Cut & spread and turn & ticket operations (NR)</td>
<td>48</td>
<td>< 0.01–0.05 (NR)</td>
<td>Kennedy et al. 1992b</td>
</tr>
<tr>
<td>Garment industry (1981–1986)</td>
<td>50</td>
<td>0.1–0.3 (0.03–0.9)</td>
<td>Heikkila et al. 1991b</td>
</tr>
<tr>
<td>Sewing plant (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04% formaldehyde fabric</td>
<td>9</td>
<td>1.2 (0.6–1.4)</td>
<td>Luker and Van Houten 1990b</td>
</tr>
<tr>
<td>0.015% formaldehyde fabric</td>
<td>9</td>
<td>0.1 (< 0.1–0.3)</td>
<td>United States</td>
</tr>
<tr>
<td>Shirt manufacturing (NR)</td>
<td>NR</td>
<td>NR (0.12–1.2)</td>
<td>Stayner et al. 1985, Stayner et al. 1988g</td>
</tr>
<tr>
<td>Use of fabric treated with formaldehyde-based resins (1980s)</td>
<td>326</td>
<td>~0.25 (< 0.1–0.5)</td>
<td>Elliott et al. 1987b</td>
</tr>
</tbody>
</table>

September 3, 2009
NOT FOR DISTRIBUTION OR ATTRIBUTION

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of crease-resistant cloth (NR)</td>
<td>181</td>
<td>NR (< 0.1–1.1)</td>
<td>Blade 1983b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Garment manufacturing (NR)</td>
<td>168</td>
<td>0.23–0.55 (< 0.04–1.34)c</td>
<td>Blade 1983d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Clothing production warehouse (NR)</td>
<td>22</td>
<td>0.14, 0.47 (0.05–0.68)c</td>
<td>NIOSH 1979a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Sewing machine operators (NR)</td>
<td>57</td>
<td>0.86, 1.44 (0.36–2.16)c</td>
<td>NIOSH 1979a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Clothing pressers (NR)</td>
<td>40</td>
<td>0.08 (0.006–1.14)</td>
<td>NIOSH 1976a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Permanent-press clothing production (NR)</td>
<td>41</td>
<td>0.37, 0.89 (0.0–3.24)c</td>
<td>USDHEW 1966, 1968d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Shops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric shops (NR)</td>
<td>77</td>
<td>0.17 (0.04–0.34)</td>
<td>McGuire et al. 1992b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Fabric shops (1985–1987)</td>
<td>3</td>
<td>0.21 (0.15–0.3)</td>
<td>Priha et al. 1988b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Finland</td>
</tr>
<tr>
<td>Retail dress shops (1959)</td>
<td>NR</td>
<td>NR (0.1–0.6)</td>
<td>Elliott et al. 1987b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
</tbody>
</table>

NR = not reported.

*B Cited in IARC 2006.
*C Means or range of means and full range across two to four datasets.
*E Medians and full range across two datasets.
*Range of means for different measurements of formaldehyde as gas and bound to particulates.
*F Cited in ATSDR 1999.

2.4.4 Foundries

The foundry process consists of pouring molten metal into a mold to obtain a cast product of specific shape. The mold can also contain a core that determines the dimensions of any internal cavity of the final product. Formaldehyde-based resins (both UF and PF) are commonly blended with sand to produce the molds and cores used in foundries (IARC 2006). Important manufacturing steps in the foundry process include manufacturing and assembling the molds and cores, melting the metal, pouring the metal into the mold, cooling the molded part, removing the mold and core (shake-out), and dressing and deflashing (IRSST 2006).
Tasks with potential formaldehyde exposure include molding-sand preparation, mold and core preparation, pouring of the molten metal into the mold, and shakeout operations (IRSST 2006). The main factors affecting worker exposure to formaldehyde include production variables (i.e., the molding and core-making processes employed and the types of metals processed), the percentage of free formaldehyde in the binder, the sizes of the molds and cores, the presence and efficiency of fume hoods and other emission collection systems, and the level of general ventilation (IRSST 2006). The main means of controlling formaldehyde exposure include use of mold and core-making materials that do not contain formaldehyde, replacement of hot-mold production processes with cold-hardening processes, using resins with lower emission rates, confinement of production steps that produce formaldehyde emissions, installation of fume hoods at emission sources, sufficient general ventilation, and use of personal protective equipment for tasks where the formaldehyde concentration is high. In a study assessing formaldehyde levels in foundry sand, Oliva-Teles et al. (2009) reported that formaldehyde content in used foundry sands decreased with time, as formaldehyde was released to the occupational environment. Data presented by Heikkilä et al. (1991) (as cited in IARC 2006) show major reductions in formaldehyde exposure levels for core-making operations from the 1970s to the 1980s (see Table 2-7).

Other chemicals to which workers potentially are exposed in the foundry industry include silica and other mineral dusts, polycyclic aromatic hydrocarbons, asbestos, metal fumes and dusts, carbon monoxide, isocyanates, phenols, organic solvents, and amines (IARC 2006).
Table 2-7. Formaldehyde exposure levels associated with foundries

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundries (before 1975 through 1986)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core-making before 1975</td>
<td>43</td>
<td>3.4 (< 0.1–> 11)</td>
<td>Heikkila et al. 1991a Finland</td>
</tr>
<tr>
<td>Core-making 1981–1986</td>
<td>17</td>
<td>0.4 (0.03–1.8)</td>
<td></td>
</tr>
<tr>
<td>Casting 1981–1986</td>
<td>10</td>
<td>0.2 (0.03–0.8)</td>
<td></td>
</tr>
<tr>
<td>Molding 1981–1986</td>
<td>25</td>
<td>0.4 (0.05–2.5)</td>
<td></td>
</tr>
<tr>
<td>Foundry molder (NR)</td>
<td>36</td>
<td>0.1 (0.02–0.27)</td>
<td>Ahman et al. 1991a Sweden</td>
</tr>
<tr>
<td>Foundry (1980s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot-box method</td>
<td>5</td>
<td>1.9 (NR)</td>
<td>Rosen et al. 1984a Sweden</td>
</tr>
<tr>
<td>Molding</td>
<td>17</td>
<td>0.1 (NR)</td>
<td></td>
</tr>
<tr>
<td>Iron foundry core machine operator (NR)</td>
<td>14</td>
<td>0.52b (< 0.02–22.0)</td>
<td>NIOSH 1979b United States</td>
</tr>
<tr>
<td>Bronze foundry, core machine operator (NR)</td>
<td>15</td>
<td>0.47, 0.64 (0.14–0.96)d</td>
<td>NIOSH 1976c United States</td>
</tr>
</tbody>
</table>

NR = not reported.

aCited in IARC 2006.
bMedian.
cCited in WHO 1989.
dMeans and full range across two datasets.

2.4.5 Production of formaldehyde-based plastic products

Formaldehyde-based resins (UF, MF, and PF) are used as hardenable molding materials in plastics that are used to produce a number of end products, including electrical insulation, melamine tableware, lawn and garden equipment, plumbing fixtures, and various other products (ATSDR 1999, IARC 2006, OSHA 1990, WHO 1989). A growing application for UF and MF molded compounds is to cut the cured resin into particle-sized pieces for use as an alternative to sand in sandblasting operations (TIG 2005).

Polyoxymethylene (also called acetal resin, polytrioxane, or paraformaldehyde) is a very strong and hard plastic that is formed through the polymerization of formaldehyde and is an important engineering polymer commonly used to make gears, bushings, and other mechanical parts (ATSDR 1999, DuPont 2009, WHO 1989). Because polyoxymethylene is lightweight and harder, tougher, and longer lasting than other plastics, it is used in many applications where metals previously were used, such as in motor vehicles, machine parts, household appliances, and plumbing fixtures. Formaldehyde also has been used for synthesizing polyols, such as pentaerythritol and trimethylolpropane, which are
used to manufacture polyurethane plastic and alkydes (KEMI 1993); however, no
information on formaldehyde release or occupational exposure was found for this use.

In 1990, OSHA noted that the plastics industry was the second-largest user of
formaldehyde, behind the compressed-wood industry, and that formaldehyde-based
resins used in the production process were capable of releasing formaldehyde when
subjected to heat or compression during the molding process (OSHA 1990). IRSST
(2006) noted that the plastics production industry is continually evolving and that various
starting materials and manufacturing processes are used; however, regardless of the
process or the type of plastic being manufactured, the heating stage will result in the most
significant formaldehyde emissions.

Exposure levels depend primarily on the materials used, the processes employed, the
presence and efficiency of emissions collection systems, and the level of general
ventilation at the production facility (IRSST 2006). Exposure-reduction methods include
confinement of production steps that produce formaldehyde emissions, installation of
fume hoods above the emission sources, adequate general ventilation, and the use of
personal protective equipment for tasks where formaldehyde concentrations are high.

IARC (2006) noted that plastic dust and fumes may be present in the atmosphere of
molded-plastic plants, and exposures in these facilities are usually considerably higher
than those in facilities where the products are used. It also was noted that workers in
these plants might have been exposed to pigments, lubricants, and fillers (e.g., asbestos
and wood flour) during some production processes. Table 2-8 presents formaldehyde
exposure levels for this industry.
Table 2-8. Formaldehyde exposure levels associated with production of plastics and plastic products

<table>
<thead>
<tr>
<th>Industry (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylon production</td>
<td>NR</td>
<td>2.51 (0.95–5.72)</td>
<td>Jin and Zhu 1992a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Hexamine workshop</td>
<td>NR</td>
<td>0.787 (NR)</td>
<td>Dai and Bao 1999a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Polyacetal workshop</td>
<td>NR</td>
<td>1.023 (NR)</td>
<td>Dai and Bao 1999a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Plastics manufacturing (NR)</td>
<td>9</td>
<td>max. < 0.12</td>
<td>Tikuisis et al. 1995b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>Casting of polyacetal resin</td>
<td></td>
<td>0.4 (0.08–0.8)</td>
<td>Finland</td>
</tr>
<tr>
<td>Casting of UF resin</td>
<td>4</td>
<td>0.5 (0.3–0.6)</td>
<td></td>
</tr>
<tr>
<td>Casting of other plastics</td>
<td>29</td>
<td>< 0.1 (< 0.1–0.3)</td>
<td></td>
</tr>
<tr>
<td>Particleboard and molded plastics plant (NR)</td>
<td>NR</td>
<td>0.85 (0.21–3.6)c</td>
<td>Horvath et al. 1988d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Phenol resin</td>
<td>10</td>
<td>0.6e (0.1–1.1)</td>
<td>United States</td>
</tr>
<tr>
<td>Melamine resin</td>
<td>13</td>
<td>11.3e (< 0.01–32.6)</td>
<td></td>
</tr>
<tr>
<td>Plant 9, winter</td>
<td>9</td>
<td>3.4e (0.05–8.2)</td>
<td>United States</td>
</tr>
<tr>
<td>Plant 9, summer</td>
<td>18</td>
<td>47.0e (11.7–74.8)f</td>
<td></td>
</tr>
<tr>
<td>Plant 1, winter</td>
<td>12</td>
<td>1.8e (1.1–2.1)</td>
<td></td>
</tr>
<tr>
<td>Plant 1, summer</td>
<td>24</td>
<td>11.9e (4.7–17.7)</td>
<td></td>
</tr>
<tr>
<td>Plant 8, winter</td>
<td>13</td>
<td>0.4e (0.09–0.9)</td>
<td></td>
</tr>
<tr>
<td>Plant 7, summer</td>
<td>43</td>
<td>0.4e (0.06–0.8)</td>
<td></td>
</tr>
<tr>
<td>Plant 2, summer</td>
<td>15</td>
<td>8.0e (0.4–25.3)</td>
<td></td>
</tr>
<tr>
<td>Resin and plastic materials production (NR)</td>
<td>NR</td>
<td>1.67e (NR)</td>
<td>NIOSH 1980a b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
</tbody>
</table>

NR = not reported.

b Cited in IARC 2006.

c Mean and range of TWAs. Data also presented in Table 2-2.

d Cited in ATSDR 1999.

e Geometric mean.

f Some results were affected by the simultaneous occurrence in samples of particulates containing formaldehyde, leading to high values.

g Data also presented in Table 2-1.

h Cited in WHO 1989.
2.4.6 Embalming

Embalming is a procedure that delays the decomposition of a cadaver. To accomplish this, the embalmer injects into either the common carotid or femoral artery usually 12 to 18 L of aqueous solutions of formaldehyde at concentrations ranging from about 1.25% to 32%, depending on how much the body has changed since death (IRSST 2006).

Formaldehyde is used as a tissue preservative and disinfectant in the embalming fluids, which contain smaller amounts of other chemicals such as methanol, diethylene glycol, propylene glycol, phenol, benzoic acid, and fragrances (IARC 2006, ATSDR 1999). Although embalming was one of formaldehyde’s first and best-known uses, it now accounts for less than 1% of total consumption (GI 2006).

Exposure to formaldehyde can occur during the solution preparation and during the embalming operation. The main factors affecting exposure include the concentration of formaldehyde in the embalming fluid, the quantity of solution used, the number of workstations and the number of bodies handled daily, physical characteristics of the cadaver (e.g., condition, size, time since death), presence and efficiency of fume hoods or local collection systems at the emission source, and the level of general ventilation.

Embalming of a normal intact body generally is completed within 1 to 1.5 hours, with 10 to 35 minutes spent using formaldehyde (IRSST 2006). In the case where the cadaver is in an advanced state of putrefaction or has undergone an autopsy, embalming can take up to 3 hours, with up to 2 hours spent using formaldehyde. Formaldehyde-based or paraformaldehyde-based jellies or powders can be prepared and applied to wounds of the cadaver.

IARC (2006) noted that mean formaldehyde exposure levels from embalming operations are generally around 1 ppm [1.2 mg/m³]. Embalming of autopsied bodies generally results in higher exposure levels than embalming of intact bodies. Airborne formaldehyde concentrations in seven funeral homes in the United States in 1980 ranged from 0.12 to 0.42 mg/m³ during the embalming of non-autopsied bodies and from 0.6 to 1.4 mg/m³ during the embalming of autopsied bodies (Williams et al. 1984, as cited in WHO 1989).

Table 2-9 summarizes exposure levels associated with embalming operations.
Methods to reduce formaldehyde exposure include product substitution and modifications of work areas and work practices. Although embalming solutions are available that do not contain formaldehyde (e.g., phenoxyethanol), none is the subject of consensus in the embalming industry (IRSST 2006). Work-station modifications that can reduce exposure include confining difficult embalming cases; physically separating embalming tasks from restoration tasks (i.e., aesthetic care and dressing in funeral homes); installation and proper use of capture equipment at the source, such as hoods over the injection equipment; and design of work stations to ensure adequate ventilation. In one study of 22 funeral-service embalming operations, formaldehyde levels were significantly lower ($P = 0.0001$) when general ventilation was turned on during the procedure (0.21 ppm [0.26 mg/m3]) than when general ventilation was turned off (0.55 ppm [0.68 mg/m3]) (Holness and Nethercott 1989).

General work practices that will reduce exposure include closing jars promptly when not in use, prompt disposal of formaldehyde soaked rags, proper storage and disposal of products, and periodic equipment inspections (IRSST 2006), and use of personal protective equipment during procedures where formaldehyde concentrations are high.

Embalmed cadavers and animals used in gross human and veterinary anatomy laboratories usually are prepared with a formaldehyde-based embalming fluid. During the process of dissection, formaldehyde vapors are emitted from the cadavers, resulting in the exposure of medical students and their instructors to potentially elevated formaldehyde levels (Ohmichi et al. 2006b). Levels have been shown to increase when body-cavity or deep structures were being dissected. Levels have also been shown to be higher in the center of the room than in the corners. Various types of exposure reduction technologies have been reported in the literature (Nacher et al. 2007, Ohmichi et al. 2007, Whitehead and Savoia 2008). Tang et al. reported that even when anatomy laboratories were not in use, minimum formaldehyde concentrations were still above 0.25 mg/m3 with one measurement as high as 20.94 mg/m3. Table 2-9 provides exposure levels seen in anatomy laboratories.
Table 2-9. Formaldehyde exposure levels associated with embalming or autopsies or in anatomy laboratories

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embalming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embalming in funeral homes (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal samples</td>
<td>4</td>
<td>0.19 (NR)</td>
<td>Korczynski 1996⁴</td>
</tr>
<tr>
<td>Area samples</td>
<td>4</td>
<td>NR (< 0.1–0.19)</td>
<td>United States</td>
</tr>
<tr>
<td>Embalming (NR)</td>
<td>48</td>
<td>0.8 (0.1–5.6)</td>
<td>Korczynski 1994⁵</td>
</tr>
<tr>
<td>Personal samples</td>
<td></td>
<td>0.6 (0.05–8.4)</td>
<td>Canada</td>
</tr>
<tr>
<td>Area samples</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embalming (NR)</td>
<td>75</td>
<td>2.7–3.2 (0.3–10.7)⁶</td>
<td>Stewart et al. 1992⁶</td>
</tr>
<tr>
<td>Embalming in mortuaries (NR)</td>
<td>NR</td>
<td>1.4 (0.04–3.9) 0.2 (0.01–0.6) (TWA)</td>
<td>Lamont Moore and Ogrodnik 1986⁶</td>
</tr>
<tr>
<td>Embalming in funeral homes (1980)</td>
<td></td>
<td></td>
<td>Williams et al. 1984⁶</td>
</tr>
<tr>
<td>Intact bodies</td>
<td>8</td>
<td>0.4 (0.2–0.4)⁷</td>
<td>NR</td>
</tr>
<tr>
<td>Autopsied bodies</td>
<td>15</td>
<td>1.1 (0–2.6)</td>
<td></td>
</tr>
<tr>
<td>Embalming in funeral homes (NR)</td>
<td>13</td>
<td>1.32, 3.24 (0.24–4.79)⁸</td>
<td>NIOSH 1980⁶</td>
</tr>
<tr>
<td>Embalming in funeral homes: 6 facilities (NR)</td>
<td>187</td>
<td>0.9 (0.1–6.5)</td>
<td>Kerfoot and Mooney 1975⁶⁷</td>
</tr>
</tbody>
</table>

Anatomy and biology laboratories and autopsies

<table>
<thead>
<tr>
<th>Medical college anatomy labs</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1998)</td>
<td>2</td>
<td>4.13 (NR)</td>
<td>Li et al. 1999⁷</td>
</tr>
<tr>
<td>(1999)</td>
<td>12</td>
<td>1.07 (NR)</td>
<td>Ye et al. 2000⁷</td>
</tr>
<tr>
<td>(2002)</td>
<td>3</td>
<td>8.35 (5.87–11.13)</td>
<td>Peng et al. 2003⁷</td>
</tr>
<tr>
<td>(2002)</td>
<td>2</td>
<td>NR (12.95–20.94)</td>
<td>Zhang et al. 2007⁷</td>
</tr>
<tr>
<td>(2006)</td>
<td>9</td>
<td>0.33 (0.037–3.98)</td>
<td>Lu et al. 2007⁷</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical college teacher offices</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1998)</td>
<td>2</td>
<td>0.386 (NR)</td>
<td>Li et al. 1999⁷</td>
</tr>
<tr>
<td>(1999)</td>
<td>12</td>
<td>0.2 (NR)</td>
<td>Ye et al. 2000⁷</td>
</tr>
<tr>
<td>(2006)</td>
<td>9</td>
<td>0.04 (NR)</td>
<td>Lu et al. 2007⁷</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical college corridors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1999)</td>
<td>14</td>
<td>0.315 (NR)</td>
<td>Ye et al. 2000⁷</td>
</tr>
<tr>
<td>(2006)</td>
<td>9</td>
<td>0.056 (NR)</td>
<td>Lu et al. 2007⁷</td>
</tr>
</tbody>
</table>

China
<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>NR</td>
<td>NR (0.14–0.76)</td>
<td>Tanaka et al. 2003⁴ Japan</td>
</tr>
<tr>
<td>Biology laboratory, dissecting (NR)</td>
<td>36</td>
<td>0.25, 0.63 (0.11–1.5)b</td>
<td>Dufresne et al. 2002⁴ Canada</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>15</td>
<td>1.1 (0.3–3.1)</td>
<td>Keil et al. 2001⁴ United States</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>NR</td>
<td>NR (< 5.0)</td>
<td>Burgaz et al. 2001⁴ Turkey</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>NR</td>
<td>0.27 (0.13–0.41)</td>
<td>Wantke et al. 2000⁴ Austria</td>
</tr>
<tr>
<td>Anatomy/histology laboratory, dissecting (NR)</td>
<td>48</td>
<td>3.7 (0.2–11.2)</td>
<td>Kim et al. 1999⁴ NR</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>25</td>
<td>0.5 (0.07–1.28) 2.9 (NR)</td>
<td>Ying et al. 1997, Ying et al. 1999⁴ He et al. 1998⁴ China</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>44</td>
<td>2.3 (0.4–5.5) 1.2 (0.7–2.1)</td>
<td>Akbar-Khanzadeh and Mlynek 1997⁴ United States</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>32</td>
<td>1.5 (0.09–3.6) NR 0.5 (0.11–1.17)</td>
<td>Akbar-Khanzadeh et al. 1994⁴ United States</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>13</td>
<td>1.7 (1.1–2.2)</td>
<td></td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>2</td>
<td>2.0 (1.2–2.8)</td>
<td></td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (NR)</td>
<td>NR</td>
<td>0.15 (0.07–0.27)</td>
<td>Wantke et al. 1996b⁴ Austria</td>
</tr>
<tr>
<td>Autopsy (1981–1986)</td>
<td>5</td>
<td>0.8 (< 0.1–1.7)</td>
<td>Heikkila et al. 1991⁴ Finland</td>
</tr>
<tr>
<td>Anatomical theater (1980–1988)</td>
<td>29</td>
<td>1.4⁴ (0.9–2.2)</td>
<td>Triebig et al. 1989 Germany</td>
</tr>
<tr>
<td>Anatomy laboratory, dissecting (1982–1983)</td>
<td>NR</td>
<td>NR (8.6–20.3) NR (2.4–3.2) NR (< 1.2)</td>
<td>Korky et al. 1987⁴ United States</td>
</tr>
<tr>
<td>Laboratory</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock room</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public hallway</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal dissection laboratory (NR)</td>
<td>24</td>
<td>0.18, 0.22 (0.13–1.25)b</td>
<td>Blade 1983⁴ NR</td>
</tr>
<tr>
<td>Operation (year measured)</td>
<td>N</td>
<td>Exposure level mean (range) (mg/m³)</td>
<td>Reference Location</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
<td>-----------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Autopsy (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal samples</td>
<td>27</td>
<td>1.7 (0.5–4.0)</td>
<td>Coldiron et al. 1983<sup>a</sup></td>
</tr>
<tr>
<td>Area samples</td>
<td>23</td>
<td>5.0 (0.1–16.7)</td>
<td>United States</td>
</tr>
<tr>
<td>Anatomy classrooms, 1998</td>
<td>4</td>
<td>2.514 (NR)</td>
<td>Li et al. 1999<sup>e</sup></td>
</tr>
<tr>
<td>Biology teaching (NR)</td>
<td>8</td>
<td>9.96 (3.3–17.76)</td>
<td>EPA 1981<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Pathology autopsy room (NR)</td>
<td>10</td>
<td>5.76 (0.07–9.5)</td>
<td>Covino 1979<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Pathology autopsy room (NR)</td>
<td>6</td>
<td>5.22 (2.64–9.5)</td>
<td>NIOSH 1979b<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Autopsy room (NR)</td>
<td></td>
<td></td>
<td>Makar et al. 1975<sup>d</sup></td>
</tr>
<tr>
<td>Personal sampling for a resident</td>
<td>10</td>
<td>1.9 (NR)</td>
<td>NR</td>
</tr>
<tr>
<td>Personal sampling for a pathologist</td>
<td>9</td>
<td>1.5 (NR)</td>
<td></td>
</tr>
<tr>
<td>Personal sampling for a technician</td>
<td>2</td>
<td>0.68 (NR)</td>
<td></td>
</tr>
<tr>
<td>Area sampling for assistants</td>
<td>23</td>
<td>0.86 (0.16–16.28)</td>
<td></td>
</tr>
</tbody>
</table>

NR = not reported.
^aCited in IARC 2006.
^bRange of means and full range across two to three datasets.
^cNo explanation provided for the mean being equal to the high end of the range.
^dCited in WHO 1989.
^eCited in Tang et al. 2009.
^fMedian.

2.4.7 Histology

Histopathology laboratories receive organ, tissue, or cell specimens in which to study structural modifications in support of diagnosis and prognosis of disease, and formalin is commonly used to preserve these samples (IARC 2006, IRSST 2006). The main steps in the process include preparing formaldehyde solutions (diluting the formalin solution to roughly 4% formaldehyde), macroscopic examination of the specimen with the naked eye, placing the samples in cassettes, and microscopic observation (IRSST 2006). Specific tasks that may result in exposure to formaldehyde include preparing the formalin solution, handling and disposing of specimens, handling waste (such as draining specimens), handling and cleaning used jars, handling bags of medical waste, maintaining equipment, and recycling and discarding formalin solution. Equipment leaks are another potential source of exposure (e.g., leaks from the tissue preparer, formaldehyde recycler, specimen storage, and storage of new and waste formaldehyde
solutions). Workers who might be occupationally exposed include pathologists, technicians, technical assistants, and administrative personnel (IRSSST 2006).

IARC (2006) noted that the typical mean formaldehyde exposure level in pathology operations is approximately 0.5 ppm [0.1 mg/m³]. Table 2-10 summarizes exposure levels associated with histology operations.

One way in which formaldehyde exposure can be reduced in histology operations is through substitution of other chemicals. Because of increasing concern about health effects associated with formaldehyde exposure, a number of proprietary fixatives have been developed that do not contain formaldehyde. Although a number of these fixatives have been successfully used in the United States, none are the subject of consensus, and formaldehyde-based fixatives generally are considered superior (IRSSST 2006, Titford and Horenstein 2005). Other exposure-reduction methods include the use of hoods and other ventilation methods and wearing of personal protective equipment for tasks where the formaldehyde concentration is high (IRSSST 2006).
Table 2-10. Formaldehyde exposure levels associated with histology and pathology laboratories

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital pathology rooms (2005)</td>
<td>8</td>
<td>NR (0.086–2.0)</td>
<td>Li et al. 1999a</td>
</tr>
<tr>
<td>(2003)</td>
<td>40</td>
<td>NR (0.184–0.931)</td>
<td>Cheng et al. 2004a</td>
</tr>
<tr>
<td>(2003)</td>
<td>85</td>
<td>1.6 (0.18–5.84)</td>
<td>Fan et al. 2006a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Histology laboratory (NR)</td>
<td>NR</td>
<td>0.5 (0.05–0.9)</td>
<td>Shaham et al. 2002b</td>
</tr>
<tr>
<td>Laboratory assistants/technicians</td>
<td></td>
<td></td>
<td>Israel</td>
</tr>
<tr>
<td>Physicians and orderlies</td>
<td>NR</td>
<td>2.8 (0.9–7.0)</td>
<td></td>
</tr>
<tr>
<td>Pathology laboratory (NR)</td>
<td>10</td>
<td>NR (max. < 2.5)</td>
<td>Burgaz et al. 2001b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Turkey</td>
</tr>
<tr>
<td>Medical college specimen workshops (1998)</td>
<td>2</td>
<td>1.1 (NR)</td>
<td>Li et al. 1999a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Medical college specimen rooms (1998)</td>
<td>2</td>
<td>12.783 (NR)</td>
<td>Li et al. 1999a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Histopathology teaching laboratory (NR)</td>
<td>16</td>
<td>0.4 (NR)</td>
<td>Tan et al. 1999b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Histology laboratory (NR)</td>
<td>NR</td>
<td>NR (1.7–2.0)</td>
<td>Shaham et al. 1996a, 1996b</td>
</tr>
<tr>
<td>Area samples</td>
<td></td>
<td>NR (3.4–3.8)</td>
<td>Israel</td>
</tr>
<tr>
<td>Personal samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital histopathology laboratories (1981–1986)</td>
<td>80</td>
<td>0.6 (0.01–9.1)</td>
<td>Heikkila et al. 1991b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Finland</td>
</tr>
<tr>
<td>Pathology laboratories (1980–1988)</td>
<td>21</td>
<td>0.6c (< 0.01–1.6)</td>
<td>Triebig et al. 1989b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Histology laboratory, tissue specimen preparation and sampling (NR)</td>
<td>NR</td>
<td>NR (0.25–2.3)</td>
<td>Kilburn et al. 1985a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Pathology laboratory (1980s)</td>
<td>13</td>
<td>0.7 (NR)</td>
<td>Rosen et al. 1984b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sweden</td>
</tr>
</tbody>
</table>

NR = not reported.

*bCited in IARC 2006.
*Median.

2.4.8 Construction-related exposures

There are many potential sources of exposure to formaldehyde in the construction industry; however, data are limited on exposure levels for most of these sources. Construction workers who varnish floors can have high exposures. IARC (2006) noted
that formaldehyde levels during varnishing with UF-based varnishes have been measured at levels ranging from 2.5 to 6.2 mg/m³ during a 30-minute application period, and that workers may apply 5 to 10 coats per day. These workers are also potentially exposed to wood dust and various solvent vapors from varnishes, putties, and adhesives.

Working with UFFI or fiberglass insulation manufactured using formaldehyde-based resins also can result in formaldehyde exposure (IARC 2006); however, no data on exposure levels associated with this activity.

Since the 1980s, glass-fiber mats have become an important material for roof shingles, asphalt roofing tiles, and roll roofing (TIG 2005). UF and occasionally PF resins are used as binders to hold the glass fibers together until an asphalt coating is applied. No information was found on exposure levels from their use.

Machining of wood-based composites and other formaldehyde-containing wood products are other sources of exposure in the construction industry; however, IARC (2006) noted that formaldehyde exposure levels from this activity are consistently low. Formaldehyde exposure levels associated with construction-related activities are presented in Table 2-11.
Table 2-11. Formaldehyde levels associated with construction-related activities

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varnishing parquet with UF varnish (1976 & 1987)</td>
<td>16</td>
<td>3.6, 5.3 (0.4–8.1)</td>
<td>Heikkila et al. 1991<sup>a</sup> and Riala and Riihimaki 1991<sup>b</sup> Finland</td>
</tr>
<tr>
<td>Insulating buildings with UFFI (1980s)</td>
<td>6</td>
<td>0.2 (NR)</td>
<td>Rosen et al. 1984<sup>b</sup> Sweden</td>
</tr>
<tr>
<td>UFFI dealing and installation (NR)</td>
<td>NR</td>
<td>NR (0.08–2.4)</td>
<td>Herrick et al. 1983<sup>c</sup> NR</td>
</tr>
<tr>
<td>UFFI dealing and installation (NR)</td>
<td>82</td>
<td>1.26–1.87 (0.36–6.36)<sup>d</sup></td>
<td>NIOSH 1979<sup>b</sup> United States</td>
</tr>
<tr>
<td>Fiberglass insulation installation (NR)</td>
<td>13</td>
<td>0.028 (0.008–0.04)</td>
<td>NIOSH 1980<sup>a</sup> United States</td>
</tr>
<tr>
<td>Sawing particleboard at construction site (1967)</td>
<td>5</td>
<td>< 0.6 (NR)</td>
<td>FIOH 1994<sup>b</sup> Finland</td>
</tr>
</tbody>
</table>

NR = not reported.
^aMeans and full range across two studies.
^bCited in IARC 2006.
^cCited in WHO 1989.
^dRange of means and full range across three datasets.

2.4.9 Fiberglass and mineral-wool insulation manufacturing

PF resins commonly are used to bind fiberglass, mineral wool, or shredded waste products such as cotton, wool, or polyester for use as structural and acoustical insulation for residential and commercial buildings, pipes, and industrial equipment. Fiberglass insulation accounts for 90% of formaldehyde consumption in this industry (Bizzari 2007). In fiberglass and mineral-wool insulation, UF resins often are used in conjunction with PF resins to inhibit the burning potential of the PF resins (TIG 2005).

Fiberglass insulation manufacturing involves six general steps: melting glass, spinning the molten glass into fibers, cooling and coating the fibers with a binder, forming the fibers into a pad, curing the binder (i.e., heating at 400°F to 600°F to set the binder), and packaging the insulation (Milton et al. 1996). The primary sources of formaldehyde release are from the fiber-coating process and the curing process. IARC (2006) described measurements taken in the 1980s and noted that very high levels occasionally were measured in close proximity to these two operations. Measured formaldehyde levels
associated with fiberglass insulation are presented in Table 2-12. No data were found on exposure levels associated with manufacture of insulation from materials other than fiberglass or synthetic vitreous fibers.

Table 2-12. Formaldehyde exposure levels associated with fiberglass manufacturing

<table>
<thead>
<tr>
<th>Industry (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Comment</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass manufacturing plant (NR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area sampling</td>
<td>50</td>
<td>0.05–0.52 (max. = 1.25)</td>
<td>Range of means for area sampling at four different locations; maximum concentration found at forehearth.</td>
<td>Milton et al. 1996 United Statesa</td>
</tr>
<tr>
<td>Personal sampling</td>
<td>197</td>
<td>0.022–0.086 (NR)</td>
<td>Range of mean TWA concentrations from personal sampling of 37 workers.</td>
<td></td>
</tr>
<tr>
<td>Synthetic vitreous fiber plant (1981–1986)</td>
<td>60</td>
<td>0.11, 0.25 (0.01–1.7)</td>
<td>Means and full range across production and form-pressing operations.</td>
<td>Heikkila et al. 1991b Finland</td>
</tr>
<tr>
<td>Insulation manufacture (1989, summer) (1989, winter)</td>
<td>8</td>
<td>NR (0.15–0.39)</td>
<td></td>
<td>Tao et al. 1990c China</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NR (0.64–0.93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic vitreous fiber plant (1980s)</td>
<td>20</td>
<td>0.19, 0.20 (NR)</td>
<td>Mean values for production and form-pressing operations.</td>
<td>Rosen et al. 1984b Sweden</td>
</tr>
</tbody>
</table>

NR = not reported.
aCited in ATSDR 1999 and IARC 2006; data presented here are from the original article, which was reviewed because of questions raised during review of IARC and ATSDR documents.
bCited in IARC 2006.

2.4.10 Firefighting and other combustion-related exposures

As noted in Section 2.2.2, combustion processes are one of the major sources of formaldehyde in the environment. IARC (2006) reviewed three studies that assessed firefighters’ levels of personal exposure to formaldehyde during various stages of firefighting, with concentrations measured up to 10.2 mg/m³ (see Table 2-13). Formaldehyde was detected in 6 of 24 samples (25%) in one study and 73% of samples in a second study; the percentage was not reported for the third study. In a comprehensive air-monitoring study to characterize exposure of firefighters during 25 structure fires,
formaldehyde levels exceeded 0.1 ppm [0.12 mg/m³] [which was cited as the National Institute for Occupational Safety and Health (NIOSH) ceiling recommended exposure limit (see Section 2-7)] at 22 of the 25 fires. Firefighters might also be exposed while fighting wildfires. Results of two studies, in which formaldehyde was detected in all samples, showed concentrations that ranged from 0.02 to 0.42 mg/m³.

Because formaldehyde is emitted from internal combustion engines, workers in any occupation that involves exposure to exhaust from automobile or other internal combustion engines potentially are exposed to formaldehyde. In a study of occupational exposure to volatile organic compounds (VOCs) and aldehydes in the U.S. trucking industry, Davis et al. (2007) measured formaldehyde at the perimeter of trucking terminal yards (i.e., considered background levels), at indoor work areas (i.e., at loading docks and mechanic shops), and in on-road truck cabs (i.e., driver exposures). The mean background level was reported to be 3.33 μg/m³ [0.003 mg/m³], and higher exposure levels were reported for the indoor work areas than in on-road truck cabs (Table 2-13). Zhang et al. (2003) (as cited in IARC 2006) reported a slightly higher mean level for automobile garages (0.04 mg/m³) than the mean level for the mechanic shop (13.72 μg/m³ [0.0137 mg/m³]) reported by Davis et al. Pang and Mu (2007) assessed carbonyl exposures from public vehicles in Beijing, China, noting that taxi and bus drivers can have high levels of formaldehyde exposure as a result of high concentrations and long work hours. They also noted that in-vehicle carbonyl concentrations were loosely associated with vehicular service years and type of fuel used. All drivers were asked to refrain from smoking during this study. Formaldehyde exposure levels for these studies are presented in Table 2-13.

IARC (2006) reported exposure levels ranging up to 0.6 mg/m³ for lumberjacks using chainsaws and up to 0.021 mg/m³ in personal air samples from French policemen working close to traffic. Pilidis et al. (2009) reported exposure levels for policemen in outdoor environments (car, motorcycle, and foot patrol, guards, and traffic regulation) that ranged from about 0.003 to 0.02 mg/m³.
Table 2-13. Formaldehyde exposure levels associated with firefighting and other combustion sources

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level Mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firefighting, city fire (1998)</td>
<td>96</td>
<td>0.31 (0.02–1.5)</td>
<td>Bolstad-Johnson et al. 2000⁷</td>
</tr>
<tr>
<td>Firefighting, city fire (NR)</td>
<td>(22 fires)</td>
<td>NR (ND–9.8)</td>
<td>Jankovic et al. 1991⁶</td>
</tr>
<tr>
<td>Knockdown⁶</td>
<td></td>
<td>NR (ND–0.5)</td>
<td>United States</td>
</tr>
<tr>
<td>Overhaul⁶</td>
<td></td>
<td>NR (ND–0.4)</td>
<td></td>
</tr>
<tr>
<td>Inside mask</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firefighting, city fire (1986)</td>
<td>24</td>
<td>0.68 (0.1–10.2) décimum</td>
<td>Brandt-Rauf et al. 1988⁸</td>
</tr>
<tr>
<td>Wildland fire fighting (1990 and 1989)</td>
<td>35</td>
<td>0.06, 0.16 (0.02–0.42) décimum</td>
<td>Reh et al. 1994⁴ and Materna et al. 1992⁴</td>
</tr>
<tr>
<td>In cab (nonsmokers)</td>
<td>234</td>
<td>0.0083 (NR)</td>
<td>United States</td>
</tr>
<tr>
<td>In cab (smokers)</td>
<td>62</td>
<td>0.0096 (NR)</td>
<td></td>
</tr>
<tr>
<td>Loading dock</td>
<td>65</td>
<td>0.0254 (NR)</td>
<td></td>
</tr>
<tr>
<td>Mechanic shop</td>
<td>17</td>
<td>0.0137 (NR)</td>
<td></td>
</tr>
<tr>
<td>Public transportation vehicles</td>
<td></td>
<td></td>
<td>Pang and Mu 2007</td>
</tr>
<tr>
<td>Taxis</td>
<td>35</td>
<td>0.024, 0.028 (0.013–0.034)</td>
<td>China</td>
</tr>
<tr>
<td>Buses</td>
<td>15</td>
<td>0.016–0.04 (0.013–0.094)</td>
<td></td>
</tr>
<tr>
<td>Chain-sawing (NR)</td>
<td>NR</td>
<td>< 0.1 (< 0.1–0.6)</td>
<td>Heikkila et al. 1991⁴</td>
</tr>
<tr>
<td>Chain-sawing (NR)</td>
<td>NR</td>
<td>0.06 (0.03–0.13)</td>
<td>Hagberg et al. 1985⁵</td>
</tr>
<tr>
<td>Automobile garage (NR)</td>
<td>53</td>
<td>0.04 (NR)</td>
<td>Zhang et al. 2003⁴</td>
</tr>
<tr>
<td>Policemen working close to traffic center (NR)</td>
<td></td>
<td></td>
<td>Maitre et al. 2002⁴</td>
</tr>
<tr>
<td>Summer</td>
<td>32⁵</td>
<td>0.014⁴ (NR)</td>
<td>France</td>
</tr>
<tr>
<td>Winter</td>
<td>32⁵</td>
<td>0.021⁴ (NR)</td>
<td></td>
</tr>
</tbody>
</table>
Operation (year measured)

<table>
<thead>
<tr>
<th>Operation</th>
<th>N</th>
<th>Exposure level</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policemen (2006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle patrol</td>
<td>5</td>
<td>~0.024–0.034 (0.020–0.038)</td>
<td>Pilidis et al. 2009</td>
</tr>
<tr>
<td>Motorcycle patrol</td>
<td>4</td>
<td>~0.027–0.034 (0.020–0.039)</td>
<td>Greece</td>
</tr>
<tr>
<td>Foot patrol</td>
<td>2</td>
<td>~0.018, 0.019 (0.017–0.030)</td>
<td></td>
</tr>
<tr>
<td>Guards</td>
<td>2</td>
<td>~0.014, 0.023 (0.012–0.026)</td>
<td></td>
</tr>
<tr>
<td>Traffic regulation</td>
<td>3</td>
<td>~0.021–0.037 (0.018–0.042)</td>
<td></td>
</tr>
</tbody>
</table>

NR = not reported, ND = not detected.

aCited in IARC 2006.

b"Knockdown" is when the main body of the fire is brought under control; “overhaul” refers to searching for and extinguishing hidden fires.

cThe mean and range do not include 18 values that were noted as 0 in the original paper.

dMeans and full range across two studies.

ePersonal sampling performed for 8 policemen, four days each in summer and winter.

fMedian.

gEstimated from graph.

2.4.11 Agriculture and aquaculture

In agricultural settings, formaldehyde has been used as a preservative for fodder, disinfectant in brooding houses, sterilant in mushroom houses, and preservative for produce (IARC 2006, ATSDR 1999). Levels as high as 9.6 mg/m³ have been reported when formaldehyde is used for disinfection of eggs in brooding houses; however, IARC (2006) noted that annual exposures are likely to be low, because the operation is performed only intermittently (roughly 5 to 10 times per year). Formalin solutions have been used in aquaculture to treat fish eggs to control infection (IARC 2006), with treatment times ranging from 15 to 90 minutes. Urea-formaldehyde concentrates are used in the manufacture of controlled-release fertilizers (Bizzari 2007); however, no information was found on exposure to formaldehyde from application of these products. [Although there is the potential for occupational exposure from agricultural applications of controlled-release fertilizers, their primary uses are nonagricultural, such as on lawns and turfs and in nurseries (Bizzari 2007)]. Formaldehyde exposure levels associated with agriculture and aquaculture are presented in Table 2-14.
Table 2-14. Formaldehyde exposure levels associated with agriculture and aquaculture

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling of fodder (1982)</td>
<td>NR</td>
<td>NR (0.03–0.5)</td>
<td>Heikkila et al. 1991(^{a}) Finland</td>
</tr>
<tr>
<td>Disinfection of eggs (1981–1986)</td>
<td>11</td>
<td>3.2 (0.3–9.6)</td>
<td>Heikkila et al. 1991(^{a}) Finland</td>
</tr>
<tr>
<td>Mushroom farming (NR)</td>
<td>18</td>
<td>3.22 (ND-> 12.0)(^{b})</td>
<td>NIOSH 1980(^{bc}) United States</td>
</tr>
<tr>
<td>Fish hatchery, treating fish eggs (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal monitoring of 6 employees</td>
<td>6</td>
<td>NR (NQ–1.0)</td>
<td>Lee and Radtke 1998(^{a}) United States</td>
</tr>
<tr>
<td>Area monitoring during treatment operations</td>
<td>6</td>
<td>NR (< 0.062–0.84)</td>
<td></td>
</tr>
<tr>
<td>TWA concentrations</td>
<td>6</td>
<td>0.02 (0.007–0.05)</td>
<td></td>
</tr>
</tbody>
</table>

NR = not reported, NQ = not quantifiable, ND = not detected.

\(^{a}\)Cited in IARC 2006.

\(^{b}\)Upper end of range reported as “12+” in WHO 1989. Range is across three datasets; the mean was reported for only one of these datasets.

\(^{c}\)Cited in WHO 1989.

2.4.12 **Office buildings and nonindustrial work places**

There are numerous sources of formaldehyde in office buildings, restaurants, commercial buildings, and other nonindustrial work places. These sources include paint and varnish, carpeting, wallpaper, insulation, furniture, and laser printers (IARC 2006, ATSDR 1999).

In a study that assessed exposure of policemen performing several types of activities (i.e., vehicle or foot patrol, traffic regulation, guarding outside the police station building, and office work), Pilidis *et al.* (2009) found that officers working indoors had significantly higher exposure than those working outdoors. Table 2-15 presents exposure-level data for offices and other nonindustrial work places. IARC (2006) noted that laser printers have been found to be a source of formaldehyde exposure as a result of ozonolysis reactions with VOCs emitted from the toner. IARC (2006) also noted that newer-technology laser printers did not produce detectable levels of formaldehyde.
Table 2-15. Formaldehyde exposure levels in offices and other nonindustrial work places

<table>
<thead>
<tr>
<th>Operation (year measured)</th>
<th>N</th>
<th>Exposure level mean (range) (mg/m³)</th>
<th>Reference Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office buildings: 23 buildings for which air-quality complaints had been filed but for which there were no clear, unusual sources for chemical pollutants (2001–2006)</td>
<td>76</td>
<td>0.011 (0.044 max)</td>
<td>Salonen et al. 2009 Finland</td>
</tr>
<tr>
<td>Offices: summary of results from 9 studies (1996–2005)</td>
<td>351</td>
<td>0.256 (0.058–2.25) (Overall mean and range of individual means)</td>
<td>Tang et al. 2009 China</td>
</tr>
<tr>
<td>Office buildings: 5 buildings, 8-hour average concentrations (NR)</td>
<td>54</td>
<td>0.14–1.19 (NR)</td>
<td>Wu et al. 2003a Taiwan, China</td>
</tr>
<tr>
<td>Office buildings: 6 buildings (1996–1997)</td>
<td>72</td>
<td>0.002–0.013b (NR)</td>
<td>Reynolds et al. 2001a United States</td>
</tr>
<tr>
<td>Offices (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional offices (18 sites)</td>
<td>NR</td>
<td>0.027 (0.012–0.096)</td>
<td>Dingle et al. 2000a Australia</td>
</tr>
<tr>
<td>Portable office buildings (20 sites)</td>
<td>40</td>
<td>1.4 (0.52–2.6)</td>
<td></td>
</tr>
<tr>
<td>Recently painted with low-emitting paint</td>
<td>NR</td>
<td>0.018 (0.016–0.02) 0.008 (0.007–0.01) 0.008 (0.008–0.009)</td>
<td>Wieslander et al. 1999a Sweden</td>
</tr>
<tr>
<td>Three months after painting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offices (1995)</td>
<td>11</td>
<td>0.04 (0.012–0.1)</td>
<td>Brickus et al. 1998a Brazil</td>
</tr>
<tr>
<td>Nonindustrial workplaces and restaurants (1995)</td>
<td>12</td>
<td>0.02 (0.005–0.06)</td>
<td>Miguel et al. 1995a Brazil</td>
</tr>
<tr>
<td>Office work (NR)</td>
<td>NR</td>
<td>0.086c (0.086–0.16)d</td>
<td>Holmström et al. 1989b Sweden</td>
</tr>
<tr>
<td>Offices (1981–1984)</td>
<td>25</td>
<td>0.08c (NR)</td>
<td>Shah and Singh 1988a United States</td>
</tr>
<tr>
<td>Office building (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmoking office</td>
<td>NR</td>
<td>NR (ND–0.27)</td>
<td>Sterling et al. 1987f NR</td>
</tr>
<tr>
<td>Office that allowed smoking</td>
<td>NR</td>
<td>NR (ND–0.74)</td>
<td></td>
</tr>
<tr>
<td>Offices</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aged 1 to 3 years</td>
<td></td>
<td>0.143 (NR)</td>
<td>Kalinic et al. 1985f Yugoslavia</td>
</tr>
<tr>
<td>Aged 11 to 43 years</td>
<td></td>
<td>0.087 (NR)</td>
<td></td>
</tr>
<tr>
<td>Offices (NR)</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers</td>
<td>NR</td>
<td>NR (0.01–0.13)</td>
<td>Prescher 1984f Germany</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>NR</td>
<td>NR (0.02–0.1)</td>
<td></td>
</tr>
<tr>
<td>Office work (NR)</td>
<td>48</td>
<td>< 0.05, 0.07 (0.02–0.14)e</td>
<td>Blade 1983f NR</td>
</tr>
<tr>
<td>Operation (year measured)</td>
<td>N</td>
<td>Exposure level mean (range) (mg/m³)</td>
<td>Reference Location</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Offices and commercial buildings: 4 establishments (NR)</td>
<td>NR</td>
<td>NR (0.012–1.24)</td>
<td>Konopinski 1983<sup>c</sup> United States</td>
</tr>
<tr>
<td>Commercial buildings (NR)</td>
<td>NR</td>
<td>1.083 (NR) 2.60 (NR) 0.15 (NR)</td>
<td>Kuljac 1983<sup>f</sup> Yugoslavia</td>
</tr>
</tbody>
</table>

NR = not reported, ND = not detected.
^aCited in IARC 2006.
^bGeometric means.
^cMedian.
^dThe median is a year-round median concentration, but the range is only for late summer.
^eCited in ATSDR 1999.
^fCited in WHO 1989.
^gMeans for two studies. The range is from one study; the other study reported the range as < 0.05 mg/m³.

2.4.13 Other occupational exposures

Formaldehyde has been used in the treatment of furs and leather (IARC 2006). Its use in the treatment of furs resulted in the highest formaldehyde exposure levels for all jobs and industries studied in a large Swedish survey in the early 1980s. The eight-hour TWA concentration of formaldehyde was reported to be 1.0 to 2.0 mg/m³, and high peak exposures occurred several times per day. Formaldehyde concentrations of 0.5 to 7 ppm [0.61 to 8.6 mg/m³] have been measured in leather-tanning facilities (ATSDR 1999), and a mean level of 0.3 mg/m³ has been reported for taxidermy operations in Sweden (Rosén <i>et al.</i> 1984).

Formaldehyde has been used extensively in hospitals and healthcare facilities (IARC 2006). ATSDR (1999) noted that numerous types of healthcare professionals (e.g., pharmacists, physicians, veterinarians, dentists, nurses) can be exposed to formaldehyde vapors during the preparation, administration, or cleanup of various medicines. IARC (2006) reported exposure levels associated with the use of formaldehyde as a disinfectant in hospitals, showing mean levels ranging from 0.06 to 1.1 mg/m³, with levels as high as 6.3 mg/m³. Formaldehyde levels as high as 0.288 mg/m³ were measured in a hospital operating room where it was used as a disinfectant (Dascalaki <i>et al.</i> 2008). Formaldehyde has also been detected in the plume of surgical smoke produced by electrocautery, harmonic scalpel, and argon beaming (Krones <i>et al.</i> 2007).
Formaldehyde has been used as a biocide in the oil processing industry (Steinsvag et al. 2007); however, the authors noted that formaldehyde appears to have been replaced by other biocides and phased out before 2002. Mean measured airborne exposure levels were 0.13 mg/m³ (range = 0.06 to 0.29 mg/m³) for personal sampling and 0.21 mg/m³ (range = 0.05 to 0.53 mg/m³) for stationary monitoring of Norwegian offshore oil drilling installations during 1999 and 2000.

In a study assessing exposure of nail technicians to formaldehyde and toluene, a mean airborne formaldehyde exposure level of 0.022 ppm [0.027 mg/m³] was calculated based on personal air sampling at 30 nail salons in California (McNary and Jackson 2007).

Formaldehyde has been measured in studies assessing exposure of workers to metalworking fluids in a secondary aluminum plant (Godderis et al. 2008) and in machine shops (Lillienberg et al. 2008). Godderis et al. reported airborne formaldehyde at a concentration of 0.03 mg/m³, and Lillienberg et al. reported mean levels of 0.003, 0.012, and 0.128 mg/m³ for three facilities (the full range across the three facilities was 0.001 to 0.154 mg/m³). Lillienberg et al. suggested that use of recirculating air probably was responsible for the higher levels observed in one machine shop. Godderis et al. postulated that the airborne formaldehyde in the aluminum plant originated either from the combustion of metalworking fluids or from formaldehyde-releasing triazines used as biocides.

Formaldehyde levels in spacecraft have been found to consistently exceed 0.05 mg/m³ (IARC 2006). ATSDR (1999) noted that the laser cutting of felt, woven fabrics, formica, plexiglass, and acrylic materials has been found to release formaldehyde; however, no air levels were identified for these activities. Concentrations ranging from less than 0.01 to 2.0 mg/m³ have been measured at coal and pitch-coking plants in the former Czechoslovakia. Levels up to 1.1 mg/m³ have been measured at plants producing photographic film.

2.5 Environmental occurrence and fate

Formaldehyde is ubiquitous in the environment and can occur in outdoor and indoor air, drinking water, groundwater, surface water, sediment, soil, and food. This section
discusses the sources of formaldehyde, its fate and transport, and occurrence of
formaldehyde in air (Section 2.5.1), water (Section 2.5.2), land and soil (Section 2.5.3),
and food (Section 2.5.4).

A potential source of contamination for all environmental media and for general
population exposure is from inadvertent spills of formaldehyde-containing materials. A
2009 search of the National Response Center (NRC 2009) on-line database using the
keyword “formaldehyde” yielded 802 results. The NRC serves as the sole national point
of contact for the reporting of all oil, chemical, radiological, biological, and etiological
(i.e., biologically hazardous) spills into the environment anywhere in the United States
and its territories. The level of information provided in the query results was not
sufficient to estimate the extent of environmental contamination or the number of people
exposed; however, it does suggest the potential for environmental contamination and
general public exposure from inadvertent spills of formaldehyde or chemical mixtures
containing formaldehyde.

2.5.1 Air

In air, formaldehyde is a gaseous pollutant that is produced both naturally and from
human activities and occurs as a primary or secondary pollutant. In outdoor air, primary
sources include direct emissions of formaldehyde from industrial processes and products
and its release during the combustion of organic materials. Occurrence of formaldehyde
as a secondary pollutant results from the photochemical breakdown of hydrocarbons,
which occur both naturally and as a result of human activities. In indoor air, the main
sources of formaldehyde are indoor combustion sources, including tobacco smoke, and
off-gassing from various materials.

Because formaldehyde air levels generally are higher in occupational settings than in
nonoccupational settings, this section reports air concentrations in units of micrograms
per cubic meter rather than the milligrams per cubic meter used to describe occupational
exposure (Section 2.4). If the source document reported concentrations in parts per
billion, values were multiplied by a conversion factor of 1.23.
Four studies were found in the literature that estimated time-weighted daily exposure levels for indoor and outdoor exposures. Probabilistic methods were used to estimate a 24-hour TWA exposure concentration for the general Canadian public, taking into account the amount of time spent indoors and outdoors and the associated formaldehyde concentrations (WHO 2002). Although this study applies specifically to the Canadian population, it was noted that the sources of formaldehyde are ubiquitous and are likely similar in most countries, and the overall magnitude of relative contributions from indoor air and outdoor air are expected to be similar in other parts of the world. Based on two different assumptions regarding the statistical distribution of formaldehyde concentrations, mean values were 24 and 29 μg/m3, median values were 33 and 36 μg/m3, and 95th-percentile values were 94 and 80 μg/m3.

More recently, in a review of production, consumption, exposure levels, and health effects of formaldehyde in China, Tang et al. (2009) provided data from numerous studies that had measured formaldehyde air levels. From these data, Tang et al. calculated average concentrations of formaldehyde in various locations including outdoor air, in new remodeled homes, new office buildings, and public places. Based on these levels and time-activity pattern assumptions, the authors estimated an effective concentration for a hypothetical person of 0.21 mg/m3 during workdays and 0.17 mg/m3 over the course of the weekend. The authors noted that this level of exposure was higher than the WHO recommended indoor level of 0.1 mg/m3. They further noted that higher levels would be associated with occupational exposures: 0.58 mg/m3 per day for industrial exposures and 0.61 mg/m3 per day for professional exposures (e.g., exposures associated with anatomy labs or pathology).

Dodson et al. (2007) developed a personal exposure model using VOC data (including data on formaldehyde) collected for teachers and office workers as part of the Boston Exposure Assessment in Microenvironments study. Included in the final model were data on participants’ time-activity and concentration measurements for residential outdoor, residential indoor, and workplace microenvironments, along with average concentrations in various dining, retail, and transportation microenvironments. The authors noted that even with the full model, exposures to formaldehyde were not fully characterized, based
on comparison with personal monitoring data; they emphasized the need for additional
time-activity and concentration data. Measured time-weighted personal exposure levels
ranged from roughly 8 to 88 μg/m3 [0.008 to 0.088 mg/m3] across 62 observations.

Boström et al. (1994) derived ratios of nitrogen oxide (NO$_x$) levels to levels of other
pollutants in urban air, including formaldehyde, and used time-activity data together with
NO$_x$ levels to estimate exposure of the Swedish population to various pollutants. The
overall mean exposure level for formaldehyde was estimated at 1.2 μg/m3 [0.001 mg/m3].

The remainder of this section discusses outdoor air and indoor air separately.

2.5.1.1 Outdoor air
Formaldehyde in outdoor air has many natural and anthropogenic sources. Natural
sources of formaldehyde include forest fires, animal wastes, microbial products of
biological systems, and plant volatiles. In Riverside, CA, airborne formaldehyde levels
were twice as high during a wildfire as after the wildfire had ended (Na and Cocker 2008). However, the majority of formaldehyde in outdoor air is from anthropogenic
activities, primarily combustion processes; therefore, higher levels are seen in urban
environments than in rural environments (ATSDR 1999, WHO 2002). Major
anthropogenic sources of formaldehyde in outdoor air include power plants, refineries,
manufacturing facilities, incinerators, automobile exhaust, and other combustion sources.

In 2007, U.S. industrial air emissions of more than 9.2 million pounds of formaldehyde
were reported to the U.S. EPA’s Toxics Release Inventory (TRI) as either fugitive
(1 million pounds) or point-source (8.2 million pounds) emissions (TRI 2009). Total air
emissions reported to TRI trended downward slightly between 1988 and 2007, with a
maximum of 13.2 million pounds in 1989 and a minimum of 9 million pounds in 2006.
Reported emissions were lowest in 2005, 2006, and 2007.

It has been suggested that formaldehyde levels due to secondary formation might be
much larger than levels from direct emissions. One study reviewed by the World Health
Organization (WHO 2002), estimated that 70% to 90% of atmospheric formaldehyde was
the result of secondary formation.
Formaldehyde is not present in gasoline; however, it is a product of incomplete combustion and is therefore released from internal combustion engines (WHO 2002). Automobiles are a major source of formaldehyde in outdoor air through direct formaldehyde emissions and through emission of precursors that form formaldehyde via atmospheric oxidation. Formaldehyde levels have been found to be correlated with traffic activity (ATSDR 1999). In the mid 1970s, the U.S. EPA estimated that automobiles emitted about 610 million pounds of formaldehyde annually. Emission levels depend on the fuel composition, the type of engine, the type of emission controls, the operating temperature, and the age and state of repair of the vehicle; therefore, emission rates are quite variable. The introduction of catalytic converters reduced automobile emissions of formaldehyde; however, the use of oxygenated fuels increases emissions. With the increased use of both catalytic converters and oxygenated fuels, the net effect on formaldehyde emissions is uncertain. Tractors and back-up generators are additional sources of substantial amounts of formaldehyde in outdoor air (Sawant et al. 2007).

In a study of emissions from diesel engines operating on standard diesel fuel or on various blends of biodiesel, Liu et al. (2009a) reported that emissions of carbonyl compounds (including formaldehyde) increased when the engines were run on biodiesel fuels; however, the total concentration of the emitted carbonyls did not increase with biodiesel content. Sawant et al. (2007) noted that for tractors and back-up generators, engine operating mode and application appear to strongly influence the absolute mass emission rate of carbonyls (including formaldehyde); however, they do not appear to exert as strong an influence on the relative mass emission rates of individual carbonyl compounds.

No consistent seasonal variation has been demonstrated for formaldehyde levels, which could be explained in part by the fact that photo-oxidation is both an important source of formaldehyde (i.e., photo-oxidative breakdown of hydrocarbons to form formaldehyde) and an important pathway for degradation of formaldehyde.

Chen et al. (2004) measured formaldehyde levels continuously over several days and reported that peak formaldehyde levels occurred during daylight hours due to
photochemical oxidation of VOCs caused by intense sunlight, and that minimum levels occurred during nighttime (Chen et al. 2004).

Formaldehyde half-lives in air can vary considerably under different conditions (WHO 2002). Atmospheric residence times in several U.S. cities ranged from 0.3 hours under conditions typical of a rainy winter night to 250 hours under conditions typical of a clear summer night. ATSDR (1999) reported half-lives in the atmosphere ranging from 1.6 to 19 hours. Reaction with the hydroxyl radical is the most important photo-oxidation process in the degradation of formaldehyde (WHO 2002). Factors that influence formaldehyde’s atmospheric half-life, such as time of day, intensity of sunlight, and temperature, are mainly those factors that affect the availability of the hydroxyl radical. Based on hydroxyl radical reaction rate constants, the atmospheric half-life of formaldehyde has been calculated to be between 7.1 and 71.3 hours. Photolysis is another degradation pathway; however, it accounts for only about 2% to 5% of formaldehyde removal. At night, the degradation of formaldehyde is expected to occur through reactions with nitrate radicals. This process tends to be more significant in urban areas, where concentrations of the nitrate radical are higher.

Formaldehyde is highly soluble in water and will transfer into clouds, precipitation, and surface water. WHO (2002) noted that formaldehyde has a washout ratio (concentration in rain/concentration in air) of 73,000, and thus is expected to be efficiently scavenged from the atmosphere by atmospheric water.

Table 2-16 summarizes data on outdoor formaldehyde air levels in the United States that have been reported in review articles by Zhang et al. (2009a), IARC (2006), ATSDR (1999), and WHO (1989). Both IARC and Zhang et al. reported levels for other countries that were more than an order of magnitude higher than those seen in the United States. The highest mean ambient level reported in the IARC review was 40 μg/m³ in Rio de Janeiro, Brazil, and the highest single measurement (based on the upper end of the reported range) was 176 ppbv [216 μg/m³] in Budapest, Hungary. Ambient levels

1 Due to questions that arose during review of the Zhang et al. (2009a) review article, the primary references (Sax et al. 2004, Chen et al. 2004, and Mohammed et al. 2002) were reviewed and are cited in Table 2-16.
exceeding those reported for the United States were also seen in Italy, China, Mexico, France, England, Egypt, and other parts of Brazil, all in urban areas. The highest levels reported by Zhang et al. were from Rio de Janeiro, Brazil (151 ppb [186 μg/m³]) and Mexico City, Mexico (110 ppb [135 μg/m³]). In addition to Brazil and Mexico, Zhang et al. reported concentrations for seven countries that exceeded the maximum U.S. concentration. The ATSDR (1999) and WHO (1989) reviews reported similar levels for the United States and other countries.

Table 2-16. Occurrence of formaldehyde in outdoor air in the United States

<table>
<thead>
<tr>
<th>Location (sampling period)</th>
<th>N</th>
<th>Concentration mean (range) (μg/m³)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston, MA (1993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter measurements outside 4 residences</td>
<td>8</td>
<td>3.81 (0–3.81)</td>
<td>Reiss et al. 1995b</td>
</tr>
<tr>
<td>Summer measurements outside 9 residences</td>
<td>18</td>
<td>3.2 (1.5–7.3)</td>
<td></td>
</tr>
<tr>
<td>New York City, NY (1999)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>36</td>
<td>2.1 (0.5–4.1)</td>
<td>Sax et al. 2004</td>
</tr>
<tr>
<td>Summer</td>
<td>36</td>
<td>5.3 (1.9–13)</td>
<td></td>
</tr>
<tr>
<td>Schenectady, NY (June–August 1983)</td>
<td>NR</td>
<td>NR (1.23–38)</td>
<td>Schulam et al. 1985d</td>
</tr>
<tr>
<td>Atlanta, GA, 4 urban areas (July and August 1992)</td>
<td>217</td>
<td>3.3–3.7 (max. = 10.2)</td>
<td>Grosjean et al. 1993b</td>
</tr>
<tr>
<td>Baton Rouge, LA, FEMA trailer-staging area (2006)</td>
<td>NR</td>
<td>6.0 (1.0–87)</td>
<td>ATSDR 2007a</td>
</tr>
<tr>
<td>OH urban centers (June–July 1989)</td>
<td>48</td>
<td>3.7 (max. = 19.0)</td>
<td>Spicer et al. 1996d</td>
</tr>
<tr>
<td>Houston, TX: Range of peak levels across the 3 sampling periods (2002)</td>
<td>NR</td>
<td>NR (< 8.6–37)</td>
<td>Chen et al. 2004</td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td>2.8 (NR)</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>3.3 (NR)</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA (2000)</td>
<td></td>
<td>3.9 (2.3–8.4)</td>
<td>Sax et al. 2004</td>
</tr>
<tr>
<td>Winter</td>
<td>40</td>
<td>4.4 (2.5–7.8)</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA (1999–2000)</td>
<td>69</td>
<td>8.8 (5.3–17.22)</td>
<td>Delfino et al. 2003b</td>
</tr>
<tr>
<td>Measured at urban locations during smog season (September)</td>
<td>32</td>
<td>6.5 (1.7–13.0)</td>
<td>Grosjean et al. 1996b</td>
</tr>
<tr>
<td>Measured at 1 background location</td>
<td>NR</td>
<td>1.0 (0.9–1.2)</td>
<td></td>
</tr>
</tbody>
</table>

September 3, 2009

NOT FOR DISTRIBUTION OR ATTRIBUTION
### Location (sampling period)	N	Concentration mean (range) (µg/m³)	Reference
Los Angeles, CA (Cal State University) (May–June 1980) | NR | NR 2.5–49 | Grosjean 1982^d
California, during air pollution episode (NR) Lennox Azusa Los Angeles | 36 36 20 | NR 0.6–48.6 NR 0.9–43 NR 4.5–70.1 | Grosjean and Swanson 1983^c
Claremont, CA (September–October 1980) | NR | NR 3.7–59 | Grosjean 1982^d
Riverside, CA (NR) | 32 | NR (<5–12) | Tuazon <i>et al.</i> 1978^c
Rural
Albany, NY, rural and semi rural (October 1991) | NR | NR (0.74–4.5) | Khwaja 1995^b
Whiteface Mountain, Wilmington, NY (1983) | NR | NR (0.98–3.2) | Schulam <i>et al.</i> 1985^d
Mixed locations
USA, mixed locations in TX, LA, VT, and NJ (1996–1997) | NR | NR (1.8–9.1) | Mohammed <i>et al.</i> 2002
USA, mixed locations (1975–1985) Nationwide Urban – mixed locations Suburban – mixed locations Rural and semirural – mixed locations | 629 332 281 12 | 5.0^{e,f} (NR) 8.0^e (NR) 3.3^e (NR) 3.3^e (NR) | Shah and Singh 1988^b
United States, ambient air measurements at 58 locations (NR) | 1,358 | 3.07^e (NR) | Kelly <i>et al.</i> 1994^d
United States, 9 datasets from 8 cities (1980–1984) | NR | 2.8–23.3 (means) 6.8–83 (maxima) | Salas and Singh 1986 and Singh <i>et al.</i> 1982^d
Minnesota, 25 sites throughout the state (1991–1998) | 2,494 | 1.7 (<0.05–21) | Pratt <i>et al.</i> 2000^b
California, multiple locations (NR) | NR | 3.9–6.0 (NR) | Seiber 1996^d

NR = not reported.
^aData within this section are sorted geographically, generally from east to west across the United States.
^bCited in IARC 2006.
^cCited in WHO 1989.
^dCited in ATSDR 1999.
^eMedian.
^fThe nationwide mean value was 10.2 µg/m³.

2.5.1.2 Indoor air

Formaldehyde levels generally are higher in indoor air than in outdoor air, often by an order of magnitude or more (IARC 2006, ATSDR 1999). Sources of formaldehyde in
indoor air include off-gassing from various products (e.g., building materials, composite-
wood-based furnishings, carpets, various consumer products, clothing, fabrics, UFFI, and
paints and varnishes) and indoor combustion sources (e.g., gas burners and ovens,
In indoor air, formaldehyde can form due to reactions of ozone with indoor materials
such as latex paints and carpets (Sax et al. 2004) and due to degradation of other organic
compounds in indoor air (ATSDR). Important determinants of indoor air levels include
the sources of the formaldehyde, the age of the source materials, temperature, humidity,
and ventilation rates (IARC 2006).

Formaldehyde levels in indoor air have been shown to be associated with the age and
structural type of the building; however, these factors are not independent and reflect
more fundamental variables such as the overall emission potential of the source materials
and the air-exchange rate of the dwelling (WHO 1989). In one study reviewed by WHO
(1989), the amount and dynamics of formaldehyde migration into indoor air was assessed
in relation to the age of the material, air temperature, and air-exchange rate. Age of the
material was found to be the most important factor influencing formaldehyde levels,
followed by temperature elevation, and then air-exchange rate.

In a study assessing secondary VOC emissions from flooring material, Kagi et al. (2009)
exposed a low-formaldehyde type of flooring material to UV radiation and found that
chemical transformations occurred resulting in the emission of a number of secondary
products, including formaldehyde. Similar results were found when the flooring material
was exposed to ozone.

Emission rates due to off-gassing have been assessed for various consumer products and
are presented in Table 2-17. (Measured indoor formaldehyde levels are discussed below.)
The highest emission rates were seen for UF floor finishes; this finding is supported by
data showing high exposure levels for workers who varnish floors (see Section 2.4.8).
Other products with high emission rates include fingernail hardener and polish, various
types of composite wood products (i.e., particleboard, plywood, UF wood products),
latex paints, permanent-press fabrics, and insulation. In general, UF resins have the
highest emission rates and PF resins the lowest emission rates (IRSST 2006). Generally, emission rates from these products decrease over time (WHO 1989). It has been shown that formaldehyde emission rates increase with higher ozone concentrations, temperature, and relative humidity (Sax et al. 2004).

Table 2-17. Formaldehyde off-gassing emission rates from building materials, home furnishings, and consumer products

<table>
<thead>
<tr>
<th>Product</th>
<th>Emission rate (µg/m² per day)</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building supplies and home furnishings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercially applied UF floor finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base coat</td>
<td>[10,104]</td>
<td>Reported by ATSDR as 421 and 1,050,000 µg/m² per hour</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Top coat</td>
<td>[25,200,000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particleboard</td>
<td>36,000–168,000</td>
<td>Range of releases based on varying a number of parameters in a test chamber</td>
<td>Pickrell et al. 1984</td>
</tr>
<tr>
<td>Plywood</td>
<td>31,000–68,000</td>
<td>Range of releases based on varying a number of parameters in a test chamber</td>
<td>Pickrell et al. 1984</td>
</tr>
<tr>
<td>Pressed wood products (including particleboard, plywood, and paneling)</td>
<td>BD–36,000</td>
<td>Minimum is for exterior plywood, and maximum is for paneling</td>
<td>Pickrell et al. 1983</td>
</tr>
<tr>
<td>Bare UF wood products</td>
<td>210–37,900</td>
<td>Results from a variety of products</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Bare PF wood products</td>
<td>100–220</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Coated UF wood products</td>
<td>24–11,100</td>
<td>Results from a variety of products</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Low-formaldehyde-emitting flooring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural wood flooring without adhesives</td>
<td>96–2,000</td>
<td>Rates span flooring material exposed to ozone, infrared lamp, sun lamp, UVA lamp, and UVB lamp. Reference rates were “not detected” for the low-emitting flooring and 48 µg/m² per day for the natural wood flooring</td>
<td>Kagi et al. 2009</td>
</tr>
<tr>
<td></td>
<td>2,000–6,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation products</td>
<td>52–620</td>
<td>Includes various fiberglass products, air ducts, blackface insulation sheathing</td>
<td>Pickrell et al. 1983</td>
</tr>
<tr>
<td>Insulation</td>
<td>3,000</td>
<td>Measured release rate from a test chamber; details on type of insulation not provided</td>
<td>Pickrell et al. 1984</td>
</tr>
<tr>
<td>Product</td>
<td>Emission rate (µg/m² per day)</td>
<td>Comment</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Carpet</td>
<td>BD–65</td>
<td>Both foam-backed and non-foam-backed carpets (highest level from foam-backed and lowest level from non-foam backed)</td>
<td>Pickrell et al. 1983</td>
</tr>
<tr>
<td>Carpet</td>
<td>1,500</td>
<td>Measured release rate from a test chamber (carpet type not specified)</td>
<td>Pickrell et al. 1984</td>
</tr>
<tr>
<td>Carpet</td>
<td>440–1,375</td>
<td>Measured rates from a test chamber; the maximum rate was at 24 h, and the minimum rate was at 168 h (carpet type not specified)</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Latex paints</td>
<td>7,800–14,200</td>
<td>From two brands of paints; the lower value was for a more expensive paint</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Decorative laminates</td>
<td>100–1,200</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Consumer products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fingernail hardener</td>
<td>5,172,000</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Nail polish</td>
<td>496,800</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Paper products</td>
<td>75–1,000</td>
<td>Paper plates and cups</td>
<td>Pickrell et al. 1983</td>
</tr>
<tr>
<td>Paper grocery bags</td>
<td>10</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Clothes</td>
<td>15–550</td>
<td>Unwashed new clothing</td>
<td>Pickrell et al. 1983</td>
</tr>
<tr>
<td>Permanent press fabrics</td>
<td>1,000–5,100</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Towels</td>
<td>< 7</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Fiberglass products</td>
<td>380–770</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
</tbody>
</table>

BD = below detection, UVA = ultraviolet A, UVB = ultraviolet B.

1 Off-gassing from UFFI is another potential source of formaldehyde in indoor air. No
2 emission rates were found in the literature; however, studies have indicated that
3 formaldehyde levels in homes increase immediately after foaming, but return to pre-
4 foaming levels after a few weeks (WHO 1989). As noted above, changes in home-
5 construction methods have significantly reduced the use of UFFI since the mid 1980s.

6 Paint can be a source of formaldehyde in indoor air. In one study, the average
7 formaldehyde level was 18 µg/m³ in office buildings that had recently been painted with
8 a low-formaldehyde-emitting paint. Three months later, the concentration had fallen to 8
9 µg/m³, which was the average level in a control area in the same building that had not
10 been painted (IARC 2006) (data are presented in occupational exposure section,
Table 2-15). A study in Swedish homes showed significantly increased formaldehyde levels in houses where wood paint had been used. This study also noted that wall-to-wall carpeting had contributed almost the same amounts of formaldehyde to indoor air as paint had (13 μg/m3 vs. 16 μg/m3).

Indoor combustion sources of formaldehyde include wood stoves, gas stoves, kerosene heaters, open fireplaces, furnaces, and burning tobacco products. Combustion sources generally are considered to be weak emitters to indoor air, but tobacco smoke can be an important source of formaldehyde in indoor air, potentially accounting for 10% to 25% of indoor air exposure (ATSDR 1999) (see below and Table 2-19).

Other potential sources of formaldehyde in indoor air include cooking and formation from other chemicals in the air. In one study, an emission rate of 1.38 μg/g was estimated for charbroiling meat over a natural-gas-fired grill (WHO 2002). Another study showed emission rates for fish that ranged from 0.48 μg/g for mackerel to 5.31 μg/g for sardines (IARC 2006). Formaldehyde has also been shown to be released from cooking oils that were heated to 240°C to 280°C [464°F to 536°F].

Formaldehyde may form through degradation of organic compounds commonly found in indoor air. Formaldehyde has been found to form through this process at a rate of 0.87 μg/s in winter and 2.43 μg/s in summer (ATSDR 1999) [which is reflected in the higher indoor formaldehyde levels in summer than in winter shown in Table 2-18 for studies with measurements in both seasons].

Park and Ikeda (2006) found that air levels of VOCs in new homes decreased markedly after one year; however, formaldehyde required a longer flushing period in new homes. The authors concluded that decreases in indoor formaldehyde levels depend more on time than on ventilation rates. Gold et al. (1993) noted that older conventional homes had the lowest indoor concentrations of formaldehyde (compared with new conventional homes and mobile homes), with values typically less than 0.05 ppm [60 μg/m3]. This is consistent with the expected decrease in release of latent formaldehyde from wood-based building materials as they age. Interior remodeling can also result in increased formaldehyde levels. Tang et al. reported that in China, indoor formaldehyde
concentrations typically decrease with time, usually falling below 0.1 mg/m³ about 6 months after remodeling; however, the authors noted that levels can remain high even up to 1 year after remodeling.

In 2008, CDC released *Final Report on Formaldehyde Levels in FEMA-Supplied Travel Trailers, Park Models, and Mobile Homes* (CDC 2008). The report summarized a study of a stratified random sample of 519 occupied travel trailers, park models, and mobile homes provided by the Federal Emergency Management Agency (FEMA) for use as temporary shelter for Louisiana and Mississippi residents displaced by hurricanes Katrina and Rita. The overall geometric mean indoor formaldehyde level was 77 ppb [95 μg/m³] (range = 3 to 590 ppb [3.7 to 726 μg/m³]). The Centers for Disease Control and Prevention (CDC) reported that formaldehyde levels varied by trailer type (travel trailers had significantly higher levels than park models or mobile homes), but all types tested had some levels greater than 100 ppb [123 μg/m³]. Levels also varied by manufacturer. Temperature was the most important determinant of indoor levels. Other statistically significant determinants of formaldehyde levels included relative humidity; opened windows, doors, and scuttles; and presence of mold. Indoor cooking and tobacco smoking contributed to formaldehyde levels, although not significantly. The CDC noted that since indoor formaldehyde levels tend to be higher in warmer weather and in newly constructed trailers, the results of this study could have underestimated long-term exposure levels (many of the trailers were around 2 years old, and the study was undertaken in winter).

In 2006, ATSDR evaluated data on formaldehyde levels in FEMA temporary housing units in Baton Rouge, LA. Two different ventilation methods were tested in the study: Method A relied on running the air conditioning and opening the bathroom vents only, and Method B relied on opening all windows and vents. The authors found that Method B was more effective at lowering formaldehyde levels (see Table 2-18) (ATSDR 2007a). ATSDR (1999) also noted that the generally increased levels of formaldehyde in mobile homes would be expected because of their generally lower air-exchange rates. IARC noted that formaldehyde in the air of mobile homes has a half-life of about four or five years.
Residential indoor air levels of formaldehyde have been extensively documented by IARC (2006), ATSDR (1999), and WHO (1989). U.S. levels from these assessments are presented in Table 2-18. Residential indoor air levels reported for other countries were very similar to U.S. levels, and except for one instance (in which > 500 ppb was reported in Austrian apartments), all data points fell within the range of concentrations reported for the United States. Zhang et al. (2009a) presented graphs showing indoor formaldehyde air levels for several countries, noting that in general, indoor levels (including U.S levels) were below the WHO recommended indoor limit of 0.1 mg/m³.

However, mean levels for Cairo, Egypt, and Tianjin, China, were slightly higher than the WHO recommended level (roughly 0.12 μg/m³ for both cities), and levels in Beijing, China, were roughly 0.2 μg/m³ in winter and 0.28 μg/m³ in summer. The ATSDR review included many measurements made in the mid 1980s or earlier; the authors noted that production methods have since been changed to reduce formaldehyde levels in plywood and particleboard, and the use of UFFI has decreased. The authors also noted that formaldehyde levels in mobile homes appear to have been decreasing since about 1980, probably as a result of the use of these reduced-emission products.

<table>
<thead>
<tr>
<th>Location (year measured)</th>
<th>N³</th>
<th>Concentration mean (range) (μg/m³)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufactured housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baton Rouge, LA, 96 FEMA-supplied temporary housing units (2006)</td>
<td>1,090</td>
<td>490 (3.4–3,000)</td>
<td>ATSDR 2007a</td>
</tr>
<tr>
<td></td>
<td>1,117</td>
<td>172 (3.0–4,500)</td>
<td></td>
</tr>
<tr>
<td>United States, East and Southeast (1997–1998)</td>
<td>4</td>
<td>41.8° (25.8–57.7) 2.5° (NR)</td>
<td>Hodgson et al. 2000b</td>
</tr>
<tr>
<td>Indoor level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor level</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Location (year measured)

<table>
<thead>
<tr>
<th>Location (year measured)</th>
<th>N³</th>
<th>Concentration mean (range) (µg/m³)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas, mobile homes whose residents requested testing (1979–1982)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homes < 1 yr old</td>
<td>443*</td>
<td>(NR) ND–9,830</td>
<td>Norsted et al. 1985d</td>
</tr>
<tr>
<td>Homes > 1 yr old</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States (NR)</td>
<td>430*</td>
<td>> 1.23 for 4% of samples</td>
<td>Breysse 1984e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.61–1.22 for 18% of samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.12–0.60 for 64% of samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 0.12 for 14% of samples</td>
<td></td>
</tr>
<tr>
<td>United States (NR)</td>
<td>431*</td>
<td>0.47 (0.012–3.6)</td>
<td>Ulsamer et al. 1982c</td>
</tr>
<tr>
<td>United States (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complaint homes, WA, < 2 yr old</td>
<td>110*</td>
<td>0.95 (NR)</td>
<td>Stone et al. 1981c</td>
</tr>
<tr>
<td>Complaint homes, WA, 2–10 yr old</td>
<td>77*</td>
<td>0.58 (NR)</td>
<td></td>
</tr>
<tr>
<td>Complaint homes, MN, < 2 yr old</td>
<td>66*</td>
<td>1.04 (NR)</td>
<td></td>
</tr>
<tr>
<td>Complaint homes, MN, 2–10 yr old</td>
<td>43*</td>
<td>0.34 (NR)</td>
<td></td>
</tr>
<tr>
<td>Complaint homes, WI, < 2 yr old</td>
<td>38*</td>
<td>0.89 (NR)</td>
<td></td>
</tr>
<tr>
<td>Complaint homes, WI, 2–7 yr old</td>
<td>9*</td>
<td>0.56 (NR)</td>
<td></td>
</tr>
<tr>
<td>Random sample, WI, < 2 yr old</td>
<td>NR</td>
<td>0.66 (NR)</td>
<td></td>
</tr>
<tr>
<td>Wisconsin, complaint homes, 0.2 to 12 yr old (NR)</td>
<td>65*</td>
<td>0.59f</td>
<td>Dally et al. 1981c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional housing or unspecified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York City, NY (1999)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>38</td>
<td>12.1 (NR)</td>
<td>Kinney et al. 2002b</td>
</tr>
<tr>
<td>Summer</td>
<td>41</td>
<td>20.9 (NR)</td>
<td></td>
</tr>
<tr>
<td>United States, East and Southeast, site-built houses (1997–1998)</td>
<td>7</td>
<td>44.2c (17.2–71.2)</td>
<td>Hodgson et al. 2000b</td>
</tr>
<tr>
<td>Louisiana, 53 houses: 75% urban and 25% rural (NR)</td>
<td>419</td>
<td>460 (ND–6,600)</td>
<td>Lemus et al. 1998b</td>
</tr>
<tr>
<td>Boston, MA (1993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter, 4 residences</td>
<td>14</td>
<td>13.6 (7.4–19.8)</td>
<td>Reiss et al. 1995b</td>
</tr>
<tr>
<td>Summer, 9 residences</td>
<td>26</td>
<td>19.8 (7.3–66.1)</td>
<td></td>
</tr>
<tr>
<td>Prior to occupancy</td>
<td></td>
<td>49c (33–81)</td>
<td></td>
</tr>
<tr>
<td>After occupancy for 5 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey, residential houses (1992)</td>
<td>6*</td>
<td>67.01 (NR)</td>
<td>Zhang et al. 1994b</td>
</tr>
<tr>
<td>Indoor</td>
<td></td>
<td>15.4 (NR)</td>
<td></td>
</tr>
<tr>
<td>Outdoor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona, houses (NR)</td>
<td>202*</td>
<td>31.9 (max. 172)</td>
<td>Krzyzanowski et al. 1990d</td>
</tr>
<tr>
<td>United States, residential, various locations (1981–1984)</td>
<td>273</td>
<td>44.0f (NR)</td>
<td>Shah and Singh 1988b</td>
</tr>
<tr>
<td>Location (year measured)</td>
<td>Nª</td>
<td>Concentration mean (range) (µg/m³)</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Kitchen</td>
<td>48</td>
<td>50.4 (NR)</td>
<td>Sexton et al. 1986b</td>
</tr>
<tr>
<td>Main bedroom</td>
<td>45</td>
<td>44.2 (NR)</td>
<td>Sexton et al. 1986b</td>
</tr>
<tr>
<td>Pullman, WA, houses (NR)</td>
<td>NR</td>
<td>6.14–88.43 (NR)</td>
<td>Lamb et al. 1985d</td>
</tr>
<tr>
<td>United States (NR) UFFI houses</td>
<td>244*</td>
<td>> 1.23 for 2.8% of samples</td>
<td>Breyss 1984c</td>
</tr>
<tr>
<td>Non-UFFI houses and apartments</td>
<td>59*</td>
<td>< 0.12 for 71.2% of samples</td>
<td>Breyss 1984c</td>
</tr>
<tr>
<td>United States (1982) Houses 0–30 yr old</td>
<td>40*</td>
<td>0.076 ± 0.095⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 0–5 yr old</td>
<td>18*</td>
<td>0.103 ± 0.112⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 5–15 yr old</td>
<td>11*</td>
<td>0.052 ± 0.052⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses > 15 yr old</td>
<td>11*</td>
<td>0.039 ± 0.052⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 0–5 yr old spring</td>
<td>18*</td>
<td>0.107 ± 0.114⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 0–5 yr old summer</td>
<td>18*</td>
<td>0.136 ± 0.125⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 0–5 yr old autumn</td>
<td>18*</td>
<td>0.058 ± 0.068⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 5–15 yr old spring</td>
<td>11*</td>
<td>0.053 ± 0.049⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 5–15 yr old summer</td>
<td>11*</td>
<td>0.060 ± 0.059⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses 5–15 yr old autumn</td>
<td>11*</td>
<td>0.042 ± 0.043⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses > 15 yr old spring</td>
<td>11*</td>
<td>0.044 ± 0.063⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses > 15 yr old summer</td>
<td>11*</td>
<td>0.036 ± 0.046⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>Houses > 15 yr old autumn</td>
<td>11*</td>
<td>0.032 ± 0.028⁵⁶</td>
<td>Hawthorne et al. 1983e</td>
</tr>
<tr>
<td>United States (1983) Energy-efficient new houses</td>
<td>20*</td>
<td>0.076 (NR)</td>
<td>Grimsrud et al. 1983e</td>
</tr>
<tr>
<td>Low-ventilation modernized houses</td>
<td>16*</td>
<td>0.037 (NR)</td>
<td>Grimsrud et al. 1983e</td>
</tr>
<tr>
<td>United States (1981) Houses without UFFI</td>
<td>41*</td>
<td>0.04 (0.012–0.098)</td>
<td>Ulsamer et al. 1982e</td>
</tr>
<tr>
<td>Houses with UFFI</td>
<td>636*</td>
<td>0.15 (0.012–4.2)</td>
<td>Ulsamer et al. 1982e</td>
</tr>
<tr>
<td>Location (year measured)</td>
<td>(N^a)</td>
<td>Concentration mean (range) ((\mu g/m^3))</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Houses averaging 2 yr old air-tight construction mechanical ventilation</td>
<td>9*</td>
<td>0.044 ± 0.02(^f) 0.033 ± 0.02(^f) 0.017 (NR)</td>
<td>Offerman et al. 1982(^e)</td>
</tr>
<tr>
<td>Houses averaging 6 yr old (loose construction)</td>
<td>1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States (1978–1979)</td>
<td>13*</td>
<td>1.12(^f) (NR)</td>
<td>Dally et al. 1981(^e)</td>
</tr>
<tr>
<td>United States (1979)</td>
<td>2*</td>
<td></td>
<td>Berk et al. 1980(^e)</td>
</tr>
<tr>
<td>Energy-efficient house</td>
<td></td>
<td>0.098 (0.04–0.15)</td>
<td></td>
</tr>
<tr>
<td>Unoccupied house without furniture</td>
<td></td>
<td>0.081 ± 0.007(^g)</td>
<td></td>
</tr>
<tr>
<td>Unoccupied house with furniture</td>
<td></td>
<td>0.225 ± 0.016(^g)</td>
<td></td>
</tr>
<tr>
<td>Occupied house</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>day</td>
<td></td>
<td>0.263 ± 0.026(^g)</td>
<td></td>
</tr>
<tr>
<td>night</td>
<td></td>
<td>0.141 ± 0.044(^g)</td>
<td></td>
</tr>
</tbody>
</table>

NR = not reported; ND = not detected.

\(^a\)Number of samples unless denoted with an asterisk (*), which indicates number of houses.

\(^b\)Cited in IARC 2006.

\(^c\)Geometric mean.

\(^d\)Cited in ATSDR 1999.

\(^e\)Cited in WHO 1989.

\(^f\)Median.

\(^g\)Standard deviation.

1 A number of studies have estimated formaldehyde levels in cigarette mainstream smoke, sidestream smoke, and indoor air due to smoking. Levels in sidestream smoke have been estimated to be from 5 to 50 times the levels in mainstream smoke (ATSDR 1999).

2 Table 2-19 summarizes formaldehyde levels in tobacco smoke and resultant exposure levels.
Table 2-19. Formaldehyde levels associated with cigarette smoke

<table>
<thead>
<tr>
<th>Source or setting</th>
<th>Average or range</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde levels in cigarettes and cigarette smoke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total per cigarette</td>
<td>~1,500–2,000 μg</td>
<td>Low end of range reported in WHO 1989 and upper end reported in ATSDR 1999</td>
<td>ATSDR 1999, WHO 1989</td>
</tr>
<tr>
<td>Sidestream smoke, total per cigarette</td>
<td>958–2,360 μg (range)</td>
<td>The range represents the minimum and maximum values reported across numerous studies. The low end is the low end of a range from one study. The high end is the mean value from another study (the range for that study was not provided).</td>
<td>WHO 1989, 2002</td>
</tr>
<tr>
<td>Mainstream smoke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total per cigarette</td>
<td>8–284 μg</td>
<td>Total per cigarette includes data from numerous studies involving numerous brands and types of cigarettes. Total per puff data from 6 American filter-tip brands.</td>
<td>WHO 2002, 1989, ATSDR 1999</td>
</tr>
<tr>
<td>Total per puff</td>
<td>5.1–8.9 μg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>60,000–130,000 μg/m(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde air concentrations due to smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-m(^3) chamber</td>
<td>120 μg/m(^3)</td>
<td>Six cigarettes smoked over 15 minutes; chamber averaged 1 air exchange per hour</td>
<td>WHO 1989</td>
</tr>
<tr>
<td>30-m(^3) chamber</td>
<td>210–350 μg/m(^3)</td>
<td>Formaldehyde yield from 5–10 cigarettes smoked in the chamber at the two different exchange rates</td>
<td>WHO 1989</td>
</tr>
<tr>
<td></td>
<td>50–70 μg/m(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2–0.3 air exchanges/hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 air exchange/hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmoking office building</td>
<td>BD–270 μg/m(^3)</td>
<td></td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Smoking section of building</td>
<td>BD–740 μg/m(^3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BD = below detection.

The interior of automobiles can be a significant source of formaldehyde exposure as a result of off-gassing from interior materials. Using data from chamber tests that showed an average formaldehyde concentration of 48 μg/m\(^3\) at 23°C [73°F], Schupp et al. (2005) extrapolated a car concentration of 1,680 μg/m\(^3\) at a temperature of 65°C [150°F], which is easily reached in the interior of a car sitting in the sun with the windows rolled up. Based on air samples taken inside 802 new cars (manufactured in and after 2003) parked in an underground parking garage, Zhang et al. (2008b) reported a mean airborne formaldehyde level of 80 μg/m\(^3\) (range = 20 to 1,110 μg/m\(^3\)). Samples were also taken
inside 20 older cars (manufactured before 2003) for comparison; levels were slightly lower in the older cars.

2.5.2 Water

Formaldehyde has been detected in bottled drinking water, treated drinking water, and various types of environmental water, including groundwater, surface water, fog, and mist. This section discusses formaldehyde levels in these various types of water. Because drinking water is the most likely potential source of exposure, it is discussed first, followed by a discussion of formaldehyde levels in other types of environmental waters.

2.5.2.1 Drinking water

Formaldehyde in treated drinking water occurs primarily through the oxidation of organic matter during ozonation or chlorination (WHO 2005); however, formaldehyde can also be present in the water before treatment. Krasner et al. (1989) reported the results of a study on the occurrence of disinfection by-products in U.S. drinking-water supplies. Formaldehyde and several other disinfection by-products were measured both pre- and post-treatment at 35 drinking-water treatment facilities in 1988 and 1989. To ensure that the facilities chosen for analysis were representative, selection was based on the type of source water, type of treatment process, population served, geographic location, and the disinfectants used (i.e., free chlorine, chloramines, chlorine dioxide, or ozone). Levels of disinfection by-products were assessed quarterly (spring, summer, fall, and winter, 1988–1989), and the data for formaldehyde are presented in Table 2-20 [note that formaldehyde was not assessed in spring]. To determine whether the formaldehyde was produced during the disinfection process or originated from the source water, formaldehyde was measured in the influents of all 35 facilities. It was detected in 16 influent samples at levels ranging from 1.2 to 13 μg/L, with a median of 2.8 μg/L. The median for all samples (including samples in which no formaldehyde was detected) was less than 1 μg/L. The authors suggested that the presence of formaldehyde in treated drinking water depends on a combination of the disinfection process and the influent water quality. It was noted, however, that formaldehyde clearly was a product of the oxidation-disinfection process, and that formaldehyde levels were higher at facilities that used ozone treatment.
Formaldehyde can also contaminate drinking water through leaching from polyacetal plastic fittings whose protective coatings have been compromised (Owen et al. 1990, Tomkins et al. 1989, WHO 2002). Concentrations ranging from roughly 20 to 100 μg/L have been reported to result from this process; levels were positively associated with the residence time of the water in the pipe (Owen et al. 1990).

WHO (2002) noted that based on limited U.S. data, formaldehyde concentrations in drinking water may range up to approximately 10 μg/L in the absence of contributions from ozone treatment during water treatment or from leaching of formaldehyde from polyacetal plumbing fixtures.

Formaldehyde has also been detected in bottled drinking waters. Mutsuga et al. (2006) purchased 20 polyethylene terephthalate (PET) bottles of mineral water and analyzed the water for formaldehyde and acetaldehyde. Of the 20 bottles of water, 6 were bottled in Japan, 11 in Europe, and 3 in North America. All of the Japanese bottled-water samples contained detectable levels of formaldehyde, whereas 3 of the 11 European samples and 2 of the 3 North American samples had detectable formaldehyde levels (see Table 2-20). The authors concluded that formaldehyde in the water was due to leaching from the PET bottles. In further investigations to explain the absence of formaldehyde from some of the water samples, the authors discovered that the water samples without formaldehyde were unsterilized and contained heterotrophic bacteria. Based on these findings, the authors suggested that formaldehyde probably had leached from the PET bottles but had been decomposed by the bacteria.

Tsai et al. (2003) measured formaldehyde levels in 63 brands of packed drinking water and 13 brands of barreled drinking water in Taiwan. The authors reported that all concentrations were below 129 ppb [129 μg/L] [specific levels not reported] and noted that these levels were well below the WHO water-quality guidelines of 900 μg/L. No additional information was found specifically for bottled water in the United States.
Table 2-20. Formaldehyde concentrations in drinking water

<table>
<thead>
<tr>
<th>Water type</th>
<th>Concentration (µg/L)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. drinking water at treatment facility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer 1988</td>
<td>5.1<sup>a</sup></td>
<td>Formaldehyde was detected at concentrations ranging from 1.2 to 13 µg/L in influents of 16 of 35 treatment facilities; however, authors noted that it was also created through treatment by ozonation or chlorination</td>
<td>Krasner et al. 1989</td>
</tr>
<tr>
<td>Fall 1988</td>
<td>3.5<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter 1988–1989</td>
<td>2.0<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. domestic drinking water</td>
<td>~ 20–100</td>
<td>Concentrations observed in a study assessing the leaching of formaldehyde from domestic polyacetal plumbing fixtures. [The low end is assumed to represent normal conditions and the high end to represent a reasonable worst-case scenario.]</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>U.S. domestic drinking water</td>
<td>~ 10</td>
<td>Levels expected without contributions from ozone treatment during water treatment or by leaching from polyacetal plumbing fixtures</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Drinking water (location not reported)</td>
<td>< 100</td>
<td>Noted as generally less than this level</td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Drinking water (treated with ozone; location not reported)</td>
<td>< 50</td>
<td>Noted as unlikely to exceed this level</td>
<td>WHO 2005</td>
</tr>
<tr>
<td>Bottled water</td>
<td>10.1–27.9</td>
<td>Range of levels detected in water from 20 PET bottles. Detectable levels were found in 6 of 6 Japanese, 3 of 11 European, and 2 of 3 North American bottled waters.</td>
<td>Mutsuga et al. 2006</td>
</tr>
<tr>
<td>Bottled in Japan</td>
<td>7.8–13.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottled in Europe</td>
<td>13.6, 19.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottled in North America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 brands of packed drinking water and 13 brands of barreled drinking water in Taiwan</td>
<td>< 129</td>
<td>Specific levels not reported</td>
<td>Tsai et al. 2003</td>
</tr>
</tbody>
</table>

BD = below detection. PET = polyethylene terephthalate.

^aMedian; range not reported.

2.5.2.2 Environmental Water

Groundwater can be contaminated by formaldehyde leaching from surface soils into the water table and through underground injection of wastes. In 2007, underground injection of formaldehyde was the predominant source of industrial release to the environment, based on TRI reporting data; 11.9 million pounds was released to on-site and off-site underground injection wells, accounting for 54% of total U.S. releases reported to TRI.
(TRI 2009). As a percentage of total releases, underground injection has trended upward since 1988, with a minimum of 29% in 1992 and a maximum of 55% in 2006. ATSDR (1999) reported that formaldehyde had been detected in groundwater at 4 of 26 hazardous waste sites at which at least one environmental medium was contaminated with formaldehyde. No information was found on the fate of formaldehyde in groundwater.

Surface water can be contaminated via the direct discharge of formaldehyde-containing wastes, the use of formaldehyde in aquaculture, formaldehyde runoff from hazardous waste sites, and land disposal of formaldehyde-containing wastes. Formaldehyde releases to U.S. surface waters totaling 278,335 pounds were reported to the TRI for 2007 (TRI 2009), accounting for roughly 1% of all formaldehyde releases reported to the TRI. Discharges to surface water have declined steadily since 1988 when 904,547 pounds were reported. The minimum amount reported from 1988 through 2007 was 277,083 pounds in 2003. Formaldehyde-containing wastes may also be sent to publicly owned treatment works (POTWs) and subsequently released to surface waters. For example, formaldehyde has been found in hospital effluent at a 24-hour average concentration of 0.07 mg/L (Boillot et al. 2008). As a result of treatment at POTWs, only a fraction of formaldehyde received is expected to be released to surface waters (ATSDR 1999); however, no data on treatment efficiency or resultant discharge levels were found.

Formalin is commonly used in fish-culture activities to treat fish with fungal or ectoparasitic infections; after use, formaldehyde solutions often are discharged into the hatchery effluent (WHO 1989). No data were found on formaldehyde levels in water due to such discharges.

In 1999, ATSDR (1999) noted that formaldehyde had been detected in surface water at 5 of 26 hazardous waste sites at which at least one environmental medium was contaminated with formaldehyde. In 2007, roughly 373,000 pounds of formaldehyde was disposed of in U.S. landfills, surface impoundments, land treatment sites, and other land disposal sites, accounting for less than 2% of total U.S. releases reported to the TRI for that year (TRI 2009). No information was available to estimate the impacts to surface water from these land disposals.
Although volatilization of formaldehyde from surface waters is expected to be low, biodegradation in surface water is a significant degradation process; formaldehyde is biodegraded to low levels within a few days. In one study, formaldehyde was completely biodegraded in water from a stagnant lake within 30 hours under aerobic conditions and within 48 hours under anaerobic conditions (ATSDR 1999). Based on its low K_{ow}, adsorption of formaldehyde to sediment is expected to be low (Howard 1989). Biotic and abiotic degradation are expected to be significant fate processes in sediment.

Table 2-21 provides data on formaldehyde levels in U.S. environmental waters. ATSDR’s HazDat database provided the only data found for U.S. groundwater levels. [Note that the on-line HazDat database provides only maximum values measured at Superfund sites or other facilities where ATSDR has performed a site assessment.] Three data points were provided for formaldehyde: 0.1 ppm [~0.0001 μg/L] measured in 1979 at a facility in New Jersey, 0.0005 μg/L measured in 1980 at a facility in North Carolina, and 140 μg/L at a facility in California [year not reported]. WHO (2002) presented results of groundwater monitoring at two industrial facilities in Canada where groundwater had been contaminated with formaldehyde. For one facility, which produced and used formaldehyde, formaldehyde was detected in 43 samples at concentrations ranging from 65 to 690,000 μg/L and was not detected in 10 samples (detection limit = 50 μg/L). This site was monitored from November 1991 to February 1992 as part of a program to delineate the boundaries of groundwater contamination at the facility. At the other facility, which produced UF resins, quarterly analyses of five on-site monitoring wells in 1996 and 1997 showed formaldehyde concentrations ranging from below the limit of detection to 8,200 μg/L, with an overall median of 100 μg/L. It was noted that concentrations measured in various wells indicated little dispersion from the source of contamination. Groundwater samples collected down gradient from six cemeteries in Ontario, Canada, contained formaldehyde at levels ranging from 1 to 30 μg/L (WHO 2002).
Table 2-21. Formaldehyde levels in U.S. environmental water

<table>
<thead>
<tr>
<th>Water type</th>
<th>Concentration (µg/L)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater</td>
<td>100–500</td>
<td>Range of maximum values from 3 locations in ATSDR’s HazDat database</td>
<td>ATSDR 2007b</td>
</tr>
<tr>
<td>Surface water</td>
<td>2,100, 7,400</td>
<td>Maximum values from two locations in ATSDR’s HazDat database</td>
<td>ATSDR 2007b</td>
</tr>
<tr>
<td>Surface water</td>
<td>BD–12</td>
<td>Of 204 sites in 14 heavily industrialized U.S. river basins, 1 site had detectable formaldehyde</td>
<td>Howard 1989</td>
</tr>
<tr>
<td>Rainwater</td>
<td>BD–0.06</td>
<td>California</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Fog water</td>
<td>1,800(^a)</td>
<td>Corvallis, OR</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Fog water</td>
<td>3,000(^b)</td>
<td>Riverside, CA</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Mist water</td>
<td>250, 560</td>
<td>Long Beach, CA, Marina del Ray, CA</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Snow</td>
<td>18–901</td>
<td>California</td>
<td>WHO 2002</td>
</tr>
</tbody>
</table>

BD = below detection
\(^a\)Volume-weighted mean.
\(^b\)Median.

As with groundwater, ATSDR’s HazDat database provided the only data on U.S. surface-water levels of formaldehyde providing maximum levels at two locations in California of 7,400 µg/L and 2,100 ppb [~2,100 µg/L].

Because of its high solubility in water, formaldehyde is efficiently transferred into clouds, fog, and precipitation, leading to potentially high levels in these media (Table 2-21). WHO (2002) noted that formaldehyde has a washout ratio [concentration in rain to concentration in air] of 73,000, and thus is estimated to be efficiently removed from the atmosphere by atmospheric water. Levels of formaldehyde in rainwater in California have been reported to range from below detection to 0.06 µg/L (ATSDR 1999). WHO (1989) reported levels in rainwater ranging from 8 µg/L (a mean level reported for the central equatorial Pacific Ocean) to 1,380 µg/L (location not reported). No information was provided that would explain why these levels were so much higher than the levels reported by ATSDR (1999).

No data were found on formaldehyde levels in water sediment.
2.5.3 Land and soil

Formaldehyde occurs in soil through its use in controlled-release fertilizers, its use as a fumigant, and land disposal of industrial, construction, demolition, and other wastes. Formaldehyde could be released to soil from hazardous waste sites (ATSDR 1999). It is also formed naturally in soil during decomposition of plants (WHO 1989).

Based on TRI data, 373,000 pounds of formaldehyde were released to land in 2007: 82% to landfills, 14% to surface impoundments, 3% to land treatment sites, and 1% to other land disposal sites (TRI 2009). Land disposal has declined considerably but has fluctuated widely since TRI data were first reported, from a maximum disposal of 1.25 million pounds in 1988 to a minimum of about 205,000 pounds in 1997. As noted above, over 11.9 million pounds of formaldehyde was released to underground injection wells in 2007: 98% to on-site wells and 2% to off-site wells. Since 1988 (the first year in which data were reported), underground injection releases have ranged from around 5 million pounds in 1992 to over 13.6 million pounds in 2004.

Formaldehyde is degradable under both aerobic and anaerobic conditions (Howard 1989); however, no soil degradation rates were found in the literature. It has a low soil-adsorption coefficient, meaning that it is very mobile in soils (WHO 1989). Based on its Henry’s law constant, it is not expected to volatilize appreciably (Howard 1989).

Although large amounts of formaldehyde are disposed of on land and in the ground, no U.S. soil concentration data were found. In Canada, soil levels were measured in 1991 at a plywood manufacturing facility that used PF resins. Six soil samples contained formaldehyde concentrations ranging from 73 to 80 mg/kg, with a mean of 76 mg/kg (WHO 2002).

2.5.4 Food

Formaldehyde can occur in food naturally, through direct addition as a preservative, as a result of cooking or smoking of foods, or through inadvertent contamination (e.g., from its use as a fumigant or from the use of utensils made from formaldehyde resins) (Howard 1989, WHO 1989, ATSDR 1999). Formaldehyde has also been shown to be eluted from formaldehyde-resin plastic dishes by water, acetic acid, and ethanol at
temperature-proportionate levels (ATSDR 1999). Formaldehyde levels in fresh fruit have been found to increase after refrigeration (Tang et al. 2009).

As shown in Table 2-22, generally higher formaldehyde levels have been seen in fish and seafood than in other foods, aside from smoked ham. Formaldehyde develops postmortem in marine fish and crustaceans via enzymatic reduction of trimethylamine oxide (WHO 2002). Formaldehyde will accumulate in some fish species, including cod, pollack, and haddock, during frozen storage. The formaldehyde formed in fish reacts with protein, causing muscle toughness, and it has been suggested that fish containing the highest levels of formaldehyde may not be palatable for human consumption. Li et al. (2007b) observed variable formaldehyde levels among four species of squid; levels generally were far higher in viscera than in muscle of frozen squid. The authors also noted that formaldehyde levels increased with increasing cooking temperature.

Tang et al. (2009) reported that an illegal use of synthetic formaldehyde (Rongalite® [i.e., sodium formaldehyde sulfoxylate]) as a food preservative is common in Chinese markets, and that formaldehyde-induced food poisoning remains a huge problem in China because of this practice. Based on data from seven independent studies, Tang et al. reported high formaldehyde levels in seafood due to this practice (Table 2.22).

Table 2-22. Formaldehyde levels in food

<table>
<thead>
<tr>
<th>Food</th>
<th>Concentration (mg/kg)</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits and vegetables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 different fresh fruits:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without refrigeration</td>
<td>< 2.74 (< 6.3–10.4)</td>
<td>Reported that fruits had levels below 2.74 but the levels increased 2.3 to 3.8 times with refrigeration</td>
<td>Tang et al. 2009</td>
</tr>
<tr>
<td>With refrigeration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pear</td>
<td>38.7, 60</td>
<td>Values based on two different analytical methods</td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Apple</td>
<td>17.3, 22.3</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Cabbage</td>
<td>4.7, 5.3</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Carrot</td>
<td>6.7, 10</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Green onion</td>
<td>13.3, 26.3</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Spinach</td>
<td>3.3, 7.3</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Tomato</td>
<td>5.7, 7.3</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>White radish</td>
<td>3.7, 4.4</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Food</td>
<td>Concentration (mg/kg)</td>
<td>Comment</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Meat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>20</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Sheep</td>
<td>8</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Poultry</td>
<td>5.7</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Smoked ham</td>
<td>267</td>
<td>Value for the outer layer of ham</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Milk and milk products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat’s milk</td>
<td>1</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Cow’s milk</td>
<td>≤ 3.3</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Cow’s milk (fresh)</td>
<td>0.22</td>
<td>Maximum value from cows fed formalin; it was noted that this was roughly 10 times the level in milk from cows without added formalin in the diet.</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Cow’s milk (fumigated)</td>
<td>0.013–0.057</td>
<td>Higher levels in processed milk were attributed to processing technique, packaging, and storage.</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Processed 2% milk</td>
<td>0.027 (mean)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.075–0.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.164 (mean)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td>≤ 3.3</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Fish and seafood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squid</td>
<td>10.7–165</td>
<td>Levels across the muscle and viscera and for dried squid thread for 4 species</td>
<td>Li et al. 2007b</td>
</tr>
<tr>
<td>Freshwater fish</td>
<td>8.8</td>
<td>Fumigation process not described in the source</td>
<td>WHO 1989</td>
</tr>
<tr>
<td>(fumigated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean fish (fumigated)</td>
<td>20</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Cod (frozen)</td>
<td>20</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Shrimp (live)</td>
<td>1</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Crustaceans (Mediterranean)</td>
<td>1–60</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Crustaceans (ocean)</td>
<td>3–98</td>
<td></td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Fresh marine products</td>
<td>2.177 ± 1.41 (mean std. dev.)</td>
<td>Includes products such as mackerel, squid, pomfret, hairtail, sea cucumber, red shrimp, yellow croaker, scallop and octopus</td>
<td>Tang et al. 2009</td>
</tr>
<tr>
<td>Marine products illegally treated with formaldehyde preservative</td>
<td>~300–4,250</td>
<td>Results of 7 independent studies in 6 Chinese cities</td>
<td>Tang et al. 2009</td>
</tr>
<tr>
<td>Food</td>
<td>Concentration (mg/kg)</td>
<td>Comment</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Beverages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit and vegetable juices</td>
<td>≤ 800</td>
<td>It was reported that concentrations up to 800 mg/kg have been reported in fruit and vegetable juices in Bulgaria</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Alcoholic beverages</td>
<td>0.02–3.8 mg/L</td>
<td>Concentrations from a variety of alcoholic beverages from a study in Japan and a study in Brazil</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Canned or bottled beer</td>
<td>0.1–1.5</td>
<td></td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Beer</td>
<td>0.1–0.9</td>
<td>Levels in China across domestic and imported beers</td>
<td>Tang et al. 2009</td>
</tr>
<tr>
<td>Canned or bottled cola</td>
<td>7.4–8.7</td>
<td></td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Brewed coffee</td>
<td>3.4–4.5</td>
<td></td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Instant coffee</td>
<td>10–16</td>
<td></td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiitake mushroom</td>
<td>40–380</td>
<td>Range of base concentration measurements</td>
<td>Tang et al. 2009</td>
</tr>
<tr>
<td>Vermicelli noodles</td>
<td>0.011–3.38</td>
<td>Full range across two studies</td>
<td>Tang et al. 2009</td>
</tr>
<tr>
<td>Maple syrup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated trees</td>
<td>< 1</td>
<td>Trees treated with paraformaldehyde to deter bacterial growth</td>
<td>WHO 2002</td>
</tr>
<tr>
<td>Treated trees</td>
<td>up to 14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 The artificial sweetener aspartame consists of 10% methanol, which Humphries *et al.* (2008) reported can be converted to formaldehyde and other derivatives. The authors also noted that research has shown that formaldehyde adducts accumulate in the tissues after aspartame ingestion.

2 Formaldehyde can be added to ruminant feeds to improve handling characteristics. It has been estimated that animals may ingest as much as 0.25% formaldehyde in their diets (WHO 2002). Formalin has been added as a preservative to skim milk fed to pigs in the United Kingdom and to liquid whey fed to cows and calves in Canada. Formaldehyde levels in milk from cows fed formalin at the highest concentration were up to 10 times the level in milk from control cows. No data were found on levels in meat due to formaldehyde in animals’ diets.
2.6 Exposure estimates

Exposure to formaldehyde can occur from breathing of air and tobacco smoke; ingestion of food, drinking water, and other beverages; dermal contact; and, rarely, direct entry of aqueous solution into the bloodstream (e.g., during medical procedures in which machines or tubing have been disinfected with formaldehyde) (IARC 2006, ATSDR 1999, WHO 1989). As noted above, there are no widely accepted biomarkers for formaldehyde exposure and, therefore, very few data on human intake levels. Exposure can be estimated by combining media concentration information with assumed ingestion and inhalation rates and making various assumptions about the duration of exposure periods. Exposure estimates found in the literature are provided in Table 2-23.

Table 2-23. Estimated formaldehyde exposure levels

<table>
<thead>
<tr>
<th>Source</th>
<th>Intake (mg/day)</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1.5–14</td>
<td>Range based on meal composition</td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Workplace air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without occupational exposure</td>
<td>0.2–0.8</td>
<td>Assumes 25% of day at work. Without occupational exposure assumes normal concentrations in conventional buildings; with occupational exposure assumes 1-mg/m³ air concentrations. Ranges are across two datasets.</td>
<td>Fishbein 1992, WHO 2002</td>
</tr>
<tr>
<td>With occupational exposure</td>
<td>5.0–8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobacco smoke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking 20 cigarettes/day</td>
<td>0.9–2.0</td>
<td>Environmental tobacco smoke exposure assumes 25% of the day at work and 65% of the day at home, with concentrations of 50–350 μg/m³</td>
<td>WHO 2000</td>
</tr>
<tr>
<td>Home</td>
<td>0.5–3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work</td>
<td>0.4–2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking 20 cigarettes/day</td>
<td>1.0</td>
<td>Authors noted that environmental tobacco smoke can contribute 10%–25% of indoor exposure</td>
<td>Fishbein 1992</td>
</tr>
<tr>
<td>Environmental tobacco smoke</td>
<td>0.1–1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential indoor air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional home</td>
<td>0.3–0.6</td>
<td>Assumes 65% of time at home, 30–60 μg/m³ for conventional home, and 100 μg/m³ for mobile home</td>
<td>WHO 2000</td>
</tr>
<tr>
<td>Mobile home</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential indoor air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional home</td>
<td>0.5–2.0</td>
<td>Assumes 65% of day spent in residence and 10% of day spent outdoors</td>
<td>Fishbein 1992</td>
</tr>
<tr>
<td>Prefabricated home</td>
<td>1.0–10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor air</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor air</td>
<td>0.02–0.04</td>
<td>Assumes 10% of time spent outdoors and 2 m³/d intake at 1–20 μg/m³ concentration</td>
<td>WHO 2000</td>
</tr>
<tr>
<td>Indoor air</td>
<td>1.0</td>
<td>Estimates for the Finnish population</td>
<td>HSDB 2007</td>
</tr>
<tr>
<td>Outdoor air</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Intake (mg/day)</td>
<td>Comment</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Drinking water</td>
<td>< 0.2</td>
<td>Assumes that concentrations in drinking water are normally less than 0.1 mg/L</td>
<td>WHO 1989</td>
</tr>
<tr>
<td>Cosmetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand cream</td>
<td>0.1<sup>a</sup></td>
<td>Hand-cream exposure assumes 2-g/application containing 2 mg of formaldehyde and 5% absorption; same assumptions for suntan lotion except 17 g applied</td>
<td>ATSDR 1999</td>
</tr>
<tr>
<td>Suntan lotion</td>
<td>0.85<sup>a</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aMilligrams absorbed per application.

2.7 Regulations and Guidelines

2.7.1 Regulations

Coast Guard, Department of Homeland Security

46 CFR 150 and 151 detail procedures for shipping formaldehyde, formaldehyde solution, and 1,3,5-trioxane with incompatible chemicals.

Consumer Product Safety Commission (CPSC)

Formaldehyde and products containing ≥ 1% of formaldehyde are considered “strong sensitizers” and must contain a warning label.

U.S. Environmental Protection Agency (EPA)

Clean Air Act

Clean-Fuel Vehicles: Formaldehyde emissions limits have been established for various classes of clean-fuel vehicles.

Control of Emissions from New and In-Use Highway Vehicles and Engines:

Formaldehyde emissions limits have been established for various classes of vehicles.

National Emissions Standards for Hazardous Air Pollutants: Listed as a hazardous air pollutant.

New Source Performance Standards: Manufacture of formaldehyde is subject to certain provisions for the control of VOC emissions.

Prevention of Accidental Release: Threshold quantity (TQ) = 15,000 lb.

Regulation of Fuels and Fuel Additives: Under reformulated gasoline certification requirements, formaldehyde emissions levels must not be exceeded.

Clean Water Act

Designation of Hazardous Substances: Formaldehyde and paraformaldehyde both are listed as hazardous substances.

Comprehensive Environmental Response, Compensation, and Liability Act

Formaldehyde reportable quantity (RQ) = 100 lb.
Paraformaldehyde RQ = 1,000 lb.

Emergency Planning and Community Right-To-Know Act

TRI: Listed substance subject to reporting requirements.

RQ = 100 lb.

Threshold planning quantity (TPQ) = 500 lb.

Radiation Protection Programs

Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings:

Formaldehyde will be monitored for in groundwater and shall not exceed either the
background level or another concentration level determined for that site.

Resource Conservation and Recovery Act

Listed as hazardous waste: Waste codes in which listing is based wholly or partly on formaldehyde — U122, K009, K010, K038, K040, K156, and K157.

Listed as a hazardous constituent of waste.

Land disposal restrictions have been promulgated under 40 CFR 268.

Food and Drug Administration (FDA)

Numerous formaldehyde-based chemicals may be used as components of adhesives and coatings in packaging, transporting, or holding food provided that conditions prescribed in 21 CFR 175 are met.

Numerous formaldehyde-based chemicals may be safely used as articles intended for use in contact with food provided that conditions prescribed in 21 CFR 177 are met.

Numerous formaldehyde-based chemicals may be used in the production of paper products intended for use in producing, processing, preparing, treating, packaging, transporting, or holding food provided that conditions prescribed in 21 CFR 176 are met.

Formaldehyde and formaldehyde-based chemicals may be used as adjuvants, production aids, and sanitizers that come in contact with foods provided that conditions prescribed in 21 CFR 178 are met.

Formaldehyde-based ion-exchange resins may be used in the treatment of food provided that conditions prescribed in 21 CFR 173 are met.

Formaldehyde may be safely used in the manufacture of animal feeds in accordance with conditions prescribed in 21 CFR 573.460.

Formalin, containing approximately 37% formaldehyde gas by weight, can be used in environmental waters for the control of fungi and parasites for certain finfish and shellfish given restrictions prescribed in 21 CFR 529.

U.S. Department of Housing and Urban Development (HUD)

All plywood and particleboard materials bonded with a resin system or coated with a surface finish containing formaldehyde shall not exceed the following emission levels
when installed in manufactured homes: 0.2 ppm for plywood and 0.3 ppm for particleboard.
Manufactured homes must prominently display a notice which provides information on formaldehyde sources, levels, health effects, and remedial actions to reduce indoor levels.

Mine Safety and Health Administration

Approval Requirements for Permissible Mobile Diesel-Powered Transportation Equipment: Engine exhaust from mobile diesel-powered transportation equipment must be diluted with air so that the mixture contains no more than 0.001% by volume of aldehydes, calculated as equivalent formaldehyde.

Occupational Safety and Health Administration (OSHA)

Permissible exposure limit (PEL) = 0.75 ppm.
Short-term exposure limit = 2 ppm (15-minute exposure).
Action level = 0.5 ppm (8-hour TWA).
Comprehensive standards have been developed for occupational exposure to formaldehyde gas, its solutions, and materials that release formaldehyde.
Requirements for preventing or minimizing the consequences of catastrophic releases of toxic, reactive, flammable, or explosive chemicals are prescribed in 29 CFR 1910.119; the TQ for formaldehyde is 1,000 lb.

Pipeline and Hazardous Materials Safety Administration

Formaldehyde, formalin, and paraformaldehyde are considered hazardous materials, and special requirements have been set for marking, labeling, and transporting these materials, as prescribed under 49 CFR 172.

2.7.2 Guidelines

American Council of Governmental Industrial Hygienists (ACGIH)
Threshold limit value – ceiling (TLV-C) = 0.3 ppm.
Listed as a suspected human carcinogen.

National Institute for Occupational Safety and Health (NIOSH)
Recommended exposure limit (REL) = 0.016 ppm.
Immediately dangerous to life and health (IDLH) level = 20 ppm.
Ceiling recommended exposure limit = 0.1 ppm (15-minute exposure).
Listed as a potential occupational carcinogen.
2.8 Summary

Formaldehyde has numerous industrial and commercial uses and is produced in very large amounts (billions of pounds per year in the United States) by catalytic oxidation of methanol. Its predominant use, accounting for roughly 55% of consumption, is in the production of industrial resins, which are used in the production of numerous commercial products. Formaldehyde is used in industrial processes primarily as a solution (formalin) or solid (paraformaldehyde or trioxane), but exposure is frequently to formaldehyde gas, which is released during many of the processes. Formaldehyde gas is also created from the combustion of organic material and can be produced secondarily in air from photochemical reactions involving virtually all classes of hydrocarbon pollutants. In some instances, secondary production may exceed direct air emissions. Formaldehyde is also produced endogenously in humans and animals.

Formaldehyde is a simple, one-carbon molecule that is rapidly metabolized, is endogenously produced, and is also formed through the metabolism of many xenobiotic agents. Because of these issues, typical biological indices of exposure, such as levels of formaldehyde or its metabolites in blood or urine, have proven to be ineffective measures of exposure. Formaldehyde can bind covalently to single-stranded DNA and protein to form crosslinks, or with human serum albumin or the N-terminal valine of hemoglobin to form molecular adducts, and these reaction products of formaldehyde might serve as biomarkers for exposure to formaldehyde.

Occupational exposure to formaldehyde is highly variable and can occur in numerous industries, including the manufacture of formaldehyde and formaldehyde-based resins, wood-composite and furniture production, plastics production, histology and pathology, embalming and biology laboratories, foundries, fiberglass production, construction, agriculture, and firefighting, among others. In fact, because formaldehyde is ubiquitous, it has been suggested that occupational exposure to formaldehyde occurs in all work places.
Formaldehyde is also ubiquitous in the environment and has been detected in indoor and outdoor air; in treated drinking water, bottled drinking water, surface water, and groundwater; on land and in the soil; and in numerous types of food.

The primary source of exposure is from inhalation of formaldehyde gas in indoor settings (both residential and occupational); however, formaldehyde also may adsorb to respirable particles, providing a source of additional exposure. Major sources of formaldehyde exposure for the general public have included combustion sources (both indoor and outdoor), automobile emissions, off-gassing from numerous construction and home furnishing products, off-gassing from numerous consumer goods, and cigarette smoke. Ingestion of food and water can also be a significant source of exposure to formaldehyde.

Numerous agencies, including the Department of Homeland Security, CPSC, EPA, FDA, HUD, the Mine Safety and Health Administration, OSHA, the Pipeline and Hazardous Materials Safety Administration, ACGIH, and NIOSH, have developed regulations and guidelines to reduce exposure to formaldehyde.
3 Human Cancer Studies

This section reviews the body of epidemiologic literature on formaldehyde exposure and human cancer risk. Case reports and other descriptive studies are less informative for evaluating causality and are therefore excluded from this review. Also, some analytic studies are excluded from this review (Andersen et al. 1982, Brinton et al. 1984, Fondelli et al. 2007, Goldoft et al. 1993, Hernberg et al. 1983b, Hernberg et al. 1983a, Linos et al. 1990, Nisse et al. 2001) due to excessively small sample size, because the evaluation of formaldehyde exposure was not designed to be an a priori study hypothesis, or because a more recent study completely subsumes a previous analysis conducted with the same study population. Further exclusions are cited in the corresponding sections relevant to these studies.

The vast majority of the epidemiologic literature on formaldehyde and cancer is focused on occupational, rather than recreational or environmental, exposures. Industries known to involve formaldehyde exposure include formaldehyde production or other chemical manufacture using formaldehyde resins; wood, plywood, particleboard, and paper manufacture; garment and other textile manufacture; work in foundries; production of glass fibers, plastics, and rubber products; health professions, including pathology and embalming; and other miscellaneous occupations (see Section 2.4 for more information about exposed occupations). To date, only one study has evaluated residential formaldehyde exposure and cancer risk among individuals living in mobile homes constructed with formaldehyde-treated material (Vaughan et al. 1986b); however, this study is excluded from this review because the exposed number of cases was too small for meaningful analysis.

In 2004, an International Agency for Research on Cancer (IARC) working group concluded that there was significant evidence from studies in humans for the carcinogenicity of formaldehyde and classified formaldehyde as a known human carcinogen (Group 1) (IARC 2006). There have been numerous reviews with conflicting reviews on interpretation of the literature, but these are not discussed in this section.
Particular attention is placed in the individual study summaries on results for sites in the head and neck that come into direct contact with formaldehyde, including cancers of the paranasal sinuses, nasal cavity, and nasopharynx. Section 3.1 briefly describes cancers of the upper respiratory system for the purposes of this review.

Section 3 is organized primarily by study design. Historical cohort and proportionate mortality studies are first reviewed by major industry in Section 3.2, followed by a review of case-control studies organized by cancer site in Section 3.3. Section 3.4 summarizes studies by cancer site.

3.1 Description of head and neck cancers

Head and neck cancers associated with the upper respiratory tract include cancers of the paranasal sinuses and nasal cavity, nasopharynx, oral (or buccal) cavity and salivary glands, pharynx, larynx, and trachea. Cancers of the brain, eye, and thyroid are not usually defined as cancers of the head and neck. The National Cancer Institute estimates that head and neck cancers account for up to 5% of all cancers in the United States. Head and neck malignancies, especially sinonasal and nasopharyngeal cancers, are common endpoints for epidemiological investigations of formaldehyde because these sites come into direct contact with both airborne and dust-borne exposure. See Figure 5-1 for an illustration of the upper respiratory system.
Figure 3-1. Upper respiratory system
(Illustration prepared by Donna Jeanne Corocran, ImageAssociates.)

Sinonasal carcinoma comprises all cancers of the paranasal sinuses and nasal cavity, which are small hollow spaces lined with mucosal tissue in and around the nose. The histology of these tumors is primarily squamous-cell (60% to 70%). Pharyngeal carcinomas (also known as throat cancer) are also primarily squamous-cell type and include nasopharyngeal, oropharyngeal, and hypopharyngeal carcinomas. Oro- and hypopharyngeal carcinomas are often grouped together in epidemiologic studies. Most studies of formaldehyde exposure and pharyngeal cancer have focused only on nasopharyngeal cancers since the nasopharynx is thought to be the primary site of contact in the pharynx following inhalation exposure to formaldehyde.
3.2 Cohort standardized and proportionate mortality and incidence studies

This section reviews historical cohort (standardized and proportionate mortality and incidence) studies that examined the association between occupational exposure to formaldehyde and cancer. Case-control analyses nested within cohort studies are also reviewed in this section. Studies are divided by industrial sector and professional groups to respect differences between these study populations with regard to the potential for exposure to formaldehyde, as well as differences between potentially confounding concomitant occupational exposures present in each industry. Information on known confounding factors (e.g., smoking) is noted in each study summary whenever such information was collected by study investigators.

Several of the following cohort studies have been updated recently, and the results presented in this review will generally be limited to the most recent findings from each cohort and unique re-analyses within the cohort. Studies conducted in the industrial sector will be reviewed first, including those conducted with workers in the fiberglass, garment, chemical, plastics, iron, and plywood and woodworking industries. A review of proportionate mortality studies of professional groups that use formaldehyde as a tissue preservative follows, including studies of pathologists, anatomists, embalmers, and funeral directors. Notably, none of the studies of professional groups examined cancer risk by estimated level of exposure to formaldehyde; rather, this collection of studies examined cancer outcomes by occupation only. Table 3-1 summarizes the characteristics of the major studies. Findings for the tumor sites of interest from these studies are reported in Table 3-3 to 3-8 (see Section 3.4).
Table 3-1. Summary of cohort studies and nested case-control studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Exposure assessment and exposure levels</th>
<th>Analyses and related studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andjelkovich et al. 1994, 1995</td>
<td>Workers at an iron foundry in Michigan, USA N = 8,147 Subcohort of formaldehyde–exposed workers: N = 3,929 1959–87 or 89</td>
<td>Occupational histories obtained from employment records and classified using a JEM Exposure level (ppm) low 0.05 medium 0.5 high 1.5</td>
<td>Standardized mortality analysis on formaldehyde exposed workers Nested case-control study of lung cancer (N = 200) from entire cohort</td>
</tr>
<tr>
<td>Beane Freeman et al. 2009</td>
<td>NCI cohort, USA N = 25,619 Hauptmann et al. 2003 Follow-up median yr 35 Person-yrs 865,708 Beane Freeman et al. Follow-up median yr 42 Person-yrs 998,106</td>
<td>Occupational histories obtained from company records, interviews, and industrial hygiene monitoring from 1980; exposure was classified by level and frequency of peak exposure, average exposure, cumulative exposure, and duration Exposure levels and duration for exposed workers (median and range) Average intensity (ppm) 0.3 (0.01–4.25) Cumulative (ppm-yrs) 0.6 (0–107.4) Duration 2 yrs (0–46) All workers 82.5% exposed to formaldehyde 4.7% employed in jobs with ≥ 2 ppm average intensity 22.6 % employed in jobs involving ≥ 4 ppm peak exposure</td>
<td>Standardized mortality and internal analysis Beane Freeman et al. Lymphohematopoietic malignancies Hauptmann et al. Lymphohematopoietic malignancies and solid tumors Potential confounding from exposure to 11 occupational substances and working as a chemist or lab technician was evaluated Reanalysis of lung, leukemia and NPC by Marsh and Youk 2004, 2005, and Marsh et al. 2007b Follow-up of Wallingford cohort by Marsh et al. 1994a,b, 1996, 2002 and 2007a, cohort findings and nested case-control study on pharyngeal cancer (N = 17)</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Exposure assessment and exposure levels</td>
<td>Analyses and related studies</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Bertazzi et al. 1986 | Workers at a resin manufacturing plant in Italy
N = 1,332
1959–86 | Occupational histories obtained from plant employment records and classified by job title and task
Exposure levels
Average 0.13–2.53 ppm
Maximum 0.33–6.5 ppm | Standardized mortality study for few cancer sites
Subcohort exposed to formaldehyde (N not reported but represent 5,731 person years)
Employment length and time since first exposure available for lung and alimentary tract |
| Bond et al. 1986 | Male workers employed at Dow Chemical production facility in Texas
N = 19,608
1940–80 | Occupational histories and potential for exposure obtained from records, and information on smoking from interviews
Exposure levels not reported | Nested case-control study on lung cancer (N = 308) |
| Chiazze et al. 1997 | Male workers employed at an Owens Corning fiberglass manufacturing plant in South Carolina, USA
(N = 4,631)
1951–91 | Occupational histories obtained by interview and a historical exposure reconstruction; exposure was classified by a committee of experts
Exposure levels
Each process was assigned to 1 of 4 exposure levels with mid points ranging from 0.05 to 1.5 ppm
Cumulative exposure (level times duration) was estimated for each worker | Nested case-control study of lung cancer (N = 47) |
| Coggon et al. 2003 | British Chemical Workers Study, UK
N = 14,014 males
1941–2000 | Occupational histories obtained from company employment records and classified using plant-specific JEMs
Exposure levels
Estimated from measurements taken after 1970 and recall of workers’ irritant symptoms
Level (ppm) % of workers
< 0.1 27.6%
0.1–0.5 27.2
0.6–2.0 9.7%
> 2.0 28.5%
Most of which were from the British Industrial Plastics plant | Standardized mortality study
SMRs provided for ever exposed and highly exposed; SMR for three levels of exposure, and employment duration provided for lung and stomach |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Exposure assessment and exposure levels</th>
<th>Analyses and related studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell and Teta</td>
<td>Male workers employed at a Union Carbide plastics manufacturing plant in New Jersey, USA</td>
<td>Occupational histories obtained using employment records</td>
<td>Standardized mortality study</td>
</tr>
<tr>
<td>1995</td>
<td>N = 5,932</td>
<td>Exposure levels not reported</td>
<td>Workers exposed to formaldehyde (N = 111)</td>
</tr>
<tr>
<td></td>
<td>1946–88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edling et al.</td>
<td>Male and female workers at an abrasive materials manufacturing plant, Sweden</td>
<td>Exposure monitoring in plant from 1970</td>
<td>Standardized mortality and incidence study</td>
</tr>
<tr>
<td>1987b</td>
<td>N = 506 blue collar workers</td>
<td>No individual exposure assessment reported</td>
<td>Unknown number of workers exposed to formaldehyde in grinding wheel process; 59 making abrasive belts</td>
</tr>
<tr>
<td></td>
<td>Mortality 1958–83</td>
<td>Exposure levels</td>
<td>Results reported for males only, and for few cancer sites</td>
</tr>
<tr>
<td></td>
<td>Incidence 1958–81</td>
<td>Grinding wheel manufacturing [0.08–0.8 ppm]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abrasive belts (N = 59 workers) Peaks [16–25 ppm]</td>
<td></td>
</tr>
<tr>
<td>Hansen and Olsen</td>
<td>Danish workers at 265 companies producing or using 1 kg/individual year</td>
<td>Occupational information obtained form Danish product Registry</td>
<td>Standardized proportionate cancer incidence for various cancers</td>
</tr>
<tr>
<td>1995, 1996</td>
<td>N = 2,041 men, and 1,263 women</td>
<td>Individuals assigned to low or high exposure based on “white or blue collar” status based on pension records</td>
<td>Workers were included in study if their longest employment was 10 years prior to cancer diagnosis</td>
</tr>
<tr>
<td></td>
<td>1970–84</td>
<td>Exposure levels not reported</td>
<td>(Original study population = 126,347 men and women)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Findings for some cancer sites provided for low formaldehyde exposure, and formaldehyde and woodworkers (combined)</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Exposure assessment and exposure levels</td>
<td>Analyses and related studies</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
N = 32,110
1946–92 | Occupational histories obtained from company employment records and relevant industrial hygienic literature; Exposure estimated using job location-weighted measures

Exposure level
Median average intensity
0.066 ppm
Median cumulative exposure
0.173 ppm-yr | Nested case control of cancers of the respiratory system |
| Ott et al. 1989 | Workers employed in 2 Union Carbide Corporation chemical manufacturing facilities and a research and development center, USA
N = 29,139
1940–78 | Occupational histories obtained from company employment records and classified using a JEM

Exposure levels not reported | Nested case-control study of lymphohematopoietic malignancies (N = 129) |
| Partanen et al. 1985, 1990, 1993 | Workers employed in 135 particleboard, plywood and formaldehyde glue factories and sawmills in Finland
N = 7,703
1944–65 | Occupational histories and air quality monitoring data obtained from company employment records and classified using a JEM

Exposure levels determined from hygienic data (ppm)
Low 0.1–1
Medium 1–2
Heavy > 2
Workers considered exposed to formaldehyde if minimum exposure was 0.1 ppm and cumulative exposure was > 3 ppm-month
83% of subjects in respiratory case-control study exposed to cumulative exposure of less than < 0.25 ppm-yr | Nested case-control studies of lymphohematopoietic malignancies (N = 24 in 1993 study) and respiratory cancer (N = 136) |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Exposure assessment and exposure levels</th>
<th>Analyses and related studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinkerton et al. 2004 (update of Stayner et al. 1985, 1988 PMR and SMR study respectively)</td>
<td>NIOSH cohort of garment workers, USA N = 11,039 SMR 1955–1998 PMR 1959–1982</td>
<td>All workers considered exposed; personal exposure levels available from plant monitoring programs. Exposure levels 3 plants in 1981 to 1984 Median 8 hr TWA (ppm) 0.15 (0.09–0.20) Median duration = 3.3 years Exposures prior to the 1970s were estimated to be as high as 10 ppm</td>
<td>Standardized mortality study Analysis by duration of exposure, time since first exposure, and time of first exposure performed for a few selected cancer sites PMR study included 285 deaths, PCMR ratios were also calculated to correct for healthy worker effect</td>
</tr>
<tr>
<td>Stellman et al. 1998, Boffetta et al. 1989</td>
<td>Workers employed in the wood industry American Cancer Society Cancer Prevention Study, USA N = 362,823 Formaldehyde-exposed workers NR (365 cancer deaths) Formaldehyde-exposed woodworkers (N = 387) 1955–98</td>
<td>Occupational histories obtained by interview and classified by job title and task Exposure levels not reported Findings reported for ever exposed</td>
<td>Mortality study Internal analyses using non-woodworkers or workers not exposed to wood dust as the reference group Nested case-control study of multiple myeloma (N = 282) (Boffetta et al. 1989)</td>
</tr>
<tr>
<td>Stern et al. 1987</td>
<td>Workers employed in two chrome leather tannery plants, USA N = 9,365 1940–79 or 1980</td>
<td>Occupational history obtained from industrial hygiene surveys Exposure levels in finishing department (ppm) Mean (range) 2.45 (0.5–7)</td>
<td>Standardized mortality study, including formaldehyde-exposed workers in the finishing department (no. exposed workers not stated; 118 cancer deaths observed)</td>
</tr>
<tr>
<td>SMR and PMR cohort studies of professional workers (Pathologists, Anatomists, and Embalmers)</td>
<td>Pathologists, members of professional organizations in the UK 3,872 1974–87</td>
<td>Employment status No information on exposure levels</td>
<td>Standardized mortality study</td>
</tr>
</tbody>
</table>

NOT FOR DISTRIBUTION OR ATTRIBUTION

September 3, 2009
Reference Study population and follow up Exposure assessment and exposure levels Analyses and related studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Exposure assessment and exposure levels</th>
<th>Analyses and related studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayes et al. 1990</td>
<td>Deceased embalmers and funeral directors identified using licensing board records, death certificates, and other sources, USA N = 4,046 1975–85</td>
<td>Employment status No information on exposure levels</td>
<td>Proportionate mortality study</td>
</tr>
<tr>
<td>Levine et al. 1984</td>
<td>Licensed embalmers in Ontario, Canada N = 1,413 1950–1977</td>
<td>Licensing records No information on exposure levels</td>
<td>Standardized mortality study</td>
</tr>
<tr>
<td>Stroup et al. 1986</td>
<td>Anatomists who were members of the American Association of Anatomists, USA N = 2,317 1888–1979</td>
<td>Employment status No information on exposure levels</td>
<td>Standardized mortality study</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1983</td>
<td>All licensed embalmers in New York, USA N = 1,263 1902–80</td>
<td>Licensing records No information on exposure levels Some cancer sites analyzed by age since first license</td>
<td>Proportionate mortality study Findings for a few cancer sites analyzed by latency and type of license (embalmers only and funeral directors and embalmers)</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1984</td>
<td>All licensed embalmers in California, USA N = 1,109 1916–80</td>
<td>Licensing records No information on exposure levels Employment duration estimated by length of licensure</td>
<td>Proportionate mortality study</td>
</tr>
</tbody>
</table>

3.2.1 National Cancer Institute (NCI) Cohort: mixed industries

Blair and colleagues at the National Cancer Institute (NCI) assembled the largest cohort of industrial workers to date to assess the risk of several cancers suspected of being associated with exposure to formaldehyde, including leukemia and cancer of the brain, lung, oral cavity, and pharynx (Blair et al. 1986). This cohort captured workers from various industries that used formaldehyde, including plants that manufactured resin, plastic, photographic film, and plywood. The authors also measured several concurrent
occupational exposures (and potential confounding agents), such as asbestos, wood dust, and solvents.

Previous studies (Fayerweather et al. 1983, Liebling et al. 1984, Marsh 1982, Marsh et al. 1994a, Marsh et al. 1994b, Wong 1983) included workers who were later included in the NCI study; the findings of these studies are considered subsumed by NCI analyses for the purposes of this review. Likewise, earlier analyses of the NCI cohort (Blair and Stewart 1989, Blair et al. 1990b, Callas et al. 1996, Marsh et al. 1994a, Marsh et al. 1992a, 1992b, Marsh et al. 1994b, Robins et al. 1988, Sterling and Weinkam 1988, 1989a, 1989b, 1994, Stewart et al. 1989) will not be discussed in detail since more recent and updated analyses are available on the same study population.

Study population and follow-up. Using records from the Formaldehyde Institute, trade organizations, and other sources, including chemical producers, approximately 200 companies reported to use or produce formaldehyde were identified. The 10 industrial plants with the largest number of employees and longest history of formaldehyde use were selected for inclusion into the cohort. Three of the plants produced formaldehyde, six produced formaldehyde resins, six produced molding compounds, two produced molded plastic products, two produced photographic film, and one produced plywood (some plants produced more than one product). The study cohort consisted of all workers first employed at the selected plants before January 1, 1966 (N = 26,561; 93% white, 12% female). Workers were originally followed through January 1, 1980 to determine vital status and cause of death. Hauptmann et al. (2003, 2004) extended the mortality follow-up through December 31, 1994 for analyses of lymphohematopoietic malignancies (N = 178 deaths) and solid cancers (N = 1,921 deaths), respectively. The NCI cohort was most recently extended through December 31, 2004, resulting in a median follow-up time for workers of 42 years, representing 998,106 person-years of exposure among 25,619 workers, 4,359 of whom were classified as never exposed to formaldehyde. A total of 13,951 deaths were identified from 1943 to December 31, 2004. Beane Freeman et al. (2009) have published the results for lymphohematopoietic cancers from the extended follow-up, which are described after the results of the Hauptmann et al. analysis, below.
Exposure assessment. Exposure to formaldehyde was comprehensively reconstructed using work histories collected through 1980 on the basis of job titles, tasks, plant visits by industrial hygienists, information from workers and plant managers, as well as monitoring data. Peak exposures (less than 15 minutes) exceeding the 8-hour time-weighted average formaldehyde exposure intensity were estimated by an industrial hygienist using the work histories. In addition to highest peak exposure (unexposed, 0.1 to 1.9 ppm, 2.0 to 3.9 ppm, ≥ 4 ppm) and frequency of peak exposure (none, hourly, daily, weekly, monthly), time-dependent estimates also were calculated for duration of exposure (years), average exposure (ppm), and cumulative exposure (ppm-years).

Exposure-response trends were considered using cut-points at the 60th and 80th percentiles of the distribution of exposure in exposed subjects who died from cancer. Several important cofactors were assessed, including exposure to particulates and other widely used chemicals in the plants (i.e., antioxidants, asbestos, carbon black, dyes and pigments, hexamethylenetetramine, melamine, phenol, plasticizers, urea, wood dust, and benzene), routine use of respirators by workers, and duration of employment as a chemist or laboratory technician.

Among jobs considered exposed to formaldehyde (83.4%), the median 8-hour time-weighted average exposure was 0.45 ppm (range = 0.01 to 4.25 ppm); median values were 2 years (range = 0 to 46 years) for duration, 0.3 ppm (range = 0.01 to 4.25 ppm) for average intensity, and 0.6 ppm-years (range = 0.0 to 107.4 ppm-years) for cumulative exposure. Average intensity was 2 ppm or higher for nearly 3% of jobs, and peak exposures reached 4 ppm or higher for over 14% of jobs. Approximately 0.5% (N = 133) of workers ever used a respirator routinely.

The authors noted that smoking information was not available for most of the cohort. Smoking was not considered to be a source of confounding, however, since analysis of a sample of workers revealed no major differences in smoking prevalence by cumulative formaldehyde exposure.

Statistical methods. Standardized mortality ratios (SMRs) were calculated using sex-, race, age-, and calendar-year-specific U.S. mortality rates. To investigate the association
between exposure to formaldehyde and cancer mortality, log-linear Poisson regression was applied stratified by calendar year, age, sex, race, and pay category. Potential confounding was evaluated for exposure to 11 concomitant occupational substances (ever/never), as well as working as a chemist or lab technician (years). Exposure lags ranging from 2 to 20 years were considered to account for latency; all exposures were subsequently calculated using a 2-year lag interval for the analyses of lymphohematopoietic malignancies (Beane Freeman et al. 2009, Hauptmann et al. 2003) and a 15-year lag interval for the analyses of solid cancers (Hauptmann et al. 2004).

Results. Person-years at risk (456,635) among exposed workers and person-years (409,074) among unexposed workers were compared in external analyses in the 1994 cohort update, lagged by 15 years. Compared with the U.S. population, Hauptmann et al. (2004) found that mortality from all cancers was lower than expected both in unexposed (SMR = 0.65, 95% confidence interval [CI] = 0.56 to 0.75, 166 deaths for 2-year lag) and exposed workers (SMR = 0.90, 95% CI = 0.86 to 0.94, 1,755 deaths for 2-year lag), regardless of length of the exposure lag.

Lymphohematopoetic cancers. Hauptmann et al. (2003) presented data on lymphohematopoietic cancers from the 1994 NCI cohort update, and Beane Freeman et al. (2009) conducted external and internal analyses of lymphohematopoietic cancers through the latest follow-up of the cohort through December 31, 2004, which represents a total of 998,106 person-years of employment among 25,619 workers employed prior to 1966 (4,359 of whom were classified as never exposed to formaldehyde). Beane Freeman et al. (2009) noted that a total of 1,004 deaths were identified that were not included in the previous 1980 to 1994 follow-up and 4 subjects were misclassified as deaths but found to be living. In addition, several deaths for lymphohematopoietic cancers that were included in the Hauptmann et al. (2003) analysis were recoded: 6 deaths (one multiple myeloma, one myeloid leukemia, one Hodgkin’s lymphoma and three myelofibrosis deaths) were re-classified as non-lymphohematopoetic cancers, and two multiple myelomas were added. The data reported below are confined to the 2004 update reported by Beane Freeman et al. (2009) unless clear differences between findings in this update and the earlier (1994) update were observed. *P* values for trends in the text refer to the
exposed group only, using the lowest exposure group as the referent, unless otherwise stated; P values for trends using the unexposed and exposed groups, and exposed groups only are reported in Table 3-2.

A total of 319 deaths from all lymphohematopoietic cancers were identified to the end of follow-up in 2004; 286 among ever-exposed and 33 among never-exposed workers. In external analyses, the SMRs for all lymphohematopoietic cancers was similar to national rates in both the exposed and nonexposed groups, using a 2-year lag time for exposure (SMR = 0.94, 95% CI = 0.84 to 1.06, 286 deaths, and SMR = 0.86, 95% CI = 0.61 to 1.21, 33 deaths, respectively; compared with U.S. population rates). An increased risk for Hodgkin’s lymphoma was observed, but SMRs for other subtypes of lymphohematopoietic cancers among the exposed workers were similar to unexposed rates or the U.S. population. Findings were generally similar to the 1994 findings.
Table 3-2. Lymphohematopoietic (LH) cancers in formaldehyde-exposed workers (NCI cohort and peak exposure: 1994 and 2004 updates)

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>2004 Update RR (95%CI); N</th>
<th>P_trend b</th>
<th>P_trend c</th>
<th>1994 Update RR (95%CI); N</th>
<th>P_trend b</th>
<th>P_trend c</th>
</tr>
</thead>
<tbody>
<tr>
<td>All LH</td>
<td>1.37 (1.03–1.81); 108</td>
<td>0.02</td>
<td>0.04</td>
<td>1.87 (1.27–2.75); 64</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>All leukemia</td>
<td>1.42 (0.92–2.18); 48</td>
<td>0.12</td>
<td>0.02</td>
<td>2.46 (1.31–4.62); 29</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Myeloid leukemia</td>
<td>1.78 (0.87–3.64); 19</td>
<td>0.13</td>
<td>0.07</td>
<td>3.46 (1.27–9.43); 14</td>
<td>0.009</td>
<td>0.003</td>
</tr>
<tr>
<td>Lymphatic leukemia</td>
<td>1.15 (0.54–2.47); 14</td>
<td>> 0.50</td>
<td>0.30</td>
<td>1.39 (0.46–4.17); 7</td>
<td>> 0.50</td>
<td>0.279</td>
</tr>
<tr>
<td>Other leukemia</td>
<td>1.15 (0.53–2.53); 13</td>
<td>> 0.50</td>
<td>0.50</td>
<td>2.47 (0.69–8.87); 7</td>
<td>0.154</td>
<td>0.277</td>
</tr>
<tr>
<td>Hodgkin’s lymphoma</td>
<td>3.96 (1.31–12.02); 11</td>
<td>0.01</td>
<td>0.004</td>
<td>3.35 (0.97–11.59); 8</td>
<td>0.042</td>
<td>0.014</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>2.04 (1.01–4.12); 21</td>
<td>0.08</td>
<td>> 0.50</td>
<td>1.67 (0.68–4.12); 11</td>
<td>0.355</td>
<td>> 0.50</td>
</tr>
<tr>
<td>NHL</td>
<td>0.91 (0.55–1.49); 28</td>
<td>> 0.50</td>
<td>> 0.50</td>
<td>1.23 (0.59–2.55); 15</td>
<td>> 0.50</td>
<td>> 0.50</td>
</tr>
<tr>
<td>LH (lymphoid origin)</td>
<td>1.35 (0.97–1.89); 74</td>
<td>0.06</td>
<td>0.10</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>LH (nonlymphoid origin)</td>
<td>1.80 (0.91–3.57); 21</td>
<td>0.09</td>
<td>0.09</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Source: Beane Freeman et al. 2009, Hauptmann et al. 2003; see Table 3-7a for detailed data on all exposure categories and for data on average exposure.

LH = lymphohematopoietic; N = number of deaths; NHL = non-Hodgkin’s lymphoma; RR = relative risk.

a Data for peak (≥ 4 ppm vs. > 0–1.9 ppm) exposures, 2-year exposure lag used.

b \(P_{\text{trend}} \) for 2-sided likelihood ratio for exposed person-years only.

c \(P_{\text{trend}} \) for 2-sided likelihood ratio for exposed and unexposed person-years.

In internal analyses of exposed workers, using Poisson logistic regression stratified by age, sex, race, calendar year, and pay category, peak exposures were associated with a significant increase in all lymphohematopoietic deaths combined (RR = 1.37, 95% CI = 1.03 to 1.81, 108 deaths, comparing peaks of ≥ 4 ppm with > 0 to 2.0 ppm; \(P_{\text{trend}} = 0.02 \); Table 3-2). No association was observed for all lymphohematopoietic cancers in the 2004 update for average intensity of exposure or cumulative exposure (See Table 3-7a in Section 3.4).

With respect to specific subtypes of lymphohematopoietic cancers and peak exposures in the latest update, deaths from leukemia were elevated (RR = 1.42, 95% CI = 0.92 to 2.18, 48 deaths, comparing peaks ≥ 4 ppm with > 0 to 2.0 ppm; \(P_{\text{trend}} = 0.12 \)); for the subgroup of deaths from myeloid leukemia, the highest peak exposure was associated with a slightly higher RR of 1.78 (0.87 to 3.64, 19 deaths, \(P_{\text{trend}} = 0.13 \)). There were no clear
trends toward increasing risk with increasing average or cumulative exposure to formaldehyde for leukemia although an elevated RR was observed for the highest category of highest category of average intensity of exposure (≥ 1 ppm) vs. the lowest category (RR = 1.61, 95% CI = 0.76 to 3.39, 11 deaths, \(P_{\text{trend}} = 0.43 \)) (See Table 3.6a).

Deaths from Hodgkin’s lymphoma were significantly elevated in the highest peak vs. the lowest peak exposure group and the relative risks increased with increasing peak exposure. (RR = 3.96, 95% CI = 1.31 to 12.02, 11 deaths, \(P_{\text{trend}} = 0.01 \)). RRs for Hodgkin’s lymphoma increased with increasing average intensity of exposure (\(P_{\text{trend}} = 0.05 \)) and cumulative exposure (\(P_{\text{trend}} = 0.08 \)). Elevated RRs were found for the highest category of exposure vs. lowest category of exposure: RR = 2.48 (95% CI = 0.84 to 7.32, 6 deaths, for ≥ 1 ppm average intensity of exposure and RR = 1.30 (95% CI = 0.40 to 4.19, 4 deaths for ≥ 5.5 ppm-yr cumulative exposure). Peak exposure was also associated with deaths from multiple myeloma (RR = 2.04, 95% CI = 1.01 to 4.12, 21 deaths, \(P_{\text{trend}} = 0.08 \)), but no association was found with average or cumulative exposure. Relative risks were also computed for unexposed workers in comparison with the lowest exposure groups for peak, average, and cumulative exposure, and subjects with no estimated exposure to formaldehyde were found to be at significantly increased risk of multiple myeloma compared with low exposed workers for peak and average exposure, but not for cumulative exposure. For other lymphohematopoietic cancers, unexposed workers had similar or lower risks in comparison with the lowest exposed group. Non-Hodgkin’s lymphoma was not associated with peak, average or cumulative exposure (See Table 3.2 and 3.6a in Section 3.4).

In general, the 2004 update confirmed the findings of the 1994 update; however, the magnitude of the risks estimates for the highest category of peak exposure were higher in the 1994 update compared to the 2004 update, and some of the exposure response relationships were stronger in the earlier update(See Table 3-1). Analyses due to recoding of some of the lymphohematopoietic cancers did not substantially affect the previously reported results. The 1994 update (Hauptmann et al. 2003) also reported findings by duration of exposure (not presented in the 2004 update), and found no statistically significant risk estimates by specific categories of exposure duration and no overall
trends with increasing duration.) (Note that if the cohort was censored at 1980, the date after which exposures were assumed to be zero, the risk for myeloid leukemia was increased, according to the authors. If exposure was considered to continue at 1980 levels, however, no changes in the results were seen for any of the lymphohematopoietic sites.)

Controlling for duration of exposure or for 11 other co-exposures with possible associations with lymphohematopoietic cancers did not alter the above findings, and excluding 586 workers with possible exposure to benzene (a known leukemogen) did not alter the results for lymphatic or myeloid leukemia and peak exposure (data not reported). Similarly, adjusting for plant type did not substantively alter the results.

When time period analyses for trends in relative risk were examined, significant excesses of myeloid leukemia in relation to peak exposure were observed up to 1994 and then declined. Risks for all lymphohematopoietic cancers, leukemia, myeloid leukemia, and Hodgkin’s lymphoma were highest 15 to 25 years after first exposure. Beane Freeman et al. (2009) concluded that evaluation of lymphohematopoietic risk over time was consistent with the relatively short induction periods characteristic of leukemogenesis, and suggest an association between lymphohematopoietic cancer and formaldehyde exposure, particularly for myeloid leukemia and possibly Hodgkin’s lymphoma and multiple myeloma.

Solid cancers. Mortality from solid tumors was also lower than expected compared to U.S. rates (SMR among unexposed = 0.78, 95% CI = 0.70 to 0.86, 341 deaths; SMR among exposed = 0.91, 95% CI = 0.87 to 0.96, 1,580 deaths) (Hauptmann et al. 2004). A statistically significant excess of mortality from nasopharyngeal cancer was observed among the exposed group (SMR = 2.10, 95% CI = 1.05 to 4.21, 8 deaths). One death from nasopharyngeal cancer was subsequently re-classified as oropharyngeal cancer and excluded from internal analysis of average, peak, and cumulative exposure, however. SMRs exceeding 1.0 were observed for cancers of the oral cavity (SMR = 1.01, 95% CI = 0.77 to 1.34, 49 deaths), nose and nasal cavity (SMR = 1.19, 95% CI = 0.38 to 3.68, 3 deaths) and bone (SMR = 1.57, 95% CI = 0.75 to 1.18, 7 deaths). Lung cancer was not
elevated among exposed workers (SMR = 0.97, 0.90 to 1.05, 641 deaths), although it was
slightly higher than among the unexposed workers (SMR = 0.79, 95% CI = 0.65 to 0.96,
103 deaths). Internal analysis of exposure-response relationships between average, peak,
cumulative and duration of exposure to formaldehyde and solid cancers, lagged by 15
years, the following results were conducted for nasopharyngeal cancers.

Cancer of the nasopharynx was elevated at the highest category of average exposure
intensity (RR = 1.67 for ≥ 1.0 ppm vs. > 0 to < 0.5 ppm (ref.), 6 deaths); the trend among
exposed workers was $P_{\text{trend}} = 0.066$, and across exposed and unexposed workers, $P_{\text{trend}} =
0.126$. For peak exposure, the RR was 1.83 at the maximum peak category of ≥ 4.0 ppm
(7 deaths), and the tests for trend were $P_{\text{trend}} < 0.001$ among exposed workers and $P_{\text{trend}} =
0.044$ across exposed and unexposed workers. For cumulative exposure, the RR was 4.14
for the highest exposure category of ≥ 5.5 ppm-years, 3 deaths); the P_{trend} was 0.025
among exposed workers and $P_{\text{trend}} = 0.029$ across exposed and unexposed workers. For
duration of exposure, the RR was 4.18 for the longest duration of ≥ 15 years (2 deaths),
and the trends were $P_{\text{trend}} = 0.147$ and $P_{\text{trend}} = 0.206$ respectively. Because five of the nine
nasopharyngeal cancer cases occurred at the Wallingford, CT plant, the authors
conducted analyses adjusted for plant and found increasing risks for peak exposure (P_{trend}
among exposed = 0.008), cumulative exposure (P_{trend} among exposed = 0.007), and
duration of exposure (P_{trend} among exposed = 0.043). Plant adjusted relative risks were
also higher among worker with higher average exposure (RR = 8.51 for workers exposed
to 0.5 < 1 ppm, and 23.54 for workers exposed to > 1 ppm), but the test for trend was not
statistically significant (P_{trend} among exposed = 0.404)

Combining cancers of the upper respiratory tract (i.e. cancers of the salivary gland,
mouth, nasopharynx, nasal cavity, and larynx) yielded increasing relative risks with
increasing average intensity of exposure (RR = 1.69 for 0.5 to 1.0 ppm, 11 deaths; RR =
2.21 for ≥ 1.0 ppm, $P < 0.05$, 15 deaths, CI excluding 1.0; $P_{\text{trend}} = 0.122$). Cancer of the
upper respiratory tract was also associated with peak exposure (RR = 1.24, 12 deaths, for
2.0 to 4.0 ppm; RR = 1.65, 18 deaths, for ≥ 4.0 ppm; $P_{\text{trend}} = 0.142$) but not with
cumulative exposure or duration of exposure. No evidence was observed of a positive
association between lung cancer mortality and any of the exposure measures, except for a
statistically significant relative risk associated with peak exposure of 2.0 to 4.0 ppm (RR = 1.45, 227 deaths). A statistically significant decrease in lung cancer risk was observed for duration of exposure of 5 to 15 years (RR = 0.80, 123 deaths). [The only other observed statistically significant elevation in risk was a RR of 161 for 42 deaths from prostate cancer in association with a peak exposure of 2.0 to 4.0 ppm.]

The authors noted that RR estimates were not adjusted by plant because plants were highly correlated with exposure. However, findings from repeated analyses where each plant was selectively removed from the model one at a time were similar to those from the analysis including all plants [data not presented].

Re-analyses. Marsh and Youk (2004) conducted a re-analysis of the updated cohort of Hauptmann et al. (2003) to re-examine mortality risk from leukemia. Exposure-specific SMRs using both local and national reference rates were calculated by highest peak exposure, average intensity, cumulative exposure, duration, and by categorizing formaldehyde exposure into tertiles based on the exposure distribution among all leukemia deaths in exposed workers. Generally, the SMRs increased in magnitude with increasing peak and average intensity of exposure for all leukemias combined and for myeloid leukemia. An internal analysis that applied alternative regression modeling yielded RRs similar to those observed by Hauptmann et al. (2003); a significant exposure-response relationship was observed for all leukemias ($P_{\text{trend}} = 0.001$) and myeloid leukemia ($P_{\text{trend}} = 0.003$) by peak exposure. Tests for trend by average intensity for all leukemias ($P_{\text{trend}} = 0.193$) or myeloid leukemias ($P_{\text{trend}} = 0.086$) were not statistically significant. Exposure tertiles were also examined in these models, and results were similar to that of the NCI exposure categorization ($P_{\text{trend}} = 0.145$ for all leukemia; $P_{\text{trend}} = 0.092$ for myeloid leukemia). Duration of time worked in the highest category of peak exposure was not associated with leukemia mortality.

In a re-analysis of nasopharyngeal cancer data from the Hauptmann et al. (2004) solid cancer study, Marsh and Youk (2005) suggested that the observed relationship between nasopharyngeal cancer mortality and formaldehyde was driven largely by one plant in Wallingford, Connecticut, which had been independently studied by Marsh previously.
(Marsh et al. 1996, Marsh and Youk 2005, Marsh et al. 2002), since five of the nine
nasopharyngeal cancer deaths in the NCI study had occurred among workers at this plant.
Marsh and Youk (2005) reported that when the SMR for nasopharyngeal cancers in
Plants 2 to 10 combined was re-calculated it was not elevated (SMR = 0.65, 95% CI 0.8
to 2.3, 4 deaths, in comparison with that of plant 1 alone (the Wallingford plant) (SMR =
10.3, 95% CI = 3.8 to 22.5, N = 6). Also see separate analyses of the Wallingford plant
by Marsh et al., 1996, 2002, 2007a, below). In a further re-analysis of the nasopharyngeal
cancers observed in the Hauptmann et al. (2004) study, Marsh et al. (2007b) further
examined the interaction between the plant and also peak exposures to formaldehyde,
since the elevated SMR for nasopharyngeal cancers in the NCI cohort was largely driven
by an association with peak (> 4 ppm) exposure to formaldehyde in the Wallingford
plant. By examining the interaction between a new 2-factor variable (Plant 1 vs. Plants 2–
10) and a continuous variable for peak exposure, Marsh et al. concluded that the observed
increase in risk of nasopharyngeal cancers in the NCI cohort could be attributable to the
effect of an association between peak exposure in Plant 1 and nasopharyngeal cancers
and was not generalizable within the entire NCI cohort. In addition, they pointed out that
the internal analysis of the NCI cohort was not robust (i.e., the risk estimates obtained
were subject to considerable instability depending on the addition of one or more
nasopharyngeal cancer death to the cohort) and did not warrant the conclusion of a causal
relationship between formaldehyde and nasopharyngeal cancer.

Related studies. Marsh et al. (1994a, 1994b, 1996) studied the plastics manufacturing
plant in Wallingford, Connecticut that was included in the NCI study; construction of the
cohort and exposure assessment at this facility was conducted independently of the NCI
study. Mortality in this cohort was updated through December 31, 1998 (Marsh et al.
2002) for 7,328 male workers (82% white) employed between 1941 and 1984. The
results presented below are from the 1998 update only (Marsh et al. 2002).
Approximately half of the individuals in the cohort were employed for less than one year.
Exposure estimation through 1995 was based on available sampling data (sporadic
measurements were taken between 1965 and 1987), job descriptions, and information
from plant personnel including the plant industrial hygienist. Exposure to formaldehyde
was estimated for each job and task, yielding measures of average intensity, cumulative
exposure, and duration of exposure. Though the exposure assessment for formaldehyde was developed to maximize comparability with the NCI study, the authors noted that exposure estimates were generally less than one tenth of the corresponding values estimated for the same Wallingford workers in the NCI study. Analyses of mortality were performed only for malignant neoplasms of the upper and lower respiratory tract; the person-years method was used to estimate expected mortality rates using both U.S. and local standard populations. A nested case-control study was formed to examine the association between all pharyngeal cancer and exposure to formaldehyde. The conditional logistic regression analysis included 22 cases (5 oropharynx, 7 nasopharynx, 3 hypopharynx, and 7 unspecified pharynx), which were matched on race, sex, age, and year of birth (within 2 years) to four controls from the remaining living and deceased members of the cohort. Information about smoking and other relevant exposures was obtained through telephone interviews with study subjects or proxies (68% response among cases, 76% among controls).

Compared with both national and local expected rates (local estimates subsequently presented), SMRs were elevated for all cancers of the oral cavity and pharynx (SMR = 1.52, 95% CI = 1.03 to 2.15, 31 deaths) including all pharyngeal cancer (SMR = 2.23, 95% CI = 1.40 to 3.38, 22 deaths) and cancers of the oropharynx (SMR = 1.80, 95% CI = 0.58 to 4.19, 5 cases), nasopharynx (SMR = 5.00, 95% CI = 2.01 to 10.30, 7 deaths), and hypopharynx (SMR = 1.52, 95% CI = 0.31 to 4.43, 3 deaths). Mortality from cancer of the respiratory system was also greater than expected (SMR = 1.22, 95% CI = 1.08 to 1.38, 278 deaths), including cancers of the sinonasal cavity (SMR = 3.06, 95% CI = 0.63 to 8.93, 3 deaths), larynx (SMR = 1.59, 95% CI = 0.84 to 2.71, 13 deaths), and bronchus, trachea, and lung (SMR = 1.21, 95% CI = 1.06 to 1.36, 262 deaths). Standardized mortality ratios for nasopharyngeal cancer increased monotonically with cumulative exposure to formaldehyde. (As noted, no other SMR analyses were presented.)

In the nested case-control analysis of all pharyngeal cancers adjusted for smoking and time since hire, the OR for ever being exposed to formaldehyde was 3.04 (95% CI = 0.36 to 145.58, 20 deaths). Odds ratio estimates increased with duration of exposure, particularly for duration of exposure at jobs with formaldehyde exposure greater than 0.2
ppm-years ($P_{\text{trend}} = 0.163$), but did not increase significantly by cumulative exposure or average intensity of exposure.

Marsh et al. (2007a) subsequently followed the Wallingford cohort through the end of 2003. Vital status was ascertained for 98% of the cohort, and cause of death was determined for 95% of 2,872 deaths. Worker exposures to formaldehyde were reconstructed and unlagged and lagged exposure metrics computed. New external (SMR) analyses and a nested case-control analysis of nasopharyngeal cancers and all other pharyngeal cancers (AOPC) were conducted, taking into account both demographic variables and smoking as in the previous (2002) study, and also the external employment of cases and controls before, during, and after employment at the Wallingford plant, using various sources such as city directories, employment applications and genealogical searches. Based on the frequency of external employment, three external occupational groups were established: silver smithing; other metal work; and military service. No new nasopharyngeal cancer cases were observed (compared with the 2002 analysis) and one additional AOPC was observed, yielding SMRs of 4.43 (95% CI = 1.78 to 9.13, 7 nasopharyngeal cancer deaths) and SMR = 1.71 (95% CI = 1.01 to 2.72, 16 AOPC deaths; both compared with local rates). In internal analyses, a statistically significant risk of nasopharyngeal cancer (OR = 14.41, 95% CI = 1.30 to 757.8, 4 deaths), was observed in association with ever working in silver smithing, and an OR of 7.31 (95% CI = 1.08 to 82.1, 5 deaths) for ever working in silver smithing and/or other metal work. No association with external employment was observed for AOPC, with the exception of a statistically nonsignificant increase in risk for workers with a history of employment in other metal work (OR = 1.40, 95% CI = 0.31 to 5.1, 4 deaths). The risk of nasopharyngeal cancer associated with formaldehyde exposure before adjustment for smoking and external employment was 1.51 (95% CI = 0.20 to \(\infty\)), 7 deaths) and after adjustment for smoking and silver smithing and/or metal working employment was 2.87 (0.21 to \(\infty\)). An interaction model suggested that neither nasopharyngeal cancer nor AOPC was associated with formaldehyde in the presence of these external occupations, according to the authors.
There was no clear or statistically significant monotonic trend towards increasing nasopharyngeal cancer risk with increasing duration, average intensity or cumulative exposure to formaldehyde before and after adjustment for smoking and silver smithing and/or other metal working employment, although some increase in risk was observed in each exposure category both before and after adjustment. The authors concluded that the observed association between formaldehyde exposure and nasopharyngeal cancer in this cohort could be attributable to external employment in silver and other metal work rather than to formaldehyde itself.

3.2.2 National Institute for Occupational Safety and Health (NIOSH) cohort: garment industry

Study population and follow-up. Stayner and colleagues led a NIOSH-sponsored investigation of formaldehyde exposure and cancer among garment workers at four shirt-manufacturing facilities located in Pennsylvania and Georgia where formaldehyde was used to treat fabrics. The cohort was assembled to conduct a proportionate mortality study (Stayner et al. 1985) and a retrospective cohort mortality study (Stayner et al. 1988). Vital status and death certificates were ascertained through December 31, 1982, and cause of death was coded by a trained nosologist (Stayner et al. 1988). Workers enrolled in death benefit insurance were included in the proportionate mortality study if they met certain eligibility requirements, including having worked at least six months at an exposed facility; 256 deaths were included in the proportionate mortality study.

Follow-up for vital status was later updated through December 31, 1998 (Pinkerton et al. 2004). However, work histories were not updated and were truncated for approximately 11% of subjects. Eligible workers for the updated retrospective cohort study (N = 11,039; 82% female, 76% white) must have served as production workers for at least three months at one of three facilities between the time formaldehyde was first introduced into the facility (1955 or 1959, depending on the facility) and December 1977. Of 2,206 total deaths observed in the updated retrospective cohort, 608 deaths were due to cancer (Pinkerton et al. 2004).

Exposure assessment. Company personnel records were used to obtain information about demographics and occupational history for each worker. When available, union records
and Internal Revenue Service files were used to verify plant records. Virtually all production workers in any facility were considered consistently exposed to formaldehyde over the workshift. The median 8-hour TWA concentration of formaldehyde obtained during air monitoring across all departments at three plants in 1981 and 1984 ranged from 0.09 to 0.20 ppm (mean = 0.15 ppm), and levels did not vary appreciably between facilities. Previous exposures were assumed to be higher at every facility since improvements in the resins have greatly reduced the amount of free formaldehyde contained in the fabrics; formaldehyde levels at other garment factories in the 1970’s and earlier were estimated to be as high as 10 ppm (Stayner et al. 1988). The authors noted that workers were not thought to be exposed to any other potentially carcinogenic agents at the work site.

Statistical methods. Standardized mortality ratios using U.S. and state rates were stratified by duration of exposure, time since first exposure, and year of first exposure. Poisson regression was used to estimate age-adjusted rate ratios by exposure duration for selected cancer sites including the upper respiratory tract, leukemia, and brain. Proportionate mortality ratios (PMRs) were estimated based on U.S. rates (adjusted for sex, race, age, and calendar time), and further stratified by duration of exposure, latency, and facility. Proportionate cancer mortality ratios (PCMR) were also calculated to address the potential for healthy worker bias.

Results. Results of the earlier proportionate cancer mortality analysis (Stayner et al. 1985) showed a statistically significant excess of deaths from oral cavity (PCMR = 6.82, 90% CI = 1.85 to 17.58, 3 deaths) and lymphohematopoietic cancers excluding leukemia (PCMR = 3.42, 90% CI = 1.17 to 7.82, 4 deaths). Other excess cancer mortalities (PCMRs > 1.0) were noted including biliary passages and liver (PCMR = 2.74, 90% CI = 0.94 to 6.27, 4 deaths), unspecified liver (PCMR = 3.70, 90% CI = 0.66 to 11.66, 2 deaths), skin (PCMR = 1.50, 90% CI = 0.78 to 2.44, 2 deaths), and pancreas (PCMR = 1.07, 90% CI = 0.37 to 2.46, 4 deaths). In the updated retrospective cohort analysis (Pinkerton et al. 2004), a statistically significant deficit in mortality from all cancers was observed (SMR = 0.89, 95% CI = 0.82 to 0.97, 608 deaths). Elevated SMRs were observed for cancer of the oral cavity (SMR = 1.33, 95% CI = 0.36 to 3.41, 4 deaths),
leukemia (SMR = 1.09, 95% CI = 0.70 to 1.62, 24 deaths), and certain other tumor sites that had imprecise estimates. [The magnitude of the risk estimates for the latter two cancer sites was much lower than the PCMRs.] Further analysis showed that the largest excess in leukemia was among myeloid leukemia (SMR = 1.44, 95% CI = 0.80 to 2.37, 15 deaths), which was greatest among workers exposed presumably to higher levels of formaldehyde in the earliest years of follow-up (before 1963) (SMR = 1.61, 95% CI not reported), with at least 10 years of exposure (SMR = 2.19, lower bound of 95% CI value less than 1), and exposed at 20 years diagnosis (SMR = 1.91; lower bound of 95% CI greater than 1). Among workers with at least 10 years exposure and 20 or more years since first exposure, multiple cause mortality from myeloid leukemia was significantly elevated (SMR = 2.55; 95% CI = 1.10 to 5.03; 8 deaths). No deaths from cancers of the nasopharynx (0.96 expected) or nose (0.16 expected) were observed in this cohort.

3.2.3 British Chemical Workers Study

Study population and follow-up. Acheson et al. (1984) assembled a large industry-based cohort of approximately 14,000 male workers employed after 1937 at one of six factories in the British chemical and plastics industry where formaldehyde had been manufactured or used. The cohort was updated by Gardner et al. (1993). More recently, Coggon et al. (2003) reported on an updated analysis of this cohort (which subsumed findings by Gardner et al.), extending the original cohort with 11 additional years of follow-up. Workers were followed for mortality and cancer incidence through December 31, 2000 using the National Health Service Central Register and National Insurance records.

Exposure assessment. Occupational histories extracted from employment records were used to classify formaldehyde exposure for each job into five categories (background, low, moderate, high, or unknown). Exposure measurements taken after 1970 as well as workers' recall of irritant symptoms were used to estimate exposure levels for each exposure category. According to Gardner et al. (1993), a total of 3,872 (27.6%) workers were exposed to background levels of formaldehyde corresponding to time-weighted average concentrations of less than 0.1 ppm; 3,815 (27.2%) were classified in the low exposure category (0.1 to 0.5 ppm); 1362 (9.7%) in the moderate exposure category (0.6 to 2.0 ppm), and 3993 (28.5%) in the high exposure category (greater than 2.0 ppm). Job-
exposure matrices were constructed for each factory. Within each factory, each job was
assigned to the same exposure category for all time periods; however, jobs were not
necessarily assigned to the same exposure category across factories. Workers were
individually classified as having no, low, moderate, high or unknown exposure. For
workers with more than one job, their exposure classification was based on the job with
the highest exposure. In one factory, no worker was classified as highly exposed; the
portion of highly exposed workers in the other five factories ranged from 3% to 7%. Of
14,014 workers, 13,865 (99%) were successfully traced through the follow-up period:
5,185 (37%) had died (99% with a known cause of death), and 859 (6%) were lost to
follow-up.

Statistical methods. Person-year analysis was used to calculate SMRs; expected numbers
of deaths were obtained from national rates for England and Wales in 5-year age strata
for 5-year calendar periods. Adjustments for local geographic variations in mortality were
made by multiplying the expected numbers of deaths from national rates by the SMRs for
the localities in which each factory was located. [This method of adjustment may
underestimate the risk if rates are higher among workers, and these workers live in the
areas surrounding the factories.] Exposure-response trends were evaluated using Poisson
regression.

Results. (Coggon et al. 2003 update). Mortality from all cancers was somewhat elevated
in the cohort (SMR = 1.10, 95% CI = 1.04 to 1.16, 1,511 deaths), especially among
workers ever classified as highly exposed to formaldehyde (SMR = 1.31, 95% CI = 1.21
to 1.42, 621 deaths). Statistically significant increases in the number of deaths from
stomach (SMR = 1.31, 95% CI = 1.11 to 1.54, 150 deaths) and lung cancer (SMR = 1.22,
95% CI = 1.12 to 1.32, 594 deaths) were observed among all workers. Standardized
mortality ratios were higher among workers with high exposure (SMR for stomach =
1.53, 95% CI = 1.17 to 1.95, 63 deaths; and SMR for lung = 1.58, 95% CI = 1.40 to 1.78,
272 deaths). A positive trend was noted for lung cancer by increasing exposure level
($P_{\text{trend}} < 0.001$), though the trend was no longer statistically significant when adjusted for
geographic location. No exposure-response relationships by years of employment in
high-exposure jobs or years since first employment in a high-exposure job were
observed. However, lung cancer mortality was highest among workers who were highly exposed before 1965 (SMR = 1.61, 95% CI = 1.41 to 1.82, 243 deaths); the authors noted that during this time period, occupational exposures to formaldehyde would have been higher.

Excess cancer mortality at several other tumor sites was also observed among highly exposed workers, though estimates were not statistically significant. These tumor sites included: lip (SMR = 5.62, 95% CI = 0.14 to 31.30, 1 death), tongue (SMR = 1.91, 95% CI = 0.39 to 5.68, 3 deaths), mouth (SMR = 1.32, 95% CI = 0.16 to 4.75, 2 deaths), pharynx (SMR = 1.91, 95% CI = 0.70 to 4.17, 6 deaths), esophagus (SMR = 1.28, 95% CI = 0.81 to 1.92, 23 deaths), rectum (SMR = 1.30, 95% CI = 0.93 to 1.77, 40 deaths), liver (SMR = 1.26, 95% CI = 0.82 to 1.84, 26 deaths), larynx (SMR = 1.56, 95% CI = 0.63 to 3.22, 7 deaths), bone (SMR = 3.38, 95% CI = 0.92 to 8.65, 4 deaths), genital excluding breast, testis, and prostate (SMR = 1.42, 95% CI = 0.04 to 7.90, 1 death), bladder (SMR = 1.25, 95% CI = 0.79 to 1.88, 23 deaths), kidney (SMR = 1.37, 95% CI = 0.73 to 2.35, 13 deaths), and multiple myeloma (SMR = 1.18, 95% CI = 0.48 to 2.44, 8 deaths). No deaths from cancer of the nose or nasal sinuses were observed among men with high exposure (0.8 deaths expected), and two deaths were reported in the entire cohort (2.3 expected).

3.2.4 Studies of fiberglass workers

In this section, two studies of workers in the fiberglass industry are reviewed. Workers in this industry may be exposed to formaldehyde in addition to respirable fibers during the fiberglass manufacturing process. Evaluation of the association between formaldehyde exposure and cancer outcomes was not a primary objective of either study. Therefore, the description of the study methods and results are limited to formaldehyde-related analyses only.

3.2.4.1 United States: Nested case-control study of respiratory cancer in a historical cohort of 10 fiberglass manufacturing plants

The following analyses draw from a large historical cohort study established in 1975 of production and maintenance workers from some of the largest and oldest fiberglass and rock/slag wool manufacturing plants in the United States. Marsh et al. (2001) updated
and expanded upon a sub-cohort of workers employed at the 10 fiberglass manufacturing facilities, which was originally assembled and studied by Enterline et al. (1984, 1983, 1987). This review covers the most recent follow-up analyses by Marsh et al. (2001) as well as additional analyses reported by Youk et al. (2001) and Stone et al. (2001, 2004).

[Note that the primary focus of these studies was the relationship between glass wool exposure and cancer mortality, and specifically of respiratory (lung and laryngeal) cancers.]

Study population and follow-up. Marsh et al. (2001) led an effort to expand this historical cohort to capture female workers, workers employed after the original 1963 cohort end date, and workers from additional manufacturing sites. The expanded cohort included 32,110 production or maintenance workers (84% white, 82% female) employed for at least one year between 1945 and 1978 in any of the 10 facilities. Vital status was ascertained through December 31, 1992, and the cause of death was determined for nearly all deceased workers (98.8%) using the National Death Index or death certificates. Using this updated cohort, Marsh et al. (2001) conducted a nested case-control analysis to investigate occupational exposures at the fiberglass manufacturing plants and respiratory system cancers (lung and larynx) among male workers. Cases were defined as workers who died from respiratory system cancer between 1970 and 1992; 96% of cases were diagnosed with cancer of the bronchus, trachea, or lung. Controls were eligible if they were at risk during 1970 to 1992 as well as alive and at risk at the age when the case died. Cases were matched to one control by date of birth (within one year). Smoking information was collected as ever/never having used any form of tobacco via telephone interview with the worker or proxy; the response rate was 88% for 716 eligible cases and 80% for 713 controls.

Exposure assessment. Potential exposures to known or suspected carcinogens, including formaldehyde, were estimated from plant start-up until closing or the end of the study period (Quinn et al. 2001). Exposure data developed by integrating industrial hygiene data and epidemiologic methods were combined with worker histories to estimate exposures over time for all unique production areas. A job-exposure matrix was used to produce job location-weighted exposure measures and three summary exposure metrics:
duration, cumulative exposure, and average intensity. Exposure to formaldehyde was the second most prevalent exposure (22.4% of total person-years) after respirable glass wool or continuous glass filament fibers (28.5% of total person-years) among workers. The median average intensity of exposure to formaldehyde was 0.066 ppm for all plants (range = 0.030 to 0.130); the median cumulative exposure was 0.173 ppm (range = 0.063 to 0.469).

Statistical methods and results. Complete data were available for 502 of 713 matched pairs, and unmatched cases and controls were combined with the matched set nearest in age to form 516 matched pairs (631 cases and 570 controls) available for analysis. Conditional logistic regression was used to estimate RRs adjusted for smoking. Marsh et al. found that compared with unexposed workers, exposure to formaldehyde was associated with a statistically significant increase in respiratory system cancer (RR = 1.92, 95% CI = 1.25 to 2.94, 591 exposed deaths, global test P value = 0.003)) which remained after adjustment for estimated smoking (RR = 1.61, 95% CI = 1.02 to 2.57, global test P value = 0.04). However, tests for trend by exposure duration, cumulative exposure, and average intensity of exposure were not statistically significant.

Related analyses. Youk et al. (2001) analyzed the Marsh et al. nested case-control study using exposure weighting as an alternative form of exposure characterization to explore a possible exposure-response relationship between respiratory system cancer and formaldehyde. Nine different configurations of exposure lag and window periods were considered. The RR for exposed workers was 1.62 (95% CI = 1.04 to 2.54, 588 exposed cases) with 5-year lag and 1.46 (95% CI = 0.96 to 2.23, 581 exposed cases), with 10-year lag. Estimates from other combinations of lag and window periods were otherwise closer to the null compared with the unweighted estimate (OR = 1.61, 95% CI = 1.02 to 2.56) noted by Marsh et al. (2001). No clear trends with cumulative exposure or average intensity of exposure were observed.

Stone et al. (2001) also analyzed data from the nested case-control study by further adjusting conditional logistic regression models for exposure to respirable particles in addition to smoking, and by considering exposure to formaldehyde as a continuous
quantitative term in piecewise linear functions (i.e., linear splines) with knots placed at
the deciles of the distribution of formaldehyde exposure among cases. Application of the
linear splines allowed for multiple exposure-response functional forms to be evaluated.
Cumulative exposure to formaldehyde was not significantly associated with an increased
risk of respiratory system cancer in any of the models. A positive association was
observed between relatively high average exposure intensity and respiratory system
cancer risk; the authors noted, however, that the dramatic increase in risk was only
predicted for the small number of workers with average exposure intensity at levels
above 0.4 ppm. [Estimated exposure to formaldehyde in this cohort of fiberglass
production workers was considerably below the current OSHA permissible exposure
limit of 0.75 ppm based on an 8-hour time-weighted average.]

Stone et al. (2004) performed an analysis of respiratory system cancer among the 4,008
female fiberglass workers included in the updated cohort of fiberglass workers followed
until 1992 (Marsh et al. 2001). [Previous analyses were restricted to male workers.] Fifty-
three deaths due to respiratory cancer were observed. Estimated relative risks were
calculated for a 1 ppm-year increase in cumulative formaldehyde exposure score using
multiplicative models fit to the internal cohort cancer rates. Estimated RRs ranged from
1.10 to 1.21 depending on adjustment factors (e.g., fiberglass production group, year of
hire, duration of employment, or time since first employment.) The authors noted that
very few women had a cumulative exposure score greater than 3 ppm-years in this study.

3.2.4.2 South Carolina: Nested case-control study in a historical cohort of one fiberglass
manufacturing plant

Study subjects and follow-up. Chiazze et al. (1997) conducted a nested case-control study
evaluating lung cancer mortality among continuous filament fiberglass manufacturing
workers at an Owens Corning facility in Anderson, South Carolina. [This plant was not
included among those studied by Marsh et al. (2001).] The cohort from which the
subjects were selected included 4,631 current and former employees (74% male; 87%
white) who had worked for at least one year between 1951 and 1991. Follow-up for vital
status was completed through 1991 (96% complete), and cause of death was obtained
from death certificates (96% complete). Cases (N = 47) included white male members of
the cohort for whom lung cancer was the underlying cause of death; controls (N = 122) included any white male non-case cohort member and were matched to cases (case to control ratio = 1:2) on year of birth (within 2 years) and survival to end of follow-up or death (within 2 years).

Exposure assessment. Exposure to occupational substances including formaldehyde was estimated by an exposure assessment committee composed of former and current employees knowledgeable in industrial hygiene and plant processes (Chiazze et al. 1993). For each process, one of four ranges of estimated potential exposure for each substance was assigned based on 8-hour time weighted averages. Cumulative exposure was then estimated for each employee based on the number of days spent performing each process; cumulative exposure days for formaldehyde ranged from none to 2,585 days (only one case and three controls had cumulative exposure greater than 1,000 days). In addition, a telephone interview was used to obtain demographic information, lifetime residence history, lifetime occupational history, smoking and alcohol use, and medical history.

Statistical methods and results. Conditional logistic regression was applied to estimate the association between formaldehyde and lung cancer death, adjusted for smoking (adjusted models used information from 33 cases and 82 controls who were smokers). Compared to 11 workers with no exposure to formaldehyde, the unadjusted ORs for those with 0.25 to 99.99 and 100 to 999 cumulative days of exposure were 0.94 (95% CI = 0.38 to 2.36, 14 cases) and 1.27 (95% CI = 0.50 to 3.21, 15 cases), respectively; the respective estimates among smokers only were 0.92 (95% CI = 0.29 to 2.88, 10 cases) and 1.72 (95% CI = 0.17 to 25.5, 11 cases). Only one case (a smoker) was exposed for more than 1,000 days (OR = 2.07).

3.2.5 Studies of woodworking and related industries
In this section, the findings from smaller case-control and cohort studies of woodworking and related industries are reviewed, including a nested case-control study of Finnish workers (Partanen et al. 1990, Partanen et al. 1993, Partanen et al. 1985); and a cohort (and nested case-control study) of workers from the entire United States as well as American territories (Stellman et al. 1998). (See Section 3.3.1 for a discussion of case-control studies in this industry.) Workers in these industries are commonly exposed to
wood dust, which is a known risk factor for sinonasal cancer and nasopharyngeal cancer. This review will focus on study findings for formaldehyde exposure only, though other occupational exposures such as wood dust were also evaluated. Industries related to woodworking that were examined in these studies included sawmills, particleboard and plywood manufacture, construction carpentry, and formaldehyde adhesive production for furniture.

3.2.5.1 Finland: Nested case-control studies in a historical cohort of woodworkers from various industries

Partanen et al. (1985) assembled a retrospective cohort of 3,805 male workers at 19 particleboard, plywood, and formaldehyde glue factories and sawmills in Finland. This cohort was later expanded (N = 7,303) with additional years of follow-up and additional factories to re-evaluate the association between formaldehyde exposure, respiratory cancer (Partanen et al. 1990), and lymphohematopoietic malignancies (Partanen et al. 1993) in a nested case-control study. Findings from the updated cohort subsumed the 3,805 workers included in the original analysis; therefore, this review will focus only on the most recent findings (Partanen et al. 1990, 1993).

Study population. The Finnish woodworker cohort was expanded to include 7,307 workers from 35 Finnish factories employed for at least one year between January 1944 and December 1965 in various woodworking facilities. Approximately 9% of cohort members worked at particleboard plants, 24% at plywood plants, 12% at construction carpentry plants, 20% at furniture manufacturing plants, 35% at sawmills, and less than 1% at a glue manufacturing plant (Partanen et al. 1990). Cohort members were followed for vital status from January 1957 to December 1982. In this study, respiratory cancer was defined by the authors as primary malignant neoplasms of sites with which inhaled formaldehyde was thought to come into direct epithelial contact, including: oral cavity, pharynx, nasal and sinus cavities, larynx, lung, and trachea. Cases of respiratory cancer (N = 136) and malignant lymphomas and leukemias (N = 24) were ascertained using the Finnish Cancer Registry. For analyses of respiratory cancer, three controls were randomly selected from the cohort and matched to each case by year of birth (N = 408).
For analyses of lymphohematopoietic malignancies, between one and eight non-cancer controls (N = 152) were matched to each case by year of birth and vital status in 1983.

Exposure assessment. Job-exposure matrices were constructed by industrial hygienists for each factory using factory records that included information on exposures, ventilation, work procedures, and actual air quality monitoring data (Kauppinen and Partanen 1988). The job-exposure matrices were linked with worker histories using factory registers, interviews with factory personnel, and questionnaires conducted with cases, controls, or their next of kin (control histories were obtained from company records only). For each of the 73 uniquely classified jobs, exposure to formaldehyde and several other concurrent agents was estimated by cumulative dose and level: unexposed, low (0.1 to 1 ppm-months), moderate (1 to 2 ppm-months), and heavy (> 2 ppm-months). Both exposure to formaldehyde fumes and formaldehyde attached to wood dust was considered. Exposure was also categorized dichotomously (ever/never) and lagged by 10 years to account for latency. Workers were considered ever exposed to formaldehyde if their estimated cumulative exposure reached 3 ppm-months.

Results for respiratory cancers (Partanen et al. 1990). Odds ratios and 90% CIs were estimated using conditional logistic regression and, in most cases, adjusted for vital status and smoking (< 35 years vs. ≥ 35 years). Comparing workers with at least 3 ppm-months of exposure to formaldehyde with workers with less than 3 ppm-months, the OR for all respiratory cancers combined was 1.11 (90% CI = 0.40 to 3.11, 11 exposed cases, 4.10, 9 exposed cases, adjusted for vital status and smoking) with no latency period, and 1.39 (90% CI = 0.40 to 4.10, 9 exposed cases, adjusted for vital status and smoking) with a minimum latency period of 10 years. Corresponding estimates were lower for lung cancer (OR = 0.69, 90% CI = 0.21 to 2.24, 9 cases, no latency, adjusted for vital status and smoking; and OR = 0.89, 90% CI = 0.26 to 3.00, 7 cases, 10-year latency, adjusted for vital status and smoking), and higher for combined upper respiratory cancers only (OR = 2.38, 90% CI = 0.43 to 13.2, 2 cases, no latency, adjusted for vital status only, and OR = 2.40, 90% CI = 0.31 to 18.6, 2 cases, 10 year latency, adjusted for vital status only). Exposure to dust-borne formaldehyde (yes or no) was also estimated; ORs ranged from 1.33 to 1.42, depending on the latency period, but none was statistically significant. No evidence of an
association was observed between peak exposure to formaldehyde and respiratory cancer, nor was any evidence observed of an exposure-response relationship for any exposure indicator including cumulative dose, duration of exposure to peak levels, and duration of exposure to dust-borne formaldehyde. [The numbers of respiratory cancers was small and only permitted analyses of all respiratory cancers combined in exposure-response analyses. Adjustment for smoking substantially reduced the sample size and consequently reduced statistical power for estimation of effects, because smoking history was unknown for approximately 35% of workers in this study. Further, estimates were not adjusted for wood dust or phenol exposure, both factors that the authors noted were correlated with formaldehyde exposure in this study population.]

Results for lymphohematopoietic malignancies (Partanen et al. 1993). Odds ratios and 95% CIs were estimated using conditional logistic regression. For the lymphohematopoietic cancers combined, the OR associated with at least 3 ppm-months of formaldehyde was 2.49 (95% CI = 0.81 to 7.59, 7 exposed cases), which did not change markedly after controlling for exposure to wood dust or solvents. Corresponding (unadjusted) ORs for specific lymphohematopoietic cancers were 1.40 (95% CI = 0.25 to 7.91, 2 exposed cases) for leukemia, and 4.24 (95% CI = 0.68 to 26.6, 4 exposed cases) for non-Hodgkin’s lymphoma. An OR for Hodgkin’s lymphoma alone could not be estimated because only one case was considered exposed to formaldehyde. The OR for all lymphomas combined (Hodgkin’s and non-Hodgkin’s lymphomas) was 4.02 (95% CI = 0.87 to 18.6, 5 exposed cases). The authors noted that more sensitive exposure assessment among cases than controls could have biased the observed effect estimates away from the null. [Effect estimates in this study are imprecise since ORs were based on a very small number of exposed cases.]

3.2.5.2 United States: American Cancer Society Cancer Prevention Study and nested case-control study

Stellman et al. (1998) studied the association between mortality and occupational exposure to wood dust in the American Cancer Society’s population-based Cancer Prevention Study. The cohort consists of over half a million males from all 50 states, Washington, D.C., and Puerto Rico enrolled in 1982 and who completed questionnaires
on demographic and lifestyle characteristics including smoking, medical history, and occupational history. Exposure to 12 occupational substances including formaldehyde was self-indicated on a check-list. The analysis included 11,541 woodworkers, of whom 305 reported exposure to both formaldehyde and wood dust, and 387 reported exposure to formaldehyde only. Site-specific cancer mortality information was obtained from death certificates during six years of follow-up (September 1982 to August 1988). Incidence density ratios adjusted by age and smoking status were calculated for subjects reporting formaldehyde exposure employed in any occupation, and for subjects reported formaldehyde exposure employed in a wood-related occupation. The reference group for all estimates consisted of subjects who did not report either employment in a wood-related occupation or regular exposure to wood dust. Woodworkers who reported regular exposure to formaldehyde had a statistically significant increase in lung cancer mortality (RR = 2.63, 95% CI = 1.25 to 5.51, 7 exposed cases) and leukemia (RR = 5.79, 95% CI = 1.44 to 23.25, 2 exposed cases). Effect estimates were elevated for rectal cancer (RR = 5.77, 95% CI = 0.81 to 41.22) and non-Hodgkin’s lymphoma (RR = 2.88, 95% CI = 0.40 to 20.50), though both estimates were based on only one exposed case and were not statistically significant. Among non-woodworkers exposed to formaldehyde, increased risk of cancer mortality was observed for stomach cancer (RR = 1.63, 95% CI = 0.94 to 2.86, 11 exposed cases) and all lymphohematopoietic cancers combined (RR = 1.22, 95% CI = 0.84 to 1.77, 28 exposed cases). [Results for cancers of the paranasal sinuses and nasal cavity were not presented.]

Nested case control study within the American Cancer Society Cancer Prevention Study:

A population-based nested case-control study of 282 deaths from multiple myeloma observed in the second stage of the American Cancer Society’s Cancer Prevention prospective cohort study and matched with up to 4 within-cohort controls was conducted by Boffetta *et al.* (1989). The association between multiple myeloma, occupational groups and selected exposures was examined, based on questionnaires completed by enrollees and assignment of exposure status by the investigators. Using conditional logistic regression, a statistically nonsignificant association between multiple myeloma and formaldehyde exposure was observed (OR = 1.8, 95% CI = 0.6 to 5.7, 4 cases). [The likelihood of misclassification of exposure in this study was high, however, and subjects
assigned to the high exposure group had lower OR than those in the low exposure group.
The power to detect effects of given agents in this study was also limited.]

3.2.6 Miscellaneous studies: abrasive material manufacturing, iron foundry, mixed industry and chrome leather tannery workers

In this section, four historical studies examining the association between formaldehyde exposure and cancer among abrasive material manufacturing, iron foundry, mixed industry, and chrome leather tannery workers are summarized.

3.2.6.1 Sweden: Cohort mortality and incidence study of abrasive materials manufacturing workers (Edling et al. 1987a)

Study population and methods. 911 workers (211 women) at a plant manufacturing abrasive materials and employed between 1955 and 1983 for at least five years were enrolled in the study. Workers were traced through the Swedish national death registry (from 1958 to 1983) and the national cancer registry (from 1958 to 1981). Deaths occurring at ages 74 and older were excluded, based on less reliable diagnostic validity. Age-, sex- and calendar year-stratified expected rates were calculated using the person-year method based on national data.

Exposure assessment. The plant manufactured grinding wheels from aluminum oxide and silicon carbide as abrasives bound with clay or phenol formaldehyde resins. Industrial hygiene measurements were available since the 1970s; during the manufacture of formaldehyde resins, exposure to formaldehyde ranged from 0.1 to 1.0 mg/m³. According to the authors, 59 workers had heavy intermittent exposure to peaks of 20 to 30 mg/m³ of formaldehyde during the manufacture of abrasive belts. No exposure assessments were conducted for individual workers.

Results. Findings were reported for 506 male “blue collar” workers only. No statistically significant increases in mortality or incidence for all cancers combined (observed/expected = 0.93, 95% CI = 0.5 to 1.5, 17 deaths; and observed/expected = 0.84, 95% CI = 0.5 to 11.3, 24 cases). Elevations in cancer incidence were observed for pancreas (obs/exp = 1.8, 95% CI = 0.2 to 6.6, 2 cases), lymphoma (obs/exp = 2.0, 95% CI = 0.2 to 7.2, 2 cases) and multiple myeloma (obs/exp = 4.0; 95% CI = 0.5 to 14.4, 2 cases). One case of nasopharyngeal cancer was observed in a worker with formaldehyde exposure of < 1.0 mg/m³ and less than 5 years of employment.
3.2.6.2 Michigan: Historical cohort of iron foundry workers

Mortality among workers at an iron foundry in Michigan was investigated in a retrospective cohort study assembled by Andjelkovich et al. (1990). Workers (N = 8,147) were employed at an automotive gray iron foundry for at least six months between 1950 and 1979. During the period of observation from 1950 to 1984, an excess of lung cancer deaths among these workers was observed. Though the authors suspected that the excess could have been in part explained by smoking, other hypotheses related to occupational exposures at the plant were proposed, including exposure to formaldehyde. To further evaluate these hypotheses, the investigators conducted a nested case-control study of lung cancer in the entire cohort (Andjelkovich et al. 1994) as well as a standardized mortality analysis of a subset of the cohort exposed to formaldehyde between 1960 and 1987 (Andjelkovich et al. 1995). A summary of the major methods and findings from these two studies follows.

Nested case-control study. To investigate the potential association between lung cancer and relevant exposures at the iron foundry, including silica and formaldehyde, a nested case-control study was conducted with additional years of follow-up through December 1989 (Andjelkovich et al. 1994). Cases (N = 220, 51% white) were defined as primary lung cancer deaths among men in the cohort between January 1, 1950 and December 31, 1989. For each case, 10 controls matched on race and attained age were selected from the cohort using incidence density sampling (52% of controls were alive at the end of the study period). Smoking information was obtained by questionnaire or records (including plant records and death certificates) for 76% of cases and 69% of a random sample of controls. Detailed work histories within the foundry were used to identify 107 unique occupational titles, which were then characterized by an industrial hygienist according to exposure to silica (high, medium, low) and formaldehyde (high, medium, low, none). For analyses, exposure to formaldehyde was dichotomized (ever/never) because only 25% of workers were considered ever exposed to formaldehyde (57 cases and 538 controls).

Conditional logistic regression was applied to estimate the effect of exposure to formaldehyde on lung cancer mortality adjusting for smoking, birth cohort (< 1915 vs. ≥ 1915), and silica exposure (quartiles). Using the subset of controls for which collection of
smoking information was attempted, the OR for exposure to formaldehyde was 1.31 (95% CI = 0.83 to 2.07, number of cases not specified). Effect estimates consistently decreased in magnitude with increasing lag periods (10, 15, and 20 years) to 0.84 (95% CI = 0.44 to 1.60) with a 20-year lag. Effect estimates were slightly higher and more precise when all controls were included, though the same decrease in risk was observed with increasing lag periods. No evidence was observed of an interaction between smoking and formaldehyde.

Cohort mortality sub-analysis. A subsequent analysis examined mortality among a subset of foundry workers (N = 3,929, 67% white) exposed to formaldehyde for 6 months or more during core making operations between 1960 and 1987 (Andjelkovich et al. 1995). An internal referent group included a sample of workers (N = 2,032) from the original cohort who were unexposed to formaldehyde during the same time period. Cumulative exposure to formaldehyde was estimated for each worker by an industrial hygienist based on job-specific exposure levels (low = 0.05 ppm; medium = 0.55 ppm; and high = 1.5 ppm) and duration of exposure. Smoking information was obtained by questionnaire or records (including plant records and death certificates) for 65% of exposed workers and 55% of the unexposed referent group.

Mortality among the exposed workers through December 1989 was compared with mortality among the U.S. population; SMRs adjusted for sex, race, age, and calendar period were obtained using the person-years method. To address the potential for healthy worker bias, mortality among all the workers was compared with that of an occupational referent population assembled by the NCI and NIOSH, using Poisson regression adjusted for race, smoking, and silica exposure. Statistically non-significant excess mortality was observed among the exposed workers for cancers of the oral cavity and pharynx (SMR = 1.31; 95% CI = 0.48 to 2.86; 127 deaths), esophagus (SMR = 1.07, 95% CI = 0.39 to 2.33, 6 deaths), stomach (SMR = 1.64, 95% CI = 0.82 to 2.94, 11 deaths), large intestine (SMR = 1.03, 95% CI = 0.49 to 1.90, 10 deaths), rectum (SMR = 1.17, 95% CI = 0.23 to 3.41, 3 deaths), trachea, bronchus, and lung (SMR = 1.20, 95% CI = 0.89 to 1.58, 51 deaths) and other and unspecified genital organs (SMR = 1.13, 95% CI = 0.23 to 3.31, 3 deaths). SMRs below 1.0 were reported for all other cancer sites, including but not
limited to larynx, (2 deaths), and all lymphohematopoietic cancers (7 deaths). Directly
adjusted relative risks (comparing exposed workers with unexposed workers) were
elevated for laryngeal cancer (RR = 1.50, 95% CI not reported, $P \geq 0.05$) and cancer of
the trachea, bronchus, or lung (RR = 1.13, 95% CI not reported, $P \geq 0.05$). The authors
report that the majority of SMRs increased when the NCI/NIOSH referent population was
applied (data not presented). In the Poisson regression analysis of men for whom
smoking status was known, cumulative exposure to formaldehyde (third and fourth
quartiles combined vs. unexposed) was not associated with cancers of the lung or oral
cavity and pharynx (data for other cancer sites not presented). One death from
nasopharyngeal cancer was reported for a man who had no recorded formaldehyde
exposure, according to the authors. (Deaths from sinonasal cancers were not presented.)

3.2.6.3 Denmark: Proportionate cancer incidence study of mixed industry workers

Study population and follow-up. Hansen and Olsen (1995) conducted a standardized
proportionate cancer incidence study of workers in Denmark born between 1897 and
1964 whose cancer was diagnosed between 1970 and 1984; eligible workers were
identified using the national Danish Cancer Registry and then linked with the compulsory
Supplementary Pension Fund to obtain employment history (N = 91,182 males). Using
the national Danish Product Register, 265 companies in which more than one kilogram of
formaldehyde was used or manufactured per employee per year since 1970 were
identified.

Exposure assessment. Workers considered exposed to formaldehyde were those whose
longest work experience since 1964 had started at one of the 265 companies at least 10
years prior to diagnosis (N = 2,041, 2.2% of study population). Based on job title,
exposed workers were further classified as having low (white-collar workers), high (blue-
collar workers), and unknown (no information on job title) exposure.

Statistical methods and results. Standardized proportionate incidence cancer ratios
(SPICR) adjusted for age (5-year strata) and calendar time (per year) were estimated
using all Danish workers in the study population as the referent group. (Results for
73,423 female workers for whom work history and exposure were concurrently obtained
were reported in a separate publication (Hansen and Olsen 1996).) Among the 2041 men,
who had worked in companies where formaldehyde was used, a statistically significant excess in incidence was noted for tumors of the colon (SPICR = 1.2, 95% CI = 1.1 to 1.4, 166 exposed cases), nasal cavity (SPICR = 2.3, 95% CI = 1.3 to 4.0, 13 cases), and kidney (SPICR = 1.3, 95% CI = 1.0 to 1.6, 60 cases). Statistically non-significant increases in cancer incidence (SPICRs > 1.0) were also observed among men for the nasopharynx (SPICR = 1.3, 95% CI = 0.3 to 3.2, 4 exposed cases), liver (SPICR = 1.2, 95% CI = 0.9 to 1.8, 29 exposed cases), rectum (SPICR = 1.1, 95% CI = 0.9 to 1.3, 117 cases), melanoma of the skin (SPICR = 1.1, 95% CI = 0.8 to 1.5, 39 cases), brain (SPCIR = 1.1, 95% CI = 0.9 to 1.5, 54 cases) and breast (SPICR = 2.2, 95% CI = 0.9 to 4.3, 8 exposed cases). Other sites had SPICRs of 1.0 or less. (Among lymphohematopoietic cancers, data were reported only for non-Hodgkin’s lymphoma (32 cases), Hodgkin’s lymphoma (12 cases) and leukemia (39 cases); no increase in risk was observed. Data were also presented on selected cancers (nasal, colon, lung, breast, kidney, brain and CNS, and leukemia) among workers with estimated exposure to low or high formaldehyde, the latter with or without potential wood dust exposure. No differences by estimated exposure category were observed, with the exception of nasal cavity cancers; among those estimated to be more highly exposed to formaldehyde and unexposed to wood dust (based on job industry and title), the SPICR was 3.0 (95% CI = 1.4 to 5.7, 9 cases), compared with 5.0 (95% CI = 0.5 to 13.4, 2 cases) for both higher formaldehyde and wood dust exposure and 0.8 (95% CI = 0.02 to 4.4, 1 case) for low formaldehyde exposure. Among women, an increase was found for nasal cancer (SPICR = 2.4, 95% CI = 0.6 to 6.0. 4 exposed cases).

3.2.7 Studies of resin, chemical, and plastics manufacturing workers

In this section, historical cohort studies of workers in the formaldehyde-based resin (Bertazzi et al. 1986), chemical (Bond et al. 1986, Ott et al. 1989), and plastics (Dell and Teta 1995) manufacturing industries are reviewed. Bond et al. (1986) evaluated lung cancer specifically, and Ott et al. (1989) evaluated lymphohematopoietic malignancies. [Collectively, the studies reviewed in this section are limited by small numbers of study participants exposed to formaldehyde. Note also that in these studies formaldehyde was not the primary occupational exposure of interest. Workers in these cohorts were exposed
to various other agents such as asbestos, styrene, and solvents.] The following review will focus on study findings for formaldehyde only.

3.2.7.1 Italy: Historical cohort of formaldehyde-based resin production workers

Study population and follow-up. Bertazzi et al. (1986) studied mortality among male workers at a resin manufacturing plant in Italy where formaldehyde-based resins including urea- and melamine-formaldehyde resins were primarily produced since 1959. A cohort of workers was assembled including 1,332 men ever employed in the plant for at least 30 days between 1959 and 1980 (Bertazzi et al. 1986). Vital status was originally ascertained as of December 31, 1980 through the local vital statistics offices, and death certificates were obtained for cause of death (follow-up was complete for nearly 99% of the cohort). In a subsequent analysis, vital status was updated through 1986 (Bertazzi et al. 1989); however, the 1989 study was published in Italian and is not reported here).

Exposure assessment. Work histories for each worker were reconstructed using incomplete plant employment records and interviews with current and retired workers as well as foremen. Work histories were completed for over 80% of the cohort, and each worker was assigned to one of three exposure categories based on their work history: (1) exposed to formaldehyde, (2) exposed to other compounds (including styrene and solvents), and (3) unknown exposure. Air sampling was conducted at the plant in 1974, 1978 and 1979; mean levels of formaldehyde ranged from 0.2 to 3.8 mg/m³ [0.13 to 2.53 ppm]. The authors noted that formaldehyde-based resins were produced in a separate area from other resins, and also that job mobility was low, especially among workers engaged in formaldehyde-based resin production [these factors reduce the potential for exposure misclassification].

Results. Mortality in the cohort was compared with national and local rates using the person-years method, adjusting for sex, age (5-year strata), and calendar time (5-year intervals). Among workers “definitely” exposed to formaldehyde (5,731 person-years of exposure), excess mortality was observed in the 1986 for cancers of the gastrointestinal tract (SMR = 1.55 [95% CI not reported for any SMR], 8 observed deaths vs. 5.2 expected), esophagus + stomach (SMR = 1.33, 4 observed deaths vs. 3 expected and, lung (SMR = 1.36, 5 observed deaths vs. 3.7 expected) and lymphohematopoietic cancers
(SMR = 2.73, 3 observed deaths vs. 1.1 expected). [Note that only certain cancer sites
were reported in these studies.]

3.2.7.2 Texas: Nested case-control study in a historical cohort of chemical production
workers

Study population and follow-up. A nested case-control study of workers was conducted to
investigate elevated lung cancer mortality rates at a chemical production facility (Dow
Chemical) in Texas (Bond et al. 1986). A retrospective cohort was assembled including
19,608 male workers hired between 1940 and 1980 and who had worked at the Texas
facility for at least one year. Vital status was ascertained for 97% of the cohort; death
certificates were obtained for 96% of the 3,444 deceased workers. Cases (N = 308) were
defined as former workers who had died before December 1980 and whose death
certificate listed cancer of the respiratory system as the underlying or contributing cause
of death. Two control series without lung cancer were randomly selected and individually
matched by race, year of birth (within 5 years), and year of hire (case to control ratio =
1:1). One series included workers alive when the matched case died of lung cancer, and
the other series included workers who had died of other causes within five years after the
matched case had died.

Exposure assessment. For each subject, exposure to 171 chemical and physical agents
(yes/no), including formaldehyde, was estimated by an industrial hygienist blinded to
case/control status using information from employee work history records about work
areas, tasks, agents handled, and duration of employment. Information on potentially
confounding variables such as smoking and vitamin A intake was obtained from
interviews (82% response rate) conducted with subjects or their next-of-kin.

Results. Stratified analyses and conditional logistic regression were used to calculate ORs
and 95% CIs. Reported risk estimates for formaldehyde were unadjusted for exposure to
other agents and other potential confounders like smoking. The estimated OR between
exposure to formaldehyde (9 exposed deaths) and lung cancer mortality was less than 1.0;
the negative association remained after accounting for a 15-year latency period (4
exposed deaths). [Eligible controls included participants with cancers suspected to be
associated with formaldehyde exposure, which may have attenuated observed effect estimates.]

3.2.7.3 West Virginia: Nested case-control study in a historical cohort of chemical manufacturing workers

Study population and follow-up. Ott et al. (1989) conducted a nested case-control study of lymphohematopoietic carcinomas within a cohort of nearly 30,000 male workers employed in two chemical manufacturing facilities and a research and development center (Union Carbide Corporation). Cases of non-Hodgkin’s lymphoma (N = 52), multiple myeloma (N = 20), nonlymphocytic leukemia (N = 39), and lymphocytic leukemia (N = 18) among workers in the cohort were identified by reviewing both underlying and contributory causes of death noted on death certificates from 1940 through 1978; follow-up was complete for 96% of the cohort. Controls were selected from the cohort using group-matched incidence density sampling so that controls were first employed in the same decade and survived to at least the same 5-year period as cases (case to control ratio = 1:5).

Exposure assessment. Work history information was used to link work areas and assignments with records of departmental usage for each substance; a worker was considered exposed to formaldehyde (ever/never) if he worked for at least one day with the chemical or in a work area specified as exposed.

Statistical methods and results. Unadjusted ORs were obtained using unconditional logistic regression. Elevated but statistically non-significant risks were found for non-Hodgkin’s lymphoma (OR = 2.0, 95% CI not reported, 2 exposed deaths), nonlymphocytic leukemia (OR = 2.6, 2 exposed deaths), and lymphocytic leukemia (OR = 2.6, 1 exposed death). The OR for multiple myeloma was 1.0 (1 exposed death). [Very few workers were exposed to formaldehyde and workers with only one day of exposure in their occupational lifetime were considered exposed.]

3.2.7.4 New Jersey: Historical cohort of plastics manufacturing workers

Study population and follow-up. Cancer mortality among male workers at a plastics manufacturing plant (Union Carbide Corporation) in New Jersey was studied by Dell and
Teta (1995). [This plant is not included among those studied by Ott et al. (1989).] The cohort included 5,932 male employees who worked more than six months between January 1, 1946 and December 31, 1967. Vital status was ascertained through December 31, 1988 (94% complete) using company records, Social Security files, and information from the National Death Index. Underlying causes of death were obtained from death certificates (98% complete).

Exposure assessment and statistical methods. Exposure to asbestos, polyvinyl chloride, and formaldehyde was assigned (yes/no) based on the major work department for each worker. One hundred eleven (111) workers were assigned exposure to formaldehyde. Mortality in the cohort was evaluated using person-years analysis, with age- and calendar-year-specific mortality rates among white males for the U.S. (1940 to 1989) and New Jersey (1950 to 1989) as the referents.

Results. An excess of lung cancer was noted among 57 workers exposed to formaldehyde during hexamethylenetetramine production (4 observed cases vs. 1.1 expected, no risk estimate reported). No cases of sinonasal or nasopharyngeal carcinoma were observed. [As noted by the authors, the power of this study is limited with regard to formaldehyde because of small sample size. Further, the potential effect of individual exposures cannot be distinguished within each work area.]

3.2.8 Studies of health professionals, embalmers, and funeral directors
This section covers multiple studies of health professionals (e.g., anatomists, pathologists, and medical lab technicians), embalmers, and funeral directors. These occupations are known to involve exposure to formaldehyde, which is used as a human tissue preservative (see Section 2.4.6 for more information on exposure levels). This section is divided into studies of health professionals (Hall et al. 1991, Harrington and Oakes 1984, Harrington and Shannon 1975, Jensen and Andersen 1982, Stroup et al. 1986) and studies of embalmers and funeral directors (Hayes et al. 1990, Levine et al. 1984, Walrath and Fraumeni 1983, 1984). One study of pathologists was excluded from this review because its primary objective was to examine low-level ionizing radiation among pathologists with membership in the Radiation Registry of Physicians (Logue et
al. 1986). A small case-control analysis of lung cancer among Danish physicians (Jensen and Andersen, 1982) is reported in Section 3.3.4.

Studies included in this section examined the association between occupational groups assumed to be exposed to formaldehyde and excess mortality from cancer (compared with cancer mortality among internal or external reference populations). None of these studies attempted to quantify or characterize exposure or estimate exposure-response relationships, but they examined cancer outcomes by occupation and occupational characteristics (e.g., duration of employment) only.

3.2.8.1 Health professionals

Pathologists: United Kingdom. Harrington and Shannon (1975) studied mortality among pathologists and medical laboratory technicians who were members of professional organizations in the United Kingdom. Members of the Royal College of Pathologists and the Pathological Society active at some time between January 1955 and December 1973 were enrolled (N = 2,079). Enrolled technicians (N = 12,944) included members of the Council for Professions Supplementary to Medicine active between August 1963 and December 1973. Death certificates were obtained for 97% of deaths among pathologists (N = 156, 10 deaths among women) and all technicians (N = 154, 20 deaths among women). Expected numbers of deaths were calculated using sex-, age- (5-year strata), and calendar time- (5-year intervals) specific death rates from England, Wales, or Scotland. Mortality was less than expected among pathologists and technicians for all causes of death and for all neoplasms. A statistically significant excess mortality from lymphohematopoietic cancers was observed among male pathologists in England (8 observed deaths vs. 3.3 expected, $P < 0.05$); no increase in leukemia was found. No increase was observed for other individual tumors.

Harrington and Oakes (1984) extended the previous study to include pathologists active in the professional organizations from January 1974 through December 1980. This study population included 2,307 male (110 deaths) and 413 female (16 deaths) pathologists; medical laboratory technicians included in the original cohort (Harrington and Shannon 1975) were excluded from this study. SMRs were only reported for selected tumor sites. Mortality from all causes and all cancers combined were significantly lower than
expected among men, and among women for all causes; the SMR for all cancers for
women was slightly elevated (SMR = 1.41, 90% CI = 0.66 to 2.65, 7 deaths). In contrast
to the 1975 study, deaths from lymphohematopoietic cancers were not elevated in this
population: SMRs for male leukemia was 0.90 (90% CI = 0.05 to 4.29, 1 death) and for
female leukemia the SMR was 9.26 (90% CI = 0.47 to 43.92, 1 death); for other
lymphohematopoietic cancers, the SMR was 0.54 (90% CI = 0.03 to 2.54, 1 male death
only). An increase in brain cancer was observed among men (SMR = 3.31, 90% CI =
1.13 to 7.58, 4 deaths); no cases were observed among women (0.11 expected). A
marginal increase in bladder cancer among men was observed (SMR = 1.07, 90% CI =
0.19 to 3.37, 2 deaths); no increases in lung cancer or gastrointestinal cancers was
observed.

Hall et al. (1991) further updated this cohort of British pathologists, adding new members
of the Pathological Society and extending follow-up to 1987; a total of 3,872 pathologists
were included (3,069 men, 803 women) after excluding 640 females from Northern
Ireland and Scotland for whom reference rates were unavailable. Sex-specific SMRs
adjusted for age (5 year strata) and calendar time (2 year intervals) were calculated based
on expected mortality rates from England, Wales, or Scotland (for males only).
Compared with national rates, mortality from all causes (SMR men = 0.43, 95% CI =
0.37 to 0.50; SMR women = 0.65, 95% CI = 0.38 to 1.03) and also from all cancers was
substantially less than expected. No statistically significant excesses were observed for
cancer at any site. However, increases in mortality were noted for lymphohematopoietic
cancer (SMR = 1.44, 95% CI = 0.69 to 2.65, 10 deaths) and leukemia (SMR = 1.52, 95%
CI = 0.41 to 3.89, 4 deaths) among all pathologists in England and Wales, brain cancer
(SMR = 2.40, 95% CI = 0.88 to 5.22, 6 deaths) among male pathologists from England
and Wales, prostate cancer (SMR = 3.30, 95% CI = 0.39 to 11.80, 2 deaths) among
pathologists from Scotland, and breast cancer (SMR = 1.61, 95% CI = 0.44 to 4.11, 4
deaths) among female pathologists from England and Wales. Among all pathologists,
non-statistically significant excesses were also observed for liver, Hodgkin’s lymphoma
and tongue, each based on one death only. [Only nine deaths were observed among
Scottish pathologists.]
Anatomists: United States. Stroup et al. (1986) conducted a retrospective cohort study of mortality among members of the American Association of Anatomists. Eligible subjects included 2,317 male residents of the United States who joined the professional organization between 1888 and 1969; each subject was followed from date of initial membership through December 1979. Death certificates were obtained and coded by a trained nosologist for underlying and contributing causes of death. Standardized mortality ratios were obtained using 5-year age-specific and 5-year time-specific mortality rates among U.S. white males from 1925 to 1979. A second referent group consisting of 5-year age-specific mortality rates among 19,000 male members of the American Psychiatric Association between 1900 and 1969 was also used to reduce any influence of the “healthy-worker effect.” Compared with the general population, this cohort of anatomists experienced less-than-expected numbers of death from all causes (SMR = 0.65, 95% CI = 0.60 to 0.70, 738 deaths) and all cancers (SMR = 0.64, 95% CI = 0.53 to 0.76, 118 deaths). Despite these overall deficits, a statistically significant excess of brain cancer was observed (SMR = 2.7, 95% CI = 1.3 to 5.0, 10 cases), and SMRs increased in magnitude with duration of membership. Excess mortality was also noted for lymphohematopoietic cancers (SMR = 1.2, 95% CI = 0.7 to 2.0, 18 deaths), including leukemia (SMR = 1.5, 95% CI = 0.7 to 2.7, 10 deaths) and other lymphohematopoietic cancer of other lymphatic tissues (SMR = 2.0, 95% CI = 0.7 to 4.4, 6 deaths). The authors noted that of the 10 leukemia deaths, five were from myeloid leukemia, and the SMR for chronic myeloid leukemia was statistically significantly elevated (SMR = 8.8, 95% CI = 1.8 to 25.5, 3 deaths) during the period from 1969 to 1979 when cell type-specific mortality rates were available. Slight increases in cancers of the colon (SMR = 1.1, 95% CI = 0.7 to 1.7, 20 deaths) and pancreas (SMR = 1.1, 95% CI = 0.6 to 2.0, 11 deaths) were also observed. Brain cancer was also statistically significantly elevated when compared to the to the referent group of psychiatrists (SMR = 6.0, 95% CI = 2.3 to 15.6); the SMR for leukemia was not elevated in comparison with the referent group of psychiatrists, however (SMR = 0.8, 95% CI = 0.2 to 2.9, 3 deaths).

3.2.8.2 Embalmers and funeral directors

embalmers licensed to practice in New York between 1902 and 1980 and known to have
died between 1925 and 1980. Death certificates were obtained for 1,263 eligible subjects
(75% of cohort), and the underlying cause of death was coded by a trained nosologist.
Deaths observed among the embalmers were compared with expected numbers calculated
by applying the age-, race-, and calendar-year-specific proportions of deaths for each
cause among the U.S. male population to the total number of deaths in the cohort by five-
year age and calendar periods. Time since first licensure was used to approximate
duration of exposure. Results focused on findings from 1,132 white men (10 women and
42 men of unknown race were excluded). Among white male embalmers, a statistically
nonsignificant increase in PMR for all cancers was observed (PMR = 1.11, 243 observed
deaths vs. 218.9 expected). A statistically significant ($P < 0.05$) excess mortality was
observed for cancers of the colon (PMR = 1.43, 29 observed deaths vs. 20.3 expected)
and skin (PMR = 2.21, 8 observed deaths vs. 3.6 expected). Mortality was also greater
than expected for cancers of the kidney (PMR = 1.50, 8 observed deaths vs. 5.4
expected), brain (PMR = 1.56, 9 observed deaths vs. 5.8 expected), liver and gallbladder
(PMR = 1.06, 1.06, 5 observed deaths vs. 4.7 expected), pancreas (PMR = 1.05, 13
observed deaths vs. 12.3 expected), lung (PMR = 1.08, 72 observed deaths vs. 66.8
expected; 2 of these deaths were pleural cancers), oral cavity and pharynx (PMR = 1.13,
8 observed deaths vs. 7.1 expected), and lymphohematopoietic cancers (PMR = 1.21, 25
observed deaths vs. 20.6 expected) including leukemia (PMR = 1.40; 12 observed deaths
vs. 8.5 expected). (PCMRs were calculated and were similar to PMRs in most cases,
although estimates were less stable for cancers with small numbers of deaths.) Analysis
by time since first licensure did not produce markedly different results, with the
exception of mortality from skin cancer (PMR<≤35 years = 1.73, 4 deaths; PMR<≥35 years =
3.08, 35 deaths). Among non-white males ($N = 79$), the authors noted that significantly
higher mortality from cancers of the larynx (2 observed deaths) and
lymphohematopoietic system (3 observed deaths) was found (data not presented).
Stratification by type of license among the white male embalmers showed that cancer
mortality was generally more elevated among the 546 subjects who practiced only as
embalmers than among the 586 who practiced both as embalmers and funeral directors;
the authors considered embalmers more highly exposed to formaldehyde than funeral
Among those that practiced only as embalmers, only oral cavity and pharyngeal cancer were increased (PMR = 2.01, 7 observed deaths vs. 3.5 expected) but not among those licensed as both embalmers and funeral directors. Statistically significant excess mortality was noted among those that practiced only as embalmers but not among dually licensed subjects for cancers of the skin (PMR = 3.26, 5 observed cases vs. 1.5 expected, \(P < 0.05 \)), kidney (PMR = 2.47, 6 observed cases vs. 2.4 expected, \(P < 0.05 \)) and brain (PMR = 2.34, 6 observed cases vs. 2.6 expected, \(P < 0.05 \)). Lymphohematopoietic cancers (PMR = 1.39, 16 observed cases vs. 11.5 expected), bladder cancer (PMR = 1.32, 5 observed deaths vs. 3.8 expected) and gastrointestinal and gallbladder cancers (PMR = 1.33, 42 observed deaths vs. 31.7 expected) were elevated only among dually licensed subjects, however.

Embalmers: California. The study design and analysis used by Walrath and Fraumeni (1983) was replicated by Walrath and Fraumeni (1984) using a second cohort including all embalmers licensed to practice in California between 1916 and 1978 and known to have died between 1925 and 1980. Licensing records were obtained from the Bureau of Funeral Directing and Embalming in Sacramento, California, and death certificates were obtained for 1,109 eligible subjects (94% male, 96% white). Reported results excluded 63 women and 39 non-white men. Mortality from all malignant neoplasms was significantly higher than expected in this cohort (PMR = 1.21, 205 observed deaths vs. 169.9 expected; \(P < 0.05 \)). A statistically significant (\(P < 0.05 \)) excess mortality was observed for cancers of the colon (PMR = 1.87, 30 observed deaths vs. 16 expected), prostate (PMR = 1.75, 23 observed deaths vs. 13.1 expected), brain and central nervous system (PMR = 1.94, 9 observed deaths vs. 4.7 expected), and leukemia (PMR = 1.75, 12 observed deaths vs. 6.9 expected). The excess of leukemia cases was noted largely among embalmers with greater than 20 years licensure (PMR = 2.21, 8 observed deaths; \(P < 0.05 \)). Statistically non-significant increases were also noted for cancers of the oral cavity and pharynx (PMR = 1.31, 8 observed deaths vs. 6.1 expected), pancreas (PMR = 1.35, 12 observed cases vs. 8.9 expected), bladder (PMR = 1.38, 8 observed deaths vs. 5.8 expected), rectum (PMR = 1.02, 7 observed deaths vs. 6.9 expected), all lymphohematopoietic cancers (PMR = 1.22, 19 observed deaths vs. 15.6 expected), and other (unspecified) cancers (PMR = 1.37, 21 observed deaths vs. 15.3 expected).
Embalmers: Canada. Levine et al. (1984) assembled a cohort of 1,413 male embalmers first licensed by the Ontario Board of Funeral Services between 1928 and 1957 and known to have died between 1950 and 1977. Death certificates were obtained from the Canadian Mortality Database and coded for underlying cause of death by trained nosologists. Standardized mortality ratios were calculated using expected deaths determined by applying age- and calendar-year-specific mortality rates among all males in Ontario from 1950 to 1977. A statistically non-significant increase in deaths from all lymphohematopoietic cancers was noted (SMR = 1.24, 8 observed cases vs. 6.5 expected, including 4 leukemia deaths vs. 2.5 expected), [though this finding was based on small numbers]. SMRs were less than 1.0 for all other major cancer sites reported, except for sites for which numbers were too small to calculate ratios.

Embalmers and funeral directors: United States. Hayes et al. (1990) conducted a proportionate mortality study of 4,046 (90% white) male embalmers and funeral directors from multiple locations in the United States who had died between 1975 and 1985. Information on occupation and cause of death was ascertained from death certificates, licensing board, and state funeral directors association. Observed numbers of deaths by cause were compared with expected numbers using sex-, race-, 5-year age- and calendar-year-specific proportions of deaths among the U.S. general population. Results were stratified by race. A borderline statistically significant increase in all cancers combined was observed among whites (PMR = 1.07, 95% CI = 1.01 to 1.15, 900 deaths) but not among non-whites (PMR = 1.08, 95% CI = 0.87 to 1.31, 102 deaths). Colon cancer was statistically significantly elevated among non-whites (PMR = 2.31, 95% CI = 1.32 to 3.76, 16 deaths) but not whites (PMR = 1.18, 95% CI = 0.95 to 1.44, 95 deaths), as were lymphohematopoietic cancers among both whites (PMR = 1.31, 95% CI = 1.06 to 1.59, 100 deaths) and non-whites (PMR = 2.41, 95% CI = 1.35 to 3.97, 15 deaths). Mortality from lymphohematopoietic cancers did not vary substantially between embalmers and funeral directors. Among all subjects with lymphohematopoietic cancers, PMRs were statistically significant for myeloid leukemia (PMR = 1.57, 95% CI = 1.01 to 2.34, 24 deaths) and unspecified leukemias (PMR = 2.28, 95% CI = 1.39 to 3.52, 20 deaths); statistically non-significant excesses were observed for several other histologic subtypes including non-Hodgkin’s lymphoma (PMR = 1.26, 95% CI = 0.87 to 1.76, 34 deaths) and
multiple myeloma (PMR = 1.37, 95% CI = 0.84 to 2.12, 20 deaths). PMRs were non-significantly elevated for several other cancer sites including the oral cavity and pharynx (whites: PMR = 1.19, 95% CI = 0.78 to 1.74, 26 deaths; non-whites: PMR = 1.25, 95% CI = 0.34 to 3.20, 4 deaths); nasopharynx (whites: PMR = 1.89, 95% CI = 0.39 to 5.48, 3 deaths; non-whites: PMR = 4.00, 95% CI = 0.10 to 22.29, 1 death); esophagus (whites: PMR = 1.15, 95% CI = 0.72 to 1.73, 22 deaths; non-whites: PMR below 1.0); pancreas (whites: PMR = 1.19, 95% CI = 0.89 to 1.57, 51 deaths; non-whites: PMR = 1.67, 95% CI = 0.72 to 3.29, 8 deaths); skin (whites: PMR = 1.34, 95% CI = 0.81 to 2.09, 19 deaths; non-whites: no observed deaths), breast (whites: PMR = 2.00, 95% CI = 0.24 to 7.22, 2 deaths; non-whites: no observed deaths), prostate (whites: PMR = 1.06, 95% CI = 0.84 to 1.32, 79 deaths; non-whites: PMR = 1.35, 95% CI = 0.82 to 2.12, 9 deaths); kidney (whites: PMR = 1.26, 95% CI = 0.82 to 1.87, 25 deaths; non-whites: PMR = 1.52, 95% CI = 0.18 to 5.50, 2 deaths), eye (whites: PMR = 3.62, 95% CI = 0.44 to 13.08, 2 deaths; non-whites: no observed deaths), brain and other central nervous system (whites: PMR = 1.23, 95% CI = 0.80 to 1.84, 24 deaths; non-whites: no observed deaths), and thyroid (whites: PMR = 2.37, 95% CI = 0.49 to 6.93, 3 deaths; non-whites: no observed deaths).

3.2.8.3 U.S. Stern et al. (1987)

Study population. Stern et al. (1987) conducted a retrospective cohort mortality study of 9,365 workers employed from 1940 to June 1979 (Plant A) or May 1980 (Plant B) in two chrome leather tannery plants in the U.S. Approximately 75% of the cohort was male and approximately 80% were white. Vital status was ascertained for 95% of the cohort, using Social Security and National Death Index records. Death certificates were obtained for 96.8% of all deaths.

Exposure assessment. No exposure monitoring data were available from the plants. Industrial hygiene surveys were conducted by the investigators and used to assess exposures by process and department. Duration of employment was used as a surrogate for cumulative exposure. Multiple potentially hazardous agents were used in the tannery process, including nitrosamines, chromates, benzidine-based dyes, leather dust, and organic solvents, as well as formaldehyde, which was used in the finishing process. Ambient formaldehyde levels were measured in the finishing department at the time of
the study and ranged from 0.5 to 7 ppm (mean 2.45 ppm). (Other potential exposures at
detectable levels in this department included acetone, toluene, methyl isobutyl ketone,
butyl cellusolve, and ambient leather fibers.)

Statistical methods and results. A modified life-table analysis was used to construct
person-years at risk from the start of employment to the end of 1982. A minimum latency
period of 15 years was used in some cancer analyses. Expected mortality rates were
computed from age-, sex-, race-, and calendar-year-specific rates in the two states in
which the plants were located. No statistically significant increases in SMRs for any site-
specific cancers among the combined cohort were observed; for several sites, significant
decreases were observed. With respect to workers in the finishing department who were
potentially exposed to formaldehyde, a statistically nonsignificant increase in kidney
cancer (SMR = 1.02, 95% CI = 0.26 to 2.73, 3 deaths) and leukemia + aleukemia (SMR =
1.25, 95% CI = 0.50 to 2.58, 7 deaths) was observed. One death from squamous-cell
carcinoma of the nasal cavity was observed, however, in a man who had worked in the
finishing department for over 18 years and died 55 years after the start of employment;
the SMR was not estimated, but the annual incidence rate among white males in the
United States cited by the authors was approximately 8 in one million at the time of the
study). [It is not possible to distinguish a specific effect of formaldehyde in this study,
and the power is limited to detect an effect for rare cancers. In addition, there was
evidence of a healthy worker effect and a greater than expected number of deaths and
accidents.]

3.3 Case-control studies
Over 40 case-control studies have examined the relationship between occupational
exposure to formaldehyde and various cancers. This section reviews epidemiological
case-control studies (and some cross-sectional studies) chronologically by major cancer
site. The review covers head and neck cancers, lung cancer, lymphohematopoietic
malignancies, and cancers at all other sites that have been studied in relation to
formaldehyde. Head and neck cancers are further divided into three distinct sections:
cancers of the paranasal sinuses and nasal cavity (i.e. sinonasal cancer), cancer of the
nasopharynx, and all other head and neck cancers. (See Section 3.1 for a brief orientation
to these cancer sites.) See Tables 3-3 to 3-8 for cancer specific tumor site findings.
Some studies evaluated cancer risk at more than one tumor site; results from these studies will be presented for each tumor site individually, though the study population and methods will be described only at the first citation.

3.3.1 Cancers of the paranasal sinuses and nasal cavity
This section reviews seven case-control studies that examined the association between formaldehyde and sinonasal carcinoma. Five studies were conducted in Europe (Olsen et al. 1984, 1986; Hayes et al. 1986, Luce et al. 1993a, Pesch et al. 2008), and two in the United States (Roush et al. 1987, Vaughan et al. 1986a). In addition, a cross sectional studies evaluating the association between changes in the nasal mucos among formadehyde exposed workers is discussed (Edling et al. 1987a, 1988). [In a number of these studies, exposure to wood dust may have occurred in addition to formaldehyde. Wood dust is a known human carcinogen with a strong association with sinonasal cancers, predominantly of the adenocarcinoma type; some studies have also reported associations with squamous-cell carcinomas (IARC 1995, NTP 2005a)]

3.3.1.1 Denmark: Olsen et al. (1984), Olsen and Asnaes (1986)

Study population. The association between occupational formaldehyde exposure and sinonasal and nasopharyngeal cancers was explored in a population-based, case-control study in Denmark (Olsen et al. 1984). Cases of non-sarcoma carcinomas of the sinonasal cavity (N = 488, 66% male) and nasopharynx (N = 266, 68% male) diagnosed between 1970 and 1982 were identified using the Danish Cancer Registry (see Section 3.2.2 for results on nasopharyngeal cancer). Eligible controls (N = 2,465) diagnosed with colorectal, prostate, or breast cancer were also selected from the registry and matched to cases (case to control ratio = 1:3) by sex, age (within 5 years), and year of diagnosis (within 5 years). In 1986, Olsen and Asnaes performed a re-analysis after conducting additional data collection to obtain histological information for each case included in their original case-control study. Seven hundred fifty-nine (759) histologically verified cancers of the nasal cavity (N = 287), paranasal sinuses (N = 179), and nasopharynx (N = 293) were included in the analysis.

Exposure assessment. Information on occupational history since 1964 was obtained by linking subjects with national pension and population registries with information...
including job title, industry, job description, company of employment, and period of employment for each worker. These data, in addition to information about Danish industries and occupations supplied by the national Labor Inspection Service, were used by three industrial hygienists blinded to case/control status to classify each subject by exposure (ever/never) to certain agents including formaldehyde. Each reported job was further classified as unexposed, certainly exposed, probably exposed, or unknown.

Statistical methods and results. Odds ratios were estimated with tabular analysis and Mantel-Haenszel summary estimates were calculated to assess confounding and interaction with wood dust. Among controls, 4.2% of men and 0.1% of women were considered exposed to formaldehyde (percentage of cases exposed not reported); further analyses were thus restricted to men only. Olsen et al. (1984) reported that the RR for sinonasal cancers among men considered certainly exposed to formaldehyde compared with those unexposed was 2.8 (95% CI = 1.8 to 4.3, 33 exposed cases). When a lag time was applied by excluding exposures within 10 years of diagnosis, the corresponding RR increased to 3.1 (95% CI = 1.8 to 5.3, 23 exposed cases). Effect estimates among men considered probably exposed were closer to the null. Exposure to wood dust was evaluated both as a potential confounding factor and as an effect modifier. Among subjects unexposed to wood dust, the RR for any formaldehyde exposure and sinonasal cancers was 1.8 (95% CI = 0.7 to 4.9, 5 cases). Among those unexposed to formaldehyde, the RR for any wood dust exposure and sinonasal cancers was 2.0 (95% CI = 1.1 to 3.7, 8 cases). The joint effect of exposure to both formaldehyde and wood dust was 3.5 (95% CI = 2.2 to 5.6, 28 cases). The authors noted that workers with both exposures were at higher risk of nasal cancer than workers with exposure to only one factor. Adjusting for wood dust to evaluate whether the effect of formaldehyde alone was confounded by wood dust, the pooled RR for any formaldehyde exposure was 1.6 (95% CI not reported; \(P \geq 0.05 \)). When a 10-year exposure lag time was applied, the adjusted summary measure was unchanged; however, the joint effect of both exposures increased to 4.1 (95% CI = 2.3 to 7.3, 20 cases). Effect estimates for formaldehyde did not markedly change after adjustment by occupational exposure to paint, lacquer, and glue. The authors noted that this study had 80% power to detect an OR of 2.0 for sinonasal cancer.
Olsen and Asnaes (1986) reported findings by histological type of cancer. For squamous-cell type sinonasal cancers, the RR among men ever exposed to formaldehyde was 2.3 (95% CI = 0.9 to 5.8, 13 exposed cases) after adjusting for exposure to wood dust. Among those unexposed to wood dust, the RR was 2.0 (95% CI = 0.7 to 5.9, 4 exposed cases). For adenocarcinoma of the sinonasal cavities, the RR among men exposed to formaldehyde vs. unexposed was 2.2 (95% CI = 0.7 to 7.2, 17 exposed cases) after adjusting for wood dust. Among those unexposed to wood dust, the RR was 7.0 (95% CI = 1.1 to 43.9, 1 exposed case). Restricting exposures to those occurring at least 10 years before diagnosis did not markedly change the magnitude of the effect of formaldehyde on either histologic type of sinonasal cancers. [The difference in RRs adjusted for wood dust and the RRs for only men unexposed to wood dust may reflect residual confounding by wood dust and a loss of precision due to small numbers.]

3.3.1.2 The Netherlands: Hayes et al. (1986)

Study population. One hundred sixteen (116) male residents of the Netherlands aged 35 to 79 and diagnosed with histologically confirmed primary epithelial sinonasal cancers between 1978 and 1981 were identified from six major cancer treatment centers in 1982 for a case-control study of occupational formaldehyde exposure and other environmental risk factors for sinonasal cancers (Hayes et al. 1986). Sixty seven (67) of the cases (58%) were squamous-cell carcinomas, 28 (24%) adenocarcinomas, and 21 (18%) of other types, mostly undifferentiated. At the start of study implementation, 74 (64%) patients were alive and 42 were deceased. Controls were frequency matched by age and randomly selected from living resident males in 1982 (case to control ratio = 1:2 for living cases, yielding 223 living controls), and from deceased resident males in 1980 (case to control ratio = 1:1 for deceased cases, yielding 36 deceased controls).

Exposure assessment: Interviews were conducted in person or on the phone (10%) to obtain occupational histories for all jobs held at least six months including information such as year(s) of employment, industry and company, and type of work. Interviews were completed for 91 cases and 195 controls. Each reported job was first classified by industry and occupational title. Two industrial hygienists blinded to case status (IH_A and IH_B) then independently classified each occupation and assigned scores of 0 (no
exposure) to 9 (highest exposure) based on the level and probability of exposure to
formaldehyde. Exposure to wood dust was similarly assessed by one hygienist.

Statistical methods and results. Relative risks were estimated along with 90% confidence
intervals, and exposure-response trends were evaluated using the Breslow-Day chi-square
test for trend. Of the 286 subjects, 65 (23%) were considered exposed to formaldehyde by
IH_A and 125 (44%) by IH_B. Among the 224 subjects considered unlikely to be exposed to
wood dust (scores 0 to 2), 15% and 30% were considered exposed to formaldehyde by
IH_A and IH_B, respectively. The age-adjusted RR for nasal cancer associated with any
formaldehyde exposure was 2.5 (90% CI = 1.5 to 4.3) for IH_A and 1.9 (90% CI = 1.2 to
3.0) for IH_B. These effect estimates did not change after adjustment for smoking or
alcohol use. Restricting this analysis to subjects with low exposure to wood dust (scores 0
to 2), the age-adjusted RRs for nasal cancer and different levels of exposure to
formaldehyde were as follows: (1) any exposure: 2.5 (90% CI = 1.2 to 5.0, 15 exposed
cases) for IH_A and 1.6 (90% CI = 0.9 to 2.8, 24 exposed cases) for IH_B; (2) low exposure
(scores 1 to 2): 2.2 (90% CI = 0.8 to 5.4, 8 exposed cases) for IH_A and 1.0 (90% CI = 0.4
to 2.5, 7 exposed cases) for IH_B; and (3) high exposure (scores 3 to 9): 3.0 (90% CI = 1.0
to 8.7, 7 exposed cases) for IH_A and 2.1 (90% CI = 1.1 to 4.1, 17 exposed cases) for IH_B.

Among subjects with low exposure to wood dust, elevated RRs for squamous cell nasal
carcinoma were also observed: (1) any exposure: 3.0 (90% CI = 1.3 to 6.4, 12 exposed
cases) for IH_A and 1.9 (90% CI = 1.0 to 3.6, 19 exposed cases) for IH_B; (2) high
exposure: 3.1 (90% CI = 0.9 to 10.0, 5 exposed cases) for IH_A and 2.4 (90% CI = 1.1 to
5.1, 13 exposed cases) for IH_B. (There were insufficient numbers of cases of
adenocarcinomas with low wood dust exposure to permit a separate analysis of
formaldehyde exposure, according to the authors.) The authors noted that though exposure
assessment by IH_A and IH_B varied, all effect estimates were positive and thus suggested
an increased risk of sinonasal cancers associated with occupational exposure to
formaldehyde despite intra-rater variability.

3.3.1.3 Washington State: Vaughan et al. (1986a)

Study population. A population-based case-control study was conducted by Vaughan et
al. (1986a) to determine whether occupational exposure to formaldehyde in 13 counties
in Washington, USA was associated with sinonasal or pharyngeal cancer (see Sections
3.2.2 and 3.2.3 for results on the different types of pharyngeal cancer). Incident cases
were identified through a population-based cancer registry operated as part of the
Surveillance, Epidemiology and End Results (SEER) program of the National Cancer
Institute. Eligible cases were aged 20 to 74 years at enrollment, resided in the study area,
and were diagnosed during the period 1979 to 1983 for sinonasal cancer, and 1980 to
1983 for pharyngeal cancer. Controls from the study area were identified using random-
digit dialing and frequency-matched to cases by age and sex. Information about medical,
smoking, alcohol, residential, and occupational histories was either self-reported or
reported by next-of-kin (for deceased cases) in a telephone interview. Two hundred
eighty-five cases (285) (69% of eligible cases) including 53 sinonasal, 27
nasopharyngeal, and 205 oro- or hypopharyngeal cases were included in the analysis; half
the case interviews were conducted with next-of-kin. Of 690 eligible controls, 552 (80%)
were included in the analysis.

Exposure assessment. Occupational formaldehyde exposure was assessed using a job-
exposure linkage system in which each unique job is identified by the 3-digit U.S. Census
occupation and industry codes. Estimates of the likelihood and intensity of formaldehyde
exposure for each job were combined to create a 4-level summary exposure metric: (1)
high = probable exposure to high levels. (2) medium = probable exposure to low levels.
(3) low = possible exposure at any level, and (4) background = no occupational exposure.
Exposure assignments were made blinded to case status. Individual estimates of exposure
to formaldehyde were then calculated for each subject including maximum lifetime
intensity, lifetime duration, and cumulative exposure.

Statistical methods and results. Unconditional logistic regression was used to produce
ORs adjusted for sex, age, smoking, alcohol use, and race. Over 90% of sinonasal cancers
occurred among subjects with cumulative exposure scores less than 5 because most cases
were classified as being unexposed (0 years lifetime exposure) and having a lifetime
maximum exposure intensity level of “background.” Effect estimates were based on very
small numbers of exposed cases (12 cases exposed at any level, 3 cases exposed for at
least 10 years) and showed no increase in risk associated with formaldehyde exposure.
Cumulative exposure scores were also analyzed excluding jobs within 15 years of the
date of diagnosis to account for a latency period. For sinonasal cancers, this exposure
lagging resulted in only one case in the highest exposure category and did not produce
interpretable estimates. The authors noted some methodological limitations including low
statistical power, non-differential exposure misclassification, and bias due to recall error
by next-of-kin. This latter limitation was explored by examining data obtained from live
cases only; live cases reported a higher mean number of jobs than proxies, and most ORs
increased in magnitude when restricted to live cases only.

3.3.1.4 Connecticut: Roush et al. (1987)

Study population. From the Connecticut Tumor Registry, Roush et al. (1987) identified
198 cases of sinonasal cancer and 173 cases of nasopharyngeal cancer (see Section 3.2.2
for results on nasopharyngeal cancer) among male residents of Connecticut who had died
of any cause between 1935 and 1975. Controls (N = 605) were randomly selected without
stratification or matching from male residents who died during the same time period.

Exposure assessment. Occupational information including job title, industry, and year(s)
of employment was obtained from death certificates and from annual city directories; the
latter were examined for the years corresponding to 1, 10, 20, 25, 30, 40 and 50 years
before death (as long as the subject was ≥ 20 years old at each assessment). An industrial
hygienist blinded to case/control status classified each reported job by probability and
level of exposure to formaldehyde, and subsequently categorized each subject into 4
exposure groups: (1) probably exposed to some level for most of working life, (2)
probably exposed to some level for most of working life and probably exposed to some
level at 20+ years prior to death, (3) probably exposed to some level for most of working
life and probably exposed to high level in some year, and (4) probably exposed to some
level for most of working life and probably exposed to high level at 20+ years prior to
death. This latter exposure category was intended to capture short-term high exposures
and account for the latency period necessary for sinonasal cancers to develop.

Statistical methods and results. Logistic regression was applied to estimate ORs and 95%
confidence intervals. Approximately 47% of sinonasal cancer cases had occupational
information for three or more jobs; 11% of sinonasal cancer cases were categorized into
exposure level 1 (N = 21), 8% in level 2 (N = 16), 4.5% in level 3 (N = 9), and 3.5% in
level 4 (N = 7). No association between occupational exposure to formaldehyde and
sinonasal cancers was observed for levels 1 to 3. The OR for men who were probably
exposed to some level for most of their working life and probably exposed to high levels
at some point 20 years or more before death (level 4) was 1.5 (95% CI = 0.6 to 3.9, 7
exposed cases).

3.3.1.5 Sweden: Edling et al. (1987a, 1988)
Study population. In this small cross-sectional study of woodworkers in a Swedish plant,
histological changes in nasal mucosa among 38 woodworkers (35% of whom were ever
smokers) who were engaged in processing [laminate] were compared with 25 unexposed
men (48% ever smokers) working elsewhere in the same plant. Ninety-two percent (92%)
of the men exposed to formaldehyde agreed to be medically examined, with an average
length of exposure of 6 years (Edling et al. 1987a). In a follow-up to this preliminary
investigation (Edling et al. 1988), clinical and histological findings were described for a
total of 75 men who exposed to formaldehyde out of a possible 104 exposed workers at
three plants, two of which processed particle board and one, laminate (72% participation
rate). (This group of men presumably included all 38 studied previously in the laminate
plant.) Findings were compared to 25 unexposed workers.

Exposure assessment. Industrial hygiene measurements between 1975 and 1983 at the
three plants indicated ambient exposures to formaldehyde ranging from 0.1 to 1.1 mg/m³,
with peaks of up to 5 mg/m³. No exposure measurements were available prior to this date
but were repsumed to have been higher. Wood dust levels in the two plants processing
particle board ranged from approximately 0.6 to 1.1 mg/m³. Exposure histories for
individual workers were not estimated. Workers in the laminate plant were not exposed to
wood dust, according to the authors.

Results. In the initial study of the laminae workers, a significant difference (P < 0.05) in
the histological score for the presence of precancerous hyperplasia and squamous
metaplasia of the nasal mucosa was observed among exposed workers in comparison
with nonexposed workers. No clear relationship with duration of exposure was observed.
Ever smoking was associated with a statistically nonsignificant increase in abnormal
histology but did not explain the difference in scores between exposed and nonexposed workers, although there was some evidence of a synergistic effect of smoking with formaldehyde exposure, according to the authors. In the follow-up of all 75 formaldehyde-exposed workers, the average exposure duration ranged from 1 to 39 years with a mean of 10.6 years. Thirty-three (33) of the exposed workers were smokers or ex-smokers compared to 16 of the unexposed group. Normal nasal mucosa were observed in only three exposed men, and mild dysplasia, hyperplasia and squamous metaplasia of the nasal mucosa was observed in the remainder of the exposed group; the average histological score (2.9) was significantly higher than that for the unexposed workers (1.8, $P < 0.05$). Among exposed workers, this score was not related to duration of exposure, however; smokers had a somewhat higher but not statistically significantly different score compared to non- and ex-smokers. No difference in histological scores was found when workers in the particle board plants (also exposed to wood dust) were compared with those in the lamina plant.

3.3.1.6 France: Luce et al. (1993)

Study population. Luce et al. (1993a) reported on a case-control study of primary sinonasal cancer in France. Cases of sinonasal cancers (N = 303) diagnosed between January 1986 and February 1988 among male and female residents of France were identified at 27 hospitals; 207 (67%) cases were enrolled in the study. All but one case was histologically confirmed. Two control series were enrolled. A hospital-based control series included patients with cancers other than sinonasal cancers diagnosed during the same time period as cases at the same or nearby hospitals; of 340 eligible hospital controls, 323 (95%) were enrolled and frequency matched by age and sex (case to control ratio = 2:3). A population-based control series was selected from lists of friends and family provided by cases; of 103 eligible convenience controls, 86 (84%) were enrolled and matched to cases by sex, age (within 10 years), and residence.

Exposure assessment. Interviews were conducted by trained physicians to elicit information on socio-demographic characteristics, smoking and alcohol intake, medical history and nasal diseases, and occupational history. An additional questionnaire was administered to assess occupational exposure to a pre-determined list of substances.
including formaldehyde. Exposure assessment was performed by an industrial hygienist blinded to case/control status and involved classifying each subject according to probability of exposure based on information from the questionnaires. Jobs considered exposed to formaldehyde were further classified by exposure frequency, concentration, and cumulative exposure.

Statistical methods and results. Multivariate logistic regression was used to estimate ORs and 95% confidence intervals and to evaluate confounding by occupational and non-occupational factors. Odds ratios were stratified by histologic subtype and sex (regression results were reported for men only), and adjusted by age and exposure to wood dust, glues, and adhesives. The two control series were combined for analysis. [Eligible controls included participants with cancers suspected to be associated with formaldehyde exposure, which might have attenuated observed effect estimates.] Among cases, 36% of males (N = 60) and 25% of females (N = 10) were exposed to formaldehyde; among controls, 55% of males (N = 176) and 29% of females (N = 26) were exposed. Analyses were based on 16 cases with probable or definite exposure and 81 controls. The proportion of subjects with at least one probable or definite exposure was higher among exposed cases than among exposed controls. However, regression results showed no relationship between any formaldehyde exposure index and squamous-cell sinonasal cancers among males. The OR for adenocarcinoma-type sinonasal cancers and any exposure to formaldehyde was 8.1 (95% CI = 0.9 to 72.9, 4 exposed cases) among those unexposed to wood dust and 692 (95% CI = 91.9 to 5,210, 71 exposed cases) among those jointly exposed to wood dust and formaldehyde. [The association between formaldehyde and adenocarcinoma-type sinonasal cancers independent of exposure to wood dust could not be estimated with any precision in this study because the majority of subjects with probable or definite exposure to formaldehyde were also exposed to wood dust (97% of subjects were jointly exposed). Among subjects with cancers of “other” histologies (7 esthesioneuromas, 3 sarcomas, 2 melanomas, 1 lymphoma, and 4 unspecified cases), a positive association was generally observed for subjects with probable or definite exposure to formaldehyde. For the highest index exposure levels of these other histologies, ORs ranged from 1.62 (exposure duration > 20 years) to 3.27 (date of first exposure ≥ 1955); only the latter estimate was statistically significant (95%
CI = 1.15 to 9.33, 6 cases). The authors noted that adjustment by smoking and re-analysis
taking into account a 15-year induction period did not markedly change the reported
effect estimates.

3.3.1.7 Germany: Pesch et al. (2008)
Study population. Pesch et al. (2008) conducted a case-control study of workers in the
woodworking industry in Germany with histologically confirmed diagnosis of
adenocarcinoma of the nasal cavity or paranasal sinuses between 1994 and 2003. 86 cases
(57 survivors and 29 next of kin) agreed to participate and were matched with 204
frequency matched controls (including 69 next of kin).

Exposure assessment. A semi-quantitative job exposure matrix was constructed for each
subject based on occupational histories, job titles and types of materials used within the
woodworking industry, together with previously monitored wood dust exposure
measurements conducted within the industry. Potential exposures included wood dust
particulates, wood preservatives, stains, and varnishes, as well as formaldehyde.

Statistical methods and results. Logistic regression conditional on age and adjusted for
smoking and other demographic variables was used to calculate odds ratios for low,
medium and high levels of average and cumulative exposures, duration of exposure, and
time since first exposure to select agents. Inhalable wood dust exposure was associated
with a highly significant increase in the risk of ADCN, but formaldehyde exposure (either
pre- or post 1985) adjusted for wood dust exposure was not associated with a significant
increase in risk (ORs were less than 1.0 and statistically nonsignificant).

3.3.2 Cancer of the nasopharynx
Section 3.2.2 reviews case-control studies that examined the association between
formaldehyde and nasopharyngeal cancer. Three studies were conducted in Asia
(Armstrong et al. 2000, Hildesheim et al. 2001, West et al. 1993), one in Europe (Olsen
and Asnaes 1986, Olsen et al. 1984) and three in the United States (Roush et al. 1987,
Vaughan et al. 2000, Vaughan et al. 1986a). Some of these studies were described
previously in Section 3.2.1 (Olsen and Asnaes 1986, Olsen et al. 1984, Roush et al. 1987,
Vaughan et al. 1986a).
3.3.2.1 Denmark: Olsen et al. 1984, Olsen and Asnaes 1986

Olsen et al. (1984) also evaluated the association between formaldehyde exposure in the workplace and risk of nasopharyngeal carcinoma (N = 266 cases, 2,465 controls) in a population-based, case-control study in Denmark (see Section 3.2.1 for complete study description). Among controls, 4.2% of men and 0.1% of women were considered exposed to formaldehyde (percentage of cases exposed not reported). The RR for nasopharyngeal carcinoma comparing those ever exposed vs. never exposed was 0.7 (95% CI = 0.3 to 1.7, no. of exposed cases not reported) among men and 2.6 (95% CI = 0.3 to 21.9) among women. Analysis of nasopharyngeal cancers by histologic subtype did not show any association with either formaldehyde or wood dust (Olsen and Asnaes 1986).

3.3.2.2 Washington State: Vaughan et al. (1986a)

The association between nasopharyngeal cancers (N = 27) and occupational formaldehyde exposure was also examined by Vaughan et al. (1986a) in the population-based, case-control study in Washington state (see Section 3.3.1 for complete study description and results on sinonasal cancers; see Section 3.3.3 for results on oro- and hypopharyngeal cancer). Approximately 60% of nasopharyngeal cancers occurred among subjects classified as unexposed; cumulative exposure scores less than 5 represented over 75% of cases. Adjusting for race and smoking, the ORs for nasopharyngeal cancers for low and medium/high exposure were 1.2 (95% CI = 0.5 to 3.3, 7 exposed cases) and 1.4 (95% CI = 0.4 to 4.7, 4 exposed cases), respectively, compared with subjects with a background level maximum lifetime exposure (unexposed). Compared with subjects with zero years of lifetime exposure, the ORs for 1 to 9 years duration were 1.2 (95% CI = 0.5 to 3.1, 8 exposed cases) and for 10+ years 1.6 (95% CI = 0.4 to 5.8, 3 exposed cases). Cumulative exposure estimates were 0.9 (95% CI = 0.2 to 3.23, 3 exposed cases) for scores 5 to 19 and 2.1 (95% CI = 0.6 to 7.8, 3 exposed cases) for scores 20+ compared with scores less than 5. Cumulative exposure scores were also analyzed excluding job histories within 15 years of the date of diagnosis to account for a cancer latency period. The OR for the 5 to 19 exposure score group was 1.7 (95% CI = 0.5 to 5.7, 4 exposed cases); the point estimate for the 20+ group did not change.
3.3.2.3 Connecticut: Roush et al. (1987)

Occupational exposure to formaldehyde and mortality from nasopharyngeal cancers among men (N = 173) was also investigated by Roush et al. (1987) in their population-based, case-control study in Connecticut (see Section 3.2.1 for complete study description). The OR for nasopharyngeal cancer mortality among men was 1.0 (95% CI = 0.6 to 1.7, 21 exposed cases) for level 1, 1.3 (95% CI = 0.7 to 2.4, 17 exposed cases) for level 2, 1.4 (95% CI = 0.6 to 3.1, 9 exposed cases) for level 3, and 2.3 (95% CI = 0.9 to 6.0, 7 exposed cases) for level 4 exposure category.

3.3.2.4 Philippines: West et al. (1993)

Study population. West et al. (1993) investigated non-viral risk factors including occupational exposure to formaldehyde for nasopharyngeal cancers in the Philippines. This hospital-based, case-control study included 104 incident cases of histologically confirmed nasopharyngeal cancers (100% participation rate, 73% male) recruited from the Philippine General Hospital, and two control series: 104 hospital controls (100% participation rate) matched to cases by sex, age, and hospital ward type (public vs. private), and 101 community controls (77% participation rate) matched to cases by sex, age, and neighborhood.

Exposure assessment. During interviews conducted with a trained nurse, information was collected on socio-demographics, diet, smoking, occupational history, and use of herbal medicines, betel nut, and anti-mosquito coils. Reported occupations were classified by an industrial hygienist blinded to case/control status as likely or unlikely to involve exposure to formaldehyde, solvents, wood dust and other dusts, and pesticides. This classification was then combined with information from the complete occupational history to obtain for each individual four estimates of exposure: (1) overall duration of exposure, (2) duration excluding exposure in the 10 years preceding diagnosis (for cases) or interview (for controls), (3) years since first exposure, and (4) age at first exposure.

Statistical methods and results. Conditional logistic regression was applied to estimate ORs and 95% CIs. The authors reported that results of the occupational analyses were similar for each control series and thus combined controls for analyses. Estimates of association for formaldehyde and nasopharyngeal cancers were reduced toward the null
after adjusting for years since first exposure to dusts and/or exhaust fumes. Overall duration of exposure was not clearly associated with nasopharyngeal cancers after adjusting for exposure to dusts and/or exhaust; however, duration of exposure lagged by 10 years yielded an increased risk (RR (2.1, 95% CI = 0.70 to 6.2, 8 exposed cases) for subjects with at least 15 years exposure. Statistically significant effects were observed for formaldehyde with 25+ years since first exposure (RR = 2.9, 95% CI = 1.1 to 7.6, 14 cases) and among subjects who were < 25 years old at first exposure (RR 2.7, 95% CI = 1.1 to 6.6, 16 cases), adjusted for years since first exposure to dusts and/or exhaust (unlagged estimates). The RR for subjects jointly exposed to both formaldehyde (25+ years since first exposure) and dust/exhaust (35+ years since first exposure) compared with subjects with neither exposure was 15.7 (95% CI = 2.7 to 91.2, no. exposed subjects not reported). In further models, a statistically significantly increased risk of nasopharyngeal cancers was also observed with increasing years since first exposure to formaldehyde after adjusting for other confounding factors including education, exposure to dust and exhaust, diet, smoking, and use of herbal medicines and anti-mosquito coils. Compared with subjects never exposed to formaldehyde, the RRs were 1.2 (95% CI = 0.41 to 3.6, 12 exposed cases) for subjects first exposed less than 25 years before diagnosis or interview, and 4.0 (95% CI = 1.3 to 12.3, 14 exposed cases) for subjects first exposed 25 years or more ago.

3.3.2.5 Malaysia: Armstrong et al. (2000)

Study population. Histologically confirmed cases of nasopharyngeal cancers (all squamous-cell carcinomas) diagnosed or treated in Kuala Lumpur and Selangor from January 1987 to June 1992 were assembled for a case-control study of nasopharyngeal cancers and work-site inhalation of dust and smoke particles, formaldehyde, and certain aromatic hydrocarbons among Malaysian Chinese (Armstrong et al. 2000). Of 530 eligible cases who had lived in the study area for at least 5 years, 282 (53%) were enrolled (31% female). Each case was matched by sex and age (within 3 years) to one control with no history of head, neck, or respiratory system cancer; controls were selected from the general population using a house-to-house multistage area sampling.
Exposure assessment. Data on residential history, occupational history, diet, and tobacco and alcohol use were collected by trained interviewers during two in-home structured interviews. Occupational history included information about job description, tasks, workplace characteristics, use of industrial equipment and substances, and exposure to dusts, smoke, gases, and chemicals at each job. Additional information about exposures to industrial heat and 20 inhalants known to be deposited or absorbed in the nasopharynx were collected by trade or profession, calendar time, frequency and duration. Jobs were classified according to official Malaysian occupational codes, and exposure for each occupational code was assigned by a study investigator blinded to case/control status and familiar with Malaysian industry. Industries considered exposed to formaldehyde included adhesives, foundries, latex processing, metalworking and welding, plywood manufacturing, rubber tire manufacturing, sawmilling, shoe-making (glues), and textiles (permanent press fabrics). Four categories of exposure to inhalants (never, low, medium, high) were created based on job type, task, mode of exposure (inhalation and/or dermal), interview data on exposure, years of exposure, frequency, and duration. To account for latency, cumulative exposure was evaluated using 5 lag time periods: > 1, 5, 10, 15, and 20 years prior to diagnosis. Exposure intensity was also assessed by categorizing participants according to cumulative years exposed. The authors presented air monitoring data for formaldehyde levels within 10 industries (42 worksites) reported by participants in this study. Samples were taken in 1991 to 1992 and showed that formaldehyde levels exceeded the recommended limit (0.37 mg/m³) in the adhesives industry only, and the range of levels for all other industries sampled was wide (mean 8-hour concentration 0.16 to 0.35 mg/m³).

Statistical methods and results. For analysis, Armstrong et al. examined exposure dichotomously (ever/never) as well as by cumulative duration using conditional logistic regression. Approximately 10% of cases were considered exposed to formaldehyde compared with 8.2% of controls. The unadjusted OR for ever/never formaldehyde exposure and nasopharyngeal cancers was 1.24 (95% CI = 0.67 to 2.32, cases not specified); the diet and smoking-adjusted estimate was 0.71 (95% CI = 0.34 to 1.43). The authors assessed dose-response in relation to a 10-fold increase in ratio of hours exposed; no dose-response trend was observed with increasing duration of formaldehyde exposure.
No difference in effect estimates was observed in analyses by lag time or intensity. [The participation rate among diagnosed cases was low (53%); according to the authors, the possibility of prevalence-incidence or other forms of selection bias could not be excluded. In addition, although some inhalants (wood dust, for example) were found to be significantly associated with nasopharyngeal cancers in these data, these factors were not evaluated as potential confounders when evaluating the relationship between formaldehyde and the outcome.]

3.3.2.6 United States – SEER: Vaughan et al. (2000)

Population. To further investigate whether occupational exposures to formaldehyde and wood dust increase the risk of nasopharyngeal cancers, Vaughan et al. (2000) conducted a cancer registry-based population, case-control study that identified 294 nasopharyngeal cancer cases (diagnosed between April 1987 and June 1993 among persons 18 to 74 years of age) from five cancer registries (Connecticut, Detroit, Iowa, Utah, and Washington) in the National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) program. This study focused on a subset of 196 interviewed cases (68% male) diagnosed with epithelial carcinoma including epithelial not-otherwise-specified (N = 24), undifferentiated or non-keratinizing (N = 54), and differentiated squamous-cell types (N = 118). Controls were identified from the same geographic locations using random digit dialing, and were frequency matched to cases by age (within 5 years), sex, and cancer registry. Of 2,885 households contacted, 244 of 324 eligible controls were successfully enrolled and interviewed.

Exposure assessment. Structured telephone interviews were conducted with study participants or proxies (44 case and 3 control interviews by proxy) collecting information on demographics, personal and family medical history, tobacco and alcohol use, and lifetime history of occupational and chemical exposure; information since diagnosis for cases or since ascertainment for controls was excluded. Information collected about occupational history for any job held at least 6 months included job title, tasks, industry type, calendar dates, and exposure to specific chemicals or other agents including wood dust and formaldehyde. Participants were also asked specifically about any jobs held in particular industries including furniture manufacturing, construction, foundry, and
smelting. Industrial hygienists blinded to case/control status used these data combined
with estimates from both published and unpublished literature to assess exposure to
formaldehyde for each unique reported job. Each job was assigned a probability of
formaldehyde exposure based on the percentage of workers with a similar job profile
expected to be exposed: definitely not or unlikely (< 10%), possible (10% to < 50%),
probable (50% to < 90%), and definite (≥ 90%). Using information about frequency
(days/year) and duration (hours/day), jobs with potential exposure were further classified
by the estimated concentration of exposure representing an 8-hour time-weighted average
(TWA-8): low (< 0.10 ppm), moderate (0.10 to < 0.50 ppm), and high (≥ 0.50 ppm).

Twenty-four (24) reported jobs (of 2,209 unique reported jobs) were considered to entail
exposure to formaldehyde; 19 were classified as definitely exposed (16 low-level and 3
moderate), 3 as probable (all low-level), and 2 as possible (1 low-level and 1 moderate).

Exposure to wood dust was assessed by identifying jobs in occupational or industry codes
considered exposed, and by using interview data of subjects self-reported as exposed to
wood dust; jobs were assigned total wood dust TWA-8 estimates. Using results from the
exposure assessment, exposure to formaldehyde and wood dust were coded using the
following variables: ever exposed, maximum concentration exposed, duration exposed,
and cumulative exposure. Duration and cumulative exposure were further evaluated with
a 10-year lag.

Statistical methods and results. Multivariate logistic regression was used to estimate the
association between nasopharyngeal cancers and exposure to formaldehyde and wood
dust. Confounding and effect measure modification by age, sex, race, SEER site,
smoking, alcohol intake, education, and proxy status were evaluated. Forty-three percent
(43%) of cases were potentially exposed to formaldehyde, compared with 32% of
controls. The adjusted (age, sex, race, SEER site, smoking, education, and proxy status)
OR for nasopharyngeal cancers comparing ever occupationally exposed to unexposed by
histological subtype was 1.3 (95% CI = 0.8 to 2.1, 79 exposed cases) for all epithelial, 0.9
(95% CI = 0.4 to 2.0, 18 exposed cases) for undifferentiated or non-keratinizing, 1.5
(95% CI = 0.8 to 2.7, 49 exposed cases) for differentiated squamous-cell, and 3.1 (95%
Cl = 1.0 to 9.6, 12 exposed cases) for epithelial NOS [not otherwise specified]. No
consistent pattern of association or trend in risk was observed with maximum lifetime
exposure concentration. For lifetime duration of exposure and risk of nasopharyngeal cancers, there was some evidence of an increased risk of nasopharyngeal cancers with increasing lifetime duration of exposure among all subjects with any possibility of exposure \((P_{\text{trend}} = 0.014, 79 \text{ exposed cases}) \); the OR for subjects who had worked at least 18 years in potentially exposed jobs was 2.7 (95% CI = 1.2 to 6.0, 25 exposed cases). A trend was observed with increasing years of exposure \((P_{\text{trend}} = 0.070) \); the adjusted OR for subjects who had worked at least 18 years in potentially exposed jobs was 2.1 (95% CI = 1.0 to 4.5, 29 exposed cases). This trend was stronger for differentiated squamous cell \((P_{\text{trend}} = 0.033) \) and epithelial NOS \((P_{\text{trend}} = 0.036) \) histologies than undifferentiated or non-keratinizing types \((P_{\text{trend}} = 0.820) \). The adjusted ORs for 61 cases of nasopharyngeal cancers (excluding undifferentiated or non-keratinizing type) for estimated probability of formaldehyde exposure were 1.6 (95% CI = 1.0 to 2.8, 61 exposed cases) for ever having a job classified as possibly, probably, or definitely exposed, 2.1 (95% CI = 1.1 to 4.2, 27 exposed cases) for probably or definitely exposed, and 13.3 (95% CI = 2.5 to 70.0, 10 exposed cases) for definitely exposed. Again, among the group of cases excluding undifferentiated and non-keratinizing types, there was some evidence of an increased risk of nasopharyngeal cancers with increasing lifetime duration of exposure among all subjects with any potential exposure \((P_{\text{trend}} = 0.014) \); the OR for subjects who had worked at least 18 years in any potentially exposed jobs was 2.7 (95% CI = 1.2 to 6.0, 25 exposed cases). The risk of nasopharyngeal cancers also increased with increasing cumulative exposure \((P_{\text{trend}} = 0.033) \) among all potentially exposed subjects. The OR for subjects in the highest category of cumulative exposure (> 1.10 ppm-yrs) was 3.0 (95% CI = 1.3 to 6.6, 24 exposed cases). The authors reported that estimates were similar when exposures were lagged by 10 years, and that adjustment by exposure to wood dust did not affect results for exposure to formaldehyde. However, some evidence of effect measure modification by smoking was observed; measures of association as well as estimates of trend were generally stronger among current and former smokers than non-smokers. [A strength of this study is its large sample size, which improved the precision of the effect estimates and allowed for adjustment of the effect estimates by a number of potentially confounding factors, after which a positive association between formaldehyde exposure and nasopharyngeal cancers still remained.]
3.3.2.7 Taiwan: Hildesheim et al. (2001)

Study population. Hildesheim et al. (2001) conducted a population-based, case-control study of nasopharyngeal cancers and occupational exposure to wood dusts, formaldehyde, and solvents in Taipei, Taiwan. Incident cases of histologically confirmed nasopharyngeal cancers diagnosed between July 1991 and December 1994 were identified from two tertiary care hospitals in Taipei; eligible cases (N = 378) were residents of Taipei city or county for at least six months, and were less than 75 years of age. Ninety-nine percent (99%) of eligible cases (N = 375, 69% male) agreed to participate. Over 90% of cases were diagnosed with non-keratinizing or undifferentiated carcinomas and the remainder with squamous-cell carcinomas. Controls were identified using a National Household Registration System and were individually matched to cases (case to control ratio = 1:1) on age (within 5 years), sex, and area of residence. Eligible controls (N = 376) lived in Taipei city or county for at least six months and had no history of nasopharyngeal cancer; 87% (N = 327) agreed to participate.

Exposure assessment. Interviews administered to each participant by a trained nurse collected information about occupational, medical, and residential histories, demographics, diet, smoking and alcohol use. Occupational histories were collected for all jobs held for at least one year and included information on job title, industry, duties/activities, and tools/materials used on the job. Exposure assessment was conducted by an industrial hygienist blinded to case/control status; jobs were first classified into Standard Industry/Occupational Classification codes, and then each code was evaluated for probability and intensity of exposure to formaldehyde, wood dusts, and solvents and assigned a score of 0 (unexposed) to 9 (< 4 was considered low, ≥ 4 high). For each subject, this score plus information about duration were combined to produce six estimates of exposure: (1) years of exposure, (2) average intensity, (3) average probability, (4) cumulative exposure, (5) age at first exposure, and (6) years since first exposure. Duration of exposure was also calculated excluding exposures occurring within 10 years of diagnosis (for cases) or interview (for controls). Occupational data were available for 100% of cases and over 99% of controls. Of the 2,034 jobs reported by all 700 subjects, 156 (7.7%) were classified as exposed to formaldehyde; 74 cases and 41 controls were considered “ever” exposed. Some of the reported occupations considered
exposed to formaldehyde included farmers (N = 68), barbers, hairdressers, and

Statistical methods and results. Unconditional logistic regression was used to estimate

ORs [reported as risk ratios] for the association between formaldehyde exposure and

nasopharyngeal cancers. Exposure-response trends were assessed by entering exposure

into the model as a continuous variable and testing the resulting β-coefficient.

Stratification was used to examine effects by age, sex, Epstein-Barr virus (EBV)

seroprevalence (established as a risk factor for the development of nasopharyngeal
cancers), and histologic subtype. After adjustment by age, sex, education, and ethnicity,

the OR for subjects ever exposed to formaldehyde vs. never exposed was 1.4 (95% CI =

0.93 to 2.2, 74 exposed cases). Risk increased with increasing duration of exposure (P_{trend}

= 0.08) and increasing cumulative exposure ($P_{trend} = 0.10$). The observed trend was lower

when a 10-year exposure lag was applied. Increased risks were observed among

subjects with high average intensity or high probability of exposure compared with low

exposure intensity or probability. No clear pattern of risk was observed in analyses by

age at first exposure or years since first exposure. The authors noted that estimates were

unaffected by adjustment for wood dust or solvent exposure. The OR estimating the joint

effect of formaldehyde and wood dust was 1.8 (95% CI not reported). Among subjects

who were seropositive for EBV, the adjusted OR for ever exposure to formaldehyde

exposure was higher than among nonseropositive individuals (RR = 2.7, 95% CI = 1.2 to

5.9, no. exposed cases not specified, but 360 of the total of 375 nasopharyngeal cancer

cases were EBV positive.) Results of stratified analysis suggested that the effect of

formaldehyde exposure was the same across age ranges and histologic subtype

(excluding squamous-cell type because sample size was too small for meaningful

analysis).

3.3.3 Other head and neck cancers

Section 3.3.3 reviews case-control studies that examined the association between

formaldehyde and head and neck cancer at sites including the oro- and/or hypopharynx

1986a), the whole pharynx combined (Gustavsson et al.1998, Tarvainen et al. 2008), the
oral cavity (Gustavsson et al. 1998, Merletti et al. 1991, Tarvainen et al. 2008), salivary
glands (Wilson et al. 2004), and larynx (Berrino et al. 2003, Elci et al. 2003, Gustavsson
nasopharyngeal (see Section 3.3.2), oropharyngeal, and hypopharyngeal carcinomas. Six
studies were conducted in Europe (Merletti et al. 1991; Gustavsson et al. 1998; Laforest et
al. 2000; Berrino et al. 2003; Elci et al. 2003, Tarvainen et al. 2008) and three in the
studies evaluated more than one type of cancer. One study was described previously in
Section 3.3.1 (Vaughan et al. 1986a). In this section, studies are organized by tumor site.

3.3.3.1 Salivary gland: United States, Wilson et al. (2004)

Study Population. Wilson et al. (2004) reported on a case-control investigation of
occupational risk factors for salivary gland cancer mortality using mortality records
collected between 1984 and 1989 in 24 U.S. states. In this analysis, 2,505 cases aged 20
years or older were included whose death certificate listed cancer of the salivary gland as
the underlying cause of death (60% men, 7% black). Controls (N = 9,420) were randomly
selected from all deaths unrelated to infectious disease and frequency matched by age
(within 5 years), race, sex, and region (case to control ratio = 1:4).

Exposure assessment. Usual occupation and industry was obtained from death certificates
for 95% of white and 87% of black men, and for 45% of white and 31% of black women.
Jobs were coded according to the 1980 U.S. Census occupational classification scheme
and entered into a job-exposure matrix developed by the study industrial hygienist to
estimate the probability and intensity of exposure to several occupational substances
including formaldehyde. Subjects whose occupation was recorded as homemaker or
retired were excluded from the job-exposure matrix.

Statistical methods and results. Multiple logistic regression was used to calculate ORs
adjusted for age, marital status, and socio-economic status based on occupation. A
statistically significant exposure-response trend was observed for formaldehyde exposure
probability combined with intensity among white men ($P < 0.001$) but not women:
Compared with unexposed subjects, the adjusted OR for white men with a mid-high
probability/low intensity of exposure was 2.4 (95% CI = 0.86 to 6.75, 6 exposed cases),
and 1.6 (1.30 to 2.00, 31 exposed cases) for mid-high probability/mid-high intensity. No statistically significant ORs were observed for formaldehyde exposure and salivary gland cancer among black subjects, though elevated ORs were observed among black women.

3.3.3.2 Oral cavity and oropharynx: Italy Merletti et al. (1991)

Population. All incident cases of oral (N = 74) and oropharyngeal carcinoma (N = 12) diagnosed from July 1982 to December 1984 among male residents of Turin, Italy were assembled for a population-based, case-control study to investigate whether occupational factors have an etiologic role in these cancers (Merletti et al. 1991). Of 103 eligible cases, 86 (83%) agreed to participate. Of 689 eligible controls selected from a stratified random sample of male Turin residents by age, 373 (55%) were enrolled.

Exposure assessment. Detailed occupational histories as well as history of smoking, alcohol intake, and diet were obtained from standardized questionnaires conducted by non-blinded, trained interviewers. For each job held since 1945 for at least six months, subjects reported job title, activity of the plant, and type of production. The 1,150 reported jobs were classified by two industrial hygienists blinded to case status into 771 unique categories based on the International Standard Classification of Occupations of the International Labor Office and the International Standard Industrial Classification. A job-exposure matrix constructed by IARC for a study of laryngeal cancer was applied to estimate the probability and intensity of exposure to 16 occupational substances including formaldehyde and non-specific exposures (e.g., dust).

Results. Odds ratios for oral and oropharyngeal carcinoma combined were estimated using unconditional logistic regression adjusting for age, education, birth place, smoking, and alcohol consumption. Compared with subjects whose occupational exposure to formaldehyde did not exceed that of the general population, the adjusted OR for subjects with any excess exposure was 1.6 (95% CI = 0.9 to 2.8, 25 exposed cases) and the OR for subjects with probable or definite exposure was 1.8 (95% CI = 0.6 to 5.5, 6 exposed cases). The authors reported that inconsistent relationships were observed for duration of exposure to formaldehyde, though effect estimates ranged from 1.4 to 2.1 (95% CIs not reported). Separate results for oropharyngeal cancer (N = 12 cases) were not presented.
3.3.3.3 Oral cavity, tongue and pharynx: Finland, Tarvainen et al. 2008

Study population. The association between oral cavity, tongue, and pharyngeal cancers and occupational exposures was investigated in a standardized incidence study by Tarvainen *et al.* (2008), using all diagnosed cases identified among all Finnish men and women, born between 1906 and 1945 and followed from 1971 to 1995, through the Finnish Cancer Registry. A total of 46.8 million person-years were represented by the cohort, and a total of 2,708 cases of oral cavity, tongue and pharyngeal cancers (excluding nasopharyngeal cancers) were identified.

Exposure assessment. The occupation held the longest according to the 1970 census was converted via a national job-exposure matrix to semi-quantitative (low, medium, and high) estimates of cumulative exposure to 43 separate chemical agents.

Statistical methods and results. Standardized incidence ratios for combined oral, tongue, and pharyngeal cancers were calculated based on national rates. Exposure to low, medium, and high estimated cumulative levels of formaldehyde was associated with statistically nonsignificant SIRs of 0.79 (95% CI = 0.6 to 1.03, 59 cases), 1.01 (95% CI = 0.43 to 1.98, 8 cases) and 0.73 (95% CI 0.27 to 1.59, 6 deaths), respectively.

3.3.3.4 Oro- and hypopharynx: Washington State, Vaughan et al. (1986a)

The association between oro- and hypopharyngeal cancer (OHPC) (N = 205) and occupational formaldehyde exposure was also examined by Vaughan *et al.* (1986a) in the population-based, case-control study (552 controls) in Washington state (see Section 3.2.1 for complete study description and results on sinonasal cancers; see section 3.2.2 for results on nasopharyngeal cancers). Approximately 72% of OHPC cases occurred among subjects classified as unexposed. Odds ratios adjusted for age, sex, smoking, and alcohol showed no association between maximum lifetime exposure to formaldehyde and OHPC. Effect estimates for total number of years exposed and cumulative exposure scores showed a modestly increased risk only for the longest exposure period or highest cumulative exposure categories: OR = 1.3 (95% CI = 0.7 to 2.5, 26 exposed cases) for ≥ 10 years exposure, and OR = 1.5 (95% CI = 0.7 to 3.0, 21 exposed cases) for a cumulative exposure score of ≥ 20. These estimates were higher when the analysis excluded occupational data obtained from proxy interviews.
3.3.3.5 Hypopharynx and larynx: France, Laforest et al. (2000)

Study population. A hospital-based, case-control study was conducted in France to assess possible associations between occupational exposures including formaldehyde and histologically confirmed squamous-cell carcinomas of the hypopharynx and larynx among men (Laforest et al. 2000). Cases were diagnosed at one of 15 French hospitals between January 1989 and April 1991. Of 664 eligible living cases, 201 cases of hypopharyngeal cancer and 296 cases of laryngeal cancer were included. Controls were identified from the same medical catchment area as cases and were frequency matched to cases by age and hospital. Controls were diagnosed between 1987 and 1991 with primary cancers at other sites including colon/rectum, liver/gall bladder, pancreas, hematopoietic system, bones/cartilage, skin, soft tissue, prostate/testis, bladder/urinary organs, brain/nervous system, thyroid, and stomach. Of 355 eligible living controls, 296 (83%) were enrolled.

Exposure assessment. Trained occupational physicians, who were not blinded to case status, conducted interviews with subjects to collect information about demographic characteristics, smoking and alcohol consumption, and lifetime occupational history. Jobs were first coded by occupation and industry, and then occupational exposure to formaldehyde and other agents and were evaluated using a job-exposure matrix. The matrix estimated the probability and intensity of exposure for each job as well as lifetime duration for each subject; subjects with an estimated probability of exposure to formaldehyde less than 1% were considered unexposed. Three summary exposure indices were constructed: maximum probability of exposure (3 levels), total duration of exposure, and cumulative level of exposure (< 0.25 ppm, 0.25 to 1.00 ppm, > 1.00 ppm).

Statistical methods and results. Multivariate unconditional logistic regression was used to estimate ORs and 95% CIs adjusting for age, alcohol, and smoking. Other occupational exposures as well as education were considered as potential confounders. Subjects who were missing data on alcohol use or reported being non-drinkers (N = 33) were excluded for analysis. Further analyses were conducted excluding subjects with probability of exposure less than 10%, and excluding the 5, 10, and 15 years of exposure immediately preceding diagnosis to allow for a possible induction period. The adjusted (age, alcohol,
smoking, and exposure to coal dust and asbestos) OR for hypopharyngeal cancers for men ever exposed to formaldehyde was 1.35 (95% CI = 0.86 to 2.14, 83 exposed cases). This estimate was 1.74 (95% CI = 0.91 to 3.34, 41 exposed cases) after excluding subjects with less than 10% probability of exposure. The OR comparing subjects with the highest probability of exposure (> 50% probability) to those unexposed was 3.78 (95% CI = 1.50 to 9.49, 26 exposed cases); increasing probability of exposure was significantly associated with increasing risk of hypopharyngeal cancers ($P_{\text{trend}} < 0.005$). Excluding subjects with probability of exposure less than 10%, the OR for subjects with the highest duration of exposure (> 20 years) was 2.70 (95% CI = 1.08 to 6.73, 16 exposed subjects). The corresponding OR for subjects with the highest cumulative level of exposure was 1.92 (95% CI = 0.86 to 4.32, 25 exposed subjects). Evidence of a trend of increasing ORs for hypopharyngeal cancers with increasing duration ($P_{\text{trend}} < 0.04$) and cumulative level of exposure ($P_{\text{trend}} < 0.14$) to formaldehyde was observed. Compared with unexposed subjects, the OR for laryngeal cancer among men ever exposed to formaldehyde was 1.14 (95% CI = 0.76 to 1.70, 102 exposed cases) after adjustment for age, alcohol, smoking, and exposure to coal dust and asbestos. This estimate did not change markedly after excluding subjects with probability of exposure less than 10%. The authors noted that no indication of an exposure-response trend was observed for any exposure index (data not presented). Among heavy drinkers (at least 5 glasses per day), the OR for laryngeal cancer associated with ever being exposed to formaldehyde was 1.68 (95% CI = 0.97 to 2.89, no. of cases not specified). [An OR for the association between alcohol consumption and laryngeal cancer independent of formaldehyde exposure was not reported.] Elevated but statistically non-significant associations were observed when cases were further stratified into laryngeal sub-sites. The authors noted that introducing an induction time did not substantially change the results for either hypopharyngeal cancer or laryngeal cancer (data not presented). [Controls included subjects with primary cancers at sites that have suspected associations with formaldehyde exposure (e.g., lymphohematopoietic malignancies). Such inclusion could have biased the observed effect estimates toward the null.]
3.3.3.6 Hypopharynx and larynx: Europe, Berrino et al. (2003)

Study population. Berrino et al. (2003) used occupational data obtained from a previously conducted case-control study by IARC of hypopharyngeal cancer and laryngeal carcinoma to investigate the association between occupational exposure to formaldehyde and cancer at these two sites. Cases of non-*in situ* cancer of the hypopharynx (N = 100) and larynx (N = 213) were identified between 1979 and 1982 at six centers in four southern European countries (France, Italy, Spain, and Switzerland). An age-stratified random sample of controls (N = 819) was selected by each center.

Exposure assessment. Occupational histories and information on diet, alcohol, and smoking were collected by interview in the hospital for cases and at home for controls. Some interviews were conducted with next of kin (details not provided). The occupational history questionnaire covered each job held at least one year after 1944 and collected information about title, task, industry, calendar time of employment, and potential exposure. A panel of occupational physicians, industrial hygienists, and chemical engineers blinded to case status assessed the probability of exposure for each job to 16 industrial chemicals including formaldehyde. A job-exposure matrix was then created to estimate intensity and probability of exposure for each job as well as a cumulative exposure index for each subject.

Statistical methods and results. Odds ratios and 95% confidence intervals were estimated using unconditional logistic regression and adjusted for study center, age, smoking, alcohol, socio-economic status, diet, and other occupational exposures. Results for formaldehyde were presented from analyses restricted to subjects less than 55 years of age in order to better estimate lifetime exposures, since occupational histories were only collected since 1945 (123 exposed cases and 196 exposed controls for hypopharyngeal and laryngeal carcinomas combined). No association between the probability of exposure to formaldehyde and either hypopharyngeal or laryngeal cancer was observed.

Individuals with 10 to 19 years of exposure had an increased risk of laryngeal cancer (OR for 10 to 19 years = 2.2, 95% CI = 1.2 to 4.2, no. of exposed cases not reported), though a clear exposure-response trend was not evident. [The ability to detect an effect was limited by small numbers of exposed subjects and potential exposure misclassification.]
Independent validations of the exposure classification used in this analysis found that 14% of jobs classified by the job-exposure matrix as unexposed were considered definitely exposed according to the independent assessment.

3.3.3.7 Larynx: Washington state, Wortley et al. (1992)

Study population. Incident cases of laryngeal cancer identified by a population-based cancer registry in Seattle, Washington and diagnosed between September 1983 and February 1987 among residents of three large counties in western Washington state aged 20 to 70 years were included in a population-based case-control study of occupational risk factors for laryngeal cancer (Wortley et al. 1992). Of 291 eligible cases, 235 (81%) participated in the study (79% males). Controls were identified by random-digit dialing and frequency matched to cases by age and sex; the participation rate among eligible controls was 8%, yielding 547 controls (65% males).

Exposure assessment. In-person interviews were conducted (7% of case interviews with next-of-kin) to obtain information about lifetime occupational history, smoking, and alcohol intake. Occupational questions related to job titles, tasks, and industry for each job held at least six months; job title and industry were then coded according to the 1980 U.S. Census occupational codes. Exposure to six agents including formaldehyde was assessed in greater detail by a panel of four industrial hygienists who constructed a job-exposure matrix for each agent; jobs were then classified into four levels of exposure based on probability and intensity of exposure.

Statistical methods and results. Multivariate logistic regression was applied and a latency effect was considered by excluding all exposures within 10 years of case diagnosis or control selection. Ninety cases (90) (38%) and 154 controls (28%) were considered ever exposed to formaldehyde. No statistically significant effect estimates were observed between laryngeal cancer and exposure to formaldehyde estimated by peak exposure or duration of exposure, adjusted for age, smoking, alcohol, and education. When low-level exposures were excluded, the OR among workers with medium or high exposure for at least 10 years duration compared with unexposed workers was 4.2 (95% CI = 0.9 to 19.4, no. exposed cases not reported); the corresponding OR among workers with high exposure was 4.3 (95% CI = 1.0 to 18.7). The authors noted that these estimates
increased slightly when the 10-year exposure lag was applied to account for a latency period (data not presented).

3.3.3.8 Larynx: Turkey, Elci et al. (2003)

Study population. A hospital-based incident case-control study was conducted to investigate occupational risk factors for laryngeal cancer among men in Turkey (Elci et al. 2003). The case group included 951 confirmed cases of laryngeal cancer among men presenting at an oncology treatment center at a hospital in Istanbul between 1979 and 1984. Controls (N = 1,519) were selected from hospital patients with other cancers thought not to share similar etiologic factors with laryngeal cancer (including Hodgkin’s lymphoma, soft tissue sarcoma, and testicular cancer) and non-cancer diagnoses.

Exposure assessment. Upon admission to the hospital, all patients responded to a questionnaire about occupational history, tobacco, and alcohol use; questionnaire data was complete for 99% of cases and all controls. A job-exposure matrix was constructed by an industrial hygienist blinded to case/control status and used to estimate for each reported occupation and industry the probability and intensity of exposure to five occupational substances, including formaldehyde.

Statistical methods and results. Unconditional logistic regression was applied to estimate ORs adjusted by age, smoking, and alcohol use. No association between exposure to formaldehyde and laryngeal cancer was observed by either probability or intensity of exposure. The OR for laryngeal cancer among men considered ever exposed to formaldehyde was 1.0 (95% CI = 0.8 to 1.3, 89 exposed cases).

3.3.3.9 Various head and neck cancers: Sweden, Gustavsson et al. (1998)

Study population. Occupational risk factors for squamous-cell carcinoma of the upper gastrointestinal tract among men 40 to 70 years were investigated in an incident case-control study in Sweden (Gustavsson et al. 1998). From weekly health care facility reports and regional cancer registries, 605 cases of head and neck squamous-cell carcinoma were identified. Ninety percent (90%) of cases (N = 545) were enrolled: 138 with pharyngeal cancer, 128 with oral cancer, 122 with esophageal cancer, and 157 with laryngeal cancer. Controls (N = 756) were selected from the same study base by stratified
random sampling from population registries; 641 (85%) eligible controls were enrolled
and frequency matched to cases by region and age.

Exposure assessment. Subjects were interviewed by one of two trained nurses about
lifestyle and environmental factors including oral hygiene, smoking, alcohol and snuff
use, and occupational history. Questions about occupational history covered all jobs ever
held for more than one year and included information about title, task, duration, industry,
and potential exposures. An industrial hygienist blinded to case/control status coded each
job according to the Swedish standard occupational classifications and then further
classified each occupation by probability and intensity of exposure to 17 specific agents
including formaldehyde (9.4% of controls were exposed to formaldehyde). For
formaldehyde, three primary measures of exposure were estimated: ever/never exposed,
duration of exposure, and cumulative exposure.

Statistical methods and results. Unconditional logistic regression was used to estimate
ORs and 95% CIs. Formaldehyde effect estimates were adjusted for region, age, alcohol,
and smoking. Elevated estimates were observed for most cancer sites, though no
estimates achieved statistical significance. For cancers in all sites combined, the adjusted
OR comparing subjects ever exposed to formaldehyde to those unexposed was 1.42 (95% CI = 0.94 to 2.15, 69 exposed cases). Adjusted odds ratios for individual sites were as
follows: 1.01 (95% CI = 0.49 to 2.07, 13 exposed cases) for pharyngeal cancer, 1.45
(95% CI = 0.83 to 2.51, 23 exposed cases) for laryngeal cancer, 1.90 (95% CI = 0.99 to
3.63, 19 exposed cases) for esophageal cancer, and 1.28 (95% CI = 0.64 to 2.54, 14
exposed cases) for cancers of the oral cavity. The authors reported that no dose-response
trend based on cumulative exposure or duration exposed was observed for any cancer site
(data not presented). [It is not clear whether other occupational exposures were
considered as confounders; reported effect estimates were not adjusted for other known
occupational exposures.]

3.3.4 Lung cancer
Section 3.3.4 reviews case-control studies that examined the association between
formaldehyde and lung cancer. These studies were conducted in Denmark (Jensen and
Anderson (1982), the United Kingdom (Coggon et al. 1984), Canada (Gérin et al. 1989),
the United States (Brownson et al. 1993), and Taiwan (Chen et al. 2008). Four nested case-control studies of respiratory cancer are described in Sections 3.2.4 (Chiazze et al. 1997, Marsh et al. 2001), 3.2.5 (Partanen et al. 1990), 3.2.6 (Andjelkovich et al. 1994) and 3.2.7 (Bond et al. 1986). Note that Coggon et al. (1984) included cancer of the trachea in their analysis of respiratory cancers.

3.3.4.1 Denmark: Jensen and Anderson (1982)

Physicians: Denmark. Jensen and Anderson (1982) reported on a small case-control series of 84 lung cancers (79 male, 5 female) among Danish physicians, identified from the Danish Cancer Registry between 1943 and 1976 and 252 physician controls matched on age, sex and survival (no details on the selection of controls or cases was given.). No association with potential sources of formaldehyde exposure were reported. 8 cases and 23 controls had ever worked in anatomy, pathology or forensic medicine (RR = 1.0, 95% CI = 0.4 to 2.4).

3.3.4.2 United Kingdom: Coggon et al. (1984)

Study population. Coggon et al. (1984) conducted a population-based, case-control study using death certificates to obtain information about the occupations of all males under the age of 40 years who died in England or Wales between 1975 and 1979 of epithelial cancers of the lung, trachea, or bladder (see Section 3.2.6 for results on bladder cancer). Cases of lung and tracheal carcinoma were combined and considered cancer of the bronchus (N = 598). Controls (N = 1,180) that had died from any other cause during the same time period were individually matched to each case by sex, year of death (within 5 years), year of birth, and residential district. Of 598 cases, 582 (97%) were matched with two controls; the remaining cases were matched with one control.

Exposure assessment. Occupations noted on the death certificates were coded using the 1970 Office of Population Census and Surveys Classification of Occupations scheme and entered into a job-exposure matrix by a trained occupational hygienist. Using this matrix, each of the 233 uniquely classified occupations was then assigned an exposure score (high/low/none) to nine known or suspected carcinogens, including formaldehyde. Among workers with carcinoma of the bronchus, 296 cases (50%) were considered exposed to formaldehyde; 472 controls (40%) were considered exposed.
Statistical methods and results. Matched tabular analysis was used to calculate estimates of the association between each carcinogen and carcinoma of the bronchus. For all exposed occupations, the OR for formaldehyde was 1.5 (95% CI = 1.2 to 1.9, 296 exposed cases). Among occupations considered to have high exposure to formaldehyde, the OR was 0.9 (95% CI = 0.6 to 1.4, 44 exposed cases). [The ability to detect an effect in this study was limited by (1) the use of death certificates for occupational information, thus limiting the construction of a complete job-exposure matrix and resulting in potential non-differential exposure misclassification, (2) matching by pay class, which is likely to be correlated with occupation, and (3) insufficient capture of long-term exposures and insufficient follow-up to account for the relevant latency period of lung cancer, since subjects in this study had died before 40 years of age.]

3.3.4.3 Canada: Gérin et al. (1989)

Study population. Gérin et al. (1989) investigated the association between exposure to formaldehyde and subsequent risk of cancer at 14 primary sites of interest among males aged 35 to 70 years, using data from a large multi-site case-control study in Montreal, Canada of occupational exposures and cancer. Histologically confirmed primary incident cases of cancer (N = 4,510) diagnosed between September 1979 and December 1985 were ascertained from all hospitals in the Montreal area. This analysis included 857 cases of lung cancer (see Section 3.2.5 for results on lymphohematopoietic malignancies, and Section 3.2.6 for results on other cancer sites). Sub-types of lung cancer were also examined including oat-cell (N = 159) and squamous-cell cancers (N = 359), adenocarcinomas (N = 162), and other histologic sub-types (N = 177). For each case series, a cancer control group was selected from the case series that included patients with tumors at any other site (some exceptions noted). In addition to the internal cancer control series, 740 population-based controls frequency matched by age were selected from electoral lists; 533 (72%) agreed to participate.

Exposure assessment. Trained interviewers collected information from each patient or next-of-kin on demographic characteristics, medical history, diet, and a complete occupational history including a semi-structured probing section designed to elicit detailed descriptions of each job ever held in a working lifetime. Jobs were coded
according to standard Canadian classifications and then further classified by a team of chemists and hygienists by probability, frequency, and concentration of exposure to occupational exposures including formaldehyde. Of 4,259 interviewed subjects, 971 (23%) subjects ever held at least one job classified as exposed to formaldehyde.

Statistical methods and results. Odds ratios and 95% CIs were estimated using logistic regression. Both occupational and non-occupational factors were evaluated as potential confounders using change-in-estimate methods whereby any factor that changes the estimate of formaldehyde for the cancer site of interest by more than 10% is considered a confounder. Models were further adjusted by five a priori variables including age, ethnicity, income, smoking, and “dirtiness” (a semi-quantitative measure constructed by the study chemists) of the jobs held. The OR for all lung cancer and any formaldehyde exposure was 0.8 (95% CI = 0.6 to 1.0, 180 exposed cases) using the cancer control series. Results using the population control series were not markedly different. [Some controls had types of cancer potentially associated with formaldehyde; inclusion of these controls could potentially attenuate true effects.] The OR for the highest exposure category (i.e., greater than 10-years duration of exposure at high concentrations) was 1.5 (95% CI = 0.8 to 2.8, 24 exposed cases). In the analysis by histologic subtype, the largest estimates in magnitude were observed for adenocarcinomas: the OR for subjects classified into the highest exposure category was 2.3 (95% CI = 0.9 to 6.0, 7 exposed cases) using the cancer control series.

3.3.4.4 Missouri: Brownson et al. (1993)

Study population. Brownson et al. (1993) conducted a population-based, case-control study to investigate occupational risk factors for incident lung cancer among non-smoking women. Eligible cases included cases of primary lung cancer (N = 429) identified by the Missouri Cancer Registry and diagnosed between 1986 and 1991 among white women aged 30 to 84 years who were Missouri residents and either lifetime non-smokers or ex-smokers who had stopped smoking at least 15 years prior to diagnosis or had smoked less than one pack-year. Controls (N = 1,021) were selected from state driver’s license files (for women less than 65 years of age) and from Medicare recipient
rasters (for women aged 65 or older); controls were frequency matched by age (case to
control ratio = 1:2).

Exposure assessment. In-person occupational history interviews were conducted with 429
cases (66% of eligible cases; 58% case interviews with next-of-kin) and 1,021 controls
(67% of eligible controls) to obtain information about job titles, calendar duration of
employment, and exposure to specific substances.

Statistical methods and results. Odds ratios were estimated using multivariate logistic
regression. All subjects who reported exposure to formaldehyde were also lifetime non-
smokers. The OR for lung cancer among all subjects ever exposed to formaldehyde was
0.9 (95% CI = 0.2 to 3.3, 3 exposed cases), adjusted for age and history of previous lung
disease. [Use of self-reported exposure to formaldehyde may have caused non-
differential exposure misclassification, which would likely bias observed ORs towards
the null.]

3.3.4.5 Taiwan: Chen et al. 2008.

Study population. Chen et al. (2008) conducted a hospital-based, case-control study of
147 incident cases of lung cancer and 400 controls from a population exposed to the
smoke from mosquito coils, which primarily contain pyrethrin insecticides, but also
release formaldehyde (which may form a reactive species of bischloromethyl ether) from
the active ingredient octachlorodipropyl, as well as dyes, oxidants, and other compounds.

Exposure assessment, statistical methods, and results. Frequency of exposure to
mosquito coils and other variables was ascertained by personal interview, and
unconditional logistic regression was used to calculate adjusted odds ratios. The authors
reported statistically significantly elevated ORs of 3.78 (95% CI = 1.55 to 6.90, 24 cases)
and 2.67 (95% CI = 1.60 to 4.50, 32 cases), adjusted for smoking and demographic
variables, in association with coil use more than 3 times per week or less than 3 times per
week, respectively, compared with those who did not use coils. [The independent effect
of formaldehyde exposure cannot be evaluated in this study.]
3.3.5 Lymphohematopoietic malignancies

Section 3.3.5 reviews case-control studies that examined the association between formaldehyde and lymphohematopoietic malignancies (ICD codes 200-209) including non-Hodgkin’s and Hodgkin’s lymphoma (Gérin et al. 1989, McDuffie et al. 2001, Tatham et al. 1997, Wang et al. 2009), leukemia (Blair et al. 2001), multiple myeloma (Boffetta et al. 1989, Heineman et al. 1992, Pottern et al. 1992) and myelodysplastic syndrome (West et al. 1995). Two studies were conducted in Canada (Gérin et al. 1989, McDuffie et al. 2001), three in Europe (Heineman et al. 1992, Pottern et al. 1992, West et al. 1995), and four in the United States (Blair et al. 2001, Boffetta et al. 1989, Tatham et al. 1997, Wang et al. 2009). Gérin et al. (1989) was described previously in Section 3.2.4. Two nested case-control studies of lymphohematopoietic malignancies are described in Sections 3.2.5 (Partanen et al. 1993) and 3.2.7 (Ott et al. 1989).

3.3.5.1 Canada: Gérin et al. (1989)

Gérin et al. (1989) investigated the association between exposure to formaldehyde and Hodgkin’s (N = 53) and non-Hodgkin’s lymphoma (N = 206) among males aged 35 to 70 years, using data from a large multi-site case-control study in Montreal, Canada (see Section 3.2.4 for complete study description and results on cancer of the bronchus). Controls consisted of various internal control groups selected from the case series, and 740 population controls. Using the cancer control series, the ORs (adjusted for age, ethnicity, socioeconomic status, smoking, and “dirtiness” of jobs held) for non-Hodgkin’s and Hodgkin’s lymphoma comparing ever exposed to never exposed was 0.9 (95% CI = 0.6 to 1.3, 47 exposed cases), and 0.5 (95% CI = 0.2 to 1.2, 8 exposed cases), respectively. [Effect estimates did not change markedly using the population-based control series.] Non-Hodgkin’s lymphoma was further evaluated by exposure duration and concentration; effect estimates ranged from 0.7 to 1.3 (e.g., OR = 1.3, 95% CI = 0.7 to 2.4, for 15 cases exposed at low cumulative concentration for greater than 10 years).

3.3.5.2 United States: Boffetta et al. (1989)

Study population. A population-based nested case-control study of 282 deaths from multiple myeloma observed in the second stage of the American Cancer Society’s Cancer Prevention prospective cohort study and matched with up to 4 within-cohort controls was
conducted by Boffetta et al. (1989). The association between multiple myeloma (MM), occupational groups and selected exposures was examined, based on questionnaires completed by enrollees and assignment of exposure status by the investigators.

Statistical methods and results. Using conditional logistic regression, a statistically nonsignificant association between multiple myeloma and formaldehyde exposure was observed (OR = 1.8, 95% CI = 0.6 to 5.7, 4 cases). [The likelihood of misclassification of exposure in this study was high, however, and subjects assigned to the high-exposure group had lower OR than those in the low exposure group. The power to detect effects of given agents in this study was also limited.]

3.3.5.3 Denmark: Heineman et al. (1992) and Pottern et al. 1992

Study population. Heineman et al. (1992) and Pottern et al. (1992) conducted a population-based, case-control study of the association between multiple myeloma incidence in Danish men and women in relation to their occupation. The analysis of men was conducted based on 1,098 incident cases for whom industrial occupational histories could be constructed and diagnosed between 1970 and 1984. Cases were identified via the Danish Cancer Registry and matched with age- and sex-matched controls. The analysis of women was based on 363 cases and 1,517 controls diagnosed over the same period who had a history of industrial employment and for whom exposure to one or more of 47 chemical agents could be evaluated.

Exposure assessment. A job-exposure matrix was constructed by industrial hygienists based on pension and tax records of employment history by industrial employment history and most recent occupations. Among men, those recorded with more than 5 years of employment (791 cases and 3,070 controls), potential exposure to one or more of 47 chemicals were evaluated. [The numbers of cases and controls for whom historical industrial exposures could be established is not clearly stated.]

Statistical methods and results. Maximum likelihood odds ratios were calculated for each occupation vs. all occupations combined. For analyses of specific exposures, comparison between estimated exposed and never exposed subjects was conducted. Possible (144 cases) and probable (41 cases) exposure to formaldehyde was not associated with an
increased risk of multiple myeloma among men in this study (OR = 1.1, 95% CI = 0.7 to 1.6, 41 cases). Fifty-six (56) women with multiple myeloma were considered to have possible exposure to formaldehyde and 4 probable exposure; in neither case were the odds ratios significantly elevated in comparison with controls (ORs = 1.1, 95% CI = 0.8 to 1.6) and 1.6, 95% CI = 0.4 to 5.3), respectively.

3.3.5.4 United States: Tatham et al. (1997)

Study population. Occupational risk factors for subgroups of non-Hodgkin’s lymphoma were investigated in a population-based, case-control study of male cases born between 1929 and 1953, diagnosed between 1984 and 1988, and identified by population-based cancer registries in Atlanta, Connecticut, Iowa, Kansas, Miami, San Francisco, Detroit, and Seattle (Tatham et al. 1997). Only living cases were eligible, and diagnoses were confirmed by a panel of pathologists. Living controls were identified using random-digit dialing and frequency matched to cases by registry and date of birth (within 5 years). Of 2,354 identified cases and 1,910 controls, the final numbers of subjects available for analysis were 1,048 cases (45%) and 1,659 controls (87%) after exclusions for a variety of reasons including unconfirmed diagnosis and presence of comorbid medical conditions. Three subgroups of non-Hodgkin’s lymphoma were identified: small-cell diffuse lymphoma (N = 185), follicular lymphoma (N = 268), and large-cell diffuse lymphoma (N = 526).

Exposure assessment. All study subjects were interviewed by telephone to collect information about demographic and lifestyle characteristics, medical and military histories, and occupational history covering all jobs held for at least one year. The job history included questions about job title, tasks, type of industry, and calendar duration as well as information about exposure to specific substances including formaldehyde. Study investigators classified exposure to formaldehyde and other substances using data from the self-reported occupational histories.

Statistical methods and results. Conditional logistic regression was used to estimate ORs and 95% CIs. Covariates considered potential confounders included age at diagnosis, education, ethnicity, year of entry into the study, being Jewish, marital status, risk factors for AIDS, military service, and smoking. Among all cases of non-Hodgkin’s lymphoma...
combined, 93 (8.9%) cases were exposed to formaldehyde; 130 (7.8%) controls were considered exposed. The adjusted OR for all lymphomas combined associated with ever being exposed to formaldehyde was 1.20 (95% CI = 0.86 to 1.50, 93 exposed cases). For the specific subgroups, the corresponding ORs were 1.4 (95% CI = 0.87 to 2.40, 21 exposed cases) for small-cell diffuse lymphomas, 0.71 (95% CI = 0.41 to 1.20, 17 exposed cases) for follicular lymphomas, and 1.10 (95% CI = 0.79 to 1.70, 46 exposed cases) for large-cell diffuse lymphomas.

3.3.5.5 Canada: McDuffie et al. (2001)

Study population. A national multi-center population-based study of non-Hodgkin’s lymphoma incidence association with pesticide use among Canadian men was conducted by McDuffie et al. (2001). Cases of NHL diagnosed between 1991 and 1994 and controls were identified via provincial cancer registries were eligible for the study; age-matched controls were identified through health records, telephone directories and voter rolls from the general population. Men who reported using pesticides for more than 10 hours per year on a mailed questionnaire were selected for telephone interview to obtain detailed pesticide exposure, demographic, and other risk factor data, together with a random sample of 15% of other (mail) respondents. All cases and controls were alive at the time of interview. The final analyses included 517 cases and 1,506 controls.

Exposure assessment. Exposure to specific pesticides, including both occupational and nonoccupational use, was ascertained by telephone questionnaire using a pre-designated list of pesticides.

Statistical methods and results. Conditional logistic regression was used to compute odds ratios stratified by age and province of residence, and adjusted for medical and other variables with significant associations in initial univariate analyses. The use of formaldehyde-containing fungicides among 7 cases of NHL and 233 controls was not significantly associated with NHL (adjusted OR = 0.92, 95% CI = 0.37 to 2.29). [Misclassification of exposure is likely in studies of this type; it is also not clear whether past exposures were taken into account. In addition, no adjustments were made for co-exposures, and few of the cases or controls were exposed to any given type of pesticide, so that the power to detect effects is low.]
3.3.5.6 Connecticut, US: Wang et al. (2009)

Study population. Wang et al. (2009) conducted a population-based case-control study of non-Hodgkin’s lymphoma incidence among women residents aged 21 to 84 years old in Connecticut, and solvent exposures. Seventy-two percent (72%) of the women (N = 601) were available for in-person interviews and were included in the study, together with 71 controls identified through random-digit dialing (69% participation rate) or Medicare or Medicare files (47% participation rate).

Exposure assessment. A job-exposure matrix developed by the National Cancer Institute was used to construct exposure histories from occupation and industry histories provided by respondents, who were assigned semi-quantitative estimates of solvent exposure by intensity and probability (low, medium and high) according to combinations of industry and occupation.

Statistical methods and results. Unconditional logistic regression models, adjusting for age, family history of hematopoietic cancers, alcohol consumption, and race were used to estimate odds ratios of the association between cumulative solvent exposures and risk of NHL. (Adjustment for other variables including income, education, smoking, and immune disease history did not affect observed associations and were excluded from final models.) Polytomous models were used to evaluate the association between histological subtypes of NHL and solvent exposure. Ever exposure was associated with a borderline statistically significant increase in risk of NHL (OR = 1.3, 95% CI = 1.0 to 1.7, 203 cases; adjusted for age, family history of hematopoietic disease, race, and alcohol use).

However, results by level of intensity of estimated exposure and level of probability of exposure were somewhat inconsistent: borderline statistically significant associations were observed for low average intensity (OR = 1.4, 95% CI = 1.0 to 1.8, 129 exposed cases) and low average probability (OR = 1.3, 95% CI = 1.0 to 1.7, 165 exposed cases) but not medium or high intensities and probabilities (P_trend = 0.21 and 0.11, respectively). The risk of NHL appeared to be confined to large B-cell lymphomas, which were associated with an OR of 1.9 (95% CI = 1.3 to 2.6, 80 exposed cases) among ever vs. never exposed. A statistically significantly increased risk of this subtype was observed for formaldehyde exposure at low average intensity (OR = 2.1, 95% CI = 1.4 to 3.1, 54
exposed cases), but medium to high average intensity of exposure was associated with a
lower risk (OR = 1.5, 95% CI = 0.9 to 2.4, 26 exposed cases). When exposure
probabilities were analyzed, a medium-high probability of formaldehyde exposure
yielded a risk of 2.6 (95% CI = 1.5 to 4.7, 20 exposed cases) for large B-cell lymphomas
($P_{\text{trend}} < 0.01$). No association with follicular lymphoma, chronic lymphocytic
lymphoma/small lymphocytic lymphomas and formaldehyde were observed.

3.3.5.7 Iowa, US: Blair et al. (2001)

Study population. Blair et al. (2001) conducted a population-based, case-control study of
occupation and leukemia including all cases of histologically confirmed leukemia
diagnosed among white men at least 30 years of age identified from the Iowa State
Cancer Registry between 1981 and 1983 and all such cases from a surveillance network
of hospitals in Minnesota (97% coverage) between 1980 and 1982. Because the primary
purpose of the study was to evaluate agricultural risk factors, cases and controls residing
in the urban areas of Minneapolis, St. Paul, Duluth, and Rochester were excluded. Of 669
eligible cases, 578 (86%) participated in the study; interviews were conducted with 340
living cases and 238 surrogates for deceased or severely ill cases. Population-based
controls (N = 1,245) were identified using random-digit dialing to obtain controls under
65 years of age (N = 474, 77% participation rate), from Health Care Financing
Administration records to obtain controls over 65 years of age (N = 519, 79%
participation rate), and from state death certificate records to obtain surrogate respondents
for deceased subjects (N = 550, 77% participation rate). Controls were frequency
matched by 5-year age group, vital status at time of interview, and state of residence. Five
hundred thirteen (513) cases and 1,087 controls were used for analysis after excluding
subjects whose sole occupation was farming since the incidence of leukemia was
previously found to be significantly elevated among farmers in this study population.
Histologic subtypes included in this analysis were: chronic lymphocytic leukemia (N =
214), acute myeloid leukemia (N = 132), chronic myeloid leukemia (N = 46), acute
lymphocytic leukemia (N = 13), myelodysplasia (N = 58), and other miscellaneous
leukemia types (N = 50).
Exposure assessment. Structured interviews were conducted between 1981 and 1984 to collect information about occupational history for each job held for at least one year, demographic characteristics, residential history, medical history and family history of cancer, as well as smoking and alcohol use. The occupational history included questions about job title, industry, and calendar duration of employment. A job-exposure matrix was constructed for selected occupational exposures including formaldehyde, and exposure assignment was made without knowledge of case status. Probability and intensity of exposure were each classified into 4 scores (unexposed/low/moderate/high), considering known changes in potential exposure probabilities by industry and calendar decade.

Statistical methods and results. Unconditional logistic regression was used to estimate ORs and 95% CIs for all leukemias and for individual histological subtypes, adjusting for the matching factors as well as pesticide use, education, hair dye use, family history of cancer, and smoking. Effect estimates for formaldehyde were generally close to the null for all leukemias combined and by histologic subtype. Elevated effect estimates were based on small sample sizes (e.g., the OR for chronic myeloid leukemia was 2.9 [95% CI = 0.3 to 24.5, 1 exposed case]). [Small numbers of exposed cases and controls (e.g., 3 highly exposed cases total and 9 highly exposed controls) limited the ability of this study to detect an effect.]

3.3.5.8 United Kingdom: West et al. (1995)

Study population. West et al. (1995) conducted a population-based, case-control study of incident cases of myelodysplastic syndrome (MDS) in residents over 15 years of age in Southeast Wales, Wessex, and West Yorkshire to identify occupational and environmental exposures potentially associated with myelodysplasia in the United Kingdom. Of 635 eligible cases, 400 (63%) were available for analysis; 46% of the cases were women. Non-cancer controls [approximately 400, actual no. not reported] were selected from hospitals and outpatient clinics and individually matched to cases by age (within 3 years), sex, area of residence, hospital, and year of diagnosis (within 2 years).

Exposure assessment. Lifetime exposure to over 70 potential risk factors for MDS including formaldehyde was estimated using in-depth interviews that probed subjects.
about duration and intensity of exposure from jobs held six months or more, relevant
hobbies, and medical therapies. Occupational exposure was estimated in consultation
with industrial chemists and occupational hygienists using the self-reported job histories
and then categorized by duration and intensity (low/medium/high).

Statistical methods and results. Odds ratios were obtained using matched pair analysis.
Confidence intervals were only reported if the lower 95% limit was greater than 0.80.
The ORs for formaldehyde were 1.17 (15 exposed cases, 13 exposed controls) for
subjects with at least 10 hours of lifetime exposure at any intensity, 2.33 (no. of exposed
cases and controls not reported) for subjects with at least 50 hours of lifetime exposure at
medium or high intensity, and 2.00 for subjects with at least 2,500 hours of lifetime
exposure at medium or high intensity.

3.3.6 Cancers at other sites
Section 3.2.6 reviews seven case-control studies that examined the association between
formaldehyde and several other tumor sites not reviewed in previous sections. Gérin et al.
(1989) (described previously in Section 3.3.4) reported results for various cancers. Tumor
sites examined in other investigations include bladder (Coggon et al. 1984, Siemiatycki et
al. 1994), breast (Cantor et al. 1995), pancreas (Kernan et al. 1999), rectum (Dumas et al.
2000), and eye (Holly et al. 1996). The studies in this section are organized by site.

3.3.6.1 Multiple tissue sites: Canada, Gérin et al. (1989)
Gérin et al. (1989) evaluated potential associations between occupational exposure
among men to formaldehyde and cancers of the esophagus (N = 107), stomach (N = 250),
colorectum (N = 787), liver (N = 50), pancreas (N = 117), prostate (N = 452), bladder (N
= 486), kidney (N = 181), and melanoma of the skin (N = 121) in a large multi-site case-
control study in Montreal (see Section 3.2.4 for complete study description and results for
respiratory cancer; see Section 3.2.5 for results for lymphohematopoietic malignancies).
Controls consisted of various internal control groups selected from the case series and
740 population controls. No elevated ORs were observed for any of these cancers.
3.3.6.2 Bladder cancer: United Kingdom, Coggon et al. (1984)
Coggon et al. (1984) used death certificates in this population-based, case-control study to obtain information about the occupations of all males under the age of 40 years who died in England or Wales during 1975 to 1979 of epithelial bladder cancer (see Section 3.2.4 for complete study description and results for cancer of the bronchus). Two hundred ninety-one (291) cases and 578 controls were included in the analysis. Exposure to formaldehyde was determined using a job-exposure matrix. Among subjects with bladder cancer, 132 cases (45%) were considered exposed to formaldehyde; 472 controls (40%) were considered exposed. For all exposed occupations, the OR for formaldehyde was 1.0 (95% CI = 0.7 to 1.3, 132 exposed cases). Among occupations considered to have high exposure to formaldehyde, the OR increased in magnitude to 1.5 (95% CI = 0.9 to 2.5, 30 exposed cases).

3.3.6.3 Bladder cancer: Canada, Siemiatycki et al. (1994)
Siemiatycki et al. (1994) investigated the association between exposure to formaldehyde and bladder cancer using data from the large multi-site case-control study in Montreal, Canada studied by Gérin et al. (1989) (see Section 3.2.4 for complete study description). Included in this analysis were 484 men (ages 35 to 70 years) with primary, incident, histologically confirmed bladder cancer (575 eligible cases, 84% participation rate). From the parent study, 1,879 controls with cancer at other sites (excluding lung and kidney) and 533 community controls (72% participation rate) were selected; control groups were pooled for analysis. Adjusting for age, ethnicity, socioeconomic status, smoking, coffee consumption, and interview type (self/proxy), the OR for bladder cancer was 1.2 (95% CI = 0.9 to 1.6, 67 exposed cases) among men with non-substantial exposure to formaldehyde and 1.2 (95% CI = 0.7 to 2.0, 17 exposed cases) among men with substantial exposure. Adjusting for additional exposure to several occupational substances reduced effect estimates for men considered to have substantial formaldehyde exposure (OR = 0.9, 95% CI = 0.5 to 1.7), but did not alter the estimate for nonsubstantial exposure.
3.3.6.4 Breast cancer: United States, Cantor et al. (1995)

Study population. A database of mortality records from 1984 to 1989 in 24 states in the United States was assembled for a series of case-control studies designed to investigate associations between occupational factors and cancer mortality. Cantor et al. (1995) reported on their investigation of occupational risk factors for breast cancer mortality among women. For this analysis, cases (N = 59,515) included white and black women (10% black) whose death certificate listed breast cancer as the underlying cause of death. Controls were randomly selected from all non-cancer deaths and frequency matched by age (within 5 years) and race (case to control ratio = 1:4).

Exposure assessment. Usual occupation and industry were obtained from death certificates and coded according to the 1980 U.S. Census occupational classification scheme. Homemakers were excluded, leaving 29,387 white and 4,112 black breast cancer cases, and 102,955 white and 14,839 black controls. The remaining occupational and industry codes were then entered into a job-exposure matrix to estimate the probability and level of exposure to 31 occupational exposures, including formaldehyde.

Statistical methods and results. Odds ratios were stratified by race and adjusted for age at death and socio-economic status (based on occupation). The risk estimate for breast cancer was elevated among black women with the highest category of exposure probability (OR = 1.45, 95% CI 1.2 to 1.7, 311 exposed cases) and with the highest exposure level (OR = 1.26, 95% CI = 1.0 to 1.5, 192 exposed cases). However, these trends were not observed among white women: ORs ranged from 0.93 to 1.19 (e.g., 1.19, 95% CI = 1.1 to 1.3 for 1,815 cases exposed at the highest level). Further analysis excluded women considered to have a low probability of exposure. Among white women, the ORs were 1.14 (P < 0.05), 0.93, and 1.20 (P < 0.05) for low, moderate, and high intensity of exposure, respectively; among black women, the corresponding ORs were 1.38 (P < .05), 1.30 (P < 0.05), and 1.36 (P < 0.05). Confidence intervals were not reported.

3.3.6.5 Pancreatic cancer: United States, Kernan et al. (1999)

Study population. Kernan et al. (1999) reported on a case-control investigation of occupational risk factors for pancreatic cancer mortality using the mortality records...
collected between 1984 and 1993 in 24 U.S. states (Cantor et al. 1995, reviewed in this section, also used this database, though the study period was earlier). In this analysis, 63,097 cases were included whose death certificate listed pancreatic cancer as the underlying cause of death. Controls (N = 252,368) were randomly selected from all non-cancer deaths (excluding pancreatitis and other pancreatic diseases) and frequency matched by age (within 5 years), race, sex, and state (case to control ratio = 1:4).

Exposure assessment. Usual occupation and industry were obtained from death certificates, coded according to the 1980 U.S. Census occupational classification scheme, and entered into a job-exposure matrix developed by industrial hygienists to estimate the probability and intensity of exposure to formaldehyde, 11 chlorinated hydrocarbons, and 2 groups of solvents. Forty-eight percent (48%) of male cases (N = 30,389) and 51% of female cases (N = 31,962) were considered exposed to formaldehyde.

Statistical methods and results. Logistic regression was applied to estimate ORs and 95% CIs, stratified by race (black/white) and sex and adjusted for age at death, metropolitan status, region of residence, and marital status. Analysis by exposure intensity yielded ORs ranging from 1.0 to 1.4 for each race-sex combination, with some estimates achieving statistical significance. [The large number of exposed cases in this study increased the power to detect an effect.] Analysis by exposure probability yielded ORs ranging from 0.8 to 1.5; again, some estimates were statistically significant. Analysis by exposure intensity and probability combined showed that among the entire study sample, the OR for those with both high exposure intensity and high exposure probability was 1.4 (95% CI = 1.0 to 1.8, 56 exposed cases). Among all subjects with high exposure probability, the ORs were 2.8 (95% CI = 0.7 to 1.8, 3 exposed cases) for those with low exposure intensity, and 1.4 (95% CI = 1.2 to 1.6, 546 exposed cases) for those with medium intensity. Among all subjects with high exposure intensity, the ORs were 1.0 (95% CI = 0.9 to 1.3, 171 exposed cases) for those with low exposure probability and 1.2 (95% CI = 0.8 to 1.6, 47 exposed cases) for those with medium probability. Though an exposure-response relationship was not observed with intensity of exposure, exposure-response relationships by probability of exposure were consistent for each level of exposure intensity.
3.3.6.6 Rectal cancer: Canada, Dumas et al. (2000)

Study population. Dumas et al. (2000) evaluated the association between exposure to formaldehyde and incident cases of rectal cancer among males aged 35 to 70 years, using data from the large multi-site case-control study in Montreal, Canada studied by Gérin et al. (1989) (see Section 3.2.4 for complete study description and exposure assessment). For this analysis, 257 cases of primary rectal cancer (304 eligible cases; 85% participation rate), 1,295 cancer controls (excluding lung and cancers at intestinal sites), and 533 community controls (72% participation rate) were enrolled.

Statistical methods and results. Odds ratios were adjusted for age, education, interview status (self/proxy), smoking, beer consumption, and body mass index, but not other occupational exposures. Results were presented using the cancer control series as the referent group. Among men considered to have any occupational exposure to formaldehyde, the OR for rectal cancer was 1.2 (95% CI = 0.8 to 1.9, 36 exposed cases). Among men with substantial exposure, the OR increased to 2.4 (95% CI = 1.2 to 4.7, 13 exposed cases). The authors noted that the overall exposure-response pattern reflected an increase in risk with increasing duration and concentration of exposure (data not shown). [Use of a control group including subjects with cancers that other studies have suggested are potentially associated with formaldehyde exposure (such as esophageal carcinoma, bladder cancer, and lymphomas) may have attenuated the observed effect estimate.]

[Case reports of a possible association between prostate, rectal, or endometrial cancer and topical application of formalin were investigated by Stern and Steinhagen (2007). Patients receiving radiation therapy for prostate, rectal, or endometrial cancer developed hemorrhagic radiation proctitis and received 4% topical formalin solution as a treatment. Two patients subsequently developed anorectal cancer. It is not possible to distinguish a potential effect of formalin from the effects of radiation or other treatment of the primary cancer, however.]

3.3.6.7 Uveal cancer: United States, Holly et al. (1996)

Study population. Holly et al. (1996) conducted a case-control study to evaluate whether certain occupational exposures were associated with incident cases of uveal cancer (also known as intraocular melanoma) among white males aged 20 to 74 years living in the
western United States. The case group (N = 121, 95% participation rate) comprised all
histologically confirmed cases of uveal carcinoma either diagnosed or treated between
January 1978 and February 1987 at the Ocular Oncology Unit of the University of San
Francisco. For each case, two controls were selected using random-digit dialing and
individually matched by area of residence and age (within 5 years); 447 controls were
enrolled (77% participation rate).

Exposure assessment. Telephone interviews were conducted to elicit information about
demographic, medical, and phenotypic characteristics (i.e., eye color), occupational
history and exposure to chemicals, and history of smoking, diet, residence, and sun
exposure. Exposure to chemicals of interest including formaldehyde was determined by
asking each participant whether they had ever worked with or been regularly exposed (at
least three hours per week for at least six months) to each chemical at a job or while
engaging in hobbies, recreational activities, or home maintenance.

Statistical methods and results. Odds ratios were estimated using unconditional logistic
regression adjusting for age, eye characteristics, and response type to sun exposure. The
OR for uveal carcinoma among men who reported ever being exposed to formaldehyde
either occupationally or recreationally was 2.9 (95% CI = 1.2 to 7.0, 13 exposed cases).
[Results of this study may be affected by recall bias since exposure assessment was based
entirely on a subject’s personal recollection of formaldehyde exposure.]

3.3.6.8 Thyroid cancer: China, Wong et al. 2006

Study population. Wong et al. (2006) conducted a nested case-cohort study of thyroid
cancer among a cohort of 267,400 female textile workers in Shanghai, China, who had
been followed for cancer incidence from 1989 to 1998. One hundred thirty (130) incident
thyroid cases and 3,187 non-case controls randomly selected from the cohort of all
eligible textile workers and matched by year of birth in five-year strata were identified.

Exposure assessment. Historical exposures were estimated by industrial hygienists using
a job-exposure matrix constructed from individual job histories and production process
data.
Statistical methods and results. The stratified analysis was conducted using a weighting scheme for the stratified case-cohort design. Age-adjusted hazard ratios (HR) were calculated using Cox proportional hazards methods with robust variance estimation. The HR for only 2 cases of thyroid cancer were considered to have exposure to formaldehyde compared with 11 controls; the HR was 8.33 (95% CI = 1.16 to 60.0, 2 exposed cases), with > 10 years of exposure.

3.4 Summary by tumor site

This section summarizes the findings for the cohort and case-control studies for each of the major cancer sites. A number of the cohort studies, the majority of which have studied workers in a variety of industries, relied on external (SMR and PMR) analyses; relatively few conducted internal analyses of exposed and unexposed workers. Few studies have either sufficient numbers of exposed individuals to enable exposure-response relationships to be assessed and have quantitative exposure measurements on which to base the assignment of exposure categories. Since some of the tumor types potentially related to formaldehyde exposure are rare (e.g. sinonasal cancers, nasopharyngeal cancers) most of the cohort studies have limited statistical power to detect statistically significant increases in risk in association with exposure to formaldehyde, and the case-control studies of these and other endpoints often lack adequate data on exposure to formaldehyde. Three cohort studies were available that had relatively large numbers of formaldehyde exposed workers: (1) the NCI cohort of mixed industry workers (Hauptmann et al. 2003, 2004, Beane Freeman et al. 2009), (2) the cohort of British chemical workers (Coggen et al. 2003), and (3) the NIOSH cohort of garment workers (Pinkerton et al. 2004). The NCI mixed industry combined cohort is the only cohort study to date in which detailed exposure-response relationships were examined according to peak, average, duration, and cumulative exposure. The other large cohort study, of British chemical workers, also examined exposure-response relationships by level, duration of exposure, and time since first exposure, in external SMR comparisons for selected cancer sites. The NIOSH cohort of garment workers evaluated mortality for selected cancer sites by duration of exposure, time since first exposure, and time of first exposure (exposure was higher for earlier time periods). The other cohorts (both industrial and professional health workers) were smaller, and in general only...
reported mortality for ever exposed. [Note that not all cohort studies reported findings for each cancer site. Where findings were reported but no deaths or cases were observed, as specifically noted by the authors, the annotation “0 deaths” is used in the accompanying tables. Studies in which no findings for a given site were specifically reported are noted in the footnotes for that table.]

3.4.1 Cancers of the paranasal sinuses and nasal cavity

Sinonasal carcinoma is a rare cancer (the annual incidence is approximately 1 case per 100,000 in most countries), which limits the ability of even large occupational cohort studies to achieve enough statistical power to detect significant associations. Further, sinonasal carcinoma is thought to have a long latency period (at least 10 years, with some estimates as high as 40 years), meaning that study designs must have a long enough follow-up to capture exposed cases. Approximately 70% to 80% of primary sinonasal carcinoma occurs in the paranasal sinuses rather than the nasal cavity, but most of the available studies do not distinguish between sites when identifying cases of sinonasal cancers [Hauptmann et al. (2004) is one exception].

The relationship between sinonasal cancers and occupational exposure to formaldehyde has been investigated in cohort, nested case-control and population-based case-control studies. The key findings are summarized in Table 3-3a and b. (See Section 3.1 for a description of sinonasal cancers, and Section 3.3.1 for a detailed summary of case-control studies that investigated sinonasal cancers.) The majority of cohort studies have low statistical power to detect sinonasal cancers.

3.4.1.1 Cohort studies

Increases in the risk of sinonasal cancers were reported in two cohort studies of formaldehyde-exposed workers: (1) a statistically significant increased incidence of sinonasal cancers was observed among male Danish workers exposed to formaldehyde (SPICR = 2.3, 95% CI = 1.3 to 4.0, 13 exposed cases and SPICR = 3.0, 95% CI = 1.4 to 5.7, 9 exposed cases for exposed male workers without exposure to wood dust); risks, although not statistically significant, were also increased among women (SPICR = 2.4, 95% CI = 0.6–6.0; 4 exposed cases) (Hansen and Olsen 1995, 1996), and (2) a non-significant increased risk in sinonasal cancer mortality among formaldehyde exposed
workers was observed in the NCI cohort (SMR = 1.19, 95% CI = 0.38 to 3.68, 3 deaths) (Hauptmann et al. 2004). In the latter study, statistically nonsignificant elevated relative risks were observed for some categories of average, peak and cumulative exposure; [however, the small number of exposed cases limits the ability to evaluate exposure-response relationships]. One death from squamous-cell sinonasal cancer was reported among formaldehyde-exposed workers in an industrial cohort study of tannery workers by Stern et al. (1987) [SMR or expected numbers of cases not reported]. No association with formaldehyde exposure was found in a standardized mortality analysis among British chemical workers (Coggon et al. 2003), which was one of the larger cohort studies. No cases of sinonasal cancers were identified in the NIOSH cohort (Pinkerton et al. 2004) or in the very small cohort of Dell and Teta (1995). [No findings were specifically reported for this site by Andjelkovich et al. (1995), Bertazzi et al. (1986), Edling et al. (1987b), Stellman et al. (1998), and Hall et al. (1991)] Among the studies of health professionals, embalmers, anatomists, and pathologists, no cases of sinonasal cancers were observed (Hayes et al. (1990), Levine et al. (1984), Stroup et al. (1986), and Walrath and Fraumeni (1983, 1984). [However, these were small cohorts with limited power to detect rare cancers].

3.4.1.2 Case-control studies
Six case control studies on sinonasal cancers were identified. Four of these studies reported increased sinonasal cancer risk among formaldehyde-exposed workers (or subsets of workers). Luce et al. (1993a) evaluated exposure to 14 substances including formaldehyde in a case-control study of 207 male cases (75 adenocarcinoma, 82 squamous-cell carcinoma and 25 other histological types). Among males with probable exposure to formaldehyde, risks increased with increasing exposure duration and cumulative exposure. A substantial proportion of cases were exposed to both formaldehyde and wood dust. The authors noted a statistically non-significant elevated risk of formaldehyde exposure for adenocarcinoma (OR = 8.1, 95% CI = 0.9 to 72.9, 4 exposed cases with low or no wood dust exposure) but a statistically significant highly elevated risk when both formaldehyde and wood dust exposure were present (OR = 692, 95% CI = 91.9 to 5,210, 71 exposed cases). Among cases of the squamous-cell type, which were adjusted for wood dust, glue, and adhesive exposure, no consistent pattern of
risk with year of first exposure, duration of exposure, cumulative exposure, or age at first
exposure was observed although a statistically non-significant elevated risk was observed
among cases. Adjustment for smoking did not alter effect estimates in this study.

Hayes et al. (1986) reported elevated risks for all sinonasal cancer and high formaldehyde
exposure among subjects unlikely to be exposed to wood dust, although the risk estimates
varied somewhat between two independent industrial hygienists’ assessments (RR = 3.0,
90% CI = 1.0 to 8.7, 7 exposed cases vs. RR = 2.1, 90% CI = 1.1 to 4.1, 17 cases). Most
of the cases were squamous-cell carcinomas, and similar risk estimates were reported for
these histological types of cancer (see Table 3-3b). Olsen and colleagues (1994, 1996)
found elevated risks for adenocarcinomas (RR = 2.2, 95% CI = 0.7 to 7.2, 17 ever-
exposed cases), squamous-cell carcinomas (RR = 2.3, 95% CI = 0.9 to 5.8, 13 ever-
exposed cases), and all sinonasal cancers (RR = 1.6, 95% CI NR, P > 0.05). A
significantly increased risk of all sinonasal cancer was observed among cases with
“certain exposure” to formaldehyde (RR = 2.8, 95% CI = 1.8 to 4.3, 33 deaths). When
only those cases with no wood dust exposure were considered, the observed risk for
squamous-cell carcinomas, and all sinonasal cancers was not altered, but a statistically
significant increase in the risk of formaldehyde exposure was observed among
adenocarcinoma cases (RR = 7.0, 95% CI = 1.1 to 43.9) based on only one exposed case,
however. Among all cases of sinonasal cancer cases with both wood dust and
formaldehyde exposure, the RR was 3.5 (95% CI = 2.2 to 5.6, 28 exposed cases).

[Known risk factors for sinonasal cancers include the human carcinogens nickel dust
(NTP 2005a) and wood dust, particularly in the latter case, for adenocarcinomas (IARC
1995, NTP 2005a). In some studies, e.g., including workers in the woodworking and
lamination industries, there may be a high degree of colinearity between formaldehyde
and wood dust exposure (for example, 97% of subjects considered to be probably or
definitely exposed to formaldehyde were also jointly exposed to wood dusts in a case-
control study by Luce et al. [1993a], which could result in residual confounding.) Effect
modification by wood dust has also been observed, whereby concurrent exposure to
wood dust increases the independent risk of sinonasal cancers associated with exposure to
formaldehyde or wood dusts alone (Olsen et al. 1984).]
3.4.1.3 Pooled and meta-analyses

A pooled analysis (Luce et al. 2002) combining 12 case-control studies from seven countries was conducted to further evaluate the relationship between sinonasal cancers and occupational exposure to formaldehyde. The studies were selected on the basis of availability of information on histologic type, age, sex, smoking, and occupational histories. They differed according to the source and vital status of cases and controls as well as the method of interview. Exposures were independently assessed for each study by the authors of the pooled analysis using a job-exposure matrix designed specifically for the analysis, and industrial hygiene data were used to determine semi-quantitative exposure indices (only 3 of the 12 studies had originally conducted exposure assessments for formaldehyde). Logistic regression was applied to estimate ORs adjusted for age, study, and additional occupational factors that were found to be confounders (smoking was not found to be a confounder). Only 11 cases exposed to formaldehyde were estimated to have never been exposed to wood dust. Among men, the ORs for adenocarcinoma sinonasal cancers by cumulative exposure to formaldehyde (adjusted for wood dust exposure) were 0.7 (95% CI = 0.3 to 1.9, 6 pooled exposed cases) for low exposure, 2.4 (95% CI = 1.3 to 4.5, 31 pooled exposed cases) for medium exposure, and 3.0 (95% CI = 1.5 to 5.7, 91 pooled exposed cases) for high exposure. The estimates for squamous-cell sinonasal cancers were 1.2 (95% CI = 0.8 to 1.8, 43 pooled exposed cases), 1.1 (95% CI = 0.8 to 1.6, 40 pooled exposed cases), and 1.2 (95% CI = 0.8 to 1.8, 30 pooled exposed cases), respectively. Effect estimates among women were generally higher. To investigate the potential for residual confounding by wood dust, the authors repeated the analyses for adenocarcinoma including only subjects who had never been exposed to wood or leather dusts; effect estimates were reduced though still elevated (OR for high cumulative exposure = 1.9, 95% CI = 0.5 to 6.7).

Bosetti et al. (2008) conducted a pooled analysis of occupational cohort mortality studies of formaldehyde exposure which included sinonasal cancers, and reported a nonsignificantly elevated estimated RR (using weighted average SMRs) of 1.01 (95% CI = 0.33 to 2.35, 5 deaths) among 8 cohorts of industrial workers (no deaths were reported among 5 cohorts of medical workers).
Collins et al. (1997) conducted a meta-analysis to evaluate the association between formaldehyde exposure and upper respiratory cancers, including sinonasal cancers. Nine cohort and 11 case-control mortality studies that reported findings on sinonasal cancers and in which formaldehyde exposure was analyzed separately were included. A total of 933 observed vs. 807.7 deaths were included. The estimated meta relative risk (mRR) for the 9 cohort studies was 0.3 (95% CI = 0.9, 3 deaths); each of the 3 deaths occurred in the 3 industrial cohorts (with none reported in 6 other cohorts) and yielded a mRR of 0.6 (95% CI = 0.1 to 1.7). Among the 11 case-control studies, the estimated mRR was 1.8 (95% CI = 1.4 to 2.3, 933 deaths); there was substantial variation between the 5 U.S. studies (mRR = 1.0 to 1.5, 351 deaths) and the 6 European studies (mRR = 2.9, 95% CI = 2.2 to 4.0, 582 deaths), which the authors suggested might be due in part to wood dust exposure in some of the latter studies.
Table 3-3a. Summary of cohort studies of formaldehyde exposure and cancer of the sinus and nasal cavities (SNC)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI; number of observed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coggon et al. 2003 (update of Acheson et al. 1984)</td>
<td>British Chemical Workers Study, UK N = 14,014 1941–2000</td>
<td>SMR All 0.87 (0.11–3.34); 2 High exp. 0 (0–4.66); 0</td>
<td></td>
</tr>
<tr>
<td>Dell and Teta 1995</td>
<td>Workers employed at a Union Carbide plastics manufacturing plant in New Jersey, USA 111 formaldehyde exposed workers 1946–1988</td>
<td>NR, 0 deaths</td>
<td>Small numbers of formaldehyde exposed workers</td>
</tr>
<tr>
<td>Hansen and Olsen 1995, 1996</td>
<td>Denmark N = 2,041 men, 1,263 women 1970–84</td>
<td>SPICR Men 2.3 (1.3–4.0); 13 Women 2.4 (0.6–6.0); 4 No exposure to wood dust Men 3.0 (1.4–5.7); 9 Women NR</td>
<td>SPICR adjusted for age and calendar time</td>
</tr>
<tr>
<td>Hauptmann et al. 2004 NCI combined cohort Marsh et al. 2007a Wallingford subcohort</td>
<td>NCI cohort, USA N = 25,619 Employed 1934–66 Follow-up 1966–94 Wallingford N = 7,345 Employed 1941–84 Follow-up 1945–2003</td>
<td>SMR NCI cohort 1.19 (0.38–3.68); 3 Wallingford 2.64 (0.54–7.71); 3 Exposure response analysis (NCI) RR; number of exposed deaths Mean intensity (ppm) > 0–< 0.5 1.00 0.5–< 1.0 1.48; 1 ≥ 1.0 NA; 0 P_{trend} –0.802a Peak exposure (ppm) > 0–< 2.0 1.00 2.0–< 4.0 1.55; 1 ≥ 4.0 1.47; 1 P_{trend} 0.414 Cumulative exposure (ppm-yrs) > 0–< 1.5 1.00 1.5–< 5.5 1.32; 1 ≥ 5.5 NA; 0 P_{trend} –0.855a</td>
<td>Endpoint cannot be defined as SNC since paranasal sinuses are excluded Adjusted by calendar year, age, sex, race, and pay category; exposure was calculated with a 15-year lag interval</td>
</tr>
<tr>
<td>Pinkerton et al. 2004 (update of Stayner et al. 1985 (PMR study), 1988 (SMR study))</td>
<td>NIOSH cohort of garment workers, USA N = 11,039 1955–98</td>
<td>0 deaths, 0.16 expected</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI; number of observed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Stern et al. 1987</td>
<td>Workers employed in two chrome leather tannery plants, USA N = 9,365 1940–79 or 1980</td>
<td>SMR NR; 1 death in finishing department</td>
<td>Formaldehyde-exposed workers in the finishing department (N not stated)</td>
</tr>
<tr>
<td>Studies on health professional workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes et al. 1990</td>
<td>Deceased embalmers and funeral directors identified using licensing board records, death certificates, and other sources, USA N = 4,046 1975–85</td>
<td>0 deaths, 1.7 expected</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Levine et al. 1984</td>
<td>Licensed embalmers in Ontario, Canada N = 1,413</td>
<td>0 deaths, 0.2 expected</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Stroup et al. 1986</td>
<td>Anatomists who were members of the American Association of Anatomists, USA N = 2,317 1888–1979</td>
<td>0 deaths, 0.5 expected</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1983</td>
<td>All licensed embalmers in New York, USA N = 1,263 1902–80</td>
<td>0 deaths, 0.5 expected</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1984</td>
<td>All licensed embalmers in California, USA N = 1,109 1916–80</td>
<td>0 deaths, 0.6 expected</td>
<td>Small cohort</td>
</tr>
</tbody>
</table>

Findings for SNC cancers were not reported by Andjelkovich et al. (1995), Bertazzi et al. (1986), Stellman et al. (1998), Hall et al. (1991), Edling et al. (1987b).

NR = not reported; SMR = standardized mortality ratio; SPICR = standardized proportionate incidence cancer ratios.

* The P_{trend} value reported was based on only 2 values for trend.
Table 3-3b. Summary of case-control studies investigating formaldehyde exposure and sinonasal cancer

<table>
<thead>
<tr>
<th>Reference/Study geographic location</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
</table>
Cases: 466 (67% men) identified by Danish Cancer Registry
Controls: 2,465 men and women identified from registry with cancer of the colon, rectum, breast, or prostate and matched to cases for age, sex and yr. of diagnosis | Employment histories obtained from national pension and population registries and exposure classified by job description and industry | Analysis only on men\(^a\) Certainly exposed (not adjusted)
SNC 2.8 (1.8–4.3); 33
Ever exposed (adj. for wood dust exposure)
ADC 2.2 (0.7–7.2); 17/10
SCC 2.3 (0.9–5.8); 13/113
SNC 1.6 (NR)
Ever exposed, not exposed to wood dust
ADC 7.0 (1.1–43.9); 1/8
SCC 2.0 (0.7–5.9); 4/113
SNC 1.8 (0.7–3.9); 5
Exposed to both formaldehyde and wood dust
SNC 3.5 (2.2–5.6); 28
With 10-year lag
SNC 4.1 (2.3–7.3); 20 | 80% power to detect an OR of 2.0 for SNC
Lagging exposure by 10 years did not alter results |
| Hayes et al. 1986 The Netherlands | Population-based study 1978–81
Cases: 91 men (deceased and alive) with confirmed SNC, identified from cancer treatment center records
Controls: 195 age-matched (frequency) men randomly selected from the population (both living and deceased) | Occupational histories obtained by interview and exposure classified by job description and industry by two independent industrial hygienists (IHA and IHB) | Subjects with little or no exposure to wood dust\(^b\)
All SNC
Any exposure/IHA \(_A\) 2.5 (1.2–5.0); 15/18
Any exposure/IHA \(_B\) 1.6 (0.9–2.8); 24/44
High exposure/IHA \(_A\) 3.0 (1.0–8.7); 7/7
High exposure/IHA \(_B\) 2.1 (1.1–4.1); 17/24
SCC
Any exposure/IHA \(_A\) 3.0 (1.3–6.4); 12/18 | No adjustment, but effect estimates did not change after adjustment for smoking or alcohol use |
<table>
<thead>
<tr>
<th>Reference/Study geographic location</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaughan et al. 1986 Washington, United States</td>
<td>Population-based study 1979–83 Cases: 53 incident cases identified using the SEER registry Controls: 552 frequency matched, and identified from random-digit dialing</td>
<td>Occupational histories and other information obtained by interview (present and proxy) and exposure classified using a JEM</td>
<td>12 exposed cases at any level, 3 exposed for at least 10 years ORs ≤ 1.0 [all CIs included 1.0] for all exposure estimates including: Maximum exposure level (low and medium or high) Number of yr exposed (1–9, 10+) Exposure scores (5–19 and 20+)</td>
<td>Adjusted for sex, age, smoking, and alcohol Only 12 exposed cases at any level Recall error due to next of kin interviews for the deceased subjects</td>
</tr>
<tr>
<td>Roush et al. 1987 Connecticut, United States</td>
<td>Population-based study 1935–75 Cases: 198 men who died with SNC identified using the Connecticut Tumor Registry Controls: 605 randomly selected men who died during the same time period</td>
<td>Occupational histories obtained from death certificates and city directories, and exposure classified by job title and industry High exposure ≥ 1 ppm</td>
<td>Probably exposed: level/lag time Any/none 0.8 (0.5–1.3); 21/79 Any/20-yr 1.0 (0.5–1.8); 16/51 Highc 1.0 (0.5–2.2); 9/27 Highc/20 yr 1.5 (0.6–3.9); 7/14</td>
<td>Adjusted for age and calendar period</td>
</tr>
<tr>
<td>Luce et al. 1993 France</td>
<td>Hospital-based study 1986–98 Cases: 207 male cases (75 adenocarcinoma- 7 unexposed, 6 with possible exposure, 69 with probable or definite exposure; 82 squamous-cell carcinoma- 36 unexposed, 7 with possible exposure, 16 with probably or definite exposure; and 27 histological types) identified</td>
<td>Occupational histories and other information obtained by interview and exposure classified by job title and industry</td>
<td>Possible exposure among men SCC 0.96 (0.38–2.42); 7/36 ADC 1.28 (0.16–10.42); 4/3 SCC: Probable or definite exposure to formaldehyde among men Cases/controls 16 (27.1%)/81 (25.3%) No relationshipd between SCC risk and exposure variables for average and cumulative level, duration of exposure, age of first exposure</td>
<td>Adjusted for age and exposure to wood dust (squamous-cell type only), glues, and adhesives; 97 % of ADC cases were also exposed to wood dust (which is a risk factor for ADC)</td>
</tr>
<tr>
<td>Reference/Study geographic location</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>from area hospital records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls: (1) Hospital-based series – 323 patients with cancers other than SNC and frequency matched by age and sex; (2) population-based series (N = 86) – lists of friends and family provided by cases and matched by sex, age and residence</td>
<td></td>
<td></td>
<td>Date of first exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤1944</td>
<td>1.47 (0.58–3.71); NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥1945</td>
<td>0.66 (0.27–1.64); NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC: Probable or definite exposure to formaldehyde and with medium or high exposure to wood dust among men</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 2</td>
<td>4.15 (0.96–17.84); 24/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 2</td>
<td>5.33 (1.28–22.20); 43/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration (yr)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 20</td>
<td>1.03 (0.18–5.77); 10/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 20</td>
<td>6.86 (1.69–27.80); 57/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cumulative level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 20</td>
<td>1.13 (0.19–6.90); 8/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30–60</td>
<td>2.66 (0.38–18.70); 7/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 60</td>
<td>6.91 (1.69–28.23); 52/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Date of first exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 1944</td>
<td>6.02 (1.18–30.69); 26/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 1955</td>
<td>4.26 (1.06–17.20); 41/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC: Combined effects with wood dust among men</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Formaldehyde only</td>
<td>8.1 (0.9–72.9); 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wood dust only</td>
<td>130 (14.2–1,191); 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Both exposures</td>
<td>692 (91.9–5,210); 71</td>
</tr>
<tr>
<td>Reference/Study geographic location</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Pesch et al. 2008 Germany | *Industry-wide case-control study woodworking industry* 2003–05
Cases: 129 men [86 (57 living plus 29 next of kin) participated] identified through industry insurance records with Sinonasal adenocarcinomas (ADC)
Controls: frequency matched (4 accident cases per case)
204 participants, including 69 next of kin | Occupational exposure assessed by interview and job exposure matrix | *Formaldehyde exposure*
Never | 1.0. ref. 39/92
< 1985 | 0.46 (0.14–1.54); 8/17
≥ 1985 | 0.94 (0.47–1.90); 39/95 | Adjusted for age, region, smoking, interview status and average exposure to wood dust.
Wood dust exposure; wood dust exposure associated with highly significant elevations of risk in this population |

ADC = adenocarcinoma; NR = not reported; OR = odds ratio; PMR = proportionate mortality ratio; RR = risk ratio; SMR = standardized mortality ratio; SNC = sinonasal cancer, SCC = squamous-cell carcinoma.

a Women excluded from analysis since only 0.1% of controls were exposed; 4.2% of control men were exposed.

b Confidence intervals are 90% instead of 95%.

c High exposure in some year of working life; only 10 individuals were exposed to high exposure for most of their working lives.

d ORs for all categories below 1.1 (except cumulative exposure < 30, OR = 1.26), and 95% CIs included 1.0.
3.4.2 Cancer of the nasopharynx

Nasopharyngeal carcinoma is a rare cancer, with an annual incidence rate less than 1 per 100,000 in most populations. WHO has classified nasopharyngeal cancers into three major types: I) squamous-cell carcinomas with keratinizing potential, II) squamous-cell carcinomas without keratinizing potential, and III) undifferentiated carcinomas or lymphoepitheliomas (Barnes et al. 2005). The etiology of these subtypes appears to be distinct, and appears to have viral, genetic, and environmental etiology. Only Type I nasopharyngeal carcinomas have been associated with potential exposure to chemical agents including formaldehyde, alcohol, or smoking (Bray et al. 2008). The majority of cohort studies have low statistical power to detect nasopharyngeal cancers. As in the case of sinonasal cancers, findings for this site are not specifically reported in a number of studies; these are noted in a footnote to the table. In other studies, the authors reported specifically that no deaths from this site were observed, indicated by the note “0 deaths observed” in the tables.

The relationship between nasopharyngeal cancers and occupational exposure to formaldehyde has been investigated in cohort, nested case-control and population-based case-control studies, and the key findings are summarized in Table 3-4a and b. (See Section 3.1 for a description of nasopharyngeal cancers, and Section 3.3.2 for a detailed summary of case-control studies investigating nasopharyngeal cancers.) [Note that in several studies, findings for nasopharyngeal cancers have not been reported separately, and only pharyngeal cancers combined or buccal cavity and pharyngeal cancers combined are reported. Findings for these sites are reported in the section that follows.]

3.4.2.1 Cohort studies

Three cohort studies reported an increased risk of nasopharyngeal cancers among formaldehyde-exposed workers: (1) a statistically significant increase in the risk of nasopharyngeal cancers mortality in the NCI cohort (SMR = 2.10, 95% CI = 1.05 to 4.21, 8 exposed cases) (Hauptmann et al. 2004), (2) statistically non-significant increases in mortality among white and non-white embalmers from the United States (Hayes et al. 1990), and (3) a non-significant increased incidence of nasopharyngeal cancers among male Danish workers exposed to formaldehyde (SPICR = 1.3, 95% CI = 0.3 to 3.2.4
exposed cases) (Hansen and Olsen 1995, 1996). Edling et al. (1987b) reported one incident case among formaldehyde exposed workers in the abrasive material industry. and Coggon et al. (2003) reported one death from nasopharyngeal cancer among exposed British chemical workers. Risk estimates (or expected numbers) were not provided in these three studies. No deaths from nasopharyngeal cancers were reported in a very small study of formaldehyde-exposed plastics manufacturing workers (Dell and Teta 1995), among women in the Danish cohort (Hansen and Olsen 1996), in a study of formaldehyde-exposed iron foundry workers (Andjelkovich et al. 1995), in the NIOSH cohort (0 observed vs. 0.16 expected deaths; Pinkerton et al. 2004), and in two studies of professionals (Stroup et al. 1986, Walrath and Fraumeni 1983). [Six studies did not report findings for nasopharyngeal cancers, see Table 3-4a.]

Exposure-response relationships between formaldehyde exposure and nasopharyngeal cancer risk were evaluated in the large NCI-sponsored historical cohort study in mixed industries. In the follow-up of this cohort to December 1994, Hauptmann et al. (2004) found 8 nasopharyngeal cancer deaths exposed to formaldehyde and 2 unexposed (SMR = 2.10, 95% CI = 0.91 to 4.14, 8 deaths). One exposed death was subsequently reclassified as oropharyngeal based on secondary information not on the death certificate. In internal analyses, exposure-response relationships were analyzed using the lowest exposure group as the referent group. Two exposure trends were reported; one among the exposed group only and one for the combined exposed and unexposed group. Relative risks of nasopharyngeal cancers increased with peak exposure ($P_{\text{trend}} < 0.001$ among exposed and $P_{\text{trend}} = 0.044$ for combined exposed and unexposed workers), average exposure ($P_{\text{trend}} = 0.066$ among exposed and $P_{\text{trend}} = 0.126$ among combined exposed and non-exposed workers), cumulative exposure ($P_{\text{trend}} = 0.025$ among exposed and $P_{\text{trend}} = 0.029$ among combined exposed and unexposed workers). The trends for duration of exposure were $P_{\text{trend}} = 0.147$ and 0.206, respectively. All seven of the exposed deaths occurred among workers with the highest peak exposure (> 4 ppm), and six of the exposed deaths were among workers with average exposures of > 1.0 ppm. Because five of the nine nasopharyngeal cancer cases occurred in one plant (Wallingford, Connecticut), the authors conducted analyses adjusting for plant and found similar exposure-response relationships with peak (adjusted P_{trend} among exposed = 0.008),
average (adjusted P_{trend} among exposed = 0.404), and cumulative exposure (P_{trend} among exposed = 0.007), and also found a significant trend for exposure duration (P_{trend} among exposed = 0.043). Marsh et al. (2002, 2007a) reported findings on the Wallingford cohort (follow-up was to 1998 in the 2002 report and 2003 in the 2007 report), and found a significant excess of nasopharyngeal cancers in both (SMR = 4.23, 95% CI = 1.78 to 9.13, 7 deaths for the 2007 follow-up). The authors reported that for five of the seven formaldehyde-exposed nasopharyngeal cancer deaths, external employment in metal working occupations was observed. In a case-control analysis of these deaths, and after adjustment for metal working and smoking, the OR for exposure to formaldehyde was 2.87 but no longer robust. A trend toward increasing risk with increasing duration and cumulative, but not average, exposure to formaldehyde was still observed. When interaction modeling was applied, the OR for the five cases with both formaldehyde exposure and metal-working employment and 12 controls was 9.20 (95% CI = 0.91 to 436.5, adjusted for smoking). Marsh et al. (2007b) also re-analyzed the findings of the NCI cohort for nasopharyngeal cancers and peak formaldehyde exposure and concluded that their models did not take into account the observed effect of plant type.

3.4.2.2 Case-control studies

The relationship between formaldehyde exposure and nasopharyngeal cancer risk was evaluated in seven case-control studies (see Table 3-4b), six of which reported elevated risks for nasopharyngeal cancers among the formaldehyde-exposed subgroup of workers. Olsen et al. (1984) reported no increase in nasopharyngeal cancers among men ever exposed to formaldehyde (RR = 0.7, 95% CI = 0.3 to 1.7, no. of exposed cases not reported), although a statistically nonsignificant increase was observed among women (RR = 2.6, 95% CI = 0.3 to 21.9; no. of exposed cases not reported).

Hildesheim et al. (2001) and Vaughan et al. (2000) reported exposure-response trends in their analyses. The risk of nasopharyngeal cancers was found to increase linearly in both studies with duration of exposure to formaldehyde ($P_{\text{trend}} = 0.08$, $P_{\text{trend}} = 0.01$, respectively) and cumulative exposure ($P_{\text{trend}} = 0.10$, $P_{\text{trend}} = 0.03$, respectively). In addition to the two studies with larger sample sizes (Hildesheim et al. 2001, Vaughan et al. 2000), three other case-control studies examined semi-quantitative exposure indices.
and found elevated odds ratios among workers with longer latencies, duration of exposure or exposure categories (Table 3-3b). For example, West et al. 1993 reported higher risks among workers exposed before the age of 25 (OR of 2.7, 95% CI = 1.1 to 6.6, 16 exposed cases) and with greater than 25 years since first exposure (OR = 2.7, 95% CI = 1.1 to 6.6, 16, exposed cases) in models adjusted for exposure wood dust and exhaust fumes; Roush et al. 1987 reported an OR of 2.3 (95% CI = 0.9 to 6.0, 7 exposed cases) for subjects with high probability of exposure and 20 years’ lag time; and Vaughan et al. (1986) reported an OR of 2.1 (95% CI = 0.6 to 7.8, 3 exposed cases) for their highest exposure category. However, Armstrong et al. (2000) did not find an association between nasopharyngeal cancers and ever being exposed to formaldehyde (OR = 0.71, 95% CI = 0.34 to 1.43, no. of cases not reported) after adjustment for smoking and diet, and the authors reported that no exposure-response relationship was observed for a 10-fold increase in ratio of hours exposed [quantitative data not presented].

Risk factors for nasopharyngeal cancers include wood dust, Epstein-Barr virus (EPV) seroprevalence, and some dietary factors. Smoking might also be a confounder (for example, Armstrong et al. (2000) reported, for subjects with nasopharyngeal cancers, a statistically significant 2 to 3 fold increase in risk associated with > 6 months of active smoking, and also for parental smoking among nonsmokers). Four of the seven studies of formaldehyde exposure and nasopharyngeal cancers evaluated concurrent exposure to wood dust as a potential confounder, and three of these four studies concluded that wood dust was not a confounding factor (Hildesheim et al. 2001, Olsen et al. 1984, Vaughan et al. 2000). Smoking, however, was considered as a potential confounder in several studies, but an increase in risk of nasopharyngeal cancers associated with exposure to formaldehyde was still observed after controlling for smoking (Vaughan et al. 2000, Vaughan et al. 1986a, West et al. 1993). Hildesheim et al. (2001) did not observe a confounding effect of smoking in their study, and also reported a statistically nonsignificant association between ever exposure to formaldehyde and nasopharyngeal cancers (OR = 1.4, 95% CI = 0.93 to 2.2, 74 exposed cases, adjusted for age, sex, education, and ethnicity). (EBV seroprevalence and wood exposure were also investigated in this study; the risk of nasopharyngeal cancers was associated with an OR
of 2.3 (95% CI = 1.2 to 5.9) for EBV-seropositive subjects and with an OR of 1.7 (95% CI = 1.0 to 3.0) for ever exposure to wood dust).

3.4.2.3 Pooled analysis

Bosetti et al. (2008) conducted a pooled analysis of 3 cohort mortality studies of formaldehyde exposure among industrial workers which included nasopharyngeal cancers, and reported a nonsignificantly elevated estimated SMR for nasopharyngeal cancers of 1.33 (95% CI = 0.61 to 2.53, 9 deaths). (Note that studies by Bertazzi et al. (1986), Edling et al. (1987a), and Andjelkovich et al. (1995) were excluded as they did not report expected deaths).

Meta-analysis. Collins et al. (1997) conducted a meta-analysis to evaluate the association of formaldehyde exposure and upper respiratory tract cancers, including nasopharyngeal cancers. Fourteen cohort studies (6 of industrial workers, 4 of pathologists and 4 of embalmers), together with 4 nested and 11 non-nested case-control studies, were included in the meta-analysis. A statistically significant increase in the risk of nasopharyngeal cancers across all studies combined was observed (mRR = 1.3, 95% CI = 1.2 to 1.5, 455 deaths). The mRR for the cohort studies alone was not elevated, however (mRR = 1.0; 95% CI = 0.5 to 1.8, 10 deaths), and the mRRs for the case-control studies was elevated but not statistically significant (mRR = 1.3, 95% CI = 0.9 to 2.1, 445 deaths). The authors concluded that there was insufficient evidence of a causal relationship between formaldehyde and nasopharyngeal cancers.
Table 3-4a. Summary of cohort studies of formaldehyde exposure and nasopharyngeal cancers

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI; number of observed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Andjelkovich et al. 1995 | Iron foundry workers, Michigan, USA
N = 3,929
1959–89 | NR, 0 deaths | SMR – formaldehyde exposed subcohort
Small cohort to detect rare cancers |
| Coggon et al. 2003 (update of Acheson et al. 1984) | British Chemical Workers Study, UK
N = 14,014
1941–2000 | NR, 1 death. 2 expected | |
| Dell and Teta 1995 | 5,923 workers employed at a Union Carbide plastics manufacturing plant in New Jersey, USA 1946–67
111 formaldehyde exposed workers
Follow-up 1946–88 | NR, 0 deaths | Small numbers of formaldehyde exposed workers |
| Edling et al. 1987b | Swedish abrasive materials industry
N = 506 male blue collar workers
Mortality 1958–83
Incidence 1958–81 | NR, 1 incident case | Small cohort
Case had exposure <0.1 mg/m³ and <5 years exposure to formaldehyde |
| Hansen and Olsen 1995, 1996 | Denmark
N = 2,041 men, 1,263 women
1970–84 | SPICR analysis
Men 1.3 (0.3–3.2); 4
Women NR; 0 vs. 0.8 | SPICR adjusted for age and calendar time |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI; number of observed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmann et al. 2004, NCI combined cohort Marsh et al. 2007a, Wallingford subcohort</td>
<td>NCI cohort, USA N = 25,619 Employed 1934–66 Follow-up 1966–94 Wallingford N = 7,345 Employed 1941–84 Follow-up 1945–2003</td>
<td>SMR NCI cohort 2.10 (1.05–4.21); 8 Wallingford 4.23 (1.78–9.13); 7 Exposure response analyses (NCI) ((RR, number of exposed deaths)) Average intensity (ppm) 0 (ref.) 1.00; 2 > 0–< 0.5 NA; 0 0.5–< 1.0 0.38; 1 ≥ 1.0 1.67; 6 (P_{\text{trend}}^a) 0.066 (P_{\text{trend}}^b) 0.126 Peak exposure (ppm) 0 ppm (ref.) 1.00; 2 > 0–< 2.0 NA; 0 2.0–< 4.0 NA; 0 ≥ 4.0 1.83; 7 (P_{\text{trend}}^a) < 0.001 (P_{\text{trend}}^b) 0.044(^c) Cumulative exposure (ppm-yr) 0 ppm 2.40; 2 > 0–< 1.5 (ref) 1.00; 3 1.5–< 5.5 1.19; 1 ≥ 5.5 4.14; 3 (P_{\text{trend}}^a) 0.025 (P_{\text{trend}}^b) 0.029 Wallingford plant (Marsh 2007a) Formaldehyde exposure – nested case-control analysis Unadj. 1.41 (0.2 to (\infty)); 7 Adjusted 2.87 (0.21 to (\infty)); 7 No increasing trends with increasing duration, average or cumulative exposure after adjusting for smoking and external employment</td>
<td>Hauptmann et al. Adjusted by calendar year, age, sex, race, and pay category; exposure was calculated with a 15-year lag interval 10 total deaths (8 exposed) from cancer of the nasopharynx; one death subsequently re-classified as oropharynx and excluded from internal analysis (6 of the 10 deaths occurred in Wallingford plant) Marsh et al. 2007a Adjusted for smoking and external employment (silver smithing or other metal work) Reanalysis by Marsh et al. 2004, see Section 3.2</td>
</tr>
<tr>
<td>Pinkerton et al. 2004 (update of Stayner et al. 1985 (PMR study), 1988 (SMR study)</td>
<td>NIOSH cohort of garment workers, USA (N = 11,039) External analysis SMR 1955–98 PMR 1959–82</td>
<td>NR, 0 deaths vs. 0.16 expected</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI; number of observed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Hayes et al. 1990</td>
<td>Deceased embalmers and funeral directors identified using licensing board records, death certificates, and other sources, USA N = 4,046 1975–85</td>
<td>PMR Whitest 1.89 (0.39–5.48); 3 Non-whites 4.00 (0.10–22.29); 1</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Stroup et al. 1986</td>
<td>Anatomists, members of the American Association of Anatomists, USA N = 2,317 1888–1979</td>
<td>NR, 0 deaths</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1983</td>
<td>All licensed embalmers in New York, USA N = 1,263 1902–80</td>
<td>NR, 0 deaths</td>
<td>Small cohort</td>
</tr>
</tbody>
</table>

SPICR = standardized proportionate incidence cancer ratios, PMR = proportionate mortality ratio, SMR = standardized mortality ratio, NR = not reported.

a P_{trend} across exposed.
b P_{trend} across exposed and non-exposed.
c $[The P_{\text{trend}} value reported was based on only 2 values for trend.]$
Table 3-4b. Summary of case-control studies (including nested case-control studies) and cancer registry studies of formaldehyde exposure and nasopharyngeal cancer.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olsen et al. 1984 Denmark</td>
<td>Population based study 1970–82 Cases: 293 men with NPC identified using Danish Cancer Registry; 266 used in analysis of NPC (excluding sarcomas) Controls: 2,465 men and women identified from registry with cancer of the colon, breast, or prostate and matched to cases for age, sex and yr. of diagnosis</td>
<td>Employment histories obtained from national pension and population registries and exposure classified by job title and industry</td>
<td>Ever exposed Men 0.7 (0.3–1.7); NR Women 2.6 (0.3–21.9); NR No adjustment 4.2% of male and 0.1% of female controls considered exposed, number of cases not given</td>
<td></td>
</tr>
<tr>
<td>Vaughan et al. 1986 Washington, United States</td>
<td>Population based study 1979–83 Cases: 27 incident cases identified using the SEER registry Controls: 552 frequency matched, and identified from random-digit dialing</td>
<td>Occupational histories and other information obtained by interview and exposure classified using a JEM</td>
<td>Maximum exposure level Low 1.2 (0.5–3.3); 7/121 Med. or high 1.4 (0.4–4.7); 4/50 Exposure duration (yr) 1–9 1.2 (0.5–3.1); 8/127 10+ 1.6 (0.4–5.8); 3/44 Exposure score (weighted sum of duration and exposure level) Low 0.9 (0.2–3.2); 3/59 High 2.1 (0.6–7.8); 3/29 Adjusted for smoking and race Low = exposure score of 5–19 High = exposure score of 20+</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Roush et al. 1987</td>
<td>Population-based study 1935–75</td>
<td>Occupational histories obtained from death certificates and city directories, and exposure classified by job title and industry. High exposure ≥ 1 ppm</td>
<td>Probably exposed: level/lag time</td>
<td>Adjusted for age and calendar period</td>
</tr>
<tr>
<td>Connecticut, United States</td>
<td>Cases: 173 men who died with SNC identified using the Connecticut Tumor Registry</td>
<td>Public health records, and occupational histories obtained from city directories.</td>
<td>Any/none 1.0 (0.6–1.7); 21/79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controls: 605 randomly selected men who died during the same time period</td>
<td>High exposure: level/lag time</td>
<td>Any/20-yr 1.3 (0.7–2.4); 17/51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High exposure ≥ 1 ppm</td>
<td>High/none 1.4 (0.6–3.1); 9/27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High/20 yr 2.3 (0.9–6.0); 7/14</td>
<td>High/20 yr 2.3 (0.9–6.0); 7/14</td>
<td></td>
</tr>
<tr>
<td>West et al. 1993</td>
<td>Hospital-based study (period of case ascertainment is unclear)</td>
<td>Occupational histories obtained by interview and exposure classified by job description and industry.</td>
<td>Adjusted for wood and exhaust fumes</td>
<td>Risk estimate calculated using all controls</td>
</tr>
<tr>
<td>Philippines</td>
<td>Cases: 104 incident cases of NPC identified at Philippines General Hospital</td>
<td>Duration of exposure (yr)/lag (yr)</td>
<td></td>
<td>Two models: (1) Adjusted for years since first exposure to wood and exhaust fumes; analysis of years since first exposure (2) final model - further adjusted for education, consumption of processed meats and fresh fish, smoking, and use of mosquito coils and herbal medicines</td>
</tr>
<tr>
<td></td>
<td>Controls: (1) 104 matched (sex, age, and ward type) hospital controls; and (2) 101 matched (sex, age, and neighborhood) community controls</td>
<td>< 15/0 2.7 (1.1–6.6); 19/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 15/0 1.2 (0.48–3.2); 8/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 15/10 1.6 (0.65–3.8); 11/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 15/10 2.1 (0.70–6.2); 8/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Years since 1st exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 25 1.3 (0.55–3.2); 12/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 25 2.9 (1.1–7.6); 14/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age at 1st exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 25 1.2 (0.47–3.3); 11/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 25 2.7 (1.1–6.6); 16/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final model: yrs since 1st exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 25 1.2 (0.41–3.6); 12/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 25 4.0 (1.3–12.3); 14/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
Cases: 282 NPC cases identified from health center records in Kuala Lumpur and Selangor among Malaysian Chinese
Controls: 282 matched (sex and age) controls | Occupational histories and other information obtained by interview and classified by job description and industry
Range of exposures – TWA = 0.16 to 0.35 mg/m³ (except adhesives industry, ≥ 0.37 mg/m³) | Ever exposed 0.71 (0.34–1.43)
No exposure response relation with increasing duration, lag time or intensity
No. exposed cases not specified; 9.9% of total cases exposed to formaldehyde and 49 pairs (at least one exposed to formaldehyde) included in analyses | Adjusted for smoking and diet
Controls selected by house to house sampling |
| Vaughan et al. 2000 United States
(Connecticut, Iowa, Utah, Washington, and Detroit) | Population based study 1987–93
Cases: 196 NPC identified from SEER registries
Controls: 244 frequency matched (age, sex, and registry) controls in the same locations identified from random digit dialing | Occupational histories and other information obtained by interview (participant and proxy) and classified by job description and industry
Exposure groups: TWA-8 h (ppm)
Low < 0.10
Moderate ≥ 0.10–< 0.50
High ≥ 50 | Histological type and ever exposed
Undifferentiated and non-keratinising 0.9 (0.4–2.0); 18/79
Differentiated squamous cell 1.5 (0.8–2.7); 49/79
Epithelial 3.1 (1.0–9.6); 12/79
Analysis excluding undifferentiated and non-keratinizing histologies
Possible, probable, or definite exposure
Ever exposed 1.6 (1.0–2.8); 61/79
Duration (yrs)
1–5 0.9 (0.4–2.1); 16/41
6–17 1.9 (0.9–4.4); 20/19
≥ 18 2.7 (1.2–6.0); 25/19
P_trend 0.014
Cumulative exposure (ppm-yrs)
0.05–0.40 0.9 (0.4–2.0); 15/40
> 0.4–1.10 1.8 (0.8–4.1); 22/20
> 1.10 3.0 (1.3–6.6); 24/19
P_trend 0.033 | Adjusted for age, sex, region, smoking, proxy status, and education
Exposure to wood dust did not increase the risk of NPC in this study |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
</table>
Cases: 375 NPC cases identified at 2 tertiary care hospitals
Controls: 325 individually matched (sex, age, residence) controls with no history of NPC identified using a National Household Registration system | Occupational histories and other information obtained by interview and classified by job title and industry | *Probable or definite exposure*
Ever
Duration, P_{trend} 0.069
Cumulative, P_{trend} 0.13
Definite exposure
Ever exposed 13.3 (2.5–70); 10/2
Duration, P_{trend} < 0.001
Cumulative, P_{trend} < 0.001 | *Adjusted for age, sex, ethnicity, and education*
Exposure to wood dust was associated with an increased risk of NPC in this study
Correlation between wood and formaldehyde exposure in the control population ranged from 0.26 to 0.35 |

Only 8 individuals were exposed for > 10 years outside the 10 year latency period.
3.4.3 Other head and neck cancers
This section summarizes studies of head and neck cancers other than sinonasal cancers and nasopharyngeal cancers, including combined cancers of the upper respiratory system, and cancers of the oral or buccal cavity, pharynx, the oro- and/or hypopharynx (OHPC), salivary glands, and larynx. See Section 3.1 for a description of these head and neck cancers, and Section 3.3.3 for a detailed summary of corresponding case-control studies and Tables 3-5a and 3-5b for a summary of the site-specific risk estimates. Note that no results were reported for other head and neck cancer in studies conducted by Edling et al. 1987b, Dell and Teta 1995, Bertazzi et al. 1986, Stellman et al. 1998, and Hall et al. 1991.

Known risk factors for cancers of the upper respiratory system include smoking and alcohol use, though these factors contribute more heavily to some cancer sites than others. All of the case-control studies reviewed in this section adjusted for smoking, with the exception of Wilson et al. (2004).

3.4.3.1 Upper respiratory cancer
One large nested case-control study (Partanen et al. 1990) (see Table 3-5b) and one cohort of mixed industries (Hauptmann et al. 2004) (see Table 3-5a) examined all upper respiratory tract cancers combined; Partanen et al. (1990) found an increase in cancer risk in relation to formaldehyde exposure (OR = 2.38, 95% CI = 0.43 to 13.2, deaths adjusted for vital status, but this was based on only 2 deaths) and Hauptmann et al. (2004) reported some evidence of increasing risk with increasing average, peak, and exposure in the NCI cohort study, although no statistically significant trends were observed (see Table 3-5b). [Hauptmann et al. 2004 did not control for smoking in the cohort because, according to the authors, the prevalence of smoking did not differ by formaldehyde exposure.]

3.4.3.2 Buccal cavity and pharyngeal cancer
Elevated (although not statistically significant) risks for cancers of the mouth, buccal cavity, or buccal cavity combined with the pharynx were observed in several cohort studies including iron foundry workers exposed to formaldehyde (SMR = 1.31, 95% CI
= 0.48 to 2.86, 6 deaths) (Andjelkovich et al. 1995), male and female garment workers with potential exposure to formaldehyde (SMR = 1.33, 95% CI = 0.36 to 3.41, 4 deaths) (Pinkerton et al. 2004), British chemical workers (SMR for mouth = 1.28, 0.47 to 2.78; 6 deaths, SMR = 1.55, 95% CI = 0.87–2.56; 15 deaths), (Coggon et al. 2003) and embalmers from the United States (PMR for whites = 1.19 (0.78 to 1.74); 26 deaths, and PMR for non-whites = 1.25 (0.34 to 3.2, 4 deaths) (Hayes et al. 1990), New York (PMR = 1.13, 8 deaths) (Walrath and Fraumeni 1983), and California (PMR = 1.3 8 deaths) (Walrath and Fraumeni 1984). Hansel and Olsen (1996) reported a SPICR of 1.1 (95% CI = 0.7 to 1.7; 23 cases) among male Danish workers, and 1 death from buccal cavity cancer was reported among formaldehyde-exposed tannery workers (Stern et al. 1987). No association with formaldehyde exposure and cancer of the buccal cavity or buccal cavity and pharynx cancers (combined) was found in the NCI cohort study (Hauptmann et al. 2004), the Danish cohort (women) (Hansel and Olsen (1996), and in two studies of health professionals (Levine et al. 1984, and Stroup et al. 1986) (see Tables 3-5a and 3-5b).

In the standardized incidence study of Finnish men and women by Tarvainen et al. (2008), no association was found between formaldehyde exposure and combined oral cavity, tongue, and pharyngeal cancer (SIRs range from 0.73 to 1.01). Two population-based case-control studies found non-significant increases for cancer of the oral cavity or oral cavity and pharynx combined and any exposure to formaldehyde: OR for oral cavity and oropharynx combined = 1.6 (95% CI = 0.9 to 2.8, 25 cases) (Merletti et al. 1991) and OR for oral cavity = 1.28 (95% CI = 0.64 to 2.54, 14 cases) (Gustavsson et al. 1998) (Table 3-5b). In the only study of salivary gland cancer (Wilson et al. 2004) found that risks increased with increasing higher probability and intensity of exposure (combined) was associated with cancer ($P_{trend} < 0.001$, in analyses including low-level exposures). Though this case-control study was quite large, no adjustment was made for smoking status.

Laforest et al. (2000) found a positive association between formaldehyde and hypopharyngeal squamous-cell carcinoma; this study also noted a strong exposure-response trend with increasing probability ($P_{trend} < 0.005$), duration ($P_{trend} < 0.04$), and
cumulative exposure \((P_{\text{trend}} < 0.14) \) to formaldehyde. Berrino et al. (2003) reported increased risks of hypopharyngeal cancer among workers with > 10 years duration of exposure although risk estimates did not increase with increasing duration of exposure or probability of exposure; this study included a validation analysis which suggested that the exposure assessment was not sensitive to formaldehyde. Vaugan et al. 1986 found a statistically non-significant increased risk for oro-and hypopharynx cancers (combined) among subjects with high exposure scores or longer exposure duration. In a nested-case control study among workers in the Wallingford plant of the NCI study, Marsh et al. (2002) found that risk of pharyngeal cancer (including 5 cases of nasopharyngeal cancer) increased with increasing duration of exposure \((\text{OR for 10+ years exposure duration} = 2.23, 95\% \text{ CI} = 0.34 \text{ to } 14.97, 5 \text{ cases}) \), but not with cumulative, average intensity of exposure.

3.4.3.3 Laryngeal cancer

With respect to laryngeal cancer, none of the cohort studies reported an association with laryngeal cancer except for a statistically non-significant increase among highly exposed British chemical workers \((\text{SMR} = 1.6, 95\% \text{ CI} = 0.63–3.22; 7 \text{ deaths}) \) (see Table 3-5a) (Coggon et al. 2003). In internal analyses, Hauptmann et al. (2004) observed an increased risk \((\text{OR} = 2.02, 95\% \text{ CI not reported}) \) for the highest category of exposure intensity only.

Among three case-control studies that focused on cancer of the larynx, Wortley et al. (1992) found elevated risks at the highest levels of peak exposure with greater than 10 years of exposure \((\text{OR} = 4.3, 95\% \text{ CI} = 1.0 \text{ to } 18.7, \text{ cases not reported}) \), but no exposure response relationship was observed with duration, peak, or level of exposure. Gustavsson et al. (1998) observed an elevated though statistically non-significant risk ratio for any exposure and squamous-cell type laryngeal cancer \((\text{OR} = 1.45, 95\% \text{ CI} = 0.83 \text{ to } 2.51, 23 \text{ cases}) \). However, other effect estimates were generally close to the null. No association between formaldehyde exposure and laryngeal cancer was found in a hospital based case-control study \((\text{Elci et al. 2003}) \).
3.4.3.4 Pooled analysis.

In a pooled analysis of 10 occupational cohort mortality studies which included analyses of oral cavity and pharyngeal cancers, Bosetti et al. (2008) calculated a combined estimated RR (using a weighted average of SMRs and/or PMRs) of 1.09 (95% CI = 0.88 to 1.34, 88 deaths) among industrial workers and 0.96 (95% CI = 0.75 to 1.24, 61 deaths) among medical workers exposed to formaldehyde.
Table 3-5a. Summary of cohort studies of formaldehyde exposure and cancers of the oral cavity, pharynx, and larynx

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI; number of exposed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andjelkovich et al. 1995</td>
<td>Iron foundry workers, MI USA</td>
<td>Buccal cavity/pharynx SMR 1.31 (0.48–2.86); 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 3,929 1960–89</td>
<td>Internal analysis; 6 exposed, 5 unexposed quartiles of estimated cumulative exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ever 0.59 (0.14–2.93) Q3+Q4 1.16 (0.20–6.51) (vs. never)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larynx SMR 0.98 (0.11–3.53); 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal analyses using unexposed workers as reference were adjusted for race, smoking, and exposure to silica</td>
<td></td>
</tr>
<tr>
<td>Coggon et al. 2003 (update of Acheson et al. 1984)</td>
<td>British Chemical Workers Study, UK</td>
<td>SMR analysis Mt 1.28 (0.47–2.78); 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 14,014 1941–2000</td>
<td>Pharynx 1.55 (0.87–2.56); 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larynx 1.07 (0.58–1.79); 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High exposed workers Mt 1.32 (0.16–4.75); 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pharynx 1.91 (0.78–4.17); 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larynx 1.56 (0.63–3.22); 7</td>
<td></td>
</tr>
<tr>
<td>Hansen and Olsen 1995, 1996</td>
<td>Denmark</td>
<td>SPICR analysis Mt 1.1 (0.7–1.7); 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 2,041 men 1,263 women</td>
<td>Women 0.8 (0.3–1.7); 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1970–84</td>
<td>Larynx Men 0.9 (0.6–1.2); 32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Women 0.6 (0.1–1.7); 3</td>
<td></td>
</tr>
<tr>
<td>Hauptmann et al. 2004, NCI combined cohort Marsh et al. 2007a, Wallingford subcohort</td>
<td>NCI cohort</td>
<td>SMR analyses Mt 1.01 (0.77–1.34); 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 25,619 Employed: 1934–66</td>
<td>Larynx 0.95 (0.63–1.43); 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up: 1966–94</td>
<td>Wallingford Plant (Marsh 2007a) Mt 7.08 (0.18–39.45); 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wallingford N = 7,345 Employed: 1941–84 Follow-up: 1945–2003</td>
<td>Tongue 0.92 (0.30–2.78); 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salivary gland. 0.66 (0.02–3.65); 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mouth floor 1.41 (0.17–5.07); 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other oral 1.18 (0.32–3.02); 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larynx 1.51 (0.85–2.50);15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pharynx 1.71 (1.01–2.72); 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oropharynx 1.71 (0.56–4.00); 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypopharynx 1.43 (0.29–4.17); 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPICR adjusted for age and calendar time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workers had 10 or more years of formaldehyde exposure before diagnosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjusted by calendar year, age, sex, race, and pay category; exposure was calculated with a 15-year lag interval</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI; number of exposed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>1.88 (0.81–3.70);16</td>
<td>Internal analysis RR, cases</td>
</tr>
<tr>
<td>NCI Cohort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract</td>
<td>Mean intensity (ppm)</td>
<td>0</td>
<td>1.47; 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 0.5</td>
<td>1.00; 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5–< 1.0</td>
<td>1.69; 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 1.0</td>
<td>2.21*; 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{trend}</td>
<td>0.158</td>
</tr>
<tr>
<td>Peak exposure (ppm)</td>
<td>0</td>
<td>1.32; 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 2.0</td>
<td>1.00; 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0–< 4.0</td>
<td>1.24; 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 4.0</td>
<td>1.65; 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{trend}</td>
<td>0.302</td>
</tr>
<tr>
<td>Cumulative exposure (ppm-yrs)</td>
<td>0</td>
<td>1.24; 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 1.5</td>
<td>1.00; 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5–< 5.5</td>
<td>1.92; 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 5.5</td>
<td>0.86; 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{trend}</td>
<td>0.744</td>
</tr>
<tr>
<td>Buccal cavity</td>
<td>Mean intensity (ppm)</td>
<td>0</td>
<td>2.42*; 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 0.5</td>
<td>1.00; 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5–< 1.0</td>
<td>2.41*; 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 1.0</td>
<td>1.89; 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{trend}</td>
<td>0.791</td>
</tr>
<tr>
<td>Peak exposure (ppm)</td>
<td>0</td>
<td>2.08; 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 2.0</td>
<td>1.00; 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0–< 4.0</td>
<td>1.07; 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 4.0</td>
<td>1.83; 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{trend}</td>
<td>0.433</td>
</tr>
<tr>
<td>Cumulative exposure (ppm-yrs)</td>
<td>0</td>
<td>1.98; 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 1.5</td>
<td>1.00; 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5–< 5.5</td>
<td>1.59; 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 5.5</td>
<td>1.74; 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{trend}</td>
<td>0.422</td>
</tr>
<tr>
<td>Larynx</td>
<td>Mean intensity (ppm)</td>
<td>0</td>
<td>1.09; 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 0.5</td>
<td>1.00; 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5–< 1.0</td>
<td>1.00; 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 1.0</td>
<td>2.02; 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{trend}</td>
<td>0.284</td>
</tr>
<tr>
<td>Peak exposure (ppm)</td>
<td>0</td>
<td>0.86; 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0–< 1.5</td>
<td>1.00; 10</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI; number of exposed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
<td>---</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Pinkerton et al. 2004 (update of Stayner et al. 1985 (PMR study), 1988 (SMR study)) | NIOSH cohort of garment workers, USA (N = 11,039)
External analysis
SMR 1955–98
PMR 1959–82 | SMR study
Buccal cavity 1.33 (0.36–3.4); 4
Pharynx 0.64 (0.13–1.86); 3
Larynx 0.88 (0.18–2.59); 3
PCMR study
Buccal cavity 6.82 (1.85–17.58)b; 3 | |
| Stern et al. 1987 | Workers employed in two chrome leather tannery plants, USA
N = 9,365
1940–1982 | SMR
Buccal cavity/Pharynx NR, 1 death
Larynx NR | Formaldehyde-exposed workers in the finishing department (N not stated) |
| Studies on health professional workers | | | |
| Hayes et al. 1990 | Deceased embalmers and funeral directors identified using licensing board records, death certificates, and other sources, USA
N = 4,046
1975–85 | PMR analysis
Buccal cavity/pharynx
Whites 1.19 (0.78–1.74); 26
Non-whites 1.25 (0.34–3.2); 4
Larynx
Whites 0.64 (0.26–1.33); 7
Non-whites 0 death vs. 1.6 exp. | Small cohort |
| Levine et al. 1984 | Licensed embalmers in Ontario, Canada
N = 1,413 | SMR analysis
Buccal cavity/pharynx
1 death vs. 2.1 exp.
Larynx 1 death vs. 1 exp. | Small cohort |
| Stroup et al. 1986 | Anatomists, members of the American Association of Anatomists, USA
N = 2,317
1888–1979 | SMR analysis
Buccal cavity/pharynx 0.2 (0.00–1.71); 2
Larynx 0.4 (0.0–2.0); 1 | Small cohort |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI; number of exposed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Walrath and Fraumeni 1983 | All licensed embalmers and funeral directors in New York, USA N = 1,263 1902–80 | PMR analysis on males
Buccal cavity and pharynx
All whites 1.13; 8
Embalmers only 2.01; 7
Larynx
Whites 2 vs. 3.4 exp.
Non-whites 2 deaths, $P < 0.05$ | Small cohort |
| Walrath and Fraumeni 1984 | All licensed embalmers in California, USA N = 1,109 1916–80 | PMR study on white males
Buccal cavity/ pharynx 1.31; 8, $P > 0.05$
Larynx 2 vs. 2.6 exp. | Small cohort |

* $P < 0.05$.

Results for oral cavity, pharynx and larynx cancers were not reported by Edling et al. 1987b, Dell and Teta, 1995, Bertazzi et al. 1986, Stellman et al. 1998, and Hall et al. 1991.

NPC = nasopharyngeal cancer; NR = not reported; PCMR = proportionate cancer mortality ratio; PMR = proportionate mortality ratio, Q = quartile, SMR = standardized mortality ratio; SPICR = standardized proportionate incidence cancer ratio.

* Excluding nasopharynx.

b 90% CI.
Table 3-5b. Summary of case-control studies (including nested case-control studies) and cancer registry studies of formaldehyde exposure and cancers of the oral cavity, pharynx, and larynx

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases and controls</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partanen et al. 1990;</td>
<td>Nested case-control study</td>
<td>Occupational histories obtained using plant records and classified using factory-specific JEMs</td>
<td>Upper respiratory only</td>
<td>Adjusted for vital status and smoking</td>
</tr>
<tr>
<td>(update of Partanen et al.1985) Finland</td>
<td>Cohort: particleboard, plywood, or formaldehyde glue factory workers, 1957–80</td>
<td>Cases: 136 cases of all respiratory system cancer including tongue, pharynx, larynx, epiglottis, trachea and lung</td>
<td>≥ 3 ppm-months 2.38 (0.43–13.2); 2 With 10-yr lag 2.40 (0.31–18.6); 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controls: 408 controls randomly selected from cohort; 3:1 ratio, matched on year of birth and alive at date of case diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarvainen et al. 2008 Finland</td>
<td>Cancer registry-based standardized incidence study</td>
<td>1970 census data used to construct national job exposure matrix based on longest-held occupation</td>
<td>SIR (95% CI); no. observed cases</td>
<td>Adjusted for age, calendar period and socioeconomic status. Exposures lagged for ten years.</td>
</tr>
<tr>
<td></td>
<td>All oral cavity, tongue and pharyngeal cancers (excluding nasopharynx) in Finnish Cancer Registry, from 1971 to 1995, males and females born 1906–45</td>
<td></td>
<td>Formaldehyde, estimated cumulative exposure, ppm-years:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low 0.79 (0.6–1.03); 59</td>
<td>Medium 1.01 (0.43–1.98); 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High 0.73 (0.27–1.59); 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases and controls</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merletti et al. 1991</td>
<td>Population-based study Turin, Italy Jul. 1982–Sep. 1984 Cases: All male Turin residents diagnosed with cancer of the oral cavity and oropharynx (103 eligible cases) 86 agreed to interview Controls: random sample of 679 age and sex matched controls: 385 agreed to interview (371 with complete occupational history)</td>
<td>Occupational histories obtained by interview and classified using a JEM</td>
<td>Oral cavity and oropharynx combined Exposure to formaldehyde Any 1.6 (0.9–2.8); 25/79 Probable or definite 1.8 (0.6–5.5); 6/13 No exposure-response relationships observed but elevated ORs observed for most exposure categories</td>
<td>Adjusted for age, education, area of birth, smoking, and alcohol</td>
</tr>
<tr>
<td>Gustavsson et al. 1998</td>
<td>Population-based, case-control studies various cancers Sweden Jan. 1988–Jan. 1991 Cases: identified from health care records and cancer registries Oral cavity (N = 128) Pharynx (N = 138) Larynx (N = 157) Controls: 641 selected from population registries and matched by region and age</td>
<td>Occupational histories, lifestyle and environmental information obtained by interview and exposure classified by job title and industry</td>
<td>Ever exposed Oral cavity 1.28 (0.64–2.54); 14 Pharynx 1.01 (0.49–2.07); 13 Larynx squamous cell type 1.45 (0.83–2.51); 23 No exposure relationship with cumulative exposure or duration</td>
<td>Adjusted for age, region, smoking, and alcohol</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases and controls</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Marsh et al. 2002 United States | Nested case-control study within the Wallingford plant cohort (N = 7,328); 1941–98
Cases: 22 cases of pharyngeal cancer (including 7 nasopharynx)
Controls: 88 members of the cohort matched on race, sex, age and year of birth | Occupational histories obtained from employment and sampling records | All pharyngeal cancers (inc. nasopharynx)
Non-exp 1.0 (ref); 2
Ever 3.04 (0.36–145.58); 20
< 0.2 ppm 1.0 (ref); 8
> 0.2 ppm 1.27; (0.35–4.88); 14
< 0.7 ppm 1.0 (ref); 16
> 0.7 ppm 1.36 (0.08–21.59); 6
Duration Adj. OR
< 1 yr 1.00; 13
1–9 yr 1.01 (0.19–4.42); 4
10+ yr 2.23 (0.34–14.97); 5
No association with cumulative or average intensity of exposure to formaldehyde | Adjusted for smoking and year of hire
Wallingford plant is a plant in the NCI cohort
Smoking data available on 15 cases and 77 controls |
| Wilson et al. 2004 United States (24 states) | Death certificate-based study
1984–89
Cases: 2,505 cases of salivary gland carcinoma (60% men, 7% black) identified by mortality records
Controls: 9,420 frequency matched (age, race, sex and region) randomly selected from deaths not related to infectious disease | Occupational histories were obtained from death certificates and classified using a JEM | White men: Salivary gland
Probability/intensity of exposure
Low/low 0.9 (0.70–1.15)
Low/mid-high 0.7 (0.35–1.26)
Mid-high/low 2.4 (0.86–6.75)
Mid-high/mid-high 1.6 (1.30–2.0)
P_trend < 0.001 | Adjusted for age, marital status, and socioeconomic status |
Cases: 205 cases of oro- and hypopharynx cancer | Occupational histories obtained by interview and classified using a JEM | Oro- and hypopharynx
Exposure scores
Low 0.6 (0.3–1.2); 14/59 | Adjusted for sex, age, smoking, and alcohol
For exposure scores: Low = |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases and controls</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laforest et al. 2000</td>
<td>Hospital based study Jan. 1989–Apr. 1991
Cases: 201 men with confirmed SCC of the hypopharynx identified from 15 French hospitals (from 644 eligible cases of laryngeal and pharyngeal cancers and 80% participation rate)
Controls: 355 controls matched (frequency) by age and hospital with primary cancer at other sites; 296 interviewed and included in analyses</td>
<td>Occupational histories and other information obtained by interview and exposure to formaldehyde classified using a JEM</td>
<td>Hypopharynx - SCC
Probability of exposure (%):
 &n...</td>
<td></td>
</tr>
<tr>
<td>Berrino et al. 2003</td>
<td>Population based study 1979–82
Cases: 315 men under 55 with hypopharyngeal/</td>
<td>Occupational histories and other information obtained by interview and exposure to formaldehyde was classified using a JEM</td>
<td>Individuals less than 55
Hypopharynx/larynx
Probability of exposure:
 &n...</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases and controls</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Wortley et al. 1992 Washington,</td>
<td>laryngeal cancer (213 endolarynx and 100 HPC + epilarynx) identified from 6 health care centers Controls: 819 men under 55 identified from a random sample (age and sex stratified) of the population from each center 113 exposed cases and 192 unexposed cases; 196 exposed controls and 623 unexposed controls</td>
<td>JEM. Some interviews with next of kin</td>
<td>Possible 1.5 (0.9–2.4); 90/146 Probable 0.9 (0.4–1.9); 23/50</td>
<td>other dusts and gases Independent validation of JEM classified 14% of the unexposed jobs as definitely exposed. No significant associations found in analysis of individuals (695 cases and 1,357 controls) over 55 (numbers for formaldehyde not given)</td>
</tr>
<tr>
<td>Elci et al. 2003</td>
<td>Hospital-based, case</td>
<td>Occupational histories</td>
<td>Larynx</td>
<td>Adjusted for age, smoking, alcohol, and education; subjects matched by age and sex</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases and controls</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Turkey</td>
<td>control study</td>
<td>and lifestyle information obtained by interview and exposure classified using a JEM</td>
<td>Ever 1.0 (0.8–1.3)</td>
<td>and alcohol</td>
</tr>
<tr>
<td></td>
<td>1979–84</td>
<td>Exposure intensity</td>
<td>Low 1.1 (0.8–1.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cases: 951 men with confirmed cases of laryngeal cancer presenting</td>
<td>Medium 0.5 (0.2–1.3)</td>
<td>High 0.7 (0.1–7.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controls: 1,519 hospital patients (non-cancer)</td>
<td>Exposure probability</td>
<td>Low 1.0 (0.7–1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium 1.1 (0.6–2.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High 1.0 (0.1–11.2)</td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.05

a Original study included 1,010 cases and 2,176 controls. Complete lifetime occupational histories were only available for subjects under 55, so analysis was restricted to this age group.
3.4.4 Respiratory cancers or lung cancer

The relationship between occupational exposure to formaldehyde and lung or respiratory system cancers has been investigated in a large number of cohort, nested case-control, and population-based case-control studies. The key findings are summarized in Table 3-6a and b. (See Section 3.3.4 for a detailed summary of case-control studies investigating lung cancer.)

3.4.4.1 Cohort studies

Increased risks for lung or respiratory cancer were reported in five of the industrial cohorts, two of which were statistically significant or border-line significant (Andjelkovich et al. 1995, Bertazzi et al. 1986, Coggon et al. (2003), Dell and Teta (1995), Hansen and Olsen (1995, 1996) (women only). (See below for a discussion of the nested case-control study of the iron foundry workers reported by Andelkovich et al. [1994].) Coggon et al. (2003) reported a statistically significant increase in the risk of lung cancer among highly exposed (> 2 ppm) British chemical workers (SMR = 1.58, 95% CI = 1.40 to 1.78, 272 deaths). Risks increased with increasing exposure level (low, medium, high, \(P_{\text{trend}} < 0.001 \)), but not with duration of exposure. Increased lung cancer risks were found in internal analyses of formaldehyde-exposed workers in some exposure categories in the NCI cohort (Hauptmann et al. 2004), but no clear trends with average, peak, or cumulative exposure were observed; no increase was observed in external analysis of the combined cohort, although a statistically significant increase was found in one of the constituent cohorts (Marsh et al. 2007a). No increases were observed in the NIOSH garment workers cohort (Pinkerton et al. 2004), the Danish mixed industry cohort (men) (Hansen and Olsen 1995, 1996), the abrasive material industry (Edling et al. 1987b), among tannery workers exposed to formaldehyde (Stern et al. 1987), or among most of the studies of health professional workers (see Table 3-6a). Stellman et al. (1998) reported a significant risk for woodworkers exposed to formaldehyde (SMR = 2.63 (95% CI = 1.25–5.51, 7 deaths) but not among workers only exposed to formaldehyde (SMR = 0.93, 95% CI = 0.73 to 1.18, 104 deaths).
3.4.4.2 Case-control studies

Ten case-control (including nested case-control) studies have evaluated the relationship between exposure to formaldehyde and lung or respiratory cancer; two studies reported on respiratory system cancers and eight studies on lung cancer independently. Marsh et al. (2001) reported a statistically significant risk of respiratory (lung and larynx) cancers associated with formaldehyde exposure in their nested case-control study within an industrial cohort of glass wool manufacturing workers (OR = 1.61, 95% CI = 1.02 to 2.57, 591 ever-exposed cases, adjusted for smoking but not other exposures). Partanen et al. (1990, 1985) noted elevated but statistically non-significant risks in combined mouth, tongue, nose and sinuses, pharynx, larynx, trachea, epiglottis, and lung cancer associated with formaldehyde exposure; in their updated analysis (Partanen et al. 1990), the OR for cumulative exposure of at least three ppm-months with a 10-year lag was 1.39 (95% CI = 0.40 to 4.10). Risk estimates were higher for cancers of the upper respiratory system only.

Several studies reported increased risks (both statistically significant and non-significant risk) for lung cancer. Increased risks were found in nested case-control studies among male and female glass wool workers exposed to formaldehyde (RR = 1.61, 95% CI = 1.02 to 2.57, 91 deaths for men, and 1.24, 95% CI = 1.24, 95% CI = 0.74 to 2.09, 39 deaths for women) (Marsh et al. 2001, Stone et al. 2004), glass wool workers (independent study) with 100 to 999 cumulative days of exposure to formaldehyde (RR = 1.27, 95% CI = 0.50 to 3.21, 15 deaths) (Chiazze et al. 1997), and iron foundry workers exposed to formaldehyde (OR of 1.31. 95% CI = 0.38 to 2.07) (Andjelkovich et al. 1994); however, risks decreased in exposure-response analyses by lag or duration of exposure. Increased risks were also observed in two population-based case-control studies. Gérin et al. (1989) reported an OR of 1.5 (95% CI = 0.8 to 2.8) for high-level formaldehyde exposure only with at least 10-years duration, but no adjustment was made for smoking. Chen et al. (2008) reported a statistically significant association between lung cancer and the burning of mosquito coils (a practice common in Taiwan), after adjustment for smoking and other variables, which may involve exposure to a range of particulates and chemicals including formaldehyde as a combustion product. No increased risks of lung cancer were reported in a nested case-control study of Dow Chemical
workers (Bond et al. 1986), a small cancer registry study of physicians (Jensen and Anderson 1982), and a population-based case-control study of women (Brownson et al. 1993).

For lung cancer and any respiratory system cancer, smoking is the principal potential confounder; occupational exposure to dusts, synthetic vitreous fibers and other ambient exposures may also be of concern. Several studies have attempted to make some adjustment for smoking status (exceptions include Coggon et al. 1984, Bond et al. 1986, Gérin et al. 1989, Chiazze et al. 1997 and Hauptmann et al. 2004), though in most cases estimates of smoking are limited to a sample of subjects, to proxy data, or to ever-never smoking status.

3.4.4.3 Pooled analysis.
In a pooled analysis of 14 occupational cohort mortality studies, which included deaths from lung cancer, Bosetti et al. (2008) calculated combined estimated RRs (using weighted SMRs and/or PMRs) of 1.06 (95% CI = 0.92 to 1.23, 1,459 deaths) among industrial workers and 0.63 (95% CI = 0.47 to 0.84, 562 deaths) among medical workers in association with formaldehyde exposure.
Table 3-6a. Summary of cohort studies of formaldehyde exposure and cancers of the lung

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI, number of exposed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Andjelkovich *et al.* 1995 | Iron foundry workers, MI USA
N = 3,929
1960–87 | Lung cancer
SMR 1.20 (0.89–1.58); 51
RR 1.13, NR, $P > 0.05$
Internal analysis (quartiles of cumulative exposure compared with never)
Ever 0.71 (0.43–1.21)
Q3 + Q4 0.59 (0.28–1.20) | SMR – formaldehyde exposed subcohort
See Table 3-6b for related nested case-control of larger cohort
Internal analyses using unexposed workers as reference were adjusted for race, smoking, and exposure to silica |
| Bertazzi *et al.* 1986 | Resin manufacturing workers, Italy
N = 1,332 men
1959–80, 1986 | Lung cancer (SMR analysis)
All 1.36 (NR); 5
No increased risk with increasing years since first exposure | No quantitative exposure assessment; 28% person-years assigned to definite exposure to formaldehyde |
N = 14,014
1941–2000 | Lung cancer (SMR analysis)
All 1.22 (1.12–1.32); 594
high exposed 1.58 (1.40–1.78); 272
Exposure response for lung cancer
Increasing risk with increasing exposure level (low, medium, high), $P_{trend} < 0.001$
Inverse trend with duration of exposure | |
| Dell and Teta 1995 | Workers employed at a Union Carbide plastics manufacturing plant in New Jersey, USA
57 formaldehyde exposed workers in hexamethylenetetramine production
111 workers (total) exposed to formaldehyde
1946–88 | Lung cancer (SMR)
Hexamethylenetetramine production workers 4 deaths vs. 1.1 exp.
All formaldehyde exposed workers NR | Small numbers of formaldehyde exposed workers
Lung cancer risk elevated in whole cohort |
| Edling *et al.* 1987b | Abrasive materials industry, Sweden
N = 506 male blue collar workers
Mortality 1958–83
Incidence 1958–81 | Lung cancer
SMR NR
SIR 0.57 (0.07–2.06); 2 | |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI, number of exposed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen and Olsen 1995, 1996</td>
<td>Danish formaldehyde exposed worker</td>
<td>SPICR lung</td>
<td>SPICR adjusted for age and calendar time</td>
</tr>
<tr>
<td></td>
<td>N = 2,041 men, 1,263 women 1970–84</td>
<td>Men 1.0 (0.9–1.1); 410</td>
<td>Workers had 10 or more years exposure to formaldehyde before diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Women* 1.2 (0.96–1.4); 108</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Men, formaldehyde no wood dust 1.0 (0.9–1.1); 250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Women NR</td>
<td></td>
</tr>
<tr>
<td>Hauptmann et al. 2004, NCI combined cohort Marsh et al. 2007a, Wallingford subcohort</td>
<td>NCI cohort, USA N = 25,619 Employed 1934–66 Follow-up 1966–94 Wallingford N = 7,345 Employed 1941–84 Follow-up 1945–2003</td>
<td>Lung cancer SmR NCI cohort 0.97 (0.90–1.05); 641 Wallingford 1.18 (1.05–1.32); 322 NCI internal analysis (RR, number of cases): Average exposure (ppm) > 0.0–< 0.5 1.0 (ref.); 348 > 0.5–< 1.0 1.51; 146 ≥ 1.0 1.16; 160 Peak exposure (ppm) > 0.0–< 2.0 1.0 (ref.); 237 2.0–< 4.0 1.45; 227 (P < 0.01) ≥ 4.0 0.94; 177 All RRs for cumulative exposure < 1</td>
<td>Internal analysis adjusted by calendar year, age, sex, race, and pay category; exposure was calculated with a 15-year lag interval Average, cumulative, and peak exposures compared to lowest exposed category</td>
</tr>
<tr>
<td>Pinkerton et al. 2004 (update of Stayner et al. 1985, 1988 – PMR and SMR studies respectively)</td>
<td>NIOSH cohort of garment workers, USA N = 11,039 SMR 1955–98 PMR 1959–82</td>
<td>Lung cancer SmR 0.98 (0.82–1.15); 147 PCMR 0.88 (0.49–1.45)ab 11 SMR did not increase with increasing duration, time since first exposure, or earlier start dates</td>
<td>Standardized mortality and PMR study</td>
</tr>
<tr>
<td>Stellman et al. 1998 50 U.S. states, District of Columbia, Puerto Rico</td>
<td>Woodworkers: American Cancer Society Cancer Prevention Study N = 362,823; 43,339 in woodworking occupations</td>
<td>Internal analysis (RR) for lung FOR only 0.93 (0.73–1.18); 104 FOR + wood 2.63 (1.25–5.51); 7</td>
<td>Internal analysis using non-woodworkers or workers without exposure to wood dust Adjusted for age and smoking</td>
</tr>
<tr>
<td>Stern et al. 1987</td>
<td>Workers employed in two chrome leather tannery plants, USA (N = 9,365) Employed 1940–79 or 1980</td>
<td>Lung SmR 0.70 (0.45–1.05); 24</td>
<td>Formaldehyde-exposed workers in the finishing department (N not stated)</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI, number of exposed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Studies of health professional workers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Hall *et al.* 1991; (update of Harrington and Shannon 1975 and Harrington and Oakes 1984) | Pathologists, members of professional organizations in the UK
N = 3,872
1974–87 | Lung cancer (England & Wales)
SMR 0.19 (0.09–0.36); 9 | |
| Hayes *et al.* 1990 | Deceased embalmers and funeral directors identified using licensing board records, death certificates, and other sources, USA
N = 4,046
1975–85 | Lung (PMR)
Whites 0.97 (0.86–1.09); 285
Non-whites 0.75 (0.47–1.13); 23 | |
| Levine *et al.* 1984 | Licensed embalmers in Ontario, Canada (N = 1,413) | Lung
SMR 0.94 (NR); 19 | |
| Stroup *et al.* 1986 | Anatomists, members of the American Association of Anatomists, USA
N = 2,317
1888–79 | Lung
SMR 0.3 (0.1–0.5); 12 | |
| Walrath and Fraumeni 1983 | All licensed embalmers and funeral directors in NY, USA
N = 1,263
1902–80 | Lung (white males)
PCMR 1.1 (NR); 70
Lung and pleura
PMR 1.08 (NR); 72 | |
| Walrath and Fraumeni 1984 | All licensed embalmers in CA, USA
N = 1,109
1916–80 | Lung and pleura (white males)
PMR 0.87 (NR); 41 | |

* P < 0.05.

FOR = formaldehyde; NR = not reported; PMR = proportionate mortality ratio; PCMR = proportionate cancer mortality ratio; SMR = standardized mortality ratio; SPICR = standardized proportionate incidence cancer ratio.

* As reviewed by IARC 2006.

b 90% CI.
Table 3-6b. Summary of case-control studies (including nested case-control) investigating formaldehyde exposure and lung or respiratory cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jensen and Andersen 1982 Denmark</td>
<td>Cancer registry-based case-control study of physicians 1943–76 Cases: 84 incident lung cancers Controls: physicians matched on age, sex and survival to date of diagnosis</td>
<td>Medical specialization and place of work for cases were compared with controls to assess the potential for increased relative exposure levels.</td>
<td>Ever worked in pathology, forensic medicine, anatomy: RR 1.0 (0.4–2.4); 8/23</td>
<td>Small no. cases No increase in risk among other physician specialties</td>
</tr>
<tr>
<td>Coggon et al. 1984 United Kingdom</td>
<td>Population-based study 1975–79 Cases: 598 men under 40 identified from death certificates with cancer of the trachea, bronchus or lung Controls: 1,180 men who died from other causes and matched to cases by sex, year of birth and death, and residence</td>
<td>Occupational histories obtained from death certificates, exposure classified by JEM</td>
<td>Ever-exposed 1.5 (1.2–1.8); 296/472 Occupations with high exposure 0.9 (0.6–1.4); 44/90</td>
<td>Matched tabular analysis, including matching for pay class</td>
</tr>
<tr>
<td>Bond et al. 1986 Texas, United States (cohort of Bond et al. 1985)</td>
<td>Nested case-control of Dow Chemical workers (Bond et al. 1985) 1940–80</td>
<td>Occupational histories obtained from company employment records and classified by job</td>
<td>Ever exposed 0.62 (0.29–1.34); 9/27 15-yr lag 0.31 (0.11–0.86); 4/24</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Gérin et al. 1985</td>
<td>Case: 308 men identified using death certificates. Controls: matched by race, years of birth and hire.</td>
<td>task</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-site study. 1979–85. Cases: 857 men; incident cases identified from all hospitals. Controls: (1) cancer controls, internal controls with tumors at other sites and (2) 740 population based controls matched by age.</td>
<td>Occupational histories obtained by interview; exposure classified by job description and industry. Estimated exposure index. Low < 0.1 ppm. Med. 0.1 – 1 ppm. High ≥ 1 ppm.</td>
<td>Exposure duration (yrs)/exposure index (cancer controls). Lung cancer (all). < 10/any 0.8 (0.6–1.2); 62/NR. ≥ 10/low 0.5 (0.3–0.8); 33/NR. med. 1.0 (0.7–1.4); 61/NR. high 1.5 (0.8–2.8); 24/NR.</td>
<td>Adjusted for 1) age, 2) ethnicity, 3) cigarette smoking, 4) self-reported income, 5) jobs held and other occupational factors; highest OR observed for adenocarcinoma with highest exposure, similar estimates were observed for other histologic subtypes.</td>
</tr>
<tr>
<td>Partanen et al. 1990 (update of Partanen et al. 1985)</td>
<td>Nested case-control of plywood, particleboard, and formaldehyde glue factory workers (N = 7,303). 1957–82. Cases: 136 respiratory cancer cases including tongue, pharynx, larynx, trachea, epiglottis, and lung identified using the Finnish Cancer Registry. Controls: 408 controls selected randomly from cohort and matched (3:1) by year of birth.</td>
<td>Occupational histories obtained using plant records and classified using factory-specific JEMs.</td>
<td>Workers with ≥ 3 ppm-months vs/ < 3 ppm-months. Lung 0.69 (0.21–2.24); 9. 10-yr lag 0.89 (0.26–3.00); 7. Respiratory 1.11 (0.40–3.11); 11. 10-yr lag 1.39 (0.40–4.10); 9. No association with level of exposure, cumulative exposure, and exposure duration.</td>
<td>Adjusted for vital status and smoking.</td>
</tr>
<tr>
<td>Brownson et al. 1993</td>
<td>Population-based study. 1986–91. Cases: 429 women identified from</td>
<td>Occupational histories obtained by interview; exposure classified by job description.</td>
<td>Ever-exposed 0.9 (0.2–3.3); 3/10.</td>
<td>Adjusted for age, previous history of lung disease and smoking.</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Andjelkovich et al. 1994</td>
<td>Nested case-control study of iron foundry workers (N = 8,147) (update of Andjelkovich et al. 1990) 1950–89 Cases: 220 lung cancer Controls: matched on race from cohort (10:1) using incidence density sampling</td>
<td>Occupational histories obtained from employment records and classified using a JEM</td>
<td>Ever exposed 1.31 (0.83–2.07); NR Effects decreased with increasing lag periods</td>
<td>Adjusted for smoking, birth cohort, and exposure to silica Analysis using subset of controls with smoking information</td>
</tr>
<tr>
<td>Chiazze et al. 1997</td>
<td>Nested case-control of fiberglass manufacturing plant workers (N = 4,631); 1951–91 Cases: 47 white men with lung cancer Controls: 122 white men matched on year of birth and survival to end of follow-up or death</td>
<td>Occupational histories obtained by interview and a historical exposure reconstruction; exposure was classified by a committee of experts</td>
<td>Cumulative days of exposure 0.2 < 100 0.94 (0.38–2.36); 14 100–999 1.27 (0.50–3.21); 15 1000+ 1.14 (0.11–12.1); 1</td>
<td>Unadjusted</td>
</tr>
<tr>
<td>Marsh 2001, Youk et al. 2001</td>
<td>Marsh et al. 2001: Nested case-control study of male and female fiberglass workers (N = 32,110) 1970–92 Cases: 874 respiratory system cancers combined including larynx, bronchus, trachea, and lung Controls: alive when case died</td>
<td>Occupational histories obtained from company employment records and relevant industrial hygienic literature; exposure estimated using job location-weighted measures</td>
<td>All respiratory system combined RR for men ever exposed to formaldehyde 1.61 (1.02–2.57); 591 lag (yr) 5 1.62 (1.04–2.54); 588/503 10 1.46 (0.96–2.23); 581/498 20 1.17 (0.82–1.67); 537/458 No clear trends with cumulative or average exposure</td>
<td>Men Adjusted for smoking Analysis on 516 pairs (631 cases and 570 controls) Women 37.6 person-years exposed to formaldehyde No adjustment for smoking; models with formaldehyde and glass wool were similar to</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Stone et al. 2004: N = 4,008 women; 1970–92 3,563 included in analysis 53 respiratory-system cancer cases</td>
<td>RR for cumulative exposure to formaldehyde Women 1.24 (0.74–2.09); 39</td>
<td>univariate analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al. 2008</td>
<td>Hospital-based study of mosquito coil exposure Jul. 2002–Feb. 2004 Cases: 148: All new diagnoses of lung cancer in three medical centers; one refusal Controls: 889 age, sex-matched non-cancer hospital controls recruited, 400 participated</td>
<td>Use of mosquito coils (times per week) >3 3.78 (1.55–6.90); 24 < 3 2.67 (1.60–45.0); 32</td>
<td>Adjusted for age, marital status, smoking and tuberculosis No direct estimate of formaldehyde exposure available</td>
<td></td>
</tr>
</tbody>
</table>

* ORs calculated using hospital controls; similar estimates using population-based controls.*
3.4.5 Lymphohematopoietic cancers

The relationship between occupational exposure to formaldehyde and lymphohematopoietic cancer has been investigated in several cohort, nested case-control, and population-based case-control studies. The key findings are summarized in Table 3-7a and b. (See Section 3.3.5 for a detailed summary of case-control studies investigating lymphohematopoietic cancer.)

3.4.5.1 Cohort studies

Eight cohort studies (including all six studies of health profession workers) have reported increased mortality of all lymphohematopoietic cancers combined although most of the increases were not statistically significant (Bertazzi et al. 1986, Stellman et al. 1988 [the increase was strongest among woodworkers exposed to formaldehyde], Hall et al. 1991, Hayes et al. 1990, Stroup et al., 1986, Levine et al. 1984 and Walrath and Fraumeni 1983, 1984). (See Table 3-7a for risk estimates). No increased risk of lymphohematopoietic cancers was observed among garment workers in the NIOSH cohort (Pinkerton et al. 2004) and among formaldehyde-exposed workers in the iron foundry industry (Andjelkovich et al., 1995). Risk estimates (or number of deaths) were not reported by Coggon et al. (2003), Edling et al. (1987b), Hansen and Olsen (1995, 1996), Stern et al. (1987), and Dell and Teta (1995). Although no increase in all lymphohematopoietic cancers combined was observed in the external analysis in the large NCI cohort, a statistically significant trend for all lymphohematopoietic cancers was observed with peak, but not average or cumulative exposure in the internal analysis (SMR = 0.94, 95% CI = 0.84 to 1.06, 286 cases) (Beane Freeman et al. 2009). Peak exposures exceeding 4 ppm (compared with peaks of > 0.0 to 1.9 ppm) were associated with a statistically significant increase in all lymphohematopoietic cancers (OR = 1.37, 95% CI = 1.03 to 1.81, 108 deaths).

Most studies (except for Dell and Teta 1995, Edling et al. 1987b and Bertazzi et al. 1986) reported results for leukemia. Similar to the findings for all lymphohematopoietic cancers, all six studies of health professionals reported increased risks (SMR or PMR) for leukemia, although most findings were not statistically significant; In general, most studies reported the highest risks for myeloid leukemia: statistically significant increased
mortality for myeloid leukemia was found among white embalmers (PMR = 1.61, 95% CI = 1.02 to 2.41, 23 deaths) (Hayes et al. 1990) and U.S. anatomists (SMR = 8.8, 95% CI = 1.8 to 25.5, 3 deaths) (Stroup et al. 1986). In the industrial cohort studies, statistically non-significant increased risks for leukemia were found among garment workers in the NIOSH cohort (Pinkerton et al. 2004), U.S. formaldehyde-exposed workers in the NCI cohort (Beane Freeman et al. 2009), Danish women (Hansen and Olsen 1995, 1996), and the subset of tannery workers exposed to formaldehyde (Stern et al. 1987). (See Table 3.7a for risk estimates).

A few studies evaluated risk by exposure duration, date of first exposure, or time since first exposure. In the NIOSH cohort (Pinkerton et al. 2004), risks for leukemia, myeloid leukemia, and acute myeloid leukemia were higher among workers with longer duration of exposure (> 10 yrs), longer time since first exposure (> 20 years), and who were exposed prior to 1963 (when formaldehyde exposure was thought to be higher). An excess of mortality for myeloid leukemia among workers with both 10 years or more of exposure and with 20 years since first exposure was 2.55 (95% CI = 1.10 to 5.03, 8 deaths). A statistically significant PMR was found among white embalmers who were licensed greater than 20 years (PMR = 2.21). The NCI cohort study provided the most extensive exposure-response relationship analyses (Beane Freeman et al. 2009). In internal analyses, statistically significant trends were observed for all leukemias ($P_{\text{trend}} = 0.02$), with peak exposures ≥ 4.0 ppm compared with > 0.0 to 1.9 ppm (associated with a relative risk of 1.42 (95% CI = 0.92 to 2.18, 48 deaths); the trend for myeloid leukemia was ($P_{\text{trend}} = 0.07$). No statistically significant trends for leukemia were observed for average or cumulative exposure. Leukemias observed in the early update by Hauptmann et al. (2003) were re-analyzed by Marsh and Youk (2004) using different exposure assessment methods; effect estimates and exposure-response trends were slightly reduced toward the null and were no longer statistically significant, though risk ratios remained elevated for both myeloid leukemia and all leukemias combined.

No increased risks for leukemia were reported in the large cohort of British chemical workers (Coggon et al. 2003), woodworkers in the American Cancer Society Cancer...
Prevention study (Stellman et al. 1998), and iron foundry workers (Andjelkovich et al. 1995).

Fewer cohort studies reported findings for other types of lymphohematopoietic cancers. [The majority of studies were too small to be able to evaluate these cancers or did not report findings by each subtype.] With respect to Hodgkin’s lymphoma, Beane Freeman et al. (2009) reported an increased risk for Hodgkin’s lymphoma in their external analysis (SMR = 1.42, 95% CI = 0.96 to 2.10, 25 deaths); in internal analyses, risks increased with increasing peak exposure ($P_{\text{trend}} = 0.004$), and average exposure ($P_{\text{trend}} = 0.03$), but not with cumulative exposure. Statistically significant risks were observed among workers with peak exposure of 2.0 to 3.9 ppm (RR = 3.30, 95% CI = 1.04 to 10.50; 8 deaths), peak exposures \geq 4.0 ppm (RR = 3.96, 95% CI = CI = 1.31 to 12.02, 11 deaths), and average exposure for 0.5 to 0.9 ppm (RR = 3.62, 95% CI = 1.41 to 9.31, 9 deaths). Hall et al. (1991) reported a SMR of 1.21 (95% CI = 0.03 to 6.71) based on one observed death among U.K. pathologists. One death was reported among the foundry workers (Andjelkovich et al. 1995). No excess in mortality of Hodgkin’s lymphoma was found among the British Chemical workers (Coggon et al. 2003), U.S. garment workers (Pinkerton et al. 2004), Danish workers (Hansen and Olsen et al. 1995, 1996), or in most of the studies of professional workers (Hayes et al. 1990, Stroup et al. 1986, and Walrath and Fraumeni 1983, 1984). [The numbers of exposed cases were small in these studies.]

For NHL and other lymphomas, no excess risks were found in most studies (Beane Freeman et al. 2009, Coggon et al. 2003, Hansen and Olsen 1995, 1996, Stellman et al. 1998, Stern et al. 1987, Stroup et al. 1986, Walrath and Fraumeni 1983, 1984) with the exception of Hayes et al. (1990), who reported a non-significantly increased PMR for NHL (PMR = 1.26, 95% CI = 0.87 to 1.76, 34 deaths) and Edling et al. (1987b), who found 2 cases of lymphoma (vs.1 expected) among workers in the abrasive material industry. Non-significantly increased risks for multiple myeloma were found among highly exposed British chemical workers (SMR = 1.18, 95% CI = 0.48 to 2.44, 7 deaths) (Coggon et al. 2003); abrasive material workers (4 observed vs. 2 expected) (Edling et al. 1987b) and U.S. embalmers (PMR = 1.37, 95% CI = 0.84 to 2.12, 20 deaths) (Hayes et al. 1990). In the NCI cohort, relative risk increased with increasing peak exposure, but
the trend was not significant, and statistically significant increased risks were also found among workers with peak exposures ≥ 4.0 ppm. No increased risk was found in the American Cancer Society Cancer Prevention Study (Stellman et al. 1998) (see below for a discussion of the nested-case control study from this cohort conducted by Boffetta et al. 1989).

3.4.5.2 Case-control studies

Ten case-control studies (including three nested case-control studies) were identified that evaluated exposure to formaldehyde and lymphohematopoietic cancers: three studies reported on leukemia, six studies on NHL, one study on Hodgkin’s lymphoma, two studies on multiple myeloma, and one study on myelodysplasia (see Table 3-7b). (Some studies evaluated more than one type of lymphohematopoietic cancers.)

In a cancer registry-based study of leukemias, Blair et al. (2001) noted an elevated risk for chronic myeloid leukemia (OR = 2.9, 95% CI = 0.3 to 24.5, based on one highly exposed case, and for chronic myeloid leukemia and low-medium exposure to formaldehyde, but not for other histologic subtypes of leukemia, and all leukemia. Partanen et al. (1993) found an increase in leukemia among woodworking industry workers (OR = 1.40, 95% CI = 0.25 to 7.01), and Ott et al. (1989) reported ORs in excess of 2 for leukemia in association with 3 formaldehyde-exposed deaths.

Four population-based studies and two nested case-control studies evaluated formaldehyde exposure and NHL risk, and one study evaluated Hodgkin’s lymphoma. Tatham et al. (1997) found slightly elevated but non-significant associations with formaldehyde exposure and NHL (OR = 1.20, 95% CI = 0.86 to 1.50, 93 cases). Wang et al. (2009) investigate 601 incident cases of NHL among Connecticut women in association with potential occupational exposure to organic solvents, and found a borderline statistically significant association between potential exposure to formaldehyde and NHL (OR = 1.3, 95% CI = 1.1 to 1.7, 203 exposed cases). Risks increased with increasing probability and intensity (combined) of exposure ($P_{trend} < 0.01$). In two U.S. population-based case-control studies, Gérin et al. (1989) did not observe a relationship between NHL and estimated duration of exposure to formaldehyde or Hodgkin’s lymphoma and ever exposure to formaldehyde in a population-based study in Montreal. In industry-
based studies, Ott et al. (1989) reported a 2-fold increase in NHL among ever-exposed
workers based on 2 cases, and Partanen et al. (1993) found a 4-fold increase in NHL
among workers exposed to ≥ 3 ppm-months of formaldehyde (OR = 4.24, 95% CI = 0.68
to 26.6, 4 exposed cases). McDuffie et al. (2001) did not find increases in the risk of
NHL among a subset of individuals in the woodworking industry from a large
prospective cancer cohort study in the U.S. and among users of formaldehyde-containing
fungicides, respectively. [No quantitative measures of formaldehyde exposure were
available in these studies.]

Boffetta et al. (1989) reported results for 128 cases of multiple myeloma incidence in a
case-control study nested within a large prospective cohort assembled by the American
Cancer Society (Stellman et al. 1998). Formaldehyde exposure was estimated for four
cases and nine controls, yielding an OR of 1.8 (95% CI = 0.6 to 5.7). Two parallel studies
of cases of multiple myeloma were conducted among 835 men (Heineman et al. 1992)
and 607 women (Pottern et al. 1992) drawn from all cases reported to the Danish Cancer
Registry between 1970 and 1984 for whom occupational data were available from
government records. A borderline elevation in risk was observed with probable exposure
to formaldehyde (OR = 1.1, 95% CI = 0.7 to 1.6, 41 cases) but not with possible exposure
in men; in women, the observed risk was 1.1 (95% CI = 0.8 to 1.6, 56 exposed cases),
and 1.6 (95% CI = 0.4 to 5.3, 4 exposed cases) for probable exposure. West et al. (1995)
noted elevated but statistically non-significant associations between myelodysplastic
syndrome and formaldehyde (ORs ranged from 1.17 to 2.33, 95% CIs not reported);
effect estimates tended to increase with increasing cumulative exposure, but no clear
exposure-response pattern was observed.

3.4.5.3 Pooled and meta-analyses
Bosetti et al. (2008) conducted a pooled analysis of 12 cohort mortality studies that
analyzed lymphohematopoietic cancers. With respect to all lymphohematopoietic
cancers, the authors calculated a pooled estimated RR (computed as a weighted average
of the SMRs and/or PMRs) of 0.85 (95% CI = 0.74 to 0.96, 234 deaths) for industrial
workers and 1.31 (95% CI = 1.16 to 1.48, 263 deaths) for medical workers. The
corresponding pooled RRs for leukemia were 0.90 (95% CI = 0.75 to 1.07, 122 deaths) and 1.39 (95% CI = 1.15 to 1.68, 106 deaths), respectively.

Two recent meta-analyses have been undertaken to summarize findings across studies investigating occupational exposure to formaldehyde and lymphohematopoietic cancers or leukemia and are reviewed here (Collins and Lineker 2004, Zhang et al. 2009a). (One recent comprehensive review of available studies (Blair et al. 2007) is also briefly noted. The meta-analysis conducted by Collins and Lineker included 12 cohort studies (including Hauptmann et al. 2003), four proportionate mortality studies, and two case-control studies. Fixed-effects models were used to obtain meta-relative risk values (mRR) and 95% confidence intervals, and random effects models were used to evaluate heterogeneity across studies as a potential indicator of bias, unmeasured confounding, effect modification, or different exposure levels across studies. The meta-analysis found no consistent support for the relationship between formaldehyde exposure and leukemia risk. The mRR across all studies was 1.1 (95% CI = 1.0 to 1.2), and estimates varied by type of study, country of study population, type of industry, year of publication, and study size. Generally, only weak or null mRRs were found for cohort studies (vs. case-control), industry-based studies (vs. embalmers and pathologists), studies published after 1995, and studies with at least 40 expected cases of leukemia.

Zhang et al. (2009a) conducted a meta-analysis of 26 peer-reviewed cohort and/or case-control studies that provide data on relative risk estimates and confidence intervals for lymphohematopoietic cancers and formaldehyde exposure, focusing on 15 studies of leukemia. [Note that 6 studies included in either the Collins and Lineker (2004) or Bosetti et al. (2008) meta-analyses were excluded as they either did not include leukemia cases, or had no clear exposed group, or did not report relative risks and/or confidence intervals, or were not peer-reviewed publications]. The meta-analyses were confined to data from occupations known to have high formaldehyde exposure. In addition, results were grouped by subtype of leukemia where possible [Six of the leukemia studies reviewed by the authors reported results by subtype.] Summary risk estimates were calculated using both a fixed effects inverse variance weighting method and a random effects methods; heterogeneity was assessed using a general variance-based method. The results below are
reported for the fixed effects models, which was applied to analyses of each of the types of lymphohematopoietic cancers. [Results for random effects models (leukemia only) did not differ substantially from those for fixed effects models.]

The calculated summary mRR for all lymphohematopoietic cancers (19 studies) was 1.25 (95% CI = 1.09 to 1.43, P value not stated); for Hodgkin’s lymphoma (8 studies) the mRR = 1.23 (95% CI = 0.67 to 2.29, P not significant); for non-Hodgkin’s lymphoma (11 studies) mRR = 1.08 (95% CI = 0.86 to 1.35, P not significant), and for multiple myeloma (9 studies) mRR = 1.31 (95% CI = 1.02 to 1.67, P = 0.02). With respect to leukemia in the 15 studies reviewed, the mRR was significantly elevated at 1.54 (95% CI = 1.18 to 2.00; P < 0.001). The highest risk was observed in association with myeloid leukemia in the 6 studies where subtypes were reported: mRR = 1.90 (95% CI = 1.31 to 2.76, P = 0.001) (all 6 studies reported RRs of 1.4 or higher). The authors noted that 51% of the leukemias observed in these studies of formaldehyde exposure were of the myeloid type, of which 64% were acute myeloid leukemia (AML), 19% are of the lymphocytic type, with others of unspecified type. They concluded that the meta-analysis results suggest a causal relationship between formaldehyde and leukemia, and specifically of the myeloid subtype of leukemia.

Blair et al. (2007) conducted a comprehensive review of epidemiological studies of the association between chemical exposures and lymphohematopoietic cancers, particularly chronic lymphocytic leukemia (CLL), and concluded that there was some evidence of an association between formaldehyde exposure and leukemia, particularly of the myeloid subtype, but no clear evidence for an association between formaldehyde exposure and CLL, non-Hodgkin’s lymphoma, or multiple myeloma.
Table 3-7a. Summary of cohort studies of formaldehyde exposure and lymphohematopoietic cancers

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI, number of exposed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
</table>
 LH 0.59 (0.23–1.21); 7
 Leukemia 0.43 (0.05–1.57); 2
 reticulosarcoma/ lymphsarcoma 0.57 (0.01–3.15); 1
 Hodgkin’s diseases 0.72 (0.01–4.00); 1 | SMR – formaldehyde exposed subcohort based on national rates |
 All LH 0.94 (0.84–1.06); 286
 Hodgkin’s 1.42 (0.96–2.10); 25
 NHL 0.85 (0.70–1.05); 94
 All leukemia 1.02 (0.85–1.22); 116
 Myeloid leukemia 0.90 (0.67–1.21); 44
 Lymphatic leukemia 1.15 (0.83–1.59); 36
 Internal analysis (RR, number of cases)
 All LH malignancies
 Peak exposure
 0.1–1.9 ppm 1.00; 103
 2.0–3.9 ppm 1.17 (0.86–1.59); 75
 ≥ 4.0 ppm 1.37 (1.03–1.81); 108
 P_{trend} 0.04
 Average intensity
 0.1–0.4 ppm 1.00; 164
 0.5–0.9 ppm 1.29 (0.97–1.73); 67
 ≥ 1.0 ppm 1.07 (0.78–1.47); 55
 P_{trend} > 0.50
 Non-Hodgkin’s lymphoma
 No association with peak or average exp.
 Hodgkin’s lymphoma
 Peak exposure
 0.1–1.9 ppm 1.00; 6
 2.0–3.9 ppm 3.30 (1.04–10.50); 8
 ≥ 4.0 ppm 3.96 (1.31–12.02); 11
 P_{trend} 0.004
 Average intensity
 0.1–0.4 ppm 1.00; 10
 0.5–0.9 ppm 3.62 (1.41–9.31); 9
 ≥ 1.0 ppm 2.48 (0.84–7.32); 6
 P_{trend} 0.03
 Multiple myeloma
 Peak exposure
 0.1–1.9 ppm 1.00; 14
 2.0–3.9 ppm 1.65 (0.76–3.61); 13
 ≥ 4.0 ppm 2.04 (1.01–4.12); 21
 P_{trend} > 0.50
<p>| | | | Internal analysis adjusted by calendar year, age, sex, race, and pay category; exposure was calculated with a 15-year lag interval |
| | | | No association with cumulative exposure |
| | | | Reanalysis of Hauptmann et al. (2003) data by Marsh and Youk (2004) found significant exposure response relationship for all leukemia and myeloid leukemia for peak exposure, see Section 3.2 |</p>
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI, number of exposed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1–0.4 ppm 1.40 (0.68–2.86); 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5–0.9 ppm 1.49 (0.73–3.04); 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 1.0 ppm 0.73 (0.41–1.36); 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P trend > 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All leukemia</td>
<td>Peak exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1–1.9 ppm 1.40 (0.68–2.86); 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0–3.9 ppm 0.98 (0.60–1.62); 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 4.0 ppm 1.42 (0.92–2.18); 48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P trend 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1–0.4 ppm 1.00; 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5–0.9 ppm 1.13 (0.71–1.79); 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 1.0 ppm 1.10 (0.68–1.78); 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P trend 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloid leukemia</td>
<td>Peak exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1–1.9 ppm 1.30 (0.58–2.92); 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0–3.9 ppm 1.78 (0.87–3.64); 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 4.0 ppm 1.78 (0.87–3.64); 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P trend 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1–0.4 ppm 1.00; 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5–0.9 ppm 1.21 (0.56–2.62); 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 1.0 ppm 1.61 (0.76–3.39); 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P trend 0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphatic leukemia</td>
<td>No association with peak or average exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertazzi et al. 1986</td>
<td>Resin manufacturing plant in Italy N = 1,332 1959-1986</td>
<td>SMR analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LH 2.73 (0.71–3.64); 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leukemia NR</td>
<td></td>
</tr>
<tr>
<td>Coggon et al. 2003</td>
<td>British Chemical Workers Study, UK N = 14,014 1941-2000</td>
<td>SMR analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entire cohort</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LH NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple myeloma leukemia 0.86 (0.48–1.40); 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hodgkin’s disease 0.70 (0.26–1.53); 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NHL 0.98 (0.67–1.39); 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highly exposed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple myeloma leukemia 1.18 (0.48–2.44); 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leukemia 0.71 (0.31–1.39); 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hodgkin’s disease 0.36 (0.01–2.01); 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NHL 0.89 (0.41–1.70); 9</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI, number of exposed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Edling et al. 1987b</td>
<td>Abrasive materials industry N = 421 male workers</td>
<td>Observed/expected. Leukemia NR Lymphoma 2.0 (0.2–7.2); 2 Multiple myeloma 4.0 (0.5–14.4); 2</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Hansen and Olsen 1995, 1996</td>
<td>Danish formaldehyde exposed worker N = 2,041 men, 1,263 women 1970–84</td>
<td>SPICR analysis LH Leukemia Men 0.8 (0.6–1.6); 39 Women 1.2 (0.7–1.8); 21 NHL Men 0.9 (0.6–1.2); 32 Women 1.0 (0.6–1.6); 39 Hodgkin’s disease Men 1.0 (0.5–1.7); 12 Women 1.1 (0.3–2.7); 4</td>
<td>SPICR adjusted for age and calendar time</td>
</tr>
<tr>
<td>Pinkerton et al. 2004 (update of Stayner et al. 1985, 1988 – PMR and SMR studies, respectively)</td>
<td>NIOSH cohort of garment workers, USA N = 11,039 SMR 1955–98 PMR 1959–82</td>
<td>SMR analysis LH 0.97 (0.74–1.26); 59 Leukemia 1.09 (0.70–1.62); 24 Myeloid leukemia 1.44 (0.80–2.37); 15 Hodgkin’s disease 0.55 (0.07–1.98); 2 Reticulosarcoma/lymphosarcoma 0.85 (0.28–1.99); 5 Other LH 0.97 (0.64–1.40); 28 Exposure duration: 10 + years Leukemia 1.53 (NR); 12 Myeloid leukemia 2.19 (NR); 8 Acute myeloid leukemia 2.02 (NR); 5 Time since first exposure: 20+ yrs Leukemia 1.31 (NR); 19 Myeloid leukemia 1.91* (NR); 13 Acute myeloid leukemia 1.93 (NR); 9 10+ yrs duration, 20+ yr since first exposure Leukemia 1.92 (1.08–3.17);15 Myeloid leukemia 2.55 (1.10–5.03); 8 PCMR analyses (90% CI) LH 1.44 (0.78–2.44); 10 Leukemia & aleukemia 1.52 (0.52–3.47); 4 Other LH 3.42 (1.17–7.82); 4</td>
<td>Standardized mortality and PMR study</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI, number of exposed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Stellman et al. 1998</td>
<td>Woodworkers: American Cancer Society Cancer Prevention Study 50 U.S. states, District of Columbia, Puerto Rico N = 362,823 (total cohort); 43,339 in woodworking activities 1982–86</td>
<td>Formaldehyde only LH 1.22 (0.84–1.77); 28 Leukemia 0.96 (0.54–1.71); 12 NHL 0.92 (0.50–1.68); 11 Multiple myeloma 0.74 (0.27–2.02); 4 Formaldehyde and woodworker LH 3.44 (1.11–10.68); 3 Leukemia 5.79 (1.44–23.25); 2 NHL 2.88 (0.40–20.5); 1 Multiple myeloma 0</td>
<td>Internal analysis using non-woodworkers or workers without exposure to wood dust Adjusted for age and smoking Number of formaldehyde exposed workers not reported See Table 3.3b for nested case-control on multiple myeloma</td>
</tr>
<tr>
<td>Stern et al. 1987</td>
<td>Workers employed in two chrome leather tannery plants, USA N = 9,365 1940–79 or 1980</td>
<td>SMR Leukemia and aleukemia 1.25 (0.50–8.58); 7 Lymphomas 0.92 (0.37–1.90); 7</td>
<td>Formaldehyde-exposed workers in the finishing department (N not stated)</td>
</tr>
<tr>
<td>Hall et al. 1991; (update of Harrington and Shannon 1975, and Harrington and Oakes 1984)</td>
<td>Pathologists, members of professional organizations in the UK N = 3,872 1974–87</td>
<td>SMR analyses (male and female in England and Wales) LH 1.44 (0.69–2.65); 10 Leukemia 1.52 (0.41–3.89); 4 Hodgkin’s disease 1.21 (0.03–6.71); 1</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Hayes et al. 1990</td>
<td>Deceased embalmers and funeral directors identified using licensing board records, death certificates, and other sources, USA N = 4,046 1975–85</td>
<td>PMR analyses All subjects LH 1.39 (1.15–1.67); 15 Hodgkin’s disease 0.72 (0.15–2.10); 3 NHL 1.26 (0.87–1.76); 34 Multiple myeloma 1.37 (0.84–2.12); 20 Myeloid leukemia 1.57 (1.01–2.34); 24 Unspec. leukemia 2.28 (1.39–3.52); 20</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Levine et al. 1984</td>
<td>Licensed embalmers in Ontario, Canada N = 1,413</td>
<td>SMR analyses LH 1.24 [0.53–2.43]; 8 Leukemia [1.60] [0.44–4.10]; 4</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Stroup et al. 1986</td>
<td>Anatomists, members of the American Association of Anatomists, USA N = 2,317 1888–1979</td>
<td>SMR analyses LH 1.2 (0.7–2.0); 18 Lymphoma 0.7 (0.1–2.5); 2 Hodgkin’s disease 0 deaths Leukemia 1.5 (0.7–2.7); 10 Chronic myeloid leukemia 8.8 (1.8–25.5); 3</td>
<td>Small cohort Chronic myeloid leukemia is for 1969–1979 when subtype data was available</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI, number of exposed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1983</td>
<td>All licensed embalmers and funeral directors in NY, USA N = 1263 1902–80</td>
<td>PMR analyses for white males LH 1.21 (NR); 25 Lymphomas 1.08 (NR); 5 Hodgkin’s disease 2 vs. 2.3 exp. Leukemia 1.40 (NR); 12 Myeloid leukemia [1.5]a (NR); 6 PMR for non-white males Leukemia NR*; 3 cases</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1984</td>
<td>All licensed embalmers in CA, USA N = 1,109 1916–80</td>
<td>PMR analyses for white males LH 1.22 (NR); 19 Lymphomas [1.0] (NR); 3 Hodgkin’s disease 0 vs. 2.5 exp. Leukemia 1.75 (NR); 12 Myeloid leukemia [1.5]a (NR); 6 Length of licensure and leukemia < 20 yrs 1.24 (NR); 4 > 20 yrs 2.21* (NR); 8</td>
<td>Small cohort</td>
</tr>
</tbody>
</table>

*P < 0.05.

Results not reported for formaldehyde exposed workers in Dell and Teta (1995). FOR = formaldehyde; NR = not reported; PMR = proportionate mortality ratio, SMR = standardized mortality ratio SPICR = standardized proportionate incidence cancer ratio.

aAs reviewed by IARC 2006.
Table 3-7b. Summary of case-control studies (including nested case-control) investigating formaldehyde exposure and lymphohematopoietic cancers

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Gérin *et al.* 1989 Montreal, Quebec | *Multi-site study* 1979–85
Cases: men, 206 Non-Hodgkin’s lymphoma, 53 Hodgkin’s disease, incident cases identified from all hospitals
Controls: (1) cancer controls, internal controls with tumors at other sites and (2) 740 population based controls (men) matched by age | Occupational histories and other information obtained by interview; exposure classified by job description and industry
Estimated exposure index
Low < 0.1 ppm
Med. 0.1–1 ppm
High ≥ 1 ppm | Exposure duration (yrs)/exposure index (cancer controls)
Non-Hodgkin’s lymphoma
< 10 yr/any 0.8 (0.4–1.5); 13/NR
≥ 10 yr/low 1.3 (0.7–2.4); 15/NR
med. 0.8 (0.5–1.5); 14/NR
high 0.7 (0.3–1.9); 5/NR
Hodgkin’s disease
Ever exposed 0.5 (0.2–1.2); 8/NR | Adjusted for age, ethnicity, self-reported income, jobs held, and other occupational factors |
| Ott *et al.* 1989 United States | *Nested case-control of workers chemical manufacturing workers* (N = 29,139) 1940–78
Cases: 129 LH (52 NHL, 20 multiple myeloma, 30 non-lymphocytic leukemia, and 18 lymphocytic leukemia)
Controls: group matched incidence density sampling by decade first employed and survival | Occupational histories obtained from company employment records and classified using a job exposure matrix | OR for ever exposed
NHL 2.0 (NR); 2
Lymphocytic leukemia 2.6 (NR); 1
Non-lymphocytic leukemia 2.6 (NR); 2 | Unadjusted
Very few workers exposed to formaldehyde |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boffetta et al. 1989, United States</td>
<td>Nested case-control study. American Cancer Society Cancer Prevention Study (1982 enrollment) Follow-ups 1982–1986 Cases: 128 incident cases of multiple myeloma Controls: 512 randomly selected incident controls matched on age, ACS region, sex, ethnicity(4:1)</td>
<td>Occupational exposures obtained by questionnaire</td>
<td>OR for history of exposure Multiple myeloma 1.8 (0.6–5.7); 4/9</td>
<td></td>
</tr>
<tr>
<td>Heineman et al. 1992; Pottern et al. 1992, Denmark</td>
<td>Nation-wide cancer registry-based population study 1970–84 Eligible cases: All 1,222 men and 1,010 women with multiple myeloma in Denmark reported to Danish Cancer Registry (1,098 men and 607 women included in study based on availability of occupational data) Controls: 4,888 age-matched men and 4,040 women from state pension fund records (4,169 men and 2,596 women included in study)</td>
<td>Exposures classified by job exposure matrix based on occupational and industry codes</td>
<td>Possible exposure to formaldehyde vs. never exposed Men 1.0 (0.8–1.3); 144/527 Women 1.1 (0.8–1.6); 56/235 Probable exposure to formaldehyde vs. never exposed: Men 1.1 (0.7–1.6); 41/142 Women 1.6 (0.4–5.3); 4/12</td>
<td>Adjusted for age</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Partanen et al. 1993 Finland | Nested case-control of plywood, particleboard, and formaldehyde glue factory workers (N = 7,303) 1957–1982
Cases: 204 LH cases (NHL, Hodgkin’s disease, and leukemia) identified using the Finnish Cancer Registry
Controls: 152 controls selected randomly from cohort and matched by year of birth and vital status in 1983 | Occupational histories obtained from company employment records and classified using plant-specific job exposure matrices | Non-Hodgkin’s lymphoma
< 3 ppm-months 1.00
≥ 3 ppm-months 4.24 (0.68–26.6); 4
Leukemia
< 3 ppm-months 1.00
≥ 3 ppm-months 1.40 (0.25–7.91); 2 | Wood dust and solvents not found to be confounders
OR for Hodgkin’s disease could not be calculated due to small numbers |
| West et al. 1995 United Kingdom (South East Wales, Wessex, and West Yorkshire) | Population-based study, case ascertainment is unclear
Cases: 400 cases of myelodysplastic syndrome (> 15 years old) identified from health care records
Controls: 400 matched (age, sex, residence, hospital and yr of diagnosis) non-cancer controls selected from out and inpatient clinics | Occupational histories and other information obtained by interview; exposure classified by job description, exposure to a list of specific chemicals, and industry | Hours of lifetime exposure/exposure intensity (low, med., high)
Myelodysplasia
≥ 10/any 1.17 (NR); 15/13
≥ 50/> med. 2.33 (NR); NR
≥ 2,500/> med. 2.00 (NR): NR | Matched pair analysis |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>OR or RR (95% CI); exposed cases/controls</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatham et al. 1997</td>
<td>Population based study 1984–88 Cases: 1,048 living cases of non-Hodgkin’s lymphoma identified using population-based cancer registries</td>
<td>Occupational histories and other information obtained by interview; exposure classified by job description and industry</td>
<td>Ever exposed</td>
<td>All NHL 1.20 (0.86–1.50); 93 Small-cell diffuse 1.40 (0.87–2.40); 21 Follicular type 0.71 (0.41–1.20); 17 Large cell diffuse 1.10 (0.79–1.70); 46</td>
</tr>
<tr>
<td></td>
<td>Controls: 1,659 frequency matched (registry and date of birth) identified by random digit dialing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blair et al. 2001</td>
<td>Population-based study 1980–84 Cases: 513 leukemia cases (669 eligible cases of leukemia in white men >30 yrs old identified from the Iowa Cancer Registry and hospitals in Minnesota; men with farming as sole occupation excluded; 86% response rate)</td>
<td>Occupational histories and other data obtained by interview (present or proxy); exposure classified using a JEM</td>
<td>Exposure intensity</td>
<td>All Leukemia Low 1.0 (0.7–1.4); 61/128 High 0.7 (0.2–2.6); 3/9 Acute myeloid leukemia Low 0.9 (0.5–1.6); 14/128 High NA Chronic myeloid leukemia Low 1.3 (0.6–3.1); 7/128 High 2.9 (0.3–24.5); 1/9 Chronic lymphocytic leukemia Low 1.2 (0.7–1.8); 29/128 High 0.6 (0.1–5.3); 1/9 Myelodyplasia Low 0.8 (0.3–1.9); 6/128 High NA</td>
</tr>
<tr>
<td>Reference</td>
<td>Study population</td>
<td>Exposure assessment</td>
<td>OR or RR (95% CI); exposed cases/controls</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>McDuffie et al. 2001 Canada</td>
<td>Multi-center cancer registry - based incident study of men reporting >10 hr. pesticide use/year</td>
<td>Occupational histories and other data obtained by mailed and telephone interviews</td>
<td>Exposure to formaldehyde-containing fungicides: OR 0.92 (0.37–2.29); 7/255</td>
<td>Adjusted for age, province, and medical history</td>
</tr>
<tr>
<td>Wang et al. 2009 Connecticut, United States</td>
<td>Population-based incident study 1996–2000</td>
<td>Exposures classified using a job exposure matrix based on occupational and industry data obtained from in-person interviews</td>
<td>Ever exposed to formaldehyde: OR 1.3 (1.0–1.7); 203/201 Intensity Low 1.4 (1.0–1.8); 129/120 Med-high 1.2 (0.8–1.7); 74/81 Probability Low 1.3 (1.0–1.7); 165/166 Med-high 1.4 (0.9–2.3); 38/35 Probability/intensity Med-high/Med-high 1.6 (0.9–3.1); 24/19 Large cell-type ever exposed med-high prob. 1.9 (1.3–2.6) P<sub>trend</sub> 0.21</td>
<td>69% of telephone controls and 47% of Medicare/Medicaid sample participated. Matched on age, sex, and Connecticut residence</td>
</tr>
</tbody>
</table>

* ORs calculated using cancer controls; similar estimates using population-based controls.
3.4.6 Cancers of the brain and central nervous system

Several cohort mortality studies of health professionals including pathologists, anatomists, and embalmers have reported excess mortality from brain and central nervous system malignancies (Hall et al. 1991, Hayes et al. 1990, Levine et al. 1984, Stroup et al. 1986, Walrath and Fraumeni 1983, 1984) (see Section 3.2.8 and Table 3.8). Statistically significant increases were observed among anatomists in the United States (SMR = 2.7, 95% CI = 1.3 to 5.0, 10 deaths, compared with U.S. population, and 6.0, 95% CI = 2.3 to 15.6 using psychiatrists as a reference) (Stroup et al. 1983), and white male embalmers in New York (SMR = 2.34, 6 deaths) (Walrath and Fraumeni 1983) and California (PMR = 1.94, 9 deaths) (Walrath and Fraumeni 1984). Some studies of health professionals reported that longer exposure (as assessed by length of licensure or professional membership) may be associated with brain cancer mortality: higher risks were found among anatomists with professional membership of 40 to 69 years (SMR = 7.0, 95% CI = 0.9 to 26.8) for 40 to 60 years vs. between 2 and 2.8 for 1 to 19, and 20 to 39 years). PMRs were also higher among New York embalmers who were> 30 years old (2.94, 5 deaths, \(P < 0.05 \) for > 30 years vs. 0.98, 4 deaths for < 30 yrs) at first license and who had only an embalmers license (PMR = 2.34, \(P < 0.50 \) for embalmer only vs. 0.93 for embalmer and funeral directors); embalmers are thought to have higher exposure to formaldehyde (Walrath and Fraumeni 1983). All of the brain cancers among anatomists occurred among subjects performing gross or microanatomy.

Hauptmann et al. (2004) found no increase in brain and CNS cancers in their external SMR analysis of the NCI cohort; when these cancers were analyzed in internal analyses by average, peak, cumulative, and duration of exposure, no trends with exposure category were observed, and relative risks were generally at or below the reference category (in this study, the lowest exposure group). In general, other cohort studies found no increases for brain cancer except small statistically non-significant increases were found in the NIOSH and Danish cohorts. In the NIOSH cohort, SMRs were higher (but not statistically significant) among workers exposed 20 years since first exposure (SMR = 1.20, 13 deaths) and workers whose first exposure was prior to 1963 (SMR = 1.17, 14 deaths), but not among workers with the longest duration of exposure (10+ years) (Pinkerton et al. 2004). No case-control studies evaluating exposure to formaldehyde and
brain cancer were identified. Bosetti et al. (2008) analyzed pooled data from a total of 11 cohorts that included deaths from brain cancer and calculated a pooled estimated RR of 0.92 (95% CI = 0.75 to 1.13, 94 deaths) among industrial workers and 1.56 (95% CI = 1.24 to 1.96, 74 deaths) among health professional workers. [Note that the findings for separate studies of health professional workers were significantly heterogeneous, according to the authors.]
Table 3-8. Summary of industrial SMR and PMR studies of formaldehyde exposure and brain and CNS cancers

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population and follow up</th>
<th>Risk estimate, 95% CI, number of exposed cases or deaths</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andjelkovich et al. 1995</td>
<td>Iron foundry workers, MI, USA N = 3,929 1960–87</td>
<td>SMR analysis Brain & CNS 0.62 (0.07–2.23); 2</td>
<td>SMR – formaldehyde exposed subcohort based on national rates</td>
</tr>
<tr>
<td>Coggon et al. 2003</td>
<td>British Chemical Workers Study, UK N = 14,014 1941–2000</td>
<td>SMR analysis for brain & CNS</td>
<td></td>
</tr>
<tr>
<td>(update of Acheson et al.</td>
<td></td>
<td>Entire cohort 0.85 (0.57–1.21); 30</td>
<td></td>
</tr>
<tr>
<td>1984)</td>
<td></td>
<td>High exp. 0.63 (0.25–1.29); 7</td>
<td></td>
</tr>
<tr>
<td>Hansen and Olsen 1995, 1996</td>
<td>Danish formaldehyde exposed workers N = 2,041 men, 1,263 women 1970–84</td>
<td>SPICR analysis for brain and CNS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Men 1.1 (0.9–1.5); 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Women 1.2 (0.8–1.6); 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formaldehyde, no exposure to wood dust</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 (0.8–1.8); 30</td>
<td></td>
</tr>
<tr>
<td>Hauptmann et al. 2004</td>
<td>NCI cohort, USA N = 25,619 Entire cohort 1966–94</td>
<td>SMR analysis Brain & CNS 0.92 (0.68–1.23); 43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR did not increase with increasing peak, average and cumulative exposure, and exposure duration</td>
<td></td>
</tr>
<tr>
<td>Pinkerton et al. 2004</td>
<td>NIOSH cohort of garment workers, USA N = 11,039 1955–98</td>
<td>SMR analysis Brain & CNS All 1.09 (0.66–1.71); 19</td>
<td>Standardized mortality and PMR study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time since first exposure: 20 + yrs 1.20 (NR); 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Year of first exposure: prior to 1963 1.17 (NR); 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No increase risk with increasing duration</td>
<td></td>
</tr>
<tr>
<td>Studies on health professional workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall et al. 1991</td>
<td>Pathologists, members of professional organizations in the UK N = 3,872 1974–87</td>
<td>SMR analyses for male and females in England and Wales</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brain & CNS 2.18 (0.83–4.75); 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(all six cases in males)</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study population and follow up</td>
<td>Risk estimate, 95% CI, number of exposed cases or deaths</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Hayes et al. 1990</td>
<td>Deceased embalmers and funeral directors identified using licensing board records, death certificates, and other sources, USA N = 4,046 1975–85</td>
<td>PMR analyses for brain & CNS White 1.23 (0.80–1.84); 24 Non-white NR; 0 PMRs were similar between embalmers and funeral directors</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Levine et al. 1984</td>
<td>Licensed embalmers in Ontario, Canada N = 1,413</td>
<td>SMR analyses Brain & CNS [1.15] [0.24–3.37]; 3</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Stroup et al. 1986</td>
<td>Anatomists, members of the American Association of Anatomists, USA N = 2,317 1988–79</td>
<td>SMR analyses for brain & CNS Reference group U.S. 2.7 (1.3–5.0); 10 Psychiatrists 6.0 (2.3–15.6); 10 Increasing SMRs (U.S. reference) with increasing duration of membership 40–49 yr 7.0 (0.9–26.8); 2</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1983</td>
<td>All licensed embalmers and funeral directors in NY, USA N = 1,263 1902–1980</td>
<td>PMR analyses (white males) Brain & CNS All 1.56 (NR); 9 Embalmers 2.34* (NR); 6 Embalmers & funeral directors 0.93 (NR); 3 Age at first license < 30 yrs 0.98 (NR); 4 > 30 yrs 2.94* (NR); 5</td>
<td>Small cohort</td>
</tr>
<tr>
<td>Walrath and Fraumeni 1984</td>
<td>All licensed embalmers in CA, USA N = 1,109 1916–80</td>
<td>PMR analyses for white males Brain 1.94* (NR); 9 > 20 years length of licensure 1.89 (NR); 4</td>
<td>Small cohort</td>
</tr>
</tbody>
</table>

* P < 0.05.

Results not reported for Bertazzi et al. (1986), Dell and Teta (1995), Edling et al. 1987b, Stellman et al. (1998), and Stern et al. 1987.

SPICR = standardized proportionate incidence cancer ratio, PMR = proportionate mortality ratio, NR = not reported.

* Calculated by IARC.
3.4.7 Cancer at other sites

The association between formaldehyde exposure and cancers of sites other than the head and neck, the respiratory and lymphohematopoietic system, and brain and central nervous system has been examined in both historical cohort and case-control studies. These cancer sites include (but are not limited to): urinary bladder, brain, breast, colo-rectum, esophagus, kidney, liver, oral cavity, pancreas, prostate gland, salivary gland, stomach, and skin or dermis as well as intraocular melanoma. In general, reported estimates were null or slightly elevated but statistically non-significant, and studies have not consistently reported an elevated risk in cancer associated with formaldehyde exposure at any of these sites. The following review primarily focuses on findings of elevated risk for specific solid cancer sites reported in at least two case-control or cohort studies, in addition to statistically significant findings. [Not all cohort studies report findings for all cancer sites, or do not report confidence intervals or p-values. Most of the cohort and case-control studies are of male workers, so that associations between formaldehyde and cancers among women and of the female reproductive system are underrepresented.]

Cancers of the gastrointestinal system and associated organs. Several studies have reported small but consistent increases in stomach cancer. Bertazzi \textit{et al.} (1989, 1986) reported an increase in risk of gastrointestinal cancers in a cohort of resin production workers exposed to formaldehyde (SMR = 1.34, 11 deaths), with stomach cancer risk of 1.64 (3 deaths). Coggon \textit{et al.} (2003) reported a statistically significant increase in the risk of stomach cancer in a large cohort study of plastics and chemical manufacturing workers exposed to formaldehyde (SMR = 1.31, 95% CI = 1.11 to 1.54, 150 deaths), and Stellman \textit{et al.} (1998) found an elevated risk of stomach cancer among a group estimated to have potential exposure to formaldehyde in an internal analysis of a population-based cohort (RR = 1.69, 95% CI = 0.94 to 2.86, 11 deaths). In addition, Andjelkovich \textit{et al.} (1995) reported a small increase in stomach cancer in association with formaldehyde exposure in a cohort study of iron foundry workers (SMR = 1.64, 95% CI = 0.82 to 2.94, 11 deaths), together with borderline elevations in cancers of the esophagus, large intestine, and rectum. Walrath and Fraumeni (1984) reported an excess of colon cancer among embalmers in California (PMR = 1.87, 30 observed vs. 16 expected deaths, p < 0.05), and in a previous study of embalmers in New York (PMR = 1.43, 29 observed vs.
20.3 expected deaths, $P < 0.05$) (Walrath and Fraumeni, 1983). Hayes et al. (1990) also reported increases in gastrointestinal cancers combined, including rectum (PMR = 2.31, 95% CI = 0.64 to 6.00, 4 deaths) and colon (PMR = 2.31, 95% CI = 1.32 to 3.76, 16 deaths), among non-white embalmers; in white, embalmers, non-significant increases were observed. Hansen and Olsen (1995) also reported a statistically significant increase in the risk of colon cancer in association with occupational formaldehyde exposure (standardized proportionate incidence ratio (SPIR) = 1.2, 95% CI = 1.1 to 1.4, 166 cases) in a population-wide study of the Danish Cancer Registry. A subsequent analysis, taking a subgroup of “blue collar” workers with estimated formaldehyde exposure but no wood dust exposure, slightly reduced this risk (SPIR = 1.1, 95% CI = 0.9 to 1.4, 73 cases) (Hansen and Olsen 1996). In a population-based case-control study of rectal cancer in men, Dumas et al. (2000) reported a statistically significant increase in this endpoint in association with “substantial” exposure to formaldehyde (OR = 2.4, 95% CI = 1.2 to 1.6, 36 deaths). Marginal but statistically nonsignificant increases in this cancer have been noted only in the cohort studies of Walrath and Fraumeni (1984) and Andjelkovich et al. (1990).

An increase in the risk of liver cancer was noted in the population studied by Hansen and Olsen (1996) (SPIR = 1.2, 95% CI = 0.9 to 1.8, 29 cases). Bertazzi et al. (1986) reported an increase in the risk of alimentary tract cancer in a cohort of resin production workers exposed to formaldehyde (SMR = 1.55, 8 cases), with stomach and esophageal cancer risk of 1.33 (4 cases).

Meta-analyses. Two meta-analyses have been published summarizing data from multiple studies of pancreatic cancer (Collins et al. 2001a, Ojajärvi et al. 2000). Ojajarvi et al. consolidated epidemiologic data on formaldehyde exposure and pancreatic cancer estimates from two analytic studies and three proportionate mortality studies; the resulting mRR was 0.8 (95% CI = 0.5 to 1.0). Collins et al. reported a similar mRR of 1.1 (95% CI = 1.0 to 1.3) using data from 14 studies of workers exposed to formaldehyde where pancreatic cancer rates were reported. The small increase in risk was attributable to embalmers (mRR = 1.3, 95% CI = 1.0 to 1.6) and pathologists and anatomists (mRR = 1.3, 95% CI = 1.0 to 1.7). For industrial workers with the highest exposure levels on
average, no increased risk in pancreatic cancer was observed (mRR = 0.9, 95% CI = 0.8 to 1.1). In Section 3.3.6, a case-control study of pancreatic cancer is summarized (Kernan et al. 1999) in which some evidence of an increased risk was observed with higher levels of formaldehyde exposure probability and intensity. The biologic mechanism by which exposure to formaldehyde could cause pancreatic cancer is unknown (Collins et al. 2001a).

Cancers of the genitourinary system. Small but generally statistically non-significant excesses of kidney cancers have been reported in a number of cohort studies. No case-control studies of this endpoint have been conducted. In a study of tannery workers, Stern et al. (1987) found only a slight excess of kidney cancers among workers in one department where formaldehyde was used for finishing (SMR = 1.02, 95% CI = 0.26 to 2.73, 3 deaths). Hansen and Olsen (1995) reported a borderline statistically significant increase in kidney cancer (SPIR = 1.3, 95% CI = 1.0 to 1.6, 60 cases) among a population with potential occupational formaldehyde exposure in a population-wide Danish Cancer Registry study, and Walrath and Fraumeni (1983, 1984) found an increase in kidney cancers among white male embalmers in New York (PMR = 2.47, 6 observed vs. 2.4 expected deaths, \(P < 0.05 \)) but not among embalmers in California (PMR = 1.00, 4 observed vs. 4 expected deaths).

With respect to urinary bladder cancer, cohort studies have not reported excess of this site. Two case-control studies of bladder cancer have been conducted. In a population-based study by Siemiatycki et al. (1994) the authors found a marginal increase in bladder cancer in association with “nonsubstantial” exposure to formaldehyde (OR = 1.2, 95% CI = 0.9 to 1.6, 67 exposed cases, adjusted for demographic and lifestyle variables and other occupational exposures) but not with “substantial” exposure (adjusted OR = 0.9, 95% CI = 0.5 to 1.7, 17 exposed cases). In a population-based case-control mortality study of bladder cancers among all male deaths under the age of 50 in the U.K from 1975 to 1979 (Coggon et al. 1984), no association with occupations with any potential for exposure to formaldehyde was observed (OR = 1.0, 95% CI = 0.7 to 1.3, 132 exposed deaths), and a borderline association with occupations with a high probability of formaldehyde exposure (OR = 1.5, 95% CI = 0.9 to 2.8, 30 deaths).
Other cancers. Few other cancers have been reported in excess in the cohort studies. [In a
number of studies, the all cause mortality is decreased, suggesting the possibility of a
healthy worker effect, which would tend to bias rates based on external population
comparisons toward the null.] Walrath and Fraumeni (1983) found a statistically
significant increase in skin cancer among white male embalmers in New York state
(PMR = 3.26, 5 observed vs. 1.5 expected deaths, \(p < 0.05 \)); among those who practiced
both as embalmers and funeral directors, the risk was reduced (PMR 1.44, 3 observed vs.
2.1 expected deaths). This finding was not replicated in a subsequent study of white male
Californian embalmers (2 observed vs. 3.4 expected deaths (Walrath and Fraumeni 1984)
and increases in this cancer risk have not been reported in other studies of embalmers,
pathologists or anatomists. Small excesses of prostate cancers were reported in a study of
pathologists (Hall al. 1991) (SMR = 3.30, 95% CI = 0.39 to 11.8, 2 deaths) and in
study of embalmers by Hayes al. (1990) (PMR = 1.06, 95% CI = 0.84 to 1.32, 79
deaths, white males, and PMR = 1.35, 95% CI = 0.82 to 2.12, 19 deaths, non-white
males) but not in other studies of embalmers and anatomists or men in other occupations.

Cantor al. (1995) conducted a population-based case-control study of breast cancer
among women in the U.S. using death certificates from 24 states from 1984 to 1989, and
coded occupations by probability and intensity of exposure to formaldehyde and other
agents. Statistically significant excess of breast cancer were noted among black women
with a high probability of exposure (OR = 1.45, 95% CI = 1.2 to 1.7, 311 deaths) or all
levels of intensity of exposure (ORs from 1.11 to 1.31, all CIs 1.0 or above); among
white women, breast cancer was statistically significantly associated with high intensity
of exposure (OR = 1.19, 95% CI = 1.1 to 1.3, 1815 deaths) only.

Finally, a single case-control study of uveal (eye) cancer among white men by Holly al.
(1996) reported a statistically significant association with any possible formaldehyde
exposure (estimated only by personal interview with subjects) (OR = 2.9, 95% CI 1.2 to
7.0, 3 exposed cases) and a nested case-control study of thyroid gland cancer among
female textile workers (Wong et al. 2006) found a statistically significant association for
10 or more years of estimated formaldehyde exposure (hazard ratio = 8.33, 95% CI =
1.16 to 6.60, 2 exposed cases). Excesses of thyroid gland cancer have not been reported
in other cohort studies, with the exception of a statistically nonsignificant increase in the
cohort study of garment workers by Pinkerton et al. (2004) (SMR = 1.16, 95% CI = 0.14
to 4.18, based on only 2 deaths).

3.5 Summary

A large number of epidemiological studies have evaluated the relationship between
formaldehyde exposure and carcinogenicity in humans. The studies fall into the following
main groups: (1) historical cohort studies and nested case-control studies of workers in a
variety of industries that manufacture or use formaldehyde, including the chemical,
plastics, fiberglass, resins, and woodworking industries, as well as construction, garment,
iron foundry, and tannery workers; (2) historical cohort studies of health professionals,
including physicians, pathologists, anatomists, embalmers, and funeral directors; and (3)
population-based or occupationally-based case-control incidence or mortality studies of
specific cancer endpoints. In addition, several studies have re-analyzed data from specific
cohort or case-control studies or have conducted pooled analyses or meta-analyses for
specific cancer endpoints.

The largest study available to date is the combined cohort mortality study of mixed
industries conducted by the National Cancer Institute (NCI). This cohort includes 26,561
male and female workers, enrolled from ten different formaldehyde-producing or using
industries, employed before 1966 and followed most recently to 1994 and 2004, most of
the workers were exposed to formaldehyde (Hauptmann et al. 2003, 2004 and Beane
Freeman et al. 2009). Quantitative exposure data were used to construct job exposure
matrices for individual workers, some of whom experienced peak exposures to
formaldehyde > 4 ppm. This cohort is the only study in which exposure-response
relationships for peak, average, cumulative, and duration of exposures and mortality for
multiple cancer sites were investigated. Two other large cohort studies are available: (1) a
large multi-plant cohort study (N = 14,014) of workers in six chemical manufacturing
plants in the United Kingdom (Coggon et al. 2003), which calculated SMRs among ever-
exposed and highly exposed workers for formaldehyde, and (2) a NIOSH cohort of
garment workers (N = 11,039), which evaluated mortality for duration of exposure, time
since first exposure, and year of first exposure to formaldehyde for selected cancer sites.
The other cohorts (both for industrial and professional health workers) were smaller, and in general only reported mortality or incidence for ever-exposed workers in external (SMR or PMR) analyses, although some of the studies of professional health workers attempted indirect measures of exposure (such as length in a professional membership) as a proxy for exposure duration. In general, the majority of the nested case-control and other studies attempted to look at exposure-response relationships, but most were semi-quantitative. Since most of the cohorts have relatively low statistical power to evaluate rare cancers such as sinonasal and nasopharyngeal cancer, case-control studies are generally more informative for these outcomes. Findings across studies for cancer sites that have been the principal focus of investigation are summarized below.

3.5.1 Sinonasal cancers

There are two major histological types of sinonasal cancer (adenocarcinomas and squamous-cell carcinomas). Sinonasal cancers are rare, and the majority of cohort studies have insufficient numbers of exposed workers to be informative; many of the cohort studies did not report findings or did not observe any deaths for this specific endpoint. Increased risks of sinonasal cancers were observed among male (SPICR = 2.3, 95% CI = 1.3 to 4.0, 13 exposed cases) and female (SPICR = 2.4, 95% CI = 0.6 to 6.0, 4 exposed cases) Danish workers exposed to formaldehyde (Hansen and Olsen 1995, 1996) and among formaldehyde-exposed workers in the NCI cohort (SMR = 1.19, 95% CI = 0.38 to 3.68, 3 deaths) (Hauptmann et al. 2004). No increase in risk was found among formaldehyde-exposed workers in the large cohort of British chemical workers, based on two observed deaths (Coggon et al. 2003). Of the six case-control studies reviewed, four (Olsen et al. 1994, Olsen and Asnaes 1986, Hayes et al. 1986, Roush et al. 1987, and Luce et al. 1993) reported an association between sinonasal cancers and formaldehyde exposure; statistically significant risks were found in three studies (for ever exposed or individuals with higher measures of exposure) (Olsen et al. 1994, Hayes et al. 1986, Luce et al. 1993). Stronger associations were found for adenocarcinomas, and higher risks of adenocarcinomas were found among individuals with higher average and cumulative exposure, duration of exposure, and earlier dates of first exposure (Luce et al. 1993). Wood dust is an established cause of sinonasal cancer, particularly adenocarcinomas (NTP 2005) and is a possible confounder in studies of woodworking industry workers;
however, elevated risks for formaldehyde exposure were found among workers with low
or no exposure to wood dust (Hayes et al. 1986, Olsen et al. 1994, Olsen and Asnaes
1986, Luce et al. 1993) and a possible synergistic effect was suggested in the latter two
studies. A pooled analysis of 12 case-control studies of sinonasal cancer from seven
countries (Luce et al. 2002) found an increase in adenocarcinomas among formaldehyde-
exposed cases, adjusted for wood dust exposure, with increasing level of estimated
exposure (OR = 3.0, 95% CI = 1.5 to 5.7, 91 exposed cases for men and OR = 1.5, 95%
CI = 0.6 to 3.8, 6 exposed cases for women; both in the highest exposure groups). For
squamous-cell carcinomas, the association with formaldehyde exposure was weaker,
extcept among men with 30 or more years of exposure (OR = 1.4, 95% CI = 0.9 to 2.3,
number of cases not specified; not adjusted for wood dust exposure).

3.5.2 Nasopharyngeal cancers

As in the case of sinonasal cancer, nasopharyngeal cancers are rare, and the majority of
cohort studies have insufficient numbers of exposed workers to be informative. Several
cohort studies did not report findings for nasopharyngeal cancer, or observed one or no
cases or deaths, for this tumor site. A statistically significant increase in mortality from
nasopharyngeal cancer was observed in the large NCI cohort (SMR = 2.10, 95% CI =
1.05 to 4.21, 8 exposed cases, one subsequently reclassified as oropharyngeal cancer)
(Hauptmann et al. 2004). Statistically non-significantly elevated risks were observed
among white embalmers from the United States (SMR = 1.89, 95% CI = 0.39 to 5.48, 3
deaths) (Hayes et al. 1990), and among male Danish workers exposed to formaldehyde
(SPICR = 1.3, 95% CI = 0.3 to 3.2, 4 exposed cases) (Hansen and Olsen 1995, 1996). In
the British chemical workers cohort, one death was observed (SMR not reported)
(Coggon et al. 2003).

Exposure-response relationships between formaldehyde exposure and nasopharyngeal
cancers risk were evaluated in the large NCI cohort study. Among seven exposed deaths,
relative risks of nasopharyngeal cancers increased with peak exposure ($P_{\text{trend}} < 0.001$),
average exposure ($P_{\text{trend}} = 0.066$) and cumulative exposure ($P_{\text{trend}} = 0.025$); tests for trend
among combined, exposed, and unexposed workers were $P_{\text{trend}} = 0.044$, 0.126, and 0.029,
respectively. Adjustment for duration of exposure to a number of potentially confounding
substances did not substantively alter the findings. An analysis adjusted for plant type
found statistically significant trends among exposed workers for peak and cumulative
exposure and duration of exposure. Marsh and colleagues studied one of the plants, in
which five of the nasopharyngeal cancers deaths had occurred, separately (Marsh et al.
2002, 2007a). These authors also reanalyzed the nasopharyngeal cancers cancer findings
in the NCI cohort (Marsh et al. 2007b) and concluded that external employment in metal
working may have partly explained the findings for nasopharyngeal cancers in this
cohort.

Six of the seven available case-control studies reported increases in nasopharyngeal
cancers in association with probable exposure to formaldehyde or at higher levels or
duration of estimated exposure (Olsen et al. 1984 [women only], Vaughan et al. 1986,
Risks of nasopharyngeal cancers increased with exposure duration and cumulative
exposure in two population based case-control studies (Vaughan et al. 2000, Hildesheim
et al. 2001). In a meta-analysis of case-control and cohort studies (Collins et al. 1997), a
statistically significant increased risk for nasopharyngeal cancers and formaldehyde
exposure was estimated (mRR = 1.3, 95% CI = 1.2 to 1.5), and a pooled analysis of
SMRs from three cohort mortality studies (Bosetti et al. 2008) reported an overall
increase in the SMR of 1.33 (95% CI = 0.61 to 2.53, 9 deaths).

3.5.3 Other head and neck cancers, and respiratory cancer
Most cohort studies reported risk estimates for cancers of the buccal cavity, pharynx,
larynx, and lung or combinations of these cancers. Most of these studies, including two of
the three larger cohorts (Pinkerton et al. 2004 and Coggon et al. 2003), three of the
professional health worker studies (Hayes et al. 1990, Walrath and Freumeni 1983 and
1984), and two of the smaller industrial cohorts (Anjelkovich et al. 1995 and Hansen and
Olsen 1995, 1996) found elevated (between approximately 10% and 30%) but
statistically non-significant risks for cancers of the buccal cavity or buccal cavity and
pharynx combined; risk estimates were usually based on small numbers of deaths or
cases. In the NCI cohort, no association between buccal cavity and formaldehyde
exposure was observed; however, a statistically significant increased risk for all upper
respiratory cancers combined was found among workers with the highest average exposure (> 1 ppm) compared with the lowest exposure group (RR = 2.21, 15 deaths) (Hauptmann et al. 2004). Relative risks increased somewhat with increasing average and peak (but not cumulative) exposure, but the trends were not statistically significant. Most of the case-control studies that reported on head and neck cancers found elevated (usually statistically non-significant) risks for formaldehyde exposure and cancers of the buccal cavity and pharynx (or parts of the pharynx) (Vaughan et al. 1986, Merletti et al. 1991, Gustavsson et al. 1998, Laforest et al. 2000, Marsh et al. 2002, Wilson et al. 2004). Positive exposure-response relationships with probability and duration of exposure for cancers of the hypopharynx and larynx combined were reported by Laforest et al. (2000) and for combined probability and intensity of exposure and salivary cancer by Wilson et al. (2004). No clear association between formaldehyde exposure and hypopharyngeal or laryngeal cancer was observed by Berrino et al. (2003) or for combined head and neck cancers by Tarvainen et al. (2008). Most of the cohort studies and two of the three available case-control studies found no association between formaldehyde exposure and laryngeal cancer. Bosetti et al. (2008) calculated a combined estimated RR (using a weighted average of SMRs and/or PMRs) for combined buccal cavity and pharynx of 1.09 (95% CI = 0.88 to 1.34, 88 deaths) among industrial workers and 0.96 (95% CI = 0.75 to 1.24, 61 deaths) among health professional workers exposed to formaldehyde in a pooled analysis of 10 occupational cohort mortality studies.

Five of the industrial cohort studies reported increases in the risk of lung or respiratory system cancers (Andjelkovich et al. 1995, Bertazzi et al. 1986, Dell and Teta 1995, Hansen and Olsen 1996 [women only]) including the large cohort of British chemical workers, which reported a statistically significant increased risk (SMR = 1.22, 95% CI = 1.12 to 1.32, 594 deaths, all workers) (Coggon et al. 2003). In this study, risks increased with increasing exposure level ($P_{\text{trend}} < 0.001$) but not with duration of exposure. No association was observed in the other two large cohorts (Pinkerton et al. 2004, Hauptmann et al. 2004), in several of the smaller occupational cohorts (Hansen and Olsen 1995, 1996 [in men, although a small increase was seen in women], Edling et al. 1987b, Stellman et al. 1998, Stern et al. 1987), or in the six studies of health professional workers. Findings from case-control studies were also mixed: statistically significant
increased risks were found among fiberglass manufacturing workers who were ever exposed to formaldehyde (OR = 1.61, 95% CI = 1.02 to 2.57, 591 cases) (Marsh et al. 2001) and among formaldehyde-exposed individuals in a population-based case-control study (Coggon et al. 1984), although risks were not increased among workers with higher exposure. Three studies reported statistically non-significant elevated risks for lung cancer, but no clear exposure response patterns were observed (Gerin et al. 1989, Andjelkovich et al. 1994, Chiazze et al. 1997). No association of lung cancer with formaldehyde exposure was reported in three other occupational case-control studies and one population-based study (Bond et al. 1986, Jensen and Andersen 1982, Partanen et al. 1990, Brownson et al. 1993). In a pooled analysis of 14 occupational mortality studies of formaldehyde exposure, which included an analysis of lung cancers, Bosetti et al. (2008) calculated a combined RR of 1.06 (95% CI = 0.92 to 1.23, 1,459 deaths) among industrial workers and 0.63 (95% CI = 0.47 to 0.84, 562 deaths) among health professional workers.

3.5.4 Lymphohematopoietic cancers

Among workers in the NCI cohort study, peak exposure to formaldehyde was associated with increased mortality for several types of lymphohematopoietic cancer (Beane Freeman et al. 2009). With respect to all lymphohematopoietic cancers combined and leukemias, relative risks increased with increasing peak exposure and statistically significant increased risks were found among workers with the highest peak exposure (≥ 4ppm) vs. the lowest exposed category for all lymphohematopoietic cancers (OR = 1.37, 95% CI = 1.03 to 1.81, 108 deaths, $P_{\text{trend}} = 0.02$) and statistically non-significant increases in risk were observed for all leukemia and peak exposure ≥ 4ppm (RR = 1.42, 95% CI = 0.92 to 2.18, 48 deaths, $P_{\text{trend}} = 0.02$) and for myeloid leukemia (RR = 1.78, 95% CI = 0.87 to 3.64, 19 deaths, $P_{\text{trend}} = 0.13$). No association was found with cumulative or average exposure. Leukemias observed in the earlier (1984) NCI follow-up (Hauptmann et al. 2003) were re-analyzed by Marsh and Youk (2004) using different exposure assessments; these authors reported no statistically significant trends with exposure, although risks remained elevated for all leukemias (combined) and myeloid leukemia.
Increases in all lymphohematopoietic cancers were also observed in other studies. Each of the studies of health professionals found elevated mortality for all lymphohematopoietic cancers combined and for leukemia (Hall et al. 1991, Hayes et al. 1990, Stroup et al. 1986, Levine et al. 1984 and Walrath and Fraumeni 1983, 1984). Most estimates were statistically non-significant, except for those of Hayes et al. (1990), and Stroup et al. (1986), where statistically significant excess mortality was found for all leukemia or myeloid leukemia. An excess of leukemia, especially myeloid leukemia, was also found among garment workers in the large NIOSH cohort (Pinkerton et al. 2004), but not in the British chemical workers cohort (Coggon et al. 2003). In the NIOSH cohort, risks for leukemia, myeloid leukemia, and acute myeloid leukemia were higher among workers with longer duration of exposure (> 10 yrs), longer time since first exposure (> 20 years), and among those exposed prior to 1963 (when formaldehyde exposure was thought to be higher). In the smaller industrial cohort studies, some studies reported excesses for lymphohematopoietic cancers combined (Bertazzi et al. 1986, Stellman et al. 1998) or leukemia (Hansen and Olsen 1995, 1996, Stern et al. 1987), but others observed no associations among formaldehyde-exposed workers for all lymphohematopoietic cancers (Pinkerton et al. 2004, Andjelkovich et al. 1995) or leukemia (Stellman et al. 1998). Of the three available case-control studies, a population-based study found no association between leukemia and exposure to formaldehyde (Blair et al. 2001), and two nested case control studies reported statistically non-significant increases in risk based on small numbers of exposed cases (Partanen et al. 1993, and Ott et al. 1989).

Few cohort studies reported findings for other types of lymphohematopoietic cancers. Most of the cohort studies had relatively low power to detect effects, and either did not report findings or did not evaluate exposure-response relationships. The NCI study was the only cohort that observed an association between formaldehyde exposure and Hodgkin’s lymphoma (Beane Freeman et al. 2009). Among exposed workers, relative risks increased with increasing peak ($P_{\text{trend}} = 0.01$) and average exposure ($P_{\text{trend}} = 0.05$), but not with cumulative exposure; statistically significant risks were found for the highest peak (≥ 4.0 ppm) vs. lowest formaldehyde exposure category ($RR = 3.96$, 95% CI = 1.31 to 12.02, 11 deaths). In external analyses, a statistically non-significant elevation in
mortality was observed (SMR = 1.4, 95% CI = 0.96 to 2.10, 25 deaths). For non-Hodgkin’s lymphoma (NHL), almost all the cohort studies that reported results observed no increases in mortality or incidence. Two nested case-control studies (Partanen et al. 1993, Ott et al. 1989) reported increases in NHL risk, but these studies had very small numbers of exposed cases. In the population case-control studies, the risk of NHL increased with increasing probability and intensity combined \(P < 0.001 \) in a large U.S. study (Wang et al. 2008), but most of the other studies found no clear association (Gerin et al. 1989, McDuffie et al. 2001, Tatham et al. 1997). For multiple myeloma, peak exposure was associated with a statistically significant increase in risk in the NCI cohort (RR= 2.04, 95% CI = 1.01 to 4.12, 21 deaths, \(P_{\text{trend}} = 0.08 \) (Beane Freeman et al. 2009), and increased risks were seen among British chemical workers (Coggon et al. 2003), abrasive materials workers (Edling et al. 1987b), and U.S. embalmers (Hayes et al. 1990). Other studies did not find associations. Small but non-significant increases in risks were also observed in three case-control studies (Boffetta et al. 1989, Heineman et al. 1992, Pottern et al. 1992).

Bosetti et al. 2008 conducted a pooled analysis of 12 cohort mortality studies and reported a pooled estimated RR for all lymphohematopoietic cancers of 0.85 (95% CI = 0.74 to 0.96, 234 deaths) for industrial workers and 1.31 (95% CI = 1.16 to 1.48, 263 deaths) for health professional workers. The corresponding pooled RRs for leukemia were 0.90 (95% CI = 0.75 to 1.07, 122 deaths) and 1.39 (95% CI = 1.15 to 1.68, 106 deaths), respectively. A meta-analysis by Collins and Lineker (2004) of leukemia and formaldehyde exposure among 12 cohort and case-control studies reported an mRR of 1.1 (95% CI = 1.0 to 1.2). Zhang et al. (2009a) conducted a meta-analysis of data from 26 studies of occupations with known high formaldehyde exposures, and found an mRR of 1.25 (95% CI = 1.09 to 1.43) for all lymphohematopoietic cancers (19 studies), an mRR of 1.31 (95% CI = 1.02 to 1.67, \(P = 0.02 \), 9 studies) for multiple myeloma, and an mRR of 1.54 (95% CI = 1.18 to 2.00, \(P < 0.001 \), 15 studies) for leukemia in association with formaldehyde exposure. The highest risk in the latter group was among myeloid leukemias (mRR = 1.90, 95% CI = 1.31 to 2.76, \(P = 0.001 \), 6 studies).
3.5.5 Other cancer sites

In general, few of the cohort studies reported consistently elevated risks for cancers at other sites. [Not all studies reported findings for all cancer sites and few studies included women.] Few case-control studies of other cancer endpoints have been conducted. An excess of mortality from brain and central nervous system cancers have been reported in all six of the cohort studies of health professionals; statistically significant SMR/PMRs (1.68 to 2.7) were reported in three studies (Stroup et al. 1986, Walrath and Fraumeni 1983, 1984). Higher risks were found among workers with longer employment as estimated by length of professional membership (Stroup et al. 1986). No increases in these cancers have been observed in the industrial cohort studies that have reported findings, although a small increased risk was reported among garment workers exposed 20 years since first exposure (SMR = 1.20, CI not reported, 13 deaths), and among those whose first exposure was prior to 1963 (Pinkerton et al. 2004). A pooled analysis of cohorts by Bosetti et al. (2008) found an increase of 1.56 (95% CI = 1.24 to 1.96, 74 deaths) among professional health workers but not among industrial cohorts.

Several industrial studies have reported increases in stomach, colon, rectal, and kidney cancers, and a case-control study of pancreatic cancer (Kernan et al. 1999) suggested an increase in this endpoint at higher levels of formaldehyde exposure. Two meta-analyses of pancreatic cancer (Ojajarvi et al. 2000, Collins et al. 2001) showed no consistent increase in risk across studies, with the possible exception of a statistically significant increase among pathologists, anatomists and embalmers.
4 Studies of Cancer in Experimental Animals

The carcinogenic effects of formaldehyde have been investigated in mice (inhalation and dermal administration), rats (inhalation and oral administration), and hamsters (inhalation administration). Although no chronic studies of formaldehyde exposure in primates were found, the effects of formaldehyde on monkeys exposed by inhalation for 1 to 26 weeks have been reported. Several studies also have investigated the interactions or promoting effects of formaldehyde in rodents when administered with other substances. IARC (1995, 2006) reviewed the available data on formaldehyde and concluded that there was sufficient evidence of carcinogenicity in experimental animals. This section is organized by route of administration and species and then discusses the effects of co-exposure with other substances.

4.1 Inhalation

Chronic and subchronic inhalation studies have been conducted in mice, rats, and hamsters. In addition, subacute and subchronic inhalation studies have been conducted in monkeys. All studies were conducted in inhalation chambers (i.e., whole-body rather than nose-only exposure), and formaldehyde vapor usually was generated by heating of paraformaldehyde (see Section 1). Exposure concentrations were reported as parts per million or milligrams per cubic meter of air by the study authors. All tables in this section report concentrations in parts per million. For formaldehyde in air, 1 ppm is equivalent to about 1.23 mg/m³.

Because of the complexity of nasal anatomy, inhalation studies typically examine multiple transverse sections from four or more anatomical levels of the nasal turbinates in order to determine the location and distribution of lesions. The anatomical levels, nasal turbinates, and a few other features of the rat nose are illustrated in Figure 4-1. The mouse nose has a similar anatomic structure.
Figure 4-1. Midsagittal section of the rat nose showing the anatomical levels typically examined in inhalation studies.

The Roman numerals identify the positions of the various anatomical levels. The curved dashed lines indicate the junction of the squamous/transitional and respiratory epithelia (anterior line) and the respiratory and olfactory epithelia (posterior line). N = nasoturbinates, M = maxilloturbinates, E = ethmoturbinates, ID = incisive duct, NPD = nasopharyngeal duct, OB = olfactory bulb, 2PR = second palatal ridge.

4.1.1 Mice

Horton et al. (1963) conducted a series of experiments in C3H mice to determine whether repeated inhalation of formaldehyde would cause bronchiogenic carcinoma and whether exposure to formaldehyde would make the mice more susceptible to pulmonary carcinoma from subsequent exposure to coal-tar aerosols. Results from the formaldehyde experiment are reported here, and results from the formaldehyde plus coal tar experiment are discussed in Section 4.3. Groups of 42 to 60 mice [sex and age not reported] were exposed to formaldehyde vapor (produced by heating a 2:1 mixture of paraformaldehyde and white mineral oil) at a concentration of 0, 50, 100, or 200 mg/m³ [about 41, 82, or 163 ppm] for 1 hour/day, 3 days/week, for up to 35 weeks. The low- and medium-exposure groups tolerated formaldehyde reasonably well; normal weight gain throughout the 35-week exposure period was reported for these groups. However, high mortality was
observed in the high-exposure group after the second week. Exposure was discontinued in this group after the eleventh exposure, with only 45 of the 60 original mice surviving. Some mice died of pneumonia, but the authors did not report specific mortality data for each exposure group. No pathological examination of the nasal epithelium was performed. Histological changes in the lungs of all mice that died or were killed during the first 35 weeks are shown in Table 4-1. No statistical analyses were reported. The remaining mice were used in the second experiment (see Section 4.3). No tumors were observed; however, incidences of basal-cell hyperplasia, epithelial stratification, squamous metaplasia, and atypical metaplasia in the trachea and major bronchi were higher in the exposed mice than in the controls. IARC (2006) noted that this study had several limitations, including high doses, short exposure interval, short study duration, and no pathological examination of the nose.

Table 4-1. Histologic changes in the lungs of C3H mice exposed to formaldehyde by inhalation for up to 35 weeks

<table>
<thead>
<tr>
<th>Conc. (ppm)</th>
<th>N</th>
<th>Incidence [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Examined</td>
</tr>
<tr>
<td>0 [40.8]</td>
<td>59</td>
<td>26</td>
</tr>
<tr>
<td>[81.5]</td>
<td>60</td>
<td>23</td>
</tr>
<tr>
<td>[163]</td>
<td>60</td>
<td>34</td>
</tr>
</tbody>
</table>

Kerns et al. (1983) conducted a two-year inhalation study using groups of 119 to 121 male and female B6C3F1 mice and F344 rats (results for the rats are discussed in Section 4.1.2.2). Beginning at 6 weeks of age, mice were exposed to formaldehyde at a concentration of 0, 2.0, 5.6, or 14.3 ppm for 6 hours/day, 5 days/week, for up to 24 months. After 24 months of exposure, the mice were observed for an additional 6 months without further exposure. Mice were killed at 6, 12, 18, 24, 27, and 30 months for gross pathological examinations, hematology, serum chemistry, and urinalysis. Ten animals of each sex and group were selected at random for each scheduled sacrifice. All major tissues from animals in the control and the high-exposure groups were given thorough histological examinations, and multiple sections of nasal turbinates were evaluated in all
groups. Cumulative tumor rates and survival curves were calculated from life-table data by the method of Kaplan and Meier. Both unadjusted and adjusted data were analyzed. [Data were adjusted to account for differences in time to tumor and survival among the groups.] For unadjusted data, exposure groups were compared with Fisher’s exact test. Overall and pairwise comparisons of adjusted data were made by the methods of Cox and Tarone.

Female mice in the high-exposure group showed a trend toward lower body weight than the controls after 72 weeks, but body weights returned to normal after exposure stopped. No clear exposure-related effect on body weight was seen in male mice. Survival in the exposed groups was not significantly different from that of the controls; however, survival was slightly lower for exposed male mice from 6 to 24 months. Survival was lower in all groups of males than females, as a result of fighting and infections of the genitourinary tract. The numbers of mice surviving for at least 18 months were 41, 33, 32, and 25 males and 89, 83, 92, and 88 females in the control, 2.0-, 5.6-, and 14.3-ppm exposure groups, respectively. Nasal lesions, including inflammation, squamous-cell hyperplasia, metaplasia, and dysplasia, were described as “common” in the nasal mucosa of mice exposed to formaldehyde; however, no incidence data were reported. These nasal lesions were first detected at 12 months in the high-exposure group; by 24 months, more than 90% of mice in this group were affected. The onset, distribution, and severity of these lesions were concentration-dependent. Nasal lesions in the low-exposure group were limited to minimal squamous-cell hyperplasia in a few mice at 24 months. Squamous-cell carcinoma of the nasal cavity occurred in 2 of 17 male mice killed at 24 months in the high-exposure group but not in any of the other groups. The authors believed that the carcinoma was caused by formaldehyde exposure, because the spontaneous incidence of these tumors is very low in mice and because the lesions were similar to those observed in rats.

4.1.2 Rats

The carcinogenicity of formaldehyde has been studied more extensively in rats than in mice, in four subchronic (4 to 26 weeks) and seven chronic (≥ 1 year) studies. Two of
these studies also evaluated the effects in rats of concomitant or sequential exposure to formaldehyde and other substances (discussed in Section 4.3).

4.1.2.1 Subchronic studies

Rusch et al. (1983) conducted 26-week inhalation studies in monkeys, rats, and hamsters. Results from experiments with monkeys and hamsters are presented in Sections 4.1.3 and 4.1.4, respectively. Groups of 20 male and 20 female F344 rats, 7 weeks of age, were exposed to formaldehyde at an average concentration of 0, 0.19, 0.98, or 2.95 ppm for 22 hours/day, 7 days/week, for 26 weeks. The target concentrations of 0.20, 1.00, and 3.00 ppm were selected to represent environmental exposures to the general public. However, after the first six weeks, the initial high-exposure group was terminated because of uncertainty associated with measurements of exposure concentrations. The high-exposure group was replaced with a new group exposed to a target concentration of 3.00 ppm and a corresponding control group. The nasal turbinates, lungs, trachea, and all gross lesions were examined microscopically. No exposure-related effects were seen in the low- and medium-exposure groups. Rats in the high-exposure group showed lower body-weight gain and liver weight than the controls. Incidences of squamous metaplasia and hyperplasia and basal-cell hyperplasia were higher in the high-exposure group than in the controls. No tumors were observed.

Groups of 10 male and 10 female albino Wistar rats [age not reported] were exposed to formaldehyde at a concentration of 0, 1, 10, or 20 ppm for 6 hours/day, 5 days/week, for 13 weeks (Woutersen et al. 1987). Growth retardation was evident in the high-exposure groups of both sexes. Formaldehyde exposure caused an exposure-related increase in the incidences and severity of proliferative lesions in the nasal respiratory and olfactory epithelium, including squamous metaplasia and keratinization.

Feron et al. (1988) exposed groups of 45 male Wistar rats [age not reported] to formaldehyde at a concentration of 0, 10, or 20 ppm for 6 hours/day, 5 days/week, for 4, 8, or 13 weeks. The primary purpose of this study was to examine the long-term effects following relatively short-term exposure to cytotoxic concentrations of formaldehyde. Five rats per group were killed at the end of the 4- and 8-week-exposure periods, and 10 rats per group were killed at the end of the 13-week exposure period. The remaining rats
were necropsied when found moribund or dead or were killed at the end of the observation period, during week 131. All rats were examined for gross pathological changes, and six standard cross sections of the nose were examined by light microscopy. Body weight was significantly lower in the high-exposure group than in the controls during the exposure period but returned to normal after about 8, 40, and 100 weeks in groups exposed for 4, 8, and 13 weeks, respectively. Mortality was not significantly different in the formaldehyde-exposed groups than in the controls. Non-neoplastic changes observed in the high-exposure groups included slight to severe hyperplasia and squamous metaplasia of the respiratory epithelium, moderate to severe rhinitis, and varying degrees of squamous metaplasia in the olfactory epithelium. Similar but more focal and less pronounced lesions were observed in the low-exposure group. A total of 14 nasal tumors were reported, most occurring in the high-exposure groups (Table 4-2). Although the authors did not report P-values for pairwise comparisons, they did consider 2 polypoid adenomas, 3 squamous-cell carcinomas, and 1 carcinoma in situ observed in groups exposed to 20 ppm for 4 to 13 weeks to be related to formaldehyde exposure. Thus, the incidence of tumors attributed to formaldehyde exposure was 4.5% (6 of 132). IARC (2006) reported that this was significantly higher than the incidence in the controls ($P = 0.01$, Fisher’s exact test) and noted that the positive results occurred even though the exposure duration was short.
Table 4-2. Neoplastic responses in the nasal cavity of male Wistar rats exposed to formaldehyde by inhalation for 4 to 13 weeksa

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Incidence [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (wk)</td>
<td>Conc. (ppm)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

a Tumor incidence data are for rats killed immediately after the exposure period, rats that died during the observation period, and rats killed during week 131 at the end of the experiment.

b Tumors considered to be associated with formaldehyde exposure.

c Tumors included 1 cystic squamous-cell carcinoma, 1 carcinoma \textit{in situ}, and 1 ameloblastoma. The authors considered the carcinoma \textit{in situ} to be related to formaldehyde exposure.

4.1.2.2 Chronic studies

Groups of 120 male and 120 female F344 rats, 7 weeks of age, were exposed to formaldehyde at a concentration of 0, 2.0, 5.6, or 14.3 ppm for 6 hours/day, 5 days/week, for up to 24 months (Kerns et al. 1983, Swenberg et al. 1980b, Swenberg et al. 1980a). Interim sacrifices and histopathological examinations were conducted as described in Section 4.1.1 for B6C3F\textsubscript{1} mice. After 24 months of exposure, the rats were observed for an additional 6 months without further exposure. Swenberg et al. (1980a,b) reported interim results after 18 months of the study, and Kerns et al. (1983) reported the complete results. Statistical analyses were conducted as described above for mice. Compared with the controls, body-weight gain was significantly lower from week 3 to week 103 in both sexes in the medium- and high-exposure groups. Mortality of male and female rats was significantly higher in the high-exposure group than in the controls ($P < 0.001$). Rhinitis, epithelial dysplasia, and squamous metaplasia occurred in all exposed groups, and the distribution and severity of these lesions were concentration-dependent. Lesions were confined to the nasal cavity and proximal trachea. Neoplastic lesions of the nasal cavity were first observed on day 358 in females and day 432 in males. Incidences of neoplastic lesions in the nasal cavity are shown in Table 4-3. The incidence of squamous-cell...
carcinoma was significantly higher in the high-exposure groups than in the controls.
There also was a significant exposure-dependent trend for increased incidence of
polypoid adenoma in male rats after adjustment for survival differences among groups (P < 0.05).

Table 4-3. Nasal tumors in F344 rats exposed to formaldehyde by inhalation for up to 24 months

<table>
<thead>
<tr>
<th>Sex</th>
<th>Exposure (ppm)</th>
<th>N</th>
<th>Incidence [%]</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Squamous-cell carcinoma</td>
<td>Nasal carcinoma</td>
<td>Polypoid adenoma</td>
<td>Other tumors a</td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>1 [1] b</td>
<td>1 [1]</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>4 [3]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td>119</td>
<td>1 [1]</td>
<td>0</td>
<td>6 [5]</td>
<td>0</td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
<td>114</td>
<td>0</td>
<td>0</td>
<td>0 [0]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>4 [3]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td>116</td>
<td>1 [1]</td>
<td>0</td>
<td>0 [0]</td>
<td>0</td>
</tr>
</tbody>
</table>

***P < 0.001 (compared with controls, Fishers’s exact test).
aOsteochondroma (controls); 2 undifferentiated carcinomas or sarcomas and 1 carcinosarcoma (high-exposure group).
bSignificant dose-related trend (P < 0.05) after adjustment for survival.
cAfter adjustment for survival, incidence at 24 months was 67%.
dAfter adjustment for survival, incidence at 24 months was 87%.

Morgan et al. (1986b) reexamined histologic sections from the nasal passages of the rats from the Kerns et al. (1983) study to determine the point of origin of the neoplasms. This study showed that the squamous-cell carcinomas developed from the surface epithelium rather than the underlying glandular epithelium. The apparent sites of origin are shown in Table 4-4. The results were assigned accuracy ratings (low or high) based on the degree of confidence assigned by the pathologists. It was more difficult to determine the point of origin of the large tumors that had extensively invaded the nasal cavity than of smaller tumors. More than half (57%) of the tumors were found on the anterior portion of the lateral aspect of the nasoturbinate and adjacent lateral wall (Levels I and II, see Figure 4-1), and 26% were found on the midventral nasal septum (Levels II and III). Polypoid adenomas occurred only in a small region of the anterior nasal cavity and were restricted to the nasoturbinate, maxilloturbinate, and lateral wall. One of the nasal
carcinomas was considered a malignant counterpart of the polypoid adenoma and
originated on the dorsal margin of the maxilloturbinate at Level II. Some neoplasms were
too large or too poorly preserved to determine their site of origin. All of the apparent sites
of origin are normally lined by respiratory epithelium.

Table 4-4. Apparent sites of origin of squamous-cell carcinomas in the nasal
passages of F344 rats exposed to formaldehyde by inhalation for up to 24 months

<table>
<thead>
<tr>
<th>Sex</th>
<th>Accuracy rating</th>
<th>Total tumors</th>
<th>% of total carcinomas by area of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area I</td>
</tr>
<tr>
<td>Male</td>
<td>high</td>
<td>36</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>low<sup>a</sup></td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Female</td>
<td>high</td>
<td>45</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>low<sup>b</sup></td>
<td>15</td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>121</td>
<td>57</td>
</tr>
</tbody>
</table>

Source: Morgan et al. 1986b.
Area I = lateral aspect of the nasoturbinate and adjacent lateral wall (Levels I and II, see Figure 4-1).
Area II = midventral septum (Levels II and III).
Area III = dorsal septum and roof of dorsal meatus (Levels I, II, and III).
Area IV = dorsal and lateral aspect of the maxilloturbinate (Levels II and III).
^aUnable to determine the site of origin for 4 tumors (16%).
^bUnable to determine the site of origin for 1 tumor (7%).

Appelman et al. (1988) conducted a one-year study to determine the role of cytotoxic
damage in formaldehyde-induced carcinogenesis in rats. This was followed by a 28-
month study of the same design (Woutersen et al. 1989). These authors also tested the
hypothesis that damage to the nasal mucosa (induced by bilateral electrocoagulation)
with subsequent regenerative hyperplasia might enhance the carcinogenic response
following exposure to subcytotoxic concentrations of formaldehyde (see Section 5.7.6).
These studies are discussed below.

Appelman et al. (1988) conducted a one-year inhalation study in male albino Wistar rats
[age not reported] to study whether damage to the nasal mucosa affected the carcinogenic
response to subcytotoxic concentrations of formaldehyde. The anterior third of the nasal
mucosa of half of the rats was damaged by electrocoagulation, and after 20 to 26 hours,
these rats received their first exposure to formaldehyde. Groups of 10 rats with either
damaged or undamaged nasal mucosa were exposed to formaldehyde at a concentration
of 0, 0.1, 1, or 10 ppm for 6 hours/day, 5 days/week, for 52 weeks. The exposure
concentrations were selected based on 13-week studies showing that formaldehyde was noncytotoxic at a concentration of 2 ppm or lower, slightly cytotoxic at a concentration of 3 to 4 ppm, and highly cytotoxic at a concentration of 10 ppm or higher. Some common irreversible lesions associated with electrocoagulation included loss of turbinates and perforation of the nasal septum. Rhinitis and basal-cell hyperplasia and squamous metaplasia of the respiratory epithelium were visible after 13 weeks, but after 52 weeks, effects from electrocoagulation were limited to slight basal-cell hyperplasia and rhinitis. The primary effects of formaldehyde in rats with damaged nasal mucosa included basal-cell hyperplasia, squamous metaplasia, and damage to the olfactory epithelium at 10 ppm and focal squamous metaplasia of nasal respiratory epithelium at 0.1 and 1 ppm. No adverse effects were seen in groups of rats with undamaged nasal mucosa exposed to formaldehyde at the two lower concentrations. Rats with undamaged noses in the high-dose formaldehyde group had increased incidences of rhinitis, basal-cell hyperplasia, and squamous metaplasia. The authors concluded that rats with damaged noses were more susceptible to the cytotoxic action of formaldehyde.

Woutersen et al. (1989) conducted a follow-up of the Appelman et al. (1988) study. A total of 720 male rats [age not reported] were used in the experiment. Half of the animals were exposed to formaldehyde at a concentration of 0, 0.1, 1, or 10 ppm for 3 months and allowed to recover for 25 months, and the other half were exposed for 28 months. Each exposure group included 30 rats with undamaged noses and 60 rats with damaged noses. [The authors did not report why they used unequal numbers of animals in these groups.] All surviving rats were killed at 29 months and examined for gross lesions. Histological examination was limited to six cross sections of the nose. Rats with undamaged noses exposed to formaldehyde at 10 ppm for 28 months had increased incidences of degenerative, inflammatory, and hyperplastic changes of the nasal respiratory and olfactory mucosa, but no tumors. Rats with damaged noses had higher incidences of formaldehyde-induced lesions than did rats with undamaged noses, and the group exposed to formaldehyde at 10 ppm for 28 months had a significantly higher incidence of nasal tumors than the control group ($P < 0.001$). [The authors did not report P-values; this P-value is based on Fisher’s exact test conducted by NTP.] Very few tumors
occurred in the other groups (Table 4-5). The authors concluded that severe damage to
the nasal mucosa can contribute to formaldehyde carcinogenicity.

Table 4-5. Neoplastic responses in the nasal cavity of male albino Wistar rats, with
and without damaged nasal mucosa, exposed to formaldehyde by inhalation for 3 or
28 months

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Conc. (ppm)</th>
<th>N</th>
<th>Squamous-cell carcinoma</th>
<th>Polypoid adenoma</th>
<th>Other tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (mo)</td>
<td>Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>undamaged</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>26</td>
<td>1 [3.8]</td>
<td>1 [3.8]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>damaged</td>
<td>0</td>
<td>57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>53</td>
<td>2 [3.5]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>54</td>
<td>2 [3.8]</td>
<td>0</td>
<td>1 [1.9]a</td>
</tr>
<tr>
<td>28</td>
<td>undamaged</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>26</td>
<td>1 [3.8]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>28</td>
<td>1 [3.6]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>26</td>
<td>1 [3.8]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>damaged</td>
<td>0</td>
<td>54</td>
<td>1 [1.9]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>58</td>
<td>1 [1.7]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>58</td>
<td>15 [25.9***]</td>
<td>0</td>
<td>2 [3.4]b</td>
</tr>
</tbody>
</table>

***[P < 0.001 (compared with controls, Fisher’s exact test conducted by NTP)].
*Carcinoma in situ.
*b1 adenosquamous carcinoma and 1 adenocarcinoma.

Sellakumar et al. (1985) exposed groups of 99 or 100 9-week-old male Sprague-Dawley
rats to formaldehyde at a concentration of 15 ppm for 6 hours/day, 5 days/week, for life.
This study also investigated the effects of a mixture of formaldehyde and hydrogen
chloride [gas] (see Section 4.3.2). A complete necropsy was performed on each animal,
with particular attention to the respiratory tract. Multiple cross sections spaced 1.5 to 2
mm apart were taken beginning just behind the nostrils and extending back to the orbits.
Histologic sections also were prepared from the lungs, trachea, larynx, liver, kidneys,
testes, and other organs where gross pathology was observed. After 16 weeks, rats
exposed to formaldehyde had markedly lower body weight than controls; however,
mortality was not significantly affected by formaldehyde exposure. Nasal tumors, arising
from the anterior portion of the nasal cavity, included polyps or papillomas (10 of 100 animals examined) and squamous-cell carcinomas (38 of 100 animals examined) in formaldehyde-exposed rats. One fibrosarcoma and one mixed carcinoma also occurred in the exposed group. No nasal tumors were observed in controls. The authors did not statistically compare tumor incidences between these groups; however, IARC (2006) reported that incidences of squamous-cell papilloma and carcinoma were significantly higher than in controls when compared with Fisher’s exact test ($P = 0.001$). No tumors were observed in the trachea or lungs, and tumor incidences in organs outside the respiratory tract did not differ significantly between the exposed and control groups.

In a chronic inhalation study conducted by Holmstrom et al. (1989a), groups of 16 female Sprague-Dawley rats, 11 weeks of age, were exposed to formaldehyde at a concentration of 0 or 12.4 ppm for 6 hours/day, 5 days/week, for 104 weeks. This study also investigated the effects of combined exposure to formaldehyde and wood dust (see Section 4.3.2). All rats in the formaldehyde-exposed group survived until the end of the study. Body weight did not differ significantly between the two groups. Histological examinations of the nose (five cross sections from the vestibulum of the nose to the posterior ethmoturbinates) and lungs were conducted. Pathological findings in the nasal cavity included pronounced metaplasia or dysplasia in 10 of 16 rats [62.5%] exposed to formaldehyde and none in the control group. One rat in the formaldehyde-exposed group developed squamous-cell carcinoma. Because this type of tumor is not known to occur spontaneously in rats, the authors concluded that it was related to formaldehyde exposure. Pulmonary epithelial histology did not differ significantly between the exposed and control groups. Non-respiratory-tract tumors, primarily mammary-gland tumors, were common in all groups (46% to 53%). Neither the incidence nor the latency period of the non-respiratory-tract tumors was affected by formaldehyde exposure. [IARC (2006) noted the small number of animals used in this study.]

Monticello et al. (1996) examined the correlation of cell-proliferation indices with sites of formaldehyde-induced nasal tumors in male F344 rats. Groups of 90 to 147 rats, 6 to 7 weeks of age, were exposed to formaldehyde at a concentration of 0, 0.7, 2, 6, 10, or 15 ppm for 6 hours/day, 5 days/week, for up to 24 months. Six rats per group were
anesthetized five days before interim sacrifice at 3, 6, 12, and 18 months, and an osmotic pump was surgically implanted subcutaneously over the dorsal thoracolumbar area. Each pump contained 2 mCi of [methyl-3H]thymidine, which was administered continuously until sacrifice. Cell proliferation was expressed as the number of 3H-labeled cell profiles per millimeter of basement membrane and was determined for seven locations in the nasal passages (anterior lateral meatus, posterior lateral meatus, anterior mid-septum, posterior mid-septum, anterior dorsal septum, anterior medial maxilloturbinate, and maxillary sinus). Cross-sectional blocks of the nasal cavity were prepared at six levels and processed for histopathology. The distribution of nasal tumors was recorded.

Compared with the controls, survival was significantly reduced in the high-exposure group ($P < 0.001$), but was similar or slightly higher in the three lower-exposure groups.

Non-neoplastic lesions (including epithelial hypertrophy and hyperplasia, squamous metaplasia, mixed inflammatory cell infiltrate, nasal turbinate adhesions, and olfactory degeneration) were generally confined to the transitional and respiratory epithelia of the anterior nasal passages and were most severe at the two highest concentrations. The authors stated the tumor response to formaldehyde exposure was highly nonlinear, showing a sharp increase at the two highest exposure levels. A clear exposure-response relationship was observed for squamous-cell carcinoma and polypoid adenoma (Table 4-6) [statistics not reported by authors]. Squamous-cell carcinoma was the primary tumor type and occurred most frequently in the lateral meatus and mid-septum. However, many of the tumors were too large for their site of origin to be determined. Other tumors thought to be related to formaldehyde exposure included two nasal rhabdomyosarcomas and two adenocarcinomas which occurred in the two highest dose groups [specific locations not reported]. The population-weighted unit length labeling index (i.e., S-phase nuclei per millimeter of basement membrane \times total number of epithelial cells in the site) showed a good correlation ($r^2 = 0.88$) with regional tumor incidence. The authors concluded that target-cell population size, cell proliferation, and local dosimetry are the primary determinants of formaldehyde carcinogenicity.
Table 4-6. Neoplastic responses in the nasal cavity of male F344 rats exposed to formaldehyde by inhalation for up to 24 months

<table>
<thead>
<tr>
<th>Conc. (ppm)</th>
<th>N</th>
<th>Incidence [%]</th>
<th>Tumor locationb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Squamous-cell carcinoma</td>
<td>Polyoid adenoma</td>
</tr>
<tr>
<td>0</td>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>1 [1]</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>20 [22.2***]</td>
<td>5 [5.6*]</td>
</tr>
<tr>
<td>15</td>
<td>147</td>
<td>69 [46.9***]</td>
<td>14 [9.5***]</td>
</tr>
</tbody>
</table>

Source: Monticello et al. 1996.

lm = anterior and posterior lateral meatus, ms = anterior and posterior mid-septum, amm = anterior medial maxilloturbinate, ads = anterior dorsal septum, unk = unknown.

*P < 0.05 (compared with controls, Fisher’s exact test conducted by NTP).

***P < 0.001 (compared with controls, Fisher’s exact test conducted by NTP).

aRhabdomyosarcoma and adenocarcinoma.

bFor squamous-cell carcinoma only.

Kamata et al. (1997) exposed groups of 32 male F344 rats, 5 weeks of age, to formaldehyde at a concentration of 0, 0.3, 2, or 15 ppm for 6 hours/day, 5 days/week, for up to 28 months. A control group was exposed to methanol at a concentration 4.2 ppm, because the formalin solution used to generate the formaldehyde vapor contained 10% methanol as an antipolymerization agent. An additional room control group was included. Five animals per group were killed at the end of months 12, 18, and 24 for hematological, biochemical, and pathological examination. All animals found dead or moribund were necropsied, and all surviving animals were killed at 28 months. Histopathological examinations were performed on five cross sections of the nasal turbinates and most major organs and tissues. Mortality rates at 28 months were 45.5% and 59.6% in the two control groups, compared with 31.8% in the low-exposure, 55.9% in the medium-exposure, and 88.3% in the high-exposure group. Mortality in the high-exposure group was significantly higher than in the control groups. In addition, the high-exposure group had significantly lower body weight, liver weight, and food consumption than the controls. No lesions related to formaldehyde exposure were observed outside the nasal cavity. Incidences of proliferative lesions in the nasal cavity are shown in Table 4-7. Epithelial-cell hyperplasia with squamous-cell metaplasia occurred in all groups exposed to formaldehyde, and its incidence was significantly higher in the medium- and high-
exposure groups than in the controls. These lesions did not appear until month 21 in the
low-exposure group, but appeared as early as month 6 in the high-exposure group.

Incidences of epithelial-cell hyperkeratosis and squamous-cell carcinoma also were
significantly elevated in the high-exposure group. Neoplastic lesions were observed only
in the high-exposure group.

Table 4-7. Proliferative lesions and neoplastic responses in the nasal cavity of male
F344 rats exposed to formaldehyde by inhalation for up to 28 months

<table>
<thead>
<tr>
<th>Group (ppm)</th>
<th>N</th>
<th>Incidence [%]</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls:</td>
<td></td>
<td></td>
<td>Epithelial-cell hyperplasia with squamous-cell metaplasia</td>
<td>Epithelial-cell hyperkeratosis</td>
<td>Papillary hyperplasia</td>
<td>Squamous-cell papilloma</td>
</tr>
<tr>
<td>Methanol</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Room</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>32</td>
<td>4 [12.5]**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>7 [21.9]**</td>
<td>1 [3.1]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>29 [90.6]**</td>
<td>26 [81.3]**</td>
<td>2 [6.3]</td>
<td>3 [9.4]</td>
<td>13 [40.6]**</td>
</tr>
</tbody>
</table>

** P < 0.01 (compared with methanol control group, Fisher’s exact test).

4.1.3 Hamsters

Two inhalation studies in hamsters, one subchronic and one chronic, were identified. In
the subchronic study, groups of 10 male and 10 female Syrian golden hamsters, 6 weeks
of age, were exposed to formaldehyde at an average concentration of 0, 0.19, 0.98, and
2.95 ppm for 22 hours/day, 7 days/week, for 26 weeks (Rusch et al. 1983). All animals
were killed at 26 weeks. The lungs, nasal turbinates, and trachea were fixed and
sectioned. No exposure-related mortality or significant toxic effects were seen in any
exposure group. The formaldehyde-exposed groups showed slightly higher incidences of
rales, nasal discharge, and lacrimation. None of the hamsters developed tumors.

Dalbey (1982) exposed a group of 88 male Syrian golden hamsters [age not reported] to
formaldehyde at a concentration of 10 ppm for 5 hours/day, 5 days/week, for life. The
non-exposed control group included 132 hamsters. A second experiment was conducted
to examine the effect of formaldehyde on diethylnitrosamine (DEN) carcinogenesis (see
Section 4.3.3). The second experiment also included a group of 50 male hamsters
exposed to formaldehyde at 30 ppm once per week, 5 hours/day, for life. Two transverse sections of the nasal turbinates, longitudinal sections of the larynx and trachea, and all lung lobes were examined. Survival time was significantly lower in the 10-ppm group than in the controls ($P < 0.05$); however, there was very little evidence of toxicity. [Effects on body-weight gain were not reported.] Rhinitis was observed in 31% of the controls, compared with 24% of the 10-ppm exposure group. Hyperplastic and metaplastic lesions of the nasal epithelium occurred in 5% of the 10-ppm group but were not observed in the controls. Weekly exposures to formaldehyde at 30 ppm did not affect mortality. No tumors occurred in either the 10-ppm or 30-ppm exposure group.

4.1.4 Monkeys

Rusch et al. (1983) exposed six male Cynomolgus monkeys (Macaca fascicularis) [age not reported] to formaldehyde for 26 weeks using the same exposure protocol and dose levels as reported above for rats and hamsters. Body weight was not affected by formaldehyde exposure. Squamous metaplasia and hyperplasia was evident in the nasal turbinates of all animals in the high-exposure group. Hoarseness and congestion also occurred in this group. No tumors occurred in the lungs, trachea, or nasal turbinates in any exposure group.

Monticello et al. (1989) investigated the effects of acute or subacute exposure to formaldehyde on the respiratory tract of rhesus monkeys. Nine young adult male rhesus monkeys (Macaca mulatta), aged 4 to 5 years, were randomly divided into three groups. Group 1 (control) was sham exposed to biologically filtered air for 6 hours/day, 5 days/week, for 6 weeks. Groups 2 and 3 were exposed to formaldehyde at a concentration of 6 ppm for 1 and 6 weeks, respectively. All animals were tranquilized 18 hours after the last scheduled exposure, injected with [³H]thymidine (1 µCi/g b.w.), and killed 2 hours later. A series of transverse sections of the nose, cross sections of the larynx and mid-trachea, a frontal section of the carina of the trachea, and sections from all lung lobes were examined. In addition, tissues were collected from bone marrow, eyes, adrenal glands, duodenum, esophagus, gall bladder, heart, kidneys, liver, lymph nodes, pancreas, stomach, spleen, and tongue and examined by light microscopy. Five transverse sections from the nasal passages and sections of the larynx, trachea, carina
tracheae, lung, and duodenum were processed for histoautoradiography to determine the cell-proliferation rate. Formaldehyde exposure did not significantly affect body weight. Eye irritation and lacrimation were observed in the formaldehyde-exposed groups. Exposure-related effects were observed in the respiratory tract only. Lesions within the respiratory tract were characterized by mild degeneration and squamous metaplasia confined to the transitional and respiratory epithelia of the nasal passages and the respiratory epithelia of the trachea and major bronchi. Although there was little progression of histologic changes from 1 to 6 weeks of exposure, the percent of nasal surface area affected was significantly greater at 6 weeks. Cell-proliferation rates in the formaldehyde-exposed groups were up to 18 times the rates in the control group, with the greatest increase in the anterior nasal cavity. Based on a comparison of the extent of lesions and the cell-proliferation rates observed in this study with those seen in previous studies in rats, the authors concluded that monkeys appeared to be more sensitive than rats to the acute and subacute effects of formaldehyde at 6 ppm.

4.1.5 Summary of inhalation studies
This section reviewed two inhalation studies in mice, eleven in rats, two in hamsters, and two in monkeys. Nasal tumors (primarily squamous-cell carcinoma) were the only exposure-related tumors reported. Results from these studies are summarized in Table 4-8.
Table 4-8 Summary of inhalation studies of formaldehyde in experimental animals

<table>
<thead>
<tr>
<th>Animals</th>
<th>Exposure</th>
<th>Conc. (ppm)</th>
<th>Tumor incidence<sup>a</sup></th>
<th>Results and comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>h/d (d/wk)</td>
<td>Duration (wk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice (subchronic and chronic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3H</td>
<td></td>
<td>1 (3)</td>
<td>35</td>
<td></td>
<td>Horton et al. 1963</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>82</td>
<td>0/26</td>
<td>[Sex and age not reported, examined lung tissue and did not examine nasal tissue], short duration, short exposure time, high mortality in high-exposure group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>166</td>
<td>0/35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6C3F<sub>1</sub></td>
<td></td>
<td>6 (5)</td>
<td>104</td>
<td>All groups initially contained 119 to 121 animals [number of mice in each group not specifically reported]. Interim sacrifices at 6, 12, 18, 24, and 30 mo. The only tumors occurred in 17 males sacrificed at 24 mo.</td>
<td>Kerns et al. 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td>0/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.3</td>
<td>2/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rats (subchronic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F344</td>
<td></td>
<td>22 (7)</td>
<td>26</td>
<td>[Short duration], increase in squamous metaplasia and basal-cell hyperplasia in high-exposure groups</td>
<td>Rusch et al. 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.19</td>
<td>0/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.98</td>
<td>0/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.95</td>
<td>0/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td></td>
<td>6 (5)</td>
<td>13</td>
<td>[Short duration], exposure-related increase in proliferative lesions of the nasal respiratory and olfactory epithelia, including squamous metaplasia and keratinization</td>
<td>Woutersen et al. 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td></td>
<td>6 (5)</td>
<td>13</td>
<td>[Short duration], 1 carcinoma in situ also detected in high-exposure group and thought to be exposure-related</td>
<td>Feron et al. 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0/45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1/44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>3/44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td></td>
<td>8 (5)</td>
<td>13</td>
<td>[Short duration], exposure-related effects observed only in high-exposure group and included hyperplasia and squamous metaplasia of the respiratory epithelium</td>
<td>Wilmer et al. 1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 (5)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 (5)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4<sup>b</sup> (5)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4<sup>b</sup> (5)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4<sup>b</sup> (5)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td>Exposure</td>
<td>Tumor incidence<sup>a</sup></td>
<td>Results and comments</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>--</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Rats (chronic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F344</td>
<td>h/d (d/wk)</td>
<td>Conc. (ppm)</td>
<td>Male</td>
<td>Female</td>
<td>Nasal carcinoma observed in 1 rat of each sex in the high-exposure groups; polypoid adenoma observed in all groups except female controls and medium-exposure group; undifferentiated carcinoma or sarcoma and carcinosarcoma observed in high-exposure males</td>
</tr>
<tr>
<td></td>
<td>6 (5)</td>
<td>104</td>
<td>0</td>
<td>0/118 0/114</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>0/118 0/114</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
<td>1/119 1/116</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.3</td>
<td>51/117 52/115</td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>6 (5)</td>
<td>52</td>
<td>0</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>6 (5)</td>
<td>117</td>
<td>0</td>
<td>1/54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>1/58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>0/56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>15/58</td>
<td></td>
</tr>
<tr>
<td>Sprague-Dawley</td>
<td>6 (5)</td>
<td>life</td>
<td>0</td>
<td>0/99</td>
<td>Squamous papilloma observed in 10 rats; mixed carcinoma and fibrosarcoma observed in 1 rat each</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>38/100</td>
<td></td>
</tr>
<tr>
<td>Sprague-Dawley</td>
<td>6 (5)</td>
<td>104</td>
<td>0</td>
<td>NT</td>
<td>[Small number of animals.] Pronounced squamous-cell metaplasia or dysplasia reported in 10 of the exposed rats and none of the controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.4</td>
<td>0/15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>F344</td>
<td>6 (5)</td>
<td>104</td>
<td>0</td>
<td>0/90</td>
<td>Polypoid adenoma, rhabdomyosarcoma, and adenocarcinoma also observed in the two highest exposure groups. The population-weighted unit length labeling index was correlated with regional tumor incidence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>0/90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0/96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1/90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>20/90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>69/147</td>
<td></td>
</tr>
<tr>
<td>F344</td>
<td>6 (5)</td>
<td>117</td>
<td>0</td>
<td>NT</td>
<td>Squamous-cell papilloma also observed in 3 rats in the high-exposure group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>0/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>13/32</td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td>Exposure</td>
<td>Conc. (ppm)</td>
<td>Tumor incidence*</td>
<td>Results and comments</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>h/d</td>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d/wk)</td>
<td>(wk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrian golden</td>
<td>22 (7)</td>
<td>26</td>
<td>0.19</td>
<td>[Short exposure duration], no significant responses reported</td>
<td>Rusch et al. 1983</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>0.98</td>
<td>2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrian golden</td>
<td>5 (5)</td>
<td>life</td>
<td>0/10</td>
<td>Minimal increase in hyperplastic and metaplastic areas in the nasal epithelium of exposed animals.</td>
<td>Dalbey 1982</td>
</tr>
<tr>
<td></td>
<td>5 (1)</td>
<td>life</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0/50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0/50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monkeys (subacute and subchronic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynomolgus</td>
<td>22 (7)</td>
<td>26</td>
<td>0/19</td>
<td>[Short exposure duration], squamous metaplasia in the nasal turbinates in the high-dose group</td>
<td>Rusch et al. 1983</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>0.98</td>
<td>2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/6</td>
<td>0/6</td>
<td>NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhesus</td>
<td>6 (5)</td>
<td>6</td>
<td>0</td>
<td>[Short exposure duration and small number of animals], increased cell-proliferation rates and squamous metaplasia of the transitional and respiratory epithelia of the nasal passages and respiratory epithelia of the trachea and major bronchi</td>
<td>Monticello et al. 1989</td>
</tr>
<tr>
<td></td>
<td>0/6</td>
<td>0/6</td>
<td>0/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NT = not tested.

a All tumors are nasal squamous-cell carcinomas unless otherwise noted.

b Exposed in 30-minute intervals, 8 times/day, separated by 30-minute non-exposure periods.
4.2 Oral and dermal administration

Formaldehyde was administered to rats via their drinking water in five studies (Soffritti et al. 2002a, Soffritti et al. 1989, Takahashi et al. 1986, Til et al. 1989, Tobe et al. 1989) and by skin application in one study (Iversen 1986).

4.2.1 Drinking-water studies

Takahashi et al. (1986) investigated the tumor-promoting activity of orally administered formaldehyde on stomach carcinogenesis in 7-week-old male Wistar rats (see Section 4.3.2 for a complete description). One group of 10 rats was exposed to formaldehyde in drinking water (0.5% formalin [5,000 mg/L]) from weeks 8 to 40, and a control group of 10 rats was given tap-water only. Of 10 formaldehyde-exposed rats, 8 developed squamous-cell papilloma of the forestomach. No tumors occurred in the control group.

Til et al. (1989) administered formaldehyde (obtained as paraformaldehyde) in drinking water to groups of 70 male and 70 female Wistar rats, aged 5 weeks, for up to 24 months. Target doses were 5, 25, and 125 mg/kg of body weight (b.w.) for both sexes. Average formaldehyde concentrations in the drinking water were 20, 260, and 1,900 mg/L. Based on water consumption, the average daily doses were 0, 1.2, 15, or 82 mg/kg b.w. for males and 0, 1.8, 21, or 109 mg/kg b.w. for females. Subgroups of 10 male and 10 female rats were killed after 12 and 18 months. Formaldehyde exposure did not affect mortality. The high-exposure group of each sex had lower body weight and food intake than the controls, and liquid consumption was about 40% less than in the controls. The high-exposure groups also had severe damage to the gastric mucosa and significantly increased incidences of epithelial hyperplasia and hyperkeratosis of the forestomach and hyperplasia of the glandular stomach (Table 4-9). No tumors were reported at any exposure level.
Table 4-9. Non-neoplastic responses in Wistar rats given formaldehyde in drinking water for 24 months

<table>
<thead>
<tr>
<th>Sex</th>
<th>Dose (mg/kg)</th>
<th>N</th>
<th>Forestomach</th>
<th>Glandular stomach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epithelial hyperplasia</td>
<td>Focal hyperkeratosis</td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>47</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>45</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>44</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>47</td>
<td>45***</td>
<td>24***</td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
<td>48</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>49</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>47</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>48</td>
<td>45***</td>
<td>33***</td>
</tr>
</tbody>
</table>

***P < 0.001 (compared with controls, Fisher’s exact test).

Tobe et al. (1989) exposed groups of 20 male and 20 female Wistar rats [age not reported] to formaldehyde (obtained as paraformaldehyde) in drinking water for 24 months at a concentration of 0, 200, 1,000, or 5,000 mg/L. Based on water consumption, the estimated average daily formaldehyde intakes were 0, 10, 50, and 300 mg/kg b.w. Food intake, water intake, and body weight were significantly lower in the high-exposure groups of both sexes than in the controls. Mortality was 100% in the high-exposure groups by 24 months, occurring as early as 9 days after the beginning of exposure. For males and females, respectively, mortality at 24 months in the other groups was 12.5% and 28.6% in the controls, 46.9% and 33.7% in the low-exposure group, and 0% and 14.3% in the medium-exposure group. Non-neoplastic lesions associated with formaldehyde exposure (primarily in the high-exposure group) included erosions, ulcers, hyperkeratosis, basal-cell hyperplasia, and hyperplasia of the squamous epithelium in the forestomach. Similar lesions were observed in the glandular stomach and included erosions and/or ulcers accompanied by submucosal inflammatory-cell infiltrates and glandular hyperplasia. Only a few lesions of the gastrointestinal tract were seen in the medium-exposure groups, and no toxicological effects were observed in the low-exposure groups. Incidences of non-neoplastic lesions were reported only for 6 animals per group at 12 months. All tumors observed (i.e., of the pituitary gland, thyroid gland, testes, adrenal glands, mammary glands, and skin) were the typical spontaneously
occurring tumors for this strain. The incidences of these tumors did not differ significantly between the formaldehyde-exposed groups and the controls.

Soffritti et al. (1989, 2002a) examined the carcinogenicity of formaldehyde in male and female Sprague-Dawley rats when administered in the drinking water for two years. Oral administration was selected (1) because humans are exposed to formaldehyde in foods and (2) to determine whether formaldehyde might prove to be a multipotential carcinogen (i.e., causing more than one tumor type by various routes of administration). One study examined the effects of age at the start of the experiment (Soffritti et al. 1989). This study included two groups of 18 to 20 male and female breeder rats (25 weeks old) exposed to formaldehyde at a concentration of 0 or 2,500 mg/L for up to 104 weeks, and their offspring, initially exposed to formaldehyde in utero beginning on gestation day 13.

Postnatally, the offspring were exposed to formaldehyde via drinking water at 0 or 2,500 mg/L for up to 104 weeks. Survival rates were similar in the exposed and control groups. All animals were necropsied and given a thorough histopathological examination. No exposure-related, non-neoplastic effects were reported for either experiment.

Soffritti et al. (1989) reported that formaldehyde exposure was associated with a slight increase in hemolymphoreticular neoplasms in male and female breeder rats (Table 4-10). Gastrointestinal-tract tumors occurred in two breeder rats but were more prevalent in their offspring. These included both benign tumors (adenoma, papilloma, and acanthoma) and malignant tumors (adenocarcinoma and leiomyosarcoma). Leiomyosarcoma was the most frequent malignant tumor. The authors noted that these gastrointestinal tumors were very rare in the historical controls from the colony used in these experiments and that none of these tumors were observed in the concurrent controls. [No statistical analyses were reported for these results.] IARC’s (2006) review of this study reported that the incidence of leiomyosarcoma in the intestine was significantly increased in the exposed female offspring alone and in exposed female and male offspring combined ($P \leq 0.01$, χ^2 test) and that the incidence of malignant intestinal tumors in the female offspring was significantly higher than in controls (pairwise comparisons with Fisher’s exact test).
Table 4-10. Tumor incidences in Sprague-Dawley rats exposed to formaldehyde in drinking water at two different ages for up to 104 weeks

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>Conc. (mg/L)</th>
<th>N</th>
<th>Incidence (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hemolymphoreticular</td>
<td>Stomach</td>
<td>Intestine</td>
<td>Stomach</td>
<td>Intestine</td>
</tr>
<tr>
<td>Breeders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benign</td>
<td>Malignant</td>
<td>Benign</td>
<td>Malignant</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>0</td>
<td>20</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>2,500</td>
<td>18</td>
<td>2 (11.1)</td>
<td>0 (0)</td>
<td>1 (5.6)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>0</td>
<td>20</td>
<td>1 (5)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>2,500</td>
<td>18</td>
<td>2 (11.1)</td>
<td>1 (5.6)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Offspringa</td>
<td>M</td>
<td>0</td>
<td>59</td>
<td>3 (5.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>2,500</td>
<td>36</td>
<td>4 (11.1)</td>
<td>1 (2.8)</td>
<td>2 (5.6)</td>
<td>1 (2.8)</td>
<td>1 (2.8)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>0</td>
<td>49</td>
<td>3 (6.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>2,500</td>
<td>37</td>
<td>0 (0)</td>
<td>2 (5.4)</td>
<td>0 (0)</td>
<td>6 (16.2)**</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

**P < 0.01 (compared with controls, χ^2 test conducted by IARC 2006); [no statistical analyses were reported by the study authors.]

aTransplacental exposure beginning on gestational day 13, then postnatal exposure continued via drinking water.

In the second experiment conducted by Soffritti and co-workers, groups of 50 male and 50 female rats, 7 weeks of age, were exposed to formaldehyde at a concentration of 10, 50, 100, 500, 1,000, or 1,500 mg/L for 104 weeks and then observed for life (Soffritti et al. 1989, 2002a). The formalin solution used to prepare the test solutions contained 30% formaldehyde and 0.3% methanol. All animals died by week 163. Additional groups of 50 male and 50 female rats were exposed to methanol at a concentration of 15 mg/L, because methanol was used in the formaldehyde solution as a stabilizer. [Based on a concentration of 0.3% methanol in the stock solution, the concentrations of methanol in the formaldehyde test solutions ranged from about 0.1 to 15 mg/L.] The control group included 100 male and 100 female rats given tap water only.

No exposure-related non-neoplastic effects were reported. Tumor incidences were analyzed with the χ^2 test, and dose-response relationships with the Cochrane-Armitage test for trend. The authors did not report statistical comparisons between the formaldehyde-exposed groups and the methanol group; however, IARC (2006) conducted statistical analyses for trend and incidence between these groups (results presented below). The incidence of total malignant tumors was significantly higher in male rats exposed to formaldehyde at 1,500 mg/L than in the unexposed controls. The total number
of malignant tumors per 100 animals was significantly increased in males at 500 or 1,500 mg/L and in females at 100, 1,000, or 1,500 mg/L (Table 4-11). [The NTP questioned the appropriateness of applying a \(\chi^2 \) test (which is designed for dichotomous response data) to tumor counts such as total number of tumors per 100 animals. There is also concern that the authors’ \(\chi^2 \) test considered the individual tumor rather than the animal as the experimental unit and did not take into account the variability in tumor response among animals.]

Table 4-11. Total malignant tumors in Sprague-Dawley rats exposed to formaldehyde in drinking water for up to 104 weeks

<table>
<thead>
<tr>
<th>Sex</th>
<th>Concentration (mg/L)</th>
<th>N</th>
<th>Tumor-bearing animals (%)</th>
<th>Total no. tumors (per 100 animals)*a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0 methanol only</td>
<td>100</td>
<td>38 (38)</td>
<td>50 (50)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>21 (42)</td>
<td>29 (58)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>14 (28)</td>
<td>19 (38)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
<td>12 (24)</td>
<td>15 (30)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>50</td>
<td>22 (44)</td>
<td>23 (46)</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>50</td>
<td>24 (48)</td>
<td>36 (72)*</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>50</td>
<td>23 (46)</td>
<td>30 (60)</td>
</tr>
<tr>
<td>Female</td>
<td>0 methanol only</td>
<td>100</td>
<td>43 (43)</td>
<td>49 (49)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>23 (46)</td>
<td>32 (64)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>20 (40)</td>
<td>22 (44)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
<td>20 (40)</td>
<td>26 (52)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>50</td>
<td>25 (50)</td>
<td>41 (82)**</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>50</td>
<td>19 (38)</td>
<td>25 (50)</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>50</td>
<td>29 (58)</td>
<td>39 (78)**</td>
</tr>
</tbody>
</table>

Source: Soffritti et al. 2002a.

*\(P < 0.05 \), **\(P < 0.01 \) (compared with controls, \(\chi^2 \) test).

* [The NTP questioned the validity of the \(\chi^2 \) test for these data (see text).]

An exposure-related increase in the incidence of hemolymphoreticular neoplasms (including lymphoblastic leukemia and lymphosarcoma, immunoblastic lymphosarcoma, other leukemias, and hemolymphoreticular sarcoma) was reported in male and female rats exposed to formaldehyde (Soffritti et al. 2002a). The incidence of hemolymphoreticular neoplasms was significantly increased in males at concentrations of 100 mg/L or higher and in females at the two highest concentrations (Table 4-12a). The incidence of hemolymphoreticular neoplasms was higher in males exposed to methanol...
only than in the control group, but the difference was not reported as statistically significant. IARC (2006) also reported a significant increase in total malignant mammary-gland tumors (adenocarcinoma, fibrosarcoma, liposarcoma, and angiosarcoma) in females (100, 1,000, and 1,500 mg/L) and testicular interstitial-cell adenoma in males (500, 1,000, and 1,500 mg/L) (Table 4-12a). Most of the mammary-gland tumors in female rats were adenocarcinomas. Several stomach and intestinal tumors, including a few of the very rare leiomyomas or leiomyosarcomas, were observed in some of the formaldehyde-exposed groups but not in the methanol or control groups (Table 4-12b). IARC (2006) statistical analyses showed that when compared with the methanol-only group, the formaldehyde-exposed rats had significantly higher total numbers of tumor-bearing animals, incidence of hemolymphoreticular tissue tumors in high-exposure males, and incidence of testicular interstitial-cell adenoma in the medium-exposure males ($P < 0.01$). A significant exposure-response relationship also was found for the increased incidences of hemolymphoreticular tumors in males. IARC noted the pooling of lymphoma and leukemia as hemolymphoreticular neoplasia, the lack of reporting of non-neoplastic lesions, and the absence of information on incidences of hemolymphoreticular tumors in historical controls in this study.
Table 4-12a. Incidences of mammary, testicular, and hemolymphoreticular tumors in Sprague-Dawley rats exposed to formaldehyde in drinking water for up to 104 weeks

<table>
<thead>
<tr>
<th>Sex</th>
<th>Conc. (mg/L)</th>
<th>N</th>
<th>Incidence (%)</th>
<th>Mammary gland</th>
<th>Testes</th>
<th>Hemolymphoreticular</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adeno-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>carcinoma</td>
<td>Fibro-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sarcoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lipo-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sarcoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>control</td>
<td>100</td>
<td>1 (1)</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
</tr>
<tr>
<td></td>
<td>methanol</td>
<td>50</td>
<td>0</td>
<td>1 (2)</td>
<td>0</td>
<td>1 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>1 (2)b</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (2)c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>1 (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Female</td>
<td>control</td>
<td>100</td>
<td>11 (11)</td>
<td>0</td>
<td>0</td>
<td>11 (11)</td>
</tr>
<tr>
<td></td>
<td>methanol</td>
<td>50</td>
<td>7 (14)</td>
<td>0</td>
<td>1 (2)</td>
<td>8 (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>2 (4)</td>
<td>1 (2)</td>
<td>0</td>
<td>3 (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>4 (8)</td>
<td>0</td>
<td>1 (2)</td>
<td>5 (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>8 (16)*</td>
<td>2 (4)</td>
<td>0</td>
<td>10 (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>3 (6)</td>
<td>1 (2)</td>
<td>2 (4)</td>
<td>6 (12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>9 (18)*</td>
<td>1 (2)</td>
<td>0</td>
<td>10 (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>11 (22)*</td>
<td>0</td>
<td>1 (2)</td>
<td>12 (24)*c</td>
</tr>
</tbody>
</table>

Source: Soffritti et al. 2002a, IARC 2006.

*P < 0.05, **P < 0.01 (compared with controls, \(\chi^2\) test).

aIARC noted that this category is an aggregate of tumors of different cellular origins.

bAngiosarcoma also reported in 1 rat.

cSignificantly different from the methanol control group \((P < 0.01, 2\text{-}tailed Fisher’s exact test conducted by IARC)\).

dSignificantly different from the methanol control group \((P < 0.01, \chi^2\ test conducted by IARC)\).
Table 4-12b. Incidences of stomach and intestinal tumors in Sprague-Dawley rats exposed to formaldehyde in drinking water for up to 104 weeks

<table>
<thead>
<tr>
<th>Sex</th>
<th>Conc. (mg/L)</th>
<th>N</th>
<th>Incidence (%)</th>
<th></th>
<th></th>
<th>Intestine</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stomach- leiomyosarcoma<sup>a</sup></td>
<td>Leiomyoma<sup>a</sup></td>
<td>Leiomyosarcoma<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Forestomach</td>
<td>Glandular stomach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>control</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>methanol</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>1 (2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>50</td>
<td>1 (2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (4)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>control</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>methanol</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (4)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (2)</td>
<td>1 (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 (6)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Source: Soffritti <i>et al.</i> 2002a, IARC 2006.

^aStatistical analyses were not provided for these tumors, which were reported as being very rare in Sprague-Dawley rats [not significantly different from controls, Fisher’s exact test conducted by NTP].

^bIARC 2006 reported only 1 tumor (2%) for this group, without an explanation.
4.2.2 Skin application

Formaldehyde is widely used in laboratories as a fixative for tissue; therefore, researchers and technicians may be chronically exposed by skin contact. Iversen (1986) conducted skin-painting experiments with hairless Oslo mice to test the potential carcinogenic potency of formaldehyde at concentrations typically used in pathology laboratories. Two groups of 16 male and 16 female mice [age not reported] received two weekly topical applications of 200 μL of aqueous solutions of 1% or 10% formaldehyde for up to 60 weeks. Formaldehyde was also tested as a skin-tumor promoter (see Section 4.3.1). Mortality was not increased in groups exposed to 1% or 10% formaldehyde. No lesions were observed in the mice exposed to 1% formaldehyde, while mice in the 10% formaldehyde group had slight hyperplasia of the epidermis. The author concluded that 1% or 10% formaldehyde applied to the skin of hairless mice did not have an observable carcinogenic effect. IARC (2006) noted that there was no water-only control group. [This study is also limited by the small number of animals and less-than-lifetime exposure duration.]

4.2.3 Summary of oral and dermal exposure studies

Five drinking-water studies and one skin-painting study of the carcinogenicity of formaldehyde were reviewed. Ingestion of formaldehyde at high concentrations was associated with gastrointestinal-tract tumors in two studies in rats. One study reported increased incidences of total malignant tumors, testicular tumors, malignant mammary-gland tumors, and hemolymphoreticular tumors. No tumors were observed in the skin-painting study in mice. Results from these studies are summarized in Table 4-13.
Table 4-13. Summary of oral and dermal carcinogenicity studies of formaldehyde in experimental animals

<table>
<thead>
<tr>
<th>Animals</th>
<th>Route</th>
<th>Exposure</th>
<th>Duration (wk)</th>
<th>Conc. (mg/L)</th>
<th>Gastrointestinal tumor incidence</th>
<th>Results and comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>Wistar rats</td>
<td>oral</td>
<td>32</td>
<td>0</td>
<td>5,000</td>
<td>0/10</td>
<td>8/10</td>
<td>NT</td>
</tr>
<tr>
<td>Wistar rats</td>
<td>oral</td>
<td>104</td>
<td>0</td>
<td>20</td>
<td>0/70</td>
<td>0/70</td>
<td>Rats in the high-concentration groups had extensive damage to the gastric mucosa and an increase in proliferative lesions of the forestomach and glandular stomach.</td>
</tr>
<tr>
<td>Wistar rats</td>
<td>oral</td>
<td>104</td>
<td>0</td>
<td>200</td>
<td>0/20</td>
<td>0/20</td>
<td>No exposure-related tumors. Increased proliferative lesions and ulcers of the forestomach and glandular stomach in high-concentration group. High mortality in high-concentration groups.</td>
</tr>
<tr>
<td>Sprague-Dawley rats</td>
<td>oral</td>
<td>104</td>
<td>0</td>
<td>1,000</td>
<td>0/20</td>
<td>0/20</td>
<td>Two hemolymphoreticular tumors in each exposed group; one in female controls.</td>
</tr>
<tr>
<td>Sprague-Dawley rats (offspring)</td>
<td>in utero and oral</td>
<td>104</td>
<td>0</td>
<td>2,500</td>
<td>0/59</td>
<td>0/49</td>
<td>Three hemolymphoreticular tumors in each control group; four in the male exposed group.</td>
</tr>
<tr>
<td>Sprague-Dawley rats</td>
<td>oral</td>
<td>104</td>
<td>0</td>
<td>5,000</td>
<td>0/100</td>
<td>0/100</td>
<td>Males: increased numbers of tumor-bearing animals (high concentration), testicular tumors (3 highest concentrations), and hemolymphoreticular tumors (4 highest concentrations). Females: increased incidence of mammary-gland tumors (2 highest concentrations and at 100 mg/L) and hemolymphoreticular tumors (2 highest concentrations).</td>
</tr>
<tr>
<td>Oslo hairless mice</td>
<td>dermal</td>
<td>60</td>
<td>1%</td>
<td>16</td>
<td>0/16</td>
<td>0/16</td>
<td>[No water-only control group, small number of animals, less-than-lifetime exposure.]</td>
</tr>
</tbody>
</table>

NT = not tested.

aGiven two weekly applications of 200 µL of test solution.
bOffspring exposed in utero from gestation day 13; postnatal exposure via drinking water.
cTotal number of stomach and intestinal tumors (benign and malignant). See Tables 4-10 and 4-12b.
Co-exposure with other substances

This section reviews studies of various designs that investigated the carcinogenic effects in mice, rats, and hamsters following concurrent or sequential exposure to formaldehyde and other substances. In some cases, the primary purpose was to determine whether formaldehyde exposure enhanced or promoted the carcinogenicity of another substance. In other cases, the primary purpose was to determine whether co-exposure to other substances enhanced the carcinogenicity of formaldehyde.

4.3.1 Mice

One of the objectives of the Horton et al. (1963) study (discussed in Section 4.1.1) was to determine whether exposure to formaldehyde increased susceptibility to the carcinogenic effects of coal tar. A group of 60 C3H mice [sex and age not reported] was exposed to formaldehyde vapor at a concentration of 100 mg/m³ for 1 hour/day, 3 days/week, for 35 weeks and then exposed to a coal-tar aerosol at a concentration of 300 mg/m³ for 2 hours/day, 3 days/week, for up to 36 weeks. Another group of 59 mice was exposed only to coal tar starting after week 35 and continuing for up to 36 weeks. A third group of 60 mice was exposed to formaldehyde at 50 mg/m³ for 1 hour/day, 3 days/week, for 35 weeks and then exposed to formaldehyde at 150 mg/m³ for 1 hour/day, 3 days/week, for an additional 29 weeks. The control group consisted of 30 unexposed mice that were killed at 82 weeks. Incidences of lung tumors in these mice are shown in Table 4-14.

There was no evidence that exposure to formaldehyde increased susceptibility to lung tumors in mice exposed to coal-tar aerosol. No squamous-cell lung tumors were observed in mice exposed to formaldehyde for up to 64 weeks.

Table 4-14. Incidences of squamous-cell lung tumors in C3H mice exposed to formaldehyde and coal tar by inhalation

<table>
<thead>
<tr>
<th>N</th>
<th>Formaldehyde wk 1–35</th>
<th>Coal tar wk 36–71</th>
<th>Formaldehyde wk 36–64</th>
<th>No. examined</th>
<th>Tumor incidence [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>59</td>
<td>0</td>
<td>300</td>
<td>0</td>
<td>33</td>
<td>5 [15]</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>300</td>
<td>0</td>
<td>26</td>
<td>1 [4]</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>0</td>
<td>150</td>
<td>36</td>
<td>0</td>
</tr>
</tbody>
</table>

Iversen (1986) tested the potential promoting effect of formaldehyde on skin carcinogenesis in hairless Oslo mice initiated with dimethylbenz(a)anthracene (DMBA). Solutions were applied to the skin of the back. Two groups of 16 male and 16 female mice [age not reported] were given two weekly applications of 200 µL of an aqueous solution of 1% or 10% formaldehyde for up to 60 weeks (results reported in Section 4.2.2). A third group of 16 male and 16 female mice received an initial topical application of 51.2 µg of DMBA in 100 µL of reagent-grade acetone and, beginning 9 days later, two weekly applications of 200 µL of 10% formaldehyde, for up to 60 weeks. The positive control group of 16 male and 16 female mice received DMBA followed by two weekly applications of 17 nmol 12-O-tetradecanoylphorbol 13-acetate (TPA [vehicle not reported]). An additional group of 176 mice [sex not reported] received a single application of 51.2 µg of DMBA and was observed for 80 weeks. One accidental death of a mouse exposed to DMBA + formaldehyde occurred at week 26. Lesions observed in this group included epidermal hyperplasia in 1 mouse, lung adenomas in 3 mice, and skin tumors in 11 mice (3 squamous-cell carcinomas and 22 papillomas). The authors did not consider the lung adenoma to be exposure-related; they reported an incidence of about 1 in 30 in unexposed mice from unpublished data. The first skin tumors occurred at week 10 in mice given DMBA + formaldehyde. In the positive-control group (DMBA + TPA), survival at 20 weeks was 80%, and the experiment was terminated at week 46 with only 11 of 32 mice still alive. Tumors first appeared in the DMBA + TPA group after 5 weeks, and all mice that survived until week 20 had skin papillomas; however, no carcinoma or sarcoma was observed. Most of the mice in the DMBA-only group survived until the end of the experiment, and 225 skin tumors (primarily papilloma) occurred in 85 mice; the first tumors in this group appeared after 20 weeks.

The authors reported there was no difference in tumor yields between groups given DMBA + formaldehyde and mice given DMBA only. The final tumor yield (the total number of tumors as a function of time) was evaluated according to the method of Gail et al. (1980). The final tumor rate (the percentage of tumor-bearing mice in relation to the number of mice alive at the appearance of the first tumor) was not significantly higher in...
mice given DMBA + formaldehyde than in mice given DMBA only; however, the time to appearance of the first tumor and the mean latency period were significantly reduced ($P = 0.01$, Peto’s test). Tumor incidence and the total number of reported tumors are shown in Table 4-15. The authors concluded that 10% formaldehyde applied twice a week to the skin of Oslo hairless mice following one application of DMBA did not increase the total number of tumors but significantly reduced the mean latency period for tumor formation. This effect was much weaker than that observed with TPA.

Table 4-15. Skin tumor promotion study of formaldehyde in Oslo hairless mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Study length (wk)</th>
<th>N</th>
<th>Time to first tumor (wk)</th>
<th>Tumor incidence [%]a</th>
<th>Total number of tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMBA</td>
<td>80</td>
<td>176</td>
<td>[22]b</td>
<td>85 [48]</td>
<td>219</td>
</tr>
<tr>
<td>DMBA + HCHO</td>
<td>60</td>
<td>32</td>
<td>10</td>
<td>11 [34]</td>
<td>22</td>
</tr>
<tr>
<td>DMBA + TPA</td>
<td>46</td>
<td>32</td>
<td>[8]b</td>
<td>26 [100]c</td>
<td>NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Papilloma</th>
<th>Carcinoma</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMBA</td>
<td>6</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>DMBA + HCHO</td>
<td>3</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>DMBA + TPA</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
</tr>
</tbody>
</table>

DMBA = dimethylbenz(a)anthracene, HCHO = formaldehyde, TPA = 12-O-tetradecanoylphorbol 13-acetate, NR = not reported.

aTumor incidences cannot be compared directly because of the differing study lengths and because they are not adjusted for survival differences.

bEstimated from a figure.

cSix mice died before week 20 and were not included in the analysis.

4.3.2 Rats

Albert et al. (1982) and Sellakumar et al. (1985) investigated the carcinogenicity of a mixture of formaldehyde and hydrogen chloride (HCl) in rats. Previous studies had shown that low levels of bis(chloromethyl)ether (BCME), which is highly carcinogenic in the respiratory tract of rats and is a known human carcinogen, could form from the gas-phase reaction of formaldehyde and hydrogen chloride. In the first study (Albert et al. 1982), 8-week-old male Sprague-Dawley rats were divided into three groups of 50 unexposed colony controls, 50 controls sham-exposed to air, and 99 rats exposed to a mixture of approximately 14 ppm formaldehyde and 10 ppm HCl (the gases were premixed at high concentrations before introduction into the inhalation chamber, to maximize formation of BCME). Exposures were for 6 hours/day, 5 days/week, for life. A complete necropsy was performed on each animal. Formation of BCME was monitored by gas chromatography. BCME levels in the mixing vessel ranged from 8 to 179 ppb
(mean = 75 ppb); however, BCME concentrations in the exposure chamber were less than the detection limit [not identified by study authors] and were estimated to be no greater than 1 ppb, based on a 75-fold dilution factor. The exposed group had substantially lower body-weight gain and higher mortality than the controls. Early deaths in the exposed group and controls were attributed to bronchopneumonia. The exposed group showed high incidences of squamous metaplasia of the nasal cavity and epithelial hyperplasia with and without atypia. Nasal tumors (3 squamous-cell papillomas and 25 squamous-cell carcinomas) were observed in the exposed group but not in the controls (Table 4-16). Incidences of non-respiratory-tract tumors were higher in the control groups (23 of 100) than in the exposed rats (7 of 99). These tumors included lymphoma, pituitary gland and adrenal cortical adenoma, subcutaneous fibrosarcoma, and 1 splenic hemangioma. No statistical analyses were reported by the study authors. However, the IARC (2006) evaluation of this study reported that the incidence of squamous-cell carcinoma was significantly higher in the exposed group than in the controls ($P < 0.001$, Fisher’s exact test).

Sellakumar et al. (1985) conducted a follow-up of the Albert et al. (1982) study to examine the carcinogenic effects of formaldehyde and HCl when administered alone or in combination. Groups of 99 or 100 male Sprague-Dawley rats, 9 weeks of age, were randomly assigned to six treatment groups: (1) colony controls, (2) controls sham-exposed to air, (3) exposed to formaldehyde at a target concentration of 15 ppm and HCl at a target concentration of 10 ppm, premixed before being introduced into the inhalation chamber, (4) exposed to formaldehyde (15 ppm) and HCl (10 ppm) introduced separately into the exposure chamber, (5) exposed to formaldehyde alone (15 ppm), and (6) exposed to HCl alone (10 ppm). Rats were exposed for 6 hours/day, 5 days/week, for life. Formation of BCME by the premixed formaldehyde and HCl was again monitored by gas chromatography. BCME concentrations in the mixing vessel ranged from 3.6 to 33.7 ppb, and the calculated concentrations in the inhalation chamber ranged from 0.1 to 0.4 ppb. Complete necropsies were performed, with particular attention to the respiratory tract. Histologic sections were prepared from the lungs, trachea, larynx, liver, kidneys, testes, and any other organs with gross pathology. After 16 weeks, groups exposed to formaldehyde alone or formaldehyde plus HCl had lower body weights than the controls.
Mortality rates among all the groups were similar up to 32 weeks. After 32 weeks, the group exposed to premixed formaldehyde plus HCl showed a higher mortality rate than the other groups. Nasal tumors occurred only in groups exposed to formaldehyde alone or in combination with HCl (Table 4-16). No tumors developed in the trachea or lungs. The total number of non-respiratory-tract tumors did not differ between the exposed and control groups. The authors reported that the incidence of nasal tumors was significantly higher in the group exposed to premixed formaldehyde plus HCl than in the formaldehyde-only group ($P < 0.025$, χ^2 test). IARC’s (2006) review of this study also reported that the incidence of squamous-cell carcinoma and papilloma combined was significantly higher in the formaldehyde-only group than in the controls ($P < 0.001$, Fisher’s exact test). [In statistical analysis conducted by NTP, the incidences of squamous-cell carcinoma in the groups exposed to formaldehyde only, premixed formaldehyde plus HCl, and non-premixed formaldehyde plus HCl were significantly higher than in the controls ($P < 0.001$, Fisher’s exact test).] The authors noted that the higher incidences in the group exposed to premixed formaldehyde plus HCl could have been due to traces of alkylating agents other than BCME formed by the interaction of formaldehyde and HCl. Nevertheless, the authors concluded that HCl had little to no effect on the carcinogenicity of formaldehyde and that formaldehyde accounted for most, if not all, of the carcinogenic activity of the mixture.
Table 4-16. Proliferative and neoplastic lesions in the nasal cavity of male Sprague-Dawley rats exposed to formaldehyde and hydrogen chloride

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Epithelial hyperplasia</th>
<th>Squamous metaplasia</th>
<th>Squamous-cell papilloma or polyps</th>
<th>Squamous-cell carcinoma</th>
<th>Other<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colony controls</td>
<td>50</td>
<td>8 [16]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>Sham air</td>
<td>50</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Study 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colony controls</td>
<td>99</td>
<td>45 [45]</td>
<td>6 [6]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sham air</td>
<td>99</td>
<td>51 [52]</td>
<td>5 [5]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCl</td>
<td>99</td>
<td>62 [63]</td>
<td>9 [9]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCHO<sup>b</sup></td>
<td>100</td>
<td>57 [57]</td>
<td>60 [60]</td>
<td>10 [10]</td>
<td>38 [38***]</td>
<td>2 [2]</td>
</tr>
<tr>
<td>Premixed HCl + HCHO<sup>c</sup></td>
<td>100</td>
<td>54 [54]</td>
<td>64 [64]</td>
<td>13 [13]</td>
<td>45 [45***]</td>
<td>3 [3]</td>
</tr>
</tbody>
</table>

HCl = hydrogen chloride, HCHO = formaldehyde, NR = not reported.

***P < 0.001 (compared with controls, Fisher’s exact test conducted by IARC 2006 or NTP).

^aIncludes adenocarcinoma, mixed carcinoma, fibrosarcoma, or esthesioneuroepithelioma of the nasal mucosa.

^bIARC reported that the incidence of squamous-cell carcinoma and papilloma combined was significantly higher in this group than in the controls (P < 0.001, Fisher’s exact test).

^cThe study authors reported a significantly higher incidence of nasal cancer in this group than in the formaldehyde-only group (P < 0.025, χ² test).

Homma et al. (1986) investigated whether repeated intravesical instillation of formalin would promote urinary-bladder carcinogenesis in male F344 rats. Heterotopically transplanted bladders were used, because transient generalized hyperplasia can be readily and repeatedly induced by intravesical instillation of formalin without the risk of infection or calculus formation, which are unavoidable when homotopic bladders are used. The rats were randomly divided into four groups of 35 animals each. Four weeks after bladder transplant, three groups received 0.25 mg of N-methyl-N-nitrosourea (MNU) in 0.9% saline to initiate bladder carcinogenesis. At week 5, group 1 was given an intravesical instillation of 0.5 mL of 0.3% formalin, followed by instillation of 0.5 mL of normal rat urine 24 hours later and 0.5 mL of 2.1% sodium chloride (NaCl) solution 1 week after the urine instillation. Group 2 was treated similarly to group 1 except that the order of the urine and salt solution instillation was reversed. Group 3 received 0.9% NaCl solution at week 5 instead of formalin, then 2.1% NaCl 24 hours later and rat urine...
1 week later. Group 4 was treated the same as group 1 but without MNU initiation. The alternating instillation schedule was repeated every 2 weeks for 15 cycles in each group, and the experiment was terminated at week 34. The heterotopically transplanted bladders were inflated with Bouin’s solution, fixed overnight, and examined for gross tumors. In addition, longitudinal strips were examined microscopically. Repeated formalin exposure did not enhance bladder carcinogenesis.

Takahashi et al. (1986) tested formaldehyde and other compounds for tumor-promoting activity in a two-stage stomach carcinogenicity study. Stomach tumors were initiated by giving two groups of 7-week-old male Wistar rats N-methyl-N\prime-nitro-N-nitrosoguanidine (MNNG) in drinking water at a concentration of 100 mg/L and a diet supplemented with 10% sodium chloride for 8 weeks. Thereafter, one group of 30 rats received no further treatment (i.e., no exposure to a promoter), and one group of 20 rats received 0.5% formalin in drinking water from week 8 to 40. Two additional groups of 10 rats received no MNNG; one of these groups was exposed only to formaldehyde from week 8 to 40, and a control group received no treatment. All animals that survived beyond week 30 were included in the analysis; 3 rats in the MNNG plus formaldehyde group died early and were not included in the analysis. For the first 8 weeks, the two groups that received MNNG showed lower body-weight gain than the groups that did not receive MNNG; however, their weight gain increased after week 8. Throughout the study, growth retardation was most marked in the group that received MNNG plus formaldehyde. Formaldehyde showed possible tumor-promoting effects in the pylorus of the glandular stomach, and the incidence of squamous-cell papilloma of the forestomach was significantly increased in groups exposed to formaldehyde with or without initiation. In addition, the incidence of adenomatous hyperplasia of the fundus was significantly higher in the MNNG plus formaldehyde group than in the MNNG-only group (88.2% vs. 0). Results are summarized in Table 4-17.
Table 4-17. Effects of formaldehyde on gastric carcinogenesis in male Wistar rats initiated with MNNG

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Forestomach papilloma (%)</th>
<th>Glandular stomach adenocarcinomas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fundus</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MNNG only</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MNNG + HCHO</td>
<td>17</td>
<td>15 (88.2)**</td>
<td>0</td>
</tr>
<tr>
<td>HCHO only</td>
<td>10</td>
<td>8 (80)**</td>
<td>0</td>
</tr>
</tbody>
</table>

HCHO = formaldehyde, MNNG = N-methyl-N'-nitro-N-nitrosoguanidine.

*P < 0.05; ** P < 0.01 (compared with MNNG group, Fisher’s exact test).

[a] *P = 0.051, Fisher’s exact test conducted by NTP.

Holmstrom et al. (1989a) investigated the cocarcinogenic effects of formaldehyde (average concentration of 12.4 to 12.7 ppm) and wood dust. Concurrent exposure to formaldehyde and wood dust is common, particularly in the furniture industry. Groups of 16 female Sprague-Dawley rats, 11 weeks of age, were exposed to formaldehyde alone (results reported in Section 4.1.2), wood dust alone (25 mg/m³), or formaldehyde plus wood dust for 104 weeks. No nasal or lung tumors occurred in the wood-dust or formaldehyde plus wood-dust exposure groups. One squamous-cell carcinoma of the nasal mucosa occurred in the group exposed to formaldehyde only. Squamous-cell metaplasia with dysplasia was most common in the group exposed to both formaldehyde and wood dust. Pulmonary emphysema was most common in the group exposed only to wood dust. The authors considered that the most important finding of this study was the additive deleterious effect of combined exposure to formaldehyde and wood dust. The IARC (2006) evaluation of this paper noted that a small number of animals was used in this study.

IARC (2006) also reviewed a study published in Russian (Yanysheva et al. 1998) that investigated the promoting effects formaldehyde administered by inhalation at low concentrations. Groups of 50 white non-inbred female rats [age and strain not reported], including a control group, were exposed to formaldehyde at a concentration of 0.003, 0.03, or 0.3 mg/m³ [0.002, 0.02, and 0.24 ppm] either alone or in combination with and benzo[a]pyrene. Benzo[a]pyrene was administered by intratracheal injection once every 2 weeks for 20 weeks (for a total dose of 0.02, 1, or 5 mg). Formaldehyde was
administered by inhalation for 7 hours/day, 5 days/week, for 1 year. Animals were held until natural death. Tumors were observed in all groups. Two rats in the control group developed reticulosarcoma of the lung, and two others developed fibroadenoma of the mammary gland. Similar incidences of these tumors were observed in the three formaldehyde-only exposure groups. In rats given only benzo[a]pyrene, the total incidence of tumors ranged from 13% to 28%, and incidence of lung tumors ranged from 9% to 19%. A dose-dependent tumor response was observed in groups exposed to both benzo[a]pyrene and formaldehyde. The most significant effect was an increase in lung tumors (43%) and total tumors (69%) in the group exposed to the highest levels of benzo[a]pyrene and formaldehyde. Tumors also developed earlier in this group and had greater multiplicity than in the other groups. The authors concluded that combined exposure to benzo[a]pyrene and formaldehyde enhanced the tumor response in rats.

4.3.3 Hamsters

Although inhalation exposure to formaldehyde alone did not induce respiratory-tract tumors in male Syrian golden hamsters (see Section 4.1.3), there was evidence that it could be a cofactor in the induction of respiratory-tract tumors by DEN (Dalbey 1982). A group of 50 male hamsters [age not reported] was exposed to formaldehyde at a concentration of 30 ppm for 5 hours/day, 1 day/week, for life (also reported in Section 4.1.3). Two additional groups of hamsters were exposed to formaldehyde at 30 ppm; one of these groups also received weekly injections of 0.5 mg of DEN 48 hours after the weekly formaldehyde exposure for the first 10 weeks, and the other group received 10 weekly DEN injections before beginning formaldehyde exposure. An unexposed control group consisted of 50 hamsters, and a DEN-only control group consisted of 100 hamsters. The lungs, trachea, larynx, nasal turbinates, and lower jaw were examined for tumors. Tumor incidence data were analyzed with a χ^2 test [the statistical method used to analyze tumor multiplicity was not identified]. Mortality was not affected by exposure to formaldehyde but was significantly increased in the DEN-only group and both DEN plus formaldehyde groups. Because of mortality due to an exposure accident at 48 weeks, the sizes of the DEN plus formaldehyde groups were reduced to 27 and 23. No tumors occurred in the unexposed controls or in the formaldehyde-only group. The tumor incidence (primarily tracheal tumors) was 77% in the DEN-exposed group and was not
significantly higher than this in the DEN plus formaldehyde groups (the incidences were not reported). However, tumor multiplicity (tumors per tumor-bearing animal) was significantly higher in the group that received DEN plus formaldehyde simultaneously than in the DEN-only group (Table 4-18). All tumors were adenomas. Nasal tumor incidence was only 2% in the DEN-only group and the group exposed to DEN plus formaldehyde sequentially, but no nasal tumors occurred in the other three groups.

Table 4-18. Effects of formaldehyde on induction of respiratory-tract tumors by DEN in male Syrian hamsters

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Tumor incidence (%)</th>
<th>[Tumors/tumor-bearing animal]a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed control</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCHO only</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEN only</td>
<td>100</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td>HCHO + DEN, then HCHO</td>
<td>27</td>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>DEN, then HCHO</td>
<td>23</td>
<td>NR</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Dalbey 1982.
DEN = diethylnitrosamine, HCHO = formaldehyde, NR = not reported; however, the authors stated that the incidence was not significantly different from that of the DEN-exposed group.
*P < 0.05 (compared with the DEN-only group, statistical test not identified).
Values were estimated from Figure 3 in Dalbey 1982.

4.3.4 Summary of promotion and cocarcinogenicity studies
Several studies investigated the promoting or cocarcinogenic effects of formaldehyde. Formaldehyde did not enhance lung carcinogenesis in mice exposed to coal tar but did reduce the latency period for skin tumors in mice initiated with DMBA. Studies in rats indicated that formaldehyde exhibited possible tumor-promoting effects in stomach and lung but not in the urinary bladder. In another study, hydrogen chloride had little or no effect on the carcinogenicity of formaldehyde. One study in hamsters indicated possible tumor-promoting effects in the respiratory tract. Results from all co-exposure studies of formaldehyde and other substances are summarized in Table 4-19.
Table 4-19. Co-exposure carcinogenicity studies of formaldehyde and other substances in experimental animals

<table>
<thead>
<tr>
<th>Species and strain (sex)a</th>
<th>Route</th>
<th>Exposure (concentration)</th>
<th>Duration (wk)</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3H mice</td>
<td>inhalation</td>
<td>HCHO (100 mg/m³) + coal tar (300 mg/m³)</td>
<td>35 + 33</td>
<td>Did not enhance induction of lung tumors</td>
<td>Horton et al. 1963</td>
</tr>
<tr>
<td>Oslo mice</td>
<td>skin</td>
<td>DMBA (51.2 μg) + HCHO (10%)</td>
<td>1b + 60</td>
<td>Tumor latency was decreased; no effect on tumor incidence</td>
<td>Iversen 1986</td>
</tr>
<tr>
<td>Sprague-Dawley rats (male)</td>
<td>inhalation</td>
<td>HCHO (14 ppm) + HCl (10 ppm)</td>
<td>lifee</td>
<td>Increased nasal tumor incidence, compared with colony controls</td>
<td>Albert et al. 1982</td>
</tr>
<tr>
<td>Sprague-Dawley rats (male)</td>
<td>inhalation</td>
<td>HCHO (15 ppm) + HCl (10 ppm)</td>
<td>lifee</td>
<td>HCl had little effect on induction of nasal tumors by formaldehyde</td>
<td>Sellakumar et al. 1985</td>
</tr>
<tr>
<td>F344 rats (male)</td>
<td>intravesical</td>
<td>MNU (0.25 mg) + HCHO (3,000 ppm)</td>
<td>1b + 34</td>
<td>Did not promote urinary bladder carcinogenesis</td>
<td>Homma et al. 1986</td>
</tr>
<tr>
<td>Wistar rats (male)</td>
<td>drinking water</td>
<td>MNNG (100 ppm) + HCHO (5,000 ppm)</td>
<td>8 + 32</td>
<td>Possible weak promotion effect for adenocarcinoma in the glandular stomach</td>
<td>Takahashi et al. 1986</td>
</tr>
<tr>
<td>Sprague-Dawley rats (female)</td>
<td>inhalation</td>
<td>HCHO (12.7 ppm) + wood dust (25 mg/m³)</td>
<td>104</td>
<td>One squamous-cell carcinoma in formaldehyde-only group; squamous-cell metaplasia with dysplasia increased in combined exposure group</td>
<td>Holmström et al. 1989a</td>
</tr>
<tr>
<td>White non-inbred rats (female)</td>
<td>inhalation</td>
<td>HCHO (0.3 mg/m³) + B[a]P (5 mg)</td>
<td>52d</td>
<td>Combined exposure enhanced induction of lung and total tumors</td>
<td>Yanysheva et al. 1998 (cited in IARC 2006)</td>
</tr>
<tr>
<td>Syrian golden hamsters (female)</td>
<td>inhalation</td>
<td>DEN (0.5 mg) + HCHO (30 ppm)</td>
<td>10 + lifee</td>
<td>Tumor multiplicity was increased</td>
<td>Dalbey 1982</td>
</tr>
</tbody>
</table>

BaP = benzo[a]pyrene, DEN = diethylnitrosamine, DMBA = dimethylbenz(a)anthracene, HCHO = formaldehyde, HCl = hydrogen chloride, MNNG = N-methyl- N'-nitro-N-nitrosoguanidine, MNU = N-methyl-N-nitrosourea.

aWhen only one sex was used.
bSingle application of the initiator.
cExposed to a mixture of formaldehyde and hydrogen chloride.
dExposed for one year and observed until death.
eDEN given in 10 weekly injections either before or concurrently with formaldehyde exposure.
4.4 Summary

Formaldehyde has been tested for carcinogenicity in mice, rats, and hamsters (Table 4-20). Studies reviewed include chronic and subchronic inhalation studies in mice, rats, and hamsters; chronic and subchronic drinking-water studies in rats; and one chronic skin-application study in mice. No chronic studies in primates were found, but one subchronic inhalation study and one acute/subacute inhalation study in monkeys were reviewed.

Formaldehyde exposure resulted in nasal tumors (primarily squamous-cell carcinoma) in rats when administered chronically by inhalation (Kerns et al. 1983, Appelman et al. 1988, Woutersen et al. 1989, Sellakumar et al. 1985, Monticello et al. 1996, Kamala et al. 1997). Only two inhalation studies in mice or hamsters were found. No tumors were reported in C3H mice exposed to formaldehyde at 200 mg/m³ for 1 hour/day, 3 days/week, for 35 weeks (Horton et al. 1963), but squamous-cell carcinoma of the nasal cavity occurred in 2 of 120 B6C3F₁ male mice exposed at 14 ppm for 6 hours/day, 5 days/week, for 104 weeks (Kerns et al. 1983). The authors concluded that the tumors were exposure-related, although the increase was not statistically significant. No tumors were reported in Syrian golden hamsters exposed at 10 ppm for life (Dalbey 1982) or 2.95 ppm for 26 weeks (Rusch et al. 1983). No tumors occurred in monkeys exposed at 2.95 ppm for 26 weeks (Rusch et al. 1983) or 6 ppm for 6 weeks (Monticello et al. 1989); however, squamous metaplasia and hyperplasia in the nasal passages and respiratory epithelia of the trachea and major bronchi occurred.

Male rats administered formaldehyde in drinking water at 5,000 ppm for 32 weeks developed forestomach tumors (squamous-cell papillomas) in one study (Takahashi et al. 1986); however, in two other drinking-water studies, no tumors were reported in either male or female rats administered formaldehyde at concentrations ranging from 20 to 5,000 ppm for two years (Til et al. 1989, Tobe et al. 1989). In another study, male and female breeder rats administered formaldehyde at 2,500 ppm in drinking water had slightly increased incidences of hemolymphoreticular neoplasms (Soffritti et al. 1989). Offspring of these breeder rats exposed transplacentally beginning on gestation day 13 and postnatally via drinking water for life showed increased incidences of benign and
malignant tumors of the gastrointestinal tract, particularly intestinal leiomyosarcoma. Male rats administered formaldehyde at concentrations up to 1,500 ppm showed increased incidences (compared with control groups given tap water or tap water containing 15 mg/L methanol) of the number of animals bearing malignant tumors, hemolymphoreticular neoplasms (leukemia and lymphoma combined), and testicular tumors (interstitial-cell adenoma) (Soffritti et al. 2002a). Female rats showed higher incidences of mammary-gland adenocarcinoma and hemolymphoreticular neoplasms than the tap-water control group; however, the incidences were not significantly higher than in the tap-water-plus-methanol control group. In addition, some rare stomach and intestinal tumors occurred in a few male and female rats in the exposed groups but not in the control groups.

Other studies examined the promoting effects of formaldehyde when administered after initiation with DBMA, DEN, MNU, or MNNG or cocarcinogenic effects when administered with coal tar, benzo[a]pyrene, wood dust, and hydrogen chloride. Some of these studies did not show an enhanced tumor response. However, a few studies, including a skin-painting study in mice (Iverson et al. 1986), a drinking-water study in rats (Takahashi et al. 1986), and inhalation studies in rats (Albert et al. 1982, Holmstrom et al. 1989a) and hamsters (Dalbey et al. 1986), indicated that formaldehyde could act as a tumor promoter or act as a cocarcinogen when administered with other substances.
Table 4-20. Summary of neoplasms associated with formaldehyde exposure in experimental animals

<table>
<thead>
<tr>
<th>Organ or system</th>
<th>Tumor type</th>
<th>B6C3F<sub>1</sub> Mouse</th>
<th>F344 Rat</th>
<th>Wistar Rat</th>
<th>Sprague-Dawley Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Inhalation studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal epithelium</td>
<td>squamous-cell carcinoma</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>papilloma or polyps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>polypoid adenoma</td>
<td>+<sup>1</sup></td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>carcinoma in situ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rhabdomyosarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>combined tumor types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>forestomach papilloma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adenoma, papilloma, acanthoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>leiomyosarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>leiomyoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemolymphoreticular</td>
<td>leukemia and lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammary-gland</td>
<td>total malignant (primarily adenocarcinoma)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testicular</td>
<td>interstitial-cell adenoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁺ = Statistically significant increase in tumor incidence reported.
¹⁺ = Statistically significant dose-related trend.
× = Statistical results were not reported or were not significant, but study authors reported the effect to be exposure-related.
^aIncidence of formaldehyde-related tumors (squamous-cell carcinoma, carcinoma in situ, and polypoid adenoma) (incidence = 4.5%; 6 tumors/132 rats) reported as significant ($P = 0.01$, Fisher’s exact test) by IARC 2006.
^bSignificant when combined with female rats.
^cTransplacental exposure beginning on gestation day 13 and postnatal exposure via drinking water for life.
^dNot significant when compared with the control group given methanol at 15 mg/L in tap water.
5 Other Relevant Data

Other data that are relevant for evaluating the carcinogenicity of formaldehyde are reviewed in this section. This includes absorption, distribution, metabolism and excretion, general toxic effects, carcinogenicity data for metabolites and analogues, genetic and related effects, and potential mechanisms of action.

5.1 Absorption, distribution, and excretion

As discussed in Section 2, formaldehyde exposure occurs from both endogenous and exogenous sources. Formaldehyde is an essential metabolic intermediate used in the biosynthesis of purines, thymidine, and some amino acids. Metabolically it is produced from serine, glycine, methionine, and choline, and from the demethylation of N-, O-, and S-methyl compounds (IARC 2006). The endogenous concentrations of formaldehyde in human blood are about 2 to 3 μg/g of blood and are similar to concentrations measured in the blood of monkeys and rats (Casanova et al. 1988, Heck et al. 1985).

Formaldehyde is rapidly hydrated when dissolved in water and forms methylene glycol (Fox et al. 1985). The equilibrium lies far in favor of methylene glycol. In tissues, formaldehyde in solution reacts readily with macromolecules (e.g., proteins, glycoproteins, nucleic acids, and polysaccharides) resulting in more formaldehyde forming from dissociation of methylene glycol. The equilibrium between formaldehyde and methylene glycol helps explain why formaldehyde penetrates rapidly (as methylene glycol) and fixes slowly (as carbonyl formaldehyde).

The metabolic pathways for formaldehyde are the same in all tissues of the body.

Formaldehyde is rapidly metabolized to formic acid (formate $+$ H$^+$) (see Section 5.3) at the site of contact and by erythrocytes in the blood, or is incorporated into serum proteins and other macromolecules via the one-carbon metabolic pool. The reported half-life of formaldehyde in the plasma of rats and monkeys is about 1 to 1.5 minutes (IARC 2006, McMartin et al. 1979). Burkhart (1990) reported an apparent plasma half-life of formate
and formaldehyde of 3.1 hours and 3.3 hours, respectively, in a 58-year-old man that
committed suicide by ingesting 4 ounces of formaldehyde.

5.1.1 In vitro studies
Loden et al. (1986b) investigated the skin permeability of formaldehyde and other
chemicals using excised human skin in a flow-through diffusion cell. 14C-Formaldehyde
was diluted in either concentrated formalin (37% formaldehyde in water containing 10%
to 15% methanol) or a 10% v/v solution of formalin in 0.1 M phosphate buffer and
applied to full thickness skin mounted in Teflon® flow-through diffusion cells.
Phosphate-buffered saline (pH 7.4) was used as the receptor medium. The rates of
resorption (i.e., the uptake by the receptor fluid beneath the skin) of formaldehyde in
concentrated formalin and 10% formalin were 319 μg/cm2 per hour and 16.7 μg/cm2 per
hour, respectively. The total amount absorbed (i.e., the amount in the skin and the
receptor medium) at steady state was 6.02 mg/cm2 (concentrated formalin) and 0.48
mg/cm2 (10% formalin). The effect of methanol on the uptake of formaldehyde was not
determined. Up to approximately half the radioactivity absorbed was retained in the skin.

5.1.2 In vivo studies
Formaldehyde is rapidly and almost completely absorbed from the respiratory and
gastrointestinal tracts but is poorly absorbed from the skin (ATSDR 1999, IARC 1995,
2006). In addition, Myers et al. (1997) reported rapid absorption of formalin following
rectal instillation in dogs. In rats, almost all inhaled formaldehyde is absorbed in the nasal
passages, while in primates, although almost all is absorbed in the nasal passages, some
absorption occurs in the trachea and proximal regions of the major bronchi (Casanova et
which is highly variable among species, and breathing patterns are the primary factors
associated with the efficiency and specific location of formaldehyde absorption.

5.1.2.1 Inhalation exposure
Formaldehyde concentrations and air flow patterns in the nasal passages of rodents,
monkeys, and humans have been correlated with the location of nasal lesions and levels
of DNA-protein crosslinks (IARC 2006). One important physiological difference is that
rats are obligate nose breathers while monkeys and humans are oronasal breathers. Thus,
during oronasal breathing, a significant amount of the inhaled formaldehyde would bypass the nose and deposit directly into the lower respiratory tract of humans. Overton et al. (2001) conducted dosimetry modeling of inhaled formaldehyde in the respiratory tract of humans at four activity levels. The respiratory tract was divided into segments or generations beginning at nose and mouth and ending at the alveolar sacs. These authors predicted that for each activity state, the respiratory tract would retain over 95% of inhaled formaldehyde and that the rate of mass flow across a unit area of the respiratory tract (i.e., flux) in the first few tracheobronchial model generations would be more than 1,000 times higher than in the first pulmonary region, with no flux to the alveolar region. Egle (1972) reported similar findings in dogs exposed to formaldehyde at concentrations of 0.15 to 0.35 μg/mL [122 to 285 ppm]. Uptake of formaldehyde by the upper respiratory tract was near 100% regardless of the concentration.

Heck et al. (1982) exposed male F344 rats to 6 ppm formaldehyde for 6 hours/day for 10 days. The rats were killed within 10 minutes of exposure termination. Formaldehyde concentrations in the nasal mucosa of exposed rats (0.39 ± 0.12 μmol/g) were not significantly different from controls (0.42 ± 0.09 μmol/g).

Heck et al. (1983) conducted several experiments in groups of four male F344 rats to investigate the distribution, elimination, and pharmacokinetics of 14C-formaldehyde following inhalation exposure (head only). [There were no unexposed control groups in this study.] Total radioactivity in the nasal mucosa, trachea, and plasma were measured immediately after a 6-hour exposure to 5, 10, 15, or 24 ppm 14C-formaldehyde. Concentrations were highest in the nasal mucosa and ranged from about 0.5 to 2.3 μmole equivalents/g tissue and were related to dose. Concentrations in the trachea (about 0.3 μmole equivalents/g) and plasma (about 0.1 μmole equivalents/g) were not affected by dose, which indicates that absorption occurs primarily in the upper respiratory tract. The ratio of levels of 14C (total radioactivity) in internal organs to that in plasma ranged from 0.31 in the testes to 4.94 in the esophagus and was not affected by dose. The higher concentrations in the esophagus were thought to reflect mucociliary clearance from the upper respiratory tract. Values for other organs declined in the order of kidney, liver, intestine, lung, spleen, heart, and brain. Another experiment examined the effects of pre-
exposure to formaldehyde on tissue concentrations. One group was pre-exposed to 15 ppm formaldehyde 6 hours/day for 9 day while the other group was not pre-exposed to formaldehyde (naïve animals). On the tenth day, both groups were exposed (head-only) to 14C-formaldehyde at 14.9 ppm for 6 hours. There were no differences in tissue concentrations between these groups, thus, pre-exposure to formaldehyde did not influence either the absorption or distribution to plasma.

Other groups of male F344 rats were exposed to 0.63 or 13.1 ppm 14C-formaldehyde for 6 hours (Heck et al. 1983). Following exposure, the rats were placed in metabolism cages for 70 hours and then sacrificed. Radioactivity in urine, feces, expired air, and the carcass was measured. The dose did not affect the proportion recovered from the various elimination pathways (Table 5-1). Exhalation accounted for about 40% of the total dose. The authors noted that exhalation of 14CO$_2$ was biphasic, with a rapid decline over the first 12 hours followed by a more gradual decline. About 17.5% was eliminated in the urine and 4% to 5% was eliminated in the feces. The amount of radioactivity remaining in the carcass was 38.9% (low dose) and 35.2% (high dose). The authors noted that since formaldehyde is a precursor for many biological compounds, the high levels of radioactivity remaining in the carcass were probably due to metabolic incorporation.

Table 5-1. Disposition of inhaled 14C-formaldehyde in male F344 rats (% radioactivity ± SD)

<table>
<thead>
<tr>
<th>Source of Radioactivity</th>
<th>Exposure concentration (ppm)</th>
<th>0.63</th>
<th>13.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>39.4 ± 1.5</td>
<td>41.9 ± 0.8</td>
</tr>
<tr>
<td>Expired air</td>
<td></td>
<td>17.6 ± 1.2</td>
<td>17.3 ± 0.6</td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td>4.2 ± 1.5</td>
<td>5.3 ± 1.3</td>
</tr>
<tr>
<td>Feces</td>
<td></td>
<td>38.9 ± 1.2</td>
<td>35.2 ± 0.5</td>
</tr>
<tr>
<td>Tissues and carcass</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heck et al. (1983) also investigated the uptake and disappearance of radioactivity from the blood of male F344 rats following exposure to formaldehyde by inhalation (6 hours, head only) or a single i.v. injection of formaldehyde or formate. Blood samples were collected during and after exposure through a cannula implanted in the jugular vein. The concentrations of radioactivity in plasma increased during the exposure period, peaked at approximately the time of removal from the exposure chamber, and then gradually
declined over a period of several days. The terminal half-life of radioactivity in plasma was approximately 55 hours; however, the authors stated that the radioactivity most likely indicated incorporation into serum proteins because the half-life of these proteins is about 2.9 days in the rat and the half-life for free formaldehyde in rat plasma is approximately 1 minute (Rietbrock 1965, as cited in IARC 2006). Radioactivity in the packed cell fraction of the blood showed a multiphasic profile that increased during exposure but rapidly declined within the first post-exposure hour. This was followed by an increase that peaked at about 35 hours post-exposure. The terminal phase showed a slow decline that was consistent with incorporation into the erythrocytes. The kinetic profiles following i.v. injection of formaldehyde or formate were similar and exhibited the same characteristics as described above following inhalation exposure. There was a rapid decline in radioactivity in both the plasma and the packed-cell fraction following i.v. administration of formaldehyde or formate. Plasma concentrations then gradually declined. Concentrations in the packed-cell fraction increased after the initial decline, peaked after about 35 h, and then slowly declined just as was observed following inhalation exposure.

Chang et al. (1983) investigated nasal cavity deposition and toxicity of formaldehyde in male F344 rats and B6C3F1 mice. Groups of naïve and pretreated rats and mice (whole body exposure to 6- or 15-ppm formaldehyde, 6 hours/day for 4 days or 5 days were exposed (head only) to 14C-formaldehyde at 15 ppm for 6 hours. The amounts of radioactivity deposited in the nasal cavity of pretreated and naïve male F344 rats were similar, while naïve male B6C3F1 mice had more radioactivity in the nasal cavity than pretreated mice. In both rats and mice, pretreated animals had less visceral radioactivity than naïve animals. This was attributed to decreased grooming and impaired mucociliary clearance in pretreated animals.

The concentrations of formaldehyde in the blood of rats, monkeys, and humans did not increase after inhalation exposure to formaldehyde. Heck et al. (1985) investigated the effect of formaldehyde exposure on the concentrations in blood of rats and humans. Eight male F344 rats were exposed by inhalation to 14 ppm formaldehyde for 2 hours, and blood samples were collected immediately after exposure. The mean concentration of
formaldehyde in the exposed group was $2.25 \pm 0.07 \, \mu g/g$ of blood compared to $2.24 \pm 0.07 \, \mu g/g$ in eight unexposed rats. Formaldehyde concentrations in human blood were measured in six volunteers before and after exposure to 1.9 ppm for 40 minutes. Mean formaldehyde concentrations before exposure were $2.61 \pm 0.14 \, \mu g/g$ compared with $2.77 \pm 0.28 \, \mu g/g$ after exposure and were not significantly different. However, there was considerable interindividual variation with both increases and decreases observed after exposure (Table 5-2).

Table 5-2. Concentrations of formaldehyde in human blood before and after exposure to 1.9 ppm for 40 minutes

<table>
<thead>
<tr>
<th>Subject (gender)</th>
<th>Concentration (μg/g of blood)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before exposure</td>
</tr>
<tr>
<td>1 (female)</td>
<td>3.09 ± 0.41</td>
</tr>
<tr>
<td>2 (female)</td>
<td>2.56 ± 0.10</td>
</tr>
<tr>
<td>3 (male)</td>
<td>2.66 ± 0.17</td>
</tr>
<tr>
<td>4 (male)</td>
<td>2.61 ± 0.34</td>
</tr>
<tr>
<td>5 (male)</td>
<td>2.05 ± 0.16</td>
</tr>
<tr>
<td>6 (male)</td>
<td>2.73 ± 0.14</td>
</tr>
<tr>
<td>Mean</td>
<td>2.61 ± 0.14</td>
</tr>
</tbody>
</table>

Source: Heck et al. 1985

Formaldehyde concentrations in the blood of three rhesus monkeys were measured immediately after exposure to 6 ppm for 6 hours/day, 5 days/week, for 4 weeks and compared to unexposed controls (Casanova et al. 1988). The average concentration of formaldehyde in the exposed group was $1.84 \pm 0.15 \, \mu g/g$ of blood and did not change significantly over the next 45 hours without further exposure ($2.04 \pm 0.40 \, \mu g/g$). The average concentration in the blood of unexposed controls was $2.42 \pm 0.09 \, \mu g/g$, which indicates that subchronic exposure to formaldehyde did not have a significant effect on formaldehyde concentrations in the blood of monkeys. McMartin et al. (1979) slowly infused a dose of 1 mmol/kg 14C-formaldehyde into the femoral vein of two Cynomolgus monkeys over a 3- to 4-minute period and collected blood samples from the femoral artery on the same side. The specific activity of the solution was 1,500 dpm/μmol for one monkey and 115,000 dpm/μmol for the other. Formaldehyde was detected for about 5 minutes after infusion with the lower specific activity solution, but was detected for up to
60 minutes when the higher specific activity solution was used. In both cases, the elimination half-life from the blood was about 1.5 minutes.

5.1.2.2 Oral exposure

Feeding studies in rats, mice, rabbits, and livestock (described below) show that formaldehyde is readily absorbed from the gastrointestinal tract (Barry and Tomé 1991, Buckley et al. 1988, Galli et al. 1983, Nishi et al. 1988); however, no studies specifically reporting absorption and distribution of radiolabeled formaldehyde were identified. In addition, several cases of formaldehyde poisoning by ingestion in humans have been described (ATSDR 1999). These studies show that formic acid rapidly accumulates in the blood following formaldehyde ingestion.

Galli et al. (1983) fed grana cheese that contained 14C-formaldehyde to groups of male Sprague Dawley rats and male Swiss albino mice. Commercial grana cheese is normally made with milk that has formaldehyde added as a bacteriostatic agent. In this experiment, unlabeled and 14C-labeled formaldehyde were added to the milk to obtain a final concentration of 35 to 40 ppm, and grana cheese was made following the usual process. Animals were placed individually in metabolism cages and fed 2.2 g (rats) or 0.5 g (mice) of radiolabeled cheese. Controls were fed unlabeled cheese. Rats were killed at 4, 8, 16, 32, or 64 hours, and mice were killed after 2, 4, 8, 16, 32, 64, and 96 hours, and 8 and 12 days after the end of treatment. The decay of radioactivity was measured in the plasma, liver, gastrointestinal tract, kidneys, spleen, testes, brain, muscle, adipose tissues, urine and feces. The toxicokinetic profile was similar in rats and mice. The half-lives of the elimination phase were 27.8 hours in mice and 26.4 hours in rats. Excretion of radioactivity was essentially complete after 32 hours in both species with about 64% to 67% eliminated in the urine and feces and 24% to 28% eliminated as expired CO$_2$. In rats, maximum radioactivity in the tissues occurred at 16 hours while maximum activity in the blood reached about 0.08% of the dose after 8 hours. In mice, peak concentrations in the tissues occurred at 4 hours. The highest concentration measured in the blood was about 0.03% of the dose and occurred after 2 hours. However, the authors noted that 14C-activity did not accumulate in the tissues of rats or mice, and that the low levels of
radioactivity still present 32 hours after administration were likely due to residues of
labeled fractions in milk proteins that had not been completely metabolized.

Buckley et al. (1988) measured the levels of formaldehyde in milk and blood of Holstein
dairy cows fed diets that included formalin-preserved whey. The experiment was divided
into three trials lasting 35 days each with a 2-week interval between trials. Six cows were
fed untreated whey, and six cows were fed whey treated with 0.05% (0.0185% formaldehyde) (trial 1), 0.1% (0.037% formaldehyde) (trial 2), or 0.15% (0.0555% formaldehyde) (trial 3) formalin. Morning milk samples were collected 3 days prior to
beginning each trial, on days 2 through 6, 13, 27, and 34 of each trial, and 46 hours after
the end of trial 3. Blood samples were collected 3 days prior to the beginning of trial 3,
and on days 9, and 33 of that trial. Levels of formaldehyde in milk samples from the
control group were below the detection limit of 0.026 mg/kg. Formaldehyde was detected
in milk samples collected in the treatment groups at average concentrations of 0.034,
0.095, and 0.208 mg/kg in the three trials; however, levels were below the detection limit
prior to beginning each trial and at 46 hours after the end of trial 3. During the first trial,
formaldehyde was detected in milk samples from only 3 of the 6 cows. Formaldehyde
concentrations did not increase over time and there was no significant effect due to day of
milk collection during any of the trials. Concentrations in blood were significantly higher
(P < 0.01) in the treatment group at day 33 of trial 3 compared with the control group. In
another experiment, bull calves were fed diets containing 0, 0.05%, or 0.1% formalin and
sacrificed at days 81, 88, and 95. Formaldehyde concentrations were measured in blood,
muscle, kidney, liver, and heart tissue. Formaldehyde concentrations were higher in the
muscle tissue of the high-dose group but did not differ among treatment groups in the
other tissues. About 0.0038% to 0.0067% of ingested formaldehyde was eliminated in the
milk. Barry and Tome (1991) also reported a dose-related increase in formaldehyde
concentrations in milk from goats fed 0, 0.63, or 1.26 g of formaldehyde daily in soybean
oil-meal. Approximately 0.02% of the ingested formaldehyde was excreted in the milk.

Nishi et al. (1988) published a case report of a 52-year-old man that had committed
suicide by ingesting formalin. There was an obvious odor of formaldehyde in the stomach
and air passages. Formaldehyde and formic acid were detected in the serum, brain, heart,
lungs, liver, spleen, pancreas, kidneys, and gastric contents (Table 5-3). Formic acid is
the primary metabolite of formaldehyde (see Section 5.3). The urine also contained
formic acid. These authors also conducted a study in two male rabbits that were
administered an oral dose of 15 mL/kg of formalin. These animals died after 12 minutes.
Formaldehyde, methyl alcohol, and formic acid were detected in serum, brain, heart,
lungs, liver, spleen, and kidneys (Table 5-3).

Table 5-3. Formaldehyde and formic acid concentrations detected in body fluids
and tissues following formaldehyde ingestion

<table>
<thead>
<tr>
<th>Tissue/body fluid</th>
<th>Concentration (μmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human(^a)</td>
</tr>
<tr>
<td></td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>Brain</td>
<td>1.5</td>
</tr>
<tr>
<td>Heart</td>
<td>1.63</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.77</td>
</tr>
<tr>
<td>Spleen</td>
<td>6.89</td>
</tr>
<tr>
<td>Pancreas</td>
<td>11.09</td>
</tr>
<tr>
<td>Kidneys</td>
<td>1.4</td>
</tr>
<tr>
<td>Gastric contents</td>
<td>233.10</td>
</tr>
<tr>
<td>Serum</td>
<td>1.10</td>
</tr>
<tr>
<td>Urine</td>
<td>ND</td>
</tr>
</tbody>
</table>

NR = not reported, ND = not detected.
\(^a\)52-year-old male suicide case.
\(^b\)Range for two rabbits.

5.1.2.3 Dermal exposure

Very few studies have investigated absorption and distribution of formaldehyde
following dermal exposure, but the available data indicate that formaldehyde is poorly
absorbed from the skin. However, Maibach (1983) noted that if some amount of
formaldehyde or its metabolites did not penetrate, allergic contact dermatitis could not
occur (see Section 5.4.2.2). Jeffcoat et al. (1983) administered 10 μL of an aqueous
solution containing 0.1 mg of \(^14\)C-formaldehyde or 40 μL containing 11.2 mg of \(^14\)C-
formaldehyde to the skin of F344 rats or Dunkin-Hartley guinea-pigs (5 to 6 males and
females per group), and 2 mg in 200 μL to three Cynomolgus monkeys. Urine, feces,
expired air, and evaporation products were collected. Blood samples were collected from
a catheter implanted in the carotid artery at 1, 2, 3, 4, 7, and 24 hours after dosing.
Animals were sacrificed 72 hours after dosing, and tissue samples from the heart, liver, lung, spleen, kidney, leg, brain, gonads, skin at the application site, distant skin, and the remaining carcass were analyzed for 14C content. The mean values of recovered 14C are shown in Table 5-4. There was no accumulation of 14C in any tissue in any species. Blood concentrations were stable throughout the experiment, averaging about 0.015% of the administered dose in monkeys and about 0.1% of the dose in rats and guinea-pigs. In rats and guinea pigs, about 4.5% to 8.3% of the applied radioactivity was detected in the urine, 0.7% to 1.5% in the feces, and 21.4% to 28.3% in the air traps; 22.2% to 28.4% remained in the carcass. Almost the entire air-trapped radioactivity was due to evaporation from the skin because less than 3% was 14CO$_2$. The amount of radioactivity remaining in the skin ranged from 3.8% to 15.6% in guinea-pigs and 3.4% to 16.2% in rats. Although the percentage of the dose remaining in the skin was lower for the high dose, the actual amount of radioactivity was still higher compared with the low dose. In monkeys, about 0.24% of the applied dose was excreted in the urine, 0.2% was excreted in the feces, 0.37% was exhaled, and about 9.5% remained in the skin at the site of application. Data were not reported for the amount remaining in the carcass of monkeys. The authors concluded that the skin of the monkey was much less permeable to formaldehyde than that of rodents, and that the large majority of applied radiolabel was lost to evaporation.
Table 5-4. Distribution of 14C-labelled formaldehyde in rodents and monkeys during the first 72 h after topical administrationa

<table>
<thead>
<tr>
<th>Species</th>
<th>Dose (mg)</th>
<th>Air traps</th>
<th>Urine</th>
<th>Feces</th>
<th>Skin (application site)</th>
<th>Carcass</th>
<th>Total 14C recovered</th>
<th>Mean blood content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>0.1</td>
<td>28.3 ± 2.4</td>
<td>5.0 ± 0.6</td>
<td>1.5 ± 0.5</td>
<td>16.2 ± 1.4</td>
<td>22.2 ± 1.2</td>
<td>73.4 ± 3.1</td>
<td>0.12 ± 0.01</td>
</tr>
<tr>
<td>Guinea-pig</td>
<td>0.1</td>
<td>21.4 ± 1.6</td>
<td>4.5 ± 1.0</td>
<td>1.4 ± 0.2</td>
<td>15.6 ± 2.5</td>
<td>27.1 ± 1.7</td>
<td>70.0 ± 3.7</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td>Rat</td>
<td>11.2</td>
<td>22.1 ± 2.6</td>
<td>8.3 ± 1.0</td>
<td>0.7 ± 0.1</td>
<td>3.4 ± 0.4</td>
<td>25.9 ± 1.9</td>
<td>60.4 ± 2.6</td>
<td>0.13 ± 0.01</td>
</tr>
<tr>
<td>Guinea-pig</td>
<td>11.2</td>
<td>23.8 ± 3.1</td>
<td>6.8 ± 1.1</td>
<td>1.2 ± 0.4</td>
<td>3.8 ± 0.5</td>
<td>28.4 ± 1.6</td>
<td>63.6 ± 2.6</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>Monkey</td>
<td>2.0</td>
<td>0.37 ± 0.17</td>
<td>0.24 ± 0.1</td>
<td>0.2 ± 0.12</td>
<td>9.49 ± 3.9</td>
<td>NA</td>
<td>[~10]</td>
<td>0.015 ± 0.0006</td>
</tr>
</tbody>
</table>

Source: Jeffcoat et al. 1983.
NA = not analyzed.
aData are reported as % of administered dose ± SE.
Bartnik et al. (1985) applied \(^{14}\text{C}\)-formaldehyde and non-labeled formaldehyde mixed into a cream at a concentration of 0.1% to the clipped backs of male and female rats. Radioactivity was measured in feces, urine, expired air, carcass, and treated skin. Between 60% and 70% of the radioactivity remained in the skin. Levels in the urine ranged from about 1.2% to 3.5% of the applied radioactivity. Feces contained 0.2% to 0.8%, and the expired air contained 0.8% to 1.3% of the applied radioactivity.

Iverson et al. (1986) tested the possible carcinogenic potency of formaldehyde when applied to the skin of Oslo hairless mice (see Section 4.2.2). Mice received topical applications of 200 µg of 1% or 10% formaldehyde on the back skin twice a week and were observed for 60 weeks. [No blood or tissue samples were examined for the presence of formaldehyde or its metabolites.] Animals that received 1% formaldehyde had no skin lesions. Slight hyperplasia of the epidermis was reported for animals treated with 10% formaldehyde. A few animals had small skin ulcers or scratches and two animals had small nonspecific granulomas in the lungs. No lesions were reported in the brain or other tissues.

5.1.2.4 Parenteral and transplacental exposure

Keefer et al. (1987) injected \(^{14}\text{C}\)-labeled formaldehyde and sodium formate (i.p.) into male Sprague-Dawley rats and measured the cumulative excretion of carbon dioxide. Approximately 70% of the administered dose was excreted as carbon dioxide within the first 12 hours. The data showed that excretion was biexponential with half-lives of approximately 0.4 hours and 3 hours for the two phases.

Katakura et al. (1993) administered \(^{14}\text{C}\)-formaldehyde i.v. to pregnant mice and measured the distribution in maternal and fetal tissues and blood. Radioactivity was found immediately after injection and showed strong accumulation and retention 3 hours after injection. Maternal liver, intestinal mucosa, bone marrow, kidneys, and salivary glands showed the highest activity. Radioactivity was found in the fetus 6 hours after injection at concentrations similar to those in maternal tissues. Elimination of radioactivity from the placenta and fetus was slower than from maternal tissues.
Thrasher and Kilburn (2001) also investigated the distribution of 14C-labeled formaldehyde in maternal and fetal tissues. Pregnant ICR mice were injected with 0.05 mL of a 1% formalin solution that contained 3.5 mg of labeled compound via the tail vein on the 16th day of gestation. The animals were killed at intervals from 5 minutes up to 48 hours. There was a rapid uptake of radioactivity into maternal liver, lung, heart, salivary glands, gall bladder, spleen, kidney, bone marrow, nasal mucosa, uterus, placenta, and fetal tissues. The placenta, uterus, and fetal tissues had the highest concentrations, and the fetal brain had twice the concentration of radioactivity that was observed in the maternal brain. Radioactivity appeared in urine and feces up to 6 h after treatment. The DNA fraction from maternal and fetal liver contained 20% and 50% of the total radioactivity, respectively after 6 hours. These values showed little change at 24 hours. Elimination was slower from fetal tissues than maternal tissues.

5.2 Airway deposition models

Morgan and Monticello (1990) reviewed the literature on the site specificity of nasal lesions induced by exposure to inhaled gases with special reference to nasal airflow and effects of formaldehyde. These authors reported that the distribution of nasal lesions is influenced by the regional deposition of inhaled material, local tissue susceptibility, or a combination of these factors. Nasal airflow patterns are particularly important in determining lesion distribution for highly water-soluble or reactive gases such as formaldehyde. Their review suggested that differences in nasal airflow patterns in rats and monkeys were likely responsible for the characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. This hypothesis has since been investigated by several researchers using three-dimensional, anatomically accurate, computational fluid dynamics (CFD) models.

It is very difficult to determine formaldehyde uptake patterns in nasal passages of experimental animals because of its rapid metabolism and reactivity, and because of the low resolution of dissection techniques used to obtain tissues samples from different locations in the rat nasal epithelium (Kimbell et al. 2001a). Therefore, CFD models of the nasal passages of the rat, monkey, and human have been developed (1) to determine the primary factors affecting nasal uptake, (2) to make interspecies dosimetric comparisons,
(3) to provide detailed anatomical information for the nasal passages of these species, and
(4) to provide estimates of regional air-phase mass transport coefficients (a measure of
the resistance to gas transport from inhaled air to airway walls) in the nasal passages
(Kimbell and Subramaniam 2001). These models allow investigators to examine the
relationship between the delivered dose at various sites in the respiratory tract to
biomarkers of dose or effect (e.g., DNA-protein crosslinks or regional cell proliferation)
(Kimbell et al. 2001a). This section provides a brief review of these models. Section
5.7.5.1 discusses how these models have been used to predict crosslink and tumor
formation in rats, monkeys, and humans.

CFD models have been developed for the F344 rat (Kimbell et al. 1993, 1997), rhesus
monkey (Kepler et al. 1998), and human (Subramaniam et al. 1998) with the primary
objective of improving human health risk assessment. These models were developed in
three stages: (1) computer reconstructions of the nasal passages using sequential cross-
sectional data, (2) simulation of steady-state inspiratory airflow for several volumetric
flow rates (predicted flow streams and velocities from the simulations were compared
with observations and measurements made in hollow molds), and (3) simulation of
regional formaldehyde flux resulting from inspiratory airflow patterns and absorption
characteristics of the gas (Kimbell and Subramaniam 2001). The models were calibrated
by comparing predicted uptake data with actual measurements of formaldehyde uptake
and comparing predicted DNA-protein crosslink yield with measured crosslink yield and
adjusting model parameters accordingly.

CFD models use mathematical descriptions to simulate movement of inspired air in
respiratory air spaces and movement of inhaled chemical within air spaces via airflow
and diffusion (Kimbell et al. 1993). The concentrations of a chemical of interest that are
distributed throughout the respiratory tract are simulated by solving these equations. The
method involves dividing the nasal cavity into geometrically simple three-dimensional
elements to obtain a wire-frame grid of the nasal passage. The mass transport equations
are solved in each element and the elements are reassembled to produce simulated flow
and transport throughout the entire grid. Air-phase delivery is calculated as the mass flux
of inhaled chemical at specific sites within the airway and incorporates airflow patterns
and air-phase diffusion.

The CFD models have been used to test the hypothesis that the distribution of
formaldehyde-induced lesions can be attributed to species-specific patterns in
formaldehyde flux to various regions of the upper respiratory tract (Kimbell and
Subramaniam 2001). These studies show a strong correspondence between simulated
airflow-dependent transport patterns and local nasal lesion sites (see Section 5.7.5.1).

5.3 Metabolism

As discussed above, inhaled formaldehyde is rapidly absorbed by the epithelial cells of
the nasal mucosa of mammalian species. Once inside the epithelial layer, formaldehyde
binds rapidly and reversibly to glutathione and forms S-hydroxymethylglutathione
(Franks 2005). The nasal cavity has a substantial amount of enzyme activity, including
aldehyde dehydrogenases, cytochrome P-450 monooxygenases, glutathione transferases,
epoxide hydrolases, and carboxyl esterases; however, the two main enzymes responsible
for the rapid metabolism of formaldehyde are formaldehyde dehydrogenase (FDH) and S-
formylglutathione hydrolase. FDH (which is also known as alcohol dehydrogenase 3
[ADH3]) oxidizes S-hydroxymethylglutathione to S-formylglutathione; S-
formylglutathione is hydrolyzed by S-formylglutathione hydrolase to form reduced
glutathione and formic acid (Figure 5-1). FDH is a ubiquitous enzyme in mammals and is
widely distributed in various tissues (e.g., respiratory tract, liver, kidney, brain, muscle,
and erythrocytes). Therefore, formaldehyde metabolism occurs throughout the body
(ATSDR 1999). Øvrebø et al. (2002) demonstrated that cultured human bronchial
epithelial cells have formaldehyde biotransforming activity similar to that of hepatocytes
and are capable of oxidizing formaldehyde at a relatively fast rate at concentrations up to
3 mM. Casanova-Schmitz et al. (1984b) tentatively identified both FDH and aldehyde
dehydrogenase in nasal mucosal tissues from the rat nose and showed that homogenates
from both respiratory and olfactory epithelia efficiently oxidized formaldehyde. Other
enzymes that may catalyze the oxidation of formaldehyde to formate include catalase,
aldehyde dehydrogenase, xanthinoxidase, peroxidase, aldehyde oxidase, and
glycerinaldehyde-3-phosphate dehydrogenase (WHO 1989). The contribution of
aldehyde dehydrogenases (ALDHs) increases with increasing concentrations of formaldehyde (IARC 2006).

Formate, the primary metabolite of formaldehyde, enters the one-carbon pool, and can either be excreted in the urine as the sodium salt, or be further oxidized to carbon dioxide and exhaled (ATSDR 1999). Elimination of formate shows intra- and interspecies variability, but elimination is generally slower than its formation. The plasma half-life of formate in mammals ranges from about 1 to 90 minutes, with humans near the middle of the range (WHO 1989). Øvrebø et al. (2002) investigated the capacity of human bronchial epithelial cells and rat hepatocytes to metabolize formaldehyde to formate.

Normal human bronchial explants, primary bronchial epithelial cells, and rat hepatocytes were grown in medium containing 0.5 to 5 mM formaldehyde for up to 48 hours. Human bronchial explants and epithelial cells were shown to metabolize formaldehyde to formate at a relatively fast rate, which was comparable with that measured for rat hepatocytes.

Unmetabolized formaldehyde also may react non-enzymatically with sulphhydryl groups or urea, form protein-protein crosslinks, or form protein-DNA crosslinks (single-stranded DNA only) or form nucleic acid-nucleic acid crosslinks (single-stranded nucleic acids only) (Figure 5-2). Formate can combine with tetrahydrofolate enzymatically and enter the single-carbon intermediary metabolic pool. The availability of tetrahydrofolate, derived from folic acid in the diet, determines the rate of formate metabolism.
Figure 5-1. Metabolism and fate of formaldehyde
Adapted from IARC (2006).
Figure 5-2. Biological reactions of formaldehyde
Adapted from Bolt 1987: cys = cysteine, C₁ = single carbon pool, TH₄ = tetrahydrofolate.
5.4 Toxic effects

The toxicity of formaldehyde has been extensively reviewed (ATSDR 1999, WHO 2002, IARC 2006); however, the exact mechanisms are not completely understood. Although formaldehyde is a normal intermediary cellular metabolite, it is cytotoxic at high concentrations (≥ 6 ppm in the rat and rhesus monkey) (Casanova et al. 1994, Chang et al. 1983, Monticello et al. 1991, Monticello et al. 1996). The carbonyl atom of formaldehyde is electrophilic; thus, it readily reacts with nucleophilic sites on cell membranes and in body tissues such as amino groups in protein and DNA (ATSDR 1999). This section provides an overview of the toxic effects reported from in vitro studies, humans, and experimental animals. The following discussion summarizes the findings from the IARC (2006) and other reviews, as well as relevant studies published after the IARC review.

5.4.1 In vitro toxicity studies

In vitro studies conducted with human and animal cells demonstrate that formaldehyde is cytotoxic, and affects cell proliferation, gene expression, apoptosis, and the mucociliary apparatus (IARC 2006).

Schäfer et al. (1999) showed a reduced frequency of ciliary beat in cultured human nasal epithelial cells exposed to 5 mg/m³ [4 ppm] for 2 hours but no effect when exposed to 5 mg/m³ for 1 hour or 0.5 mg/m³ for 2 hours.

Lovschall et al. (2002) investigated the cytotoxic effects of formaldehyde in human dental pulp fibroblasts, human buccal epithelial cells, and HeLa cervical cancer cells. The purpose of this study was to compare the relative sensitivity of human target tissue cells with that of an established human cancer cell line. Dose-response relationships and TC₅₀ values were determined using three different assays: bromodeoxyuridine (BrdU) incorporation, neutral red uptake, and methylthiazole tetrazolium (MTT) conversion. Cell cultures were exposed for 24 hours to graded formaldehyde dilutions based on TC₅₀ estimates obtained in pilot studies for each cell type. Dental pulp fibroblasts and buccal epithelial cells had significantly lower TC₅₀ values in both the BrdU and neutral red assays compared with HeLa cells. There were no statistically significant differences
among the cell types with the MTT assay. Overall dental pulp fibroblasts and buccal
epithelial cells appeared to be more sensitive to formaldehyde toxicity than HeLa cells.

Other *in vitro* studies reported effects on glutathione levels and oxidative stress. These
studies are discussed in Section 5.7.2.

5.4.2 *Toxic effects in humans*
A wide range of health effects have been associated with exposure to formaldehyde in
both residential and occupational settings. These effects are summarized below and are
route dependent. The most common effects include irritation at the point of contact
following inhalation (upper respiratory tract and eyes), oral (mouth and gastrointestinal
tract), or dermal exposure (skin and eyes). Other effects include allergic contact
dermatitis, histopathological abnormalities (e.g., hyperplasia, squamous metaplasia and
mild dysplasia) of the nasal mucosa, occupational asthma, reduced lung function,
neurophysiological disorders (e.g., insomnia, memory loss, mood alterations, and loss of
appetite), and altered immune response. Formaldehyde concentrations associated with
reported effects in humans show wide interindividual variation as illustrated in Table 5-5.
Although some symptoms have been reported at concentrations as low as 0.05 ppm
[primarily sensory irritation], they occur only rarely at concentrations below 0.5 ppm
(IARC 2006). Paustenbach *et al.* (1997) reviewed approximately 150 articles in order to
recommend an occupational exposure limit for formaldehyde based on irritation. They
reported that eye irritation did not occur in most people at concentrations < 1 ppm, and
that moderate to severe irritation did not occur until airborne concentrations exceeded 2
to 3 ppm. Persons exposed to 0.3 ppm for 4 to 6 hours in chamber studies reported eye
irritation at a rate similar to that reported by persons exposed to clean air. Arts *et al.*
(2006) also reviewed data on respiratory irritation of formaldehyde and reported that
mild/slight eye irritation was observed at levels ≥ 1 ppm, and mild/slight respiratory tract
irritation at levels ≥ 2 ppm.
Table 5-5. Formaldehyde concentrations associated with various health effects

<table>
<thead>
<tr>
<th>Reported effects</th>
<th>Formaldehyde concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurophysiological effects</td>
<td>0.05–1.05</td>
</tr>
<tr>
<td>Odor threshold</td>
<td>0.05–1.0</td>
</tr>
<tr>
<td>Eye irritation</td>
<td>0.05–2.0</td>
</tr>
<tr>
<td>Upper airway irritation</td>
<td>0.1–25</td>
</tr>
<tr>
<td>Lower airway and pulmonary effects</td>
<td>5.0–30</td>
</tr>
<tr>
<td>Pulmonary edema, inflammation, pneumonia</td>
<td>50–100</td>
</tr>
<tr>
<td>Death</td>
<td>≥ 100</td>
</tr>
</tbody>
</table>

Source: Newell 1983.

5.4.2.1 Inhalation exposure

Inhalation is an important exposure pathway for formaldehyde in occupational, domestic, and environmental settings. In addition to the epidemiologic studies and case reports, a number of controlled studies of human exposure to formaldehyde have been conducted. The most common and consistently reported effects include sensory and airway irritation. Some studies indicate an association with occupational asthma. Effects associated with acute and chronic exposures are discussed. Studies that indicate an association with occupational asthma are reviewed briefly in a separate section.

Acute exposure

Ballenger (1984) reported that nasal mucous membranes may begin to swell at formaldehyde concentrations of 0.16 ppm [0.2 mg/m³], and chest tightness and coughing occur at about 1.2 ppm [1.5 mg/m³]. IARC reviewed 10 controlled experimental studies of acute inhalation exposure to formaldehyde (Table 5-6). These studies included healthy individuals, asthmatics, and individuals with allergic symptoms due to exposure to formaldehyde. These individuals were exposed to 0.4 to 3 ppm [0.49 to 3.7 mg/m³] formaldehyde for 30 minutes to 3 hours. Reported effects included eye, nose, and throat irritation; nasal itching; congestion; and sneezing. One study evaluated dose-response effects and reported that eye irritation increased linearly at doses from 0.5 to 3 ppm [0.62 to 3.7 mg/m³]; no effects were observed at 0.5 ppm. Exposure to 3 ppm for 1 hour while exercising resulted in moderate to severe eye irritation in 27% of healthy subjects and 19% of asthmatics. Moderate to severe nose and throat irritation occurred in 32% of the healthy subjects and 31% of asthmatics. IARC (2006) also cited a review by Bender et al. (2002) who reviewed 9 controlled chamber studies of asthmatic subjects. Exposure to 2
to 3 ppm [2.5 to 3.7 mg/m³] for up to 3 hours did not provoke asthma in unsensitized asthmatics, and exposure to 0.1 to 3 ppm [0.12 to 3.7 mg/m³] did not provoke asthma in men or women who reported chest tightness, cough, and wheeze when exposed to formaldehyde at home or work.

Table 5-6. Irritant effects of formaldehyde following acute inhalation exposures

<table>
<thead>
<tr>
<th>Subjects (no.)</th>
<th>Exposure (mg/m³)</th>
<th>Results</th>
<th>References (as cited in IARC 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy (22) Asthmatics (16)</td>
<td>3.7 (1 h)</td>
<td>Moderate to severe symptoms in both groups</td>
<td>Green et al. 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eye (27%), nose/throat (32%) (healthy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eye (19%), nose/throat (31%) (asthmatics)</td>
<td></td>
</tr>
<tr>
<td>Healthy (10) Asthmatics² (10)</td>
<td>0.5 (2 h)</td>
<td>Nasal itching and congestion in all subjects</td>
<td>Krakowiak et al. 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg. score 4.3 (0 – 7 point scale, healthy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg. score 4.6 (asthmatics)</td>
<td></td>
</tr>
<tr>
<td>Healthy (19)</td>
<td>0.6–3.7 (3 h)</td>
<td>Eye irritation increased linearly with dose; mild nose and throat irritation threshold at 1 ppm [1.2 mg/m³]</td>
<td>Kulle 1993, Kulle et al. 1987</td>
</tr>
<tr>
<td>Healthy (11) Contact dermatitis (9)</td>
<td>0.5 (2 h)</td>
<td>Mean nasal score (sneezes, itching and congestion) of 4 at 10 minutes in both groups</td>
<td>Pazdrak et al. 1993</td>
</tr>
<tr>
<td>Healthy (9)</td>
<td>3.7 (3 h)</td>
<td>Increase in mean symptom scores for eyes, nose and throat irritation after exposure</td>
<td>Sauder et al. 1986</td>
</tr>
<tr>
<td>Asthmatics (9)</td>
<td>3.7 (3 h)</td>
<td>Eye and nose irritation after 2 min</td>
<td>Sauder et al. 1987</td>
</tr>
<tr>
<td>Healthy (15)</td>
<td>2.5 (40 min)</td>
<td>Odor (80%), sore throat and nasal irritation (0%), eye irritation (47%)</td>
<td>Schachter et al. 1987</td>
</tr>
<tr>
<td>Asthmatics (15)</td>
<td>2.5 (40 min)</td>
<td>Odor (100%), sore throat (33%), nasal irritation (47%), eye irritation (73%)</td>
<td>Witek et al. 1987</td>
</tr>
<tr>
<td>Healthy (9) Asthmatics² (9)</td>
<td>3.7 (2 h)</td>
<td>Eye (83%), nose (39%) and throat (28%) irritation; no significant differences between groups.</td>
<td>Day et al. 1984</td>
</tr>
<tr>
<td></td>
<td>1.2 (90 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (30 min)²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from IARC 2006.

¹ Subjects had allergic symptoms due to formaldehyde exposure.
² Subjects with urea-formaldehyde foam insulation symptoms.
³ Exposure to urea-formaldehyde foam insulation.

Nasal lavage studies of workers who had skin hypersensitivity (positive patch test) to formaldehyde and healthy men with a negative patch test showed similar responses following a 2-hour exposure to 0.5 mg/m³ [0.41 ppm] formaldehyde (Pazdrak et al. 1993). In both groups, eosinophils peaked shortly after exposure and were still elevated after 18 hours, while the percentage of epithelial cells was reduced. Albumin levels also were increased. The authors concluded that a non-specific, non-allergic pro-inflammatory effect occurred from exposure to low concentrations (0.5 mg/m³) of formaldehyde.
Lang et al. (2008) conducted a controlled study in Germany of sensory irritation in 21 healthy volunteers (11 males and 10 females) exposed to formaldehyde. Each subject was exposed for 4 hours to each of 10 selected exposure conditions on 10 consecutive working days. The 2-week exposure sequences were randomized. Formaldehyde concentrations ranged from 0 to 0.5 ppm. During three of the exposures, the concentration of formaldehyde was doubled to generate intermittent exposure to peak concentrations four times during the exposure period. Once the peak concentration was reached, forced ventilation of the exposure chamber was used to reduce the concentration back to the desired base level. During 4 of the 10 exposures, ethyl acetate at 12 to 16 ppm was used as a masking agent for formaldehyde. Measurements included conjunctival redness, blinking frequency, nasal flow and resistance, pulmonary function, and reaction times. There were no significant treatment effects on nasal flow and resistance, pulmonary function, and reaction times. Blinking frequency and conjunctival redness were significantly increased by short-term peak exposures of 1 ppm. Subjective ratings indicated eye and olfactory symptoms at concentrations as low as 0.3 ppm. Eye irritation was the most sensitive parameter. All increased symptom scores returned to normal levels 16 hours after the end of the exposures.

Tang et al. (2009) reported that 17 employees at a pharmaceutical company in China who were continuously exposed to formaldehyde vapors showed symptoms of eye irritation, tearing, sneezing, coughing, chest congestion, fever, heartburn, lethargy, and loss of appetite. Some of the workers also experienced vomiting, abdominal pain, and tachycardia.

Chronic exposure
IARC (2006) reviewed six occupational studies and one residential study that investigated the effects of chronic inhalation exposure to formaldehyde on the nasal mucosa (Table 5-7). The average length of employment ranged from 10 to 20 years in the occupational studies. Time-weighted average exposure levels ranged from 0.007 to 2.4 ppm with a peak concentration as high as 18.5 ppm. The most common effects on the nasal mucosa in the exposed groups were loss of cilia, goblet-cell hyperplasia, and squamous metaplasia. Irritation of the upper respiratory tract and eyes was also common.
among the exposed groups. Histological scores, based on severity of effect, were
significantly higher in the exposed group compared with matched controls in most of the
studies; however, there was not always a clear association with exposure to formaldehyde
[i.e., no concentration-response relationship or no correlation between histological score
and duration of exposure]. Two of the studies did not show significant differences
between the exposed and control groups. Atypical squamous metaplasia was associated
with age in at least one study. The residential study reported that the prevalence of
squamous metaplasia was significantly increased in occupants of urea-formaldehyde
foam-insulated homes compared with subjects who lived in homes without this type of
insulation.

IARC (2006) also reviewed three studies (Akbar-Khanzadeh and Mlynek 1997, Akbar-
Khanzadeh et al. 1994, Kriebel et al. 1993) that investigated the effects of formaldehyde
exposure on lung function in groups of physical therapy or medical students and their
instructors. Pulmonary function (peak expiratory flow or forced expiratory volume in 1
second) was measured before and after completing laboratory sessions, or was compared
with a group of unexposed controls. Formaldehyde concentrations ranged from about
0.07 to 2.94 ppm [0.09 to 3.6 mg/m³]. These studies included 24 to 50 subjects that were
exposed to formaldehyde during anatomy classes. Eye nose and throat irritation were
common in the exposed groups. Formaldehyde exposure was associated with lung
function decrements in all three studies.

In a review on occupational formaldehyde exposure in China, Tang et al. (2009)
identified six reports of pulmonary disorders in factory workers chronically exposed to
formaldehyde. One study reported that workers exposed to 3.07 ± 5.83 mg/m³ had
decreased pulmonary ventilation compared with a control group. Another study reported
that chronic exposure to a lower concentration (1.3 mg/m³) significantly decreased mid-
expiratory airflow and forced vital capacity values [data not reported]. Other studies
showed exposure-related increases in pulmonary damage over time, more abnormalities
in the small airways, and higher resistance to pulmonary ventilation.
Lyapina et al. (2004) reported a statistically significant ($P = 0.02$) predominance of subjective symptoms and clinical findings of chronic upper respiratory tract inflammation among 29 workers (13 men and 16 women) occupationally exposed to formaldehyde for an average of 12.7 years. Results were compared with 21 non-exposed, age- and gender-matched controls. Further details of this study are provided in Section 5.4.2.4.
Table 5-7. Effects on the nasal mucosa from chronic exposure to formaldehyde

<table>
<thead>
<tr>
<th>Exposure setting</th>
<th>Concentration(^a) (mg/m(^3))</th>
<th>No.</th>
<th>Histological score(^b)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminate plant</td>
<td>0</td>
<td>25</td>
<td>1.8</td>
<td>Smoking had a slight modifying effect; no correlation of histological score and exposure duration; four cases of mild dysplasia in the exposed group</td>
<td>Edling et al. 1987a</td>
</tr>
<tr>
<td></td>
<td>0.5–1.1</td>
<td>38</td>
<td>2.8*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1–1.1</td>
<td>25</td>
<td>1.8</td>
<td>Some exposure to wood dust, but no dose-response relationship; no differences between workers exposed only to formaldehyde compared with those exposed to formaldehyde and wood dust; six exposed men had mild dysplasia</td>
<td>Edling et al. 1988</td>
</tr>
<tr>
<td></td>
<td>(peaks to 5)</td>
<td>75</td>
<td>2.9*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05–0.5</td>
<td>37</td>
<td>1.4</td>
<td>Higher prevalence of mucosal irritation was reported in non-smoking exposed workers compared with controls ((P = 0.04)); however, cytologic exams did not show a statistical relationship to formaldehyde exposure</td>
<td>Berke 1987</td>
</tr>
<tr>
<td></td>
<td>0.2–0.3</td>
<td>37</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(peaks to 11–18.5)</td>
<td>38</td>
<td>NR</td>
<td>Incidence of subjective nasal complaints was significantly higher ((P < 0.01)) in the exposed group, mild dysplasia in 3 exposed workers</td>
<td>Boysen et al. 1990</td>
</tr>
<tr>
<td></td>
<td>0.5–> 2.0</td>
<td>37</td>
<td>1.4</td>
<td>No correlation between duration of exposure and histological changes, 2 cases of dysplasia among particle board workers who ground wood for > 4 h/day</td>
<td>Holmström et al. 1989b</td>
</tr>
<tr>
<td></td>
<td>0.05–0.5</td>
<td>32</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2–0.3</td>
<td>62</td>
<td>2.16*</td>
<td>Co-exposure to wood dust, significantly higher ((P < 0.01)) incidence of micronuclei in exposed workers, one case of mild dysplasia in the exposed group</td>
<td>Ballarin et al. 1992</td>
</tr>
<tr>
<td></td>
<td>0.3–0.9</td>
<td>89</td>
<td>2.07c</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1–0.39</td>
<td>15</td>
<td>1.6</td>
<td></td>
<td>Broder et al. 1991, 1988</td>
</tr>
<tr>
<td></td>
<td>0.007–0.14</td>
<td>720</td>
<td>2.3**</td>
<td>Positive relationships between level of exposure and the presence of symptoms, a number of exposure-response relationships were enhanced by urea-formaldehyde, small but significant increase in incidence of squamous-metaplasia in occupants of urea-formaldehyde insulated homes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.009–0.28</td>
<td>1,726</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from IARC 2006.

\(^*\) \(P < 0.05\); \(^**\) \(P < 0.01\).

NR = not reported.

\(^a\) Time-weighted average concentrations for occupational settings.

\(^b\) Several different scales were used by the authors. Edling et al. 1987, 1988 and Holmstrom et al. 1989 used an 8-point scale (0 = normal to 8 = carcinoma); Boysen et al. 1990 used a 5-point scale (0 = pseudostratified columnar epithelium to 5 = dysplasia), and Ballarin et al. 1992 used a 6-point scale (1 = normal cellularity to 6 = malignant cells).

\(^c\) Co-exposed to wood dust.
Occupational asthma

Inhalation exposure to formaldehyde has also been identified as an occasional cause of occupational asthma. IARC (2006) reviewed eight studies (some were case reports) of occupational asthma in workers (Table 5-8). Hypersensitivity is thought to be the likely mechanism because the reactions were often delayed and unsensitized asthmatics did not react to the same concentrations. Asthmatic reactions may also be caused by an irritant mechanism at high concentrations. Tang et al. (2009) reported that the likelihood of developing allergic asthma increases proportionately with indoor formaldehyde concentrations, especially at concentrations > 0.12 mg/m³.
Table 5-8. Studies of occupational asthma and formaldehyde exposure

<table>
<thead>
<tr>
<th>Study population (no.)</th>
<th>Sex</th>
<th>Concentration (mg/m³)</th>
<th>Duration</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers (NR)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Immediate and late reaction in 2 workers</td>
<td>Popa et al. 1969 (cited in IARC)</td>
</tr>
<tr>
<td>Neurology resident (1)</td>
<td>Male</td>
<td>NR</td>
<td>2 h</td>
<td>Acute pneumonitis; breath smelled of formaldehyde, resolved in 5 wk</td>
<td>Porter 1975 (cited in IARC)</td>
</tr>
<tr>
<td>Nurse (1)</td>
<td>Female</td>
<td>[6.1]</td>
<td>15 min</td>
<td>Late asthmatic reaction</td>
<td>Hendrick and Lane 1975, 1977, Hendrick et al. 1982 (cited in IARC)</td>
</tr>
<tr>
<td>Pathologist (1)</td>
<td>Female</td>
<td>[6.1]</td>
<td>1 h</td>
<td>No reaction</td>
<td></td>
</tr>
<tr>
<td>NR (1)</td>
<td>Female</td>
<td>[3.7]</td>
<td>5 min</td>
<td>Late asthmatic reaction</td>
<td></td>
</tr>
<tr>
<td>Workers (15)</td>
<td>Both</td>
<td>2.3</td>
<td>30 min</td>
<td>One late asthmatic reaction</td>
<td>Burge et al. 1985 (cited in IARC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8</td>
<td>30 min</td>
<td>Two immediate and late asthmatic reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8</td>
<td>30 min</td>
<td>No reaction in unsensitized asthmatics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>7 min</td>
<td>One irritant asthmatic reaction</td>
<td></td>
</tr>
<tr>
<td>Workers (230)</td>
<td>Both</td>
<td>1.2</td>
<td>30 min</td>
<td>One early reaction</td>
<td>Nordman et al. 1985 (cited in IARC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>30 min</td>
<td>Five early and six late reactions</td>
<td></td>
</tr>
<tr>
<td>Worker (1)</td>
<td>Male</td>
<td>[0.07]</td>
<td>6 mo</td>
<td>Asthma</td>
<td>Kim et al. 2001 (cited in IARC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>20 min</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>20 min</td>
<td>Late asthmatic reaction, IgE negative</td>
<td></td>
</tr>
<tr>
<td>Residential Controls (41)</td>
<td>Both</td>
<td>0.017</td>
<td>NR</td>
<td>There was a significant relationship between formaldehyde concentrations and asthma-like symptoms</td>
<td>Norbäck et al. 1995</td>
</tr>
<tr>
<td>Asthmatics (47)</td>
<td></td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from IARC 2006.
NR = not reported.
5.4.2.2 **Dermal exposure**

Although formaldehyde is recognized as a skin irritant, very few quantitative data are available. Maibach (1983) reported that it is likely that formulations containing formalin at 300 ppm or greater would induce clinical irritation. Unlike contact dermatitis (discussed below) skin irritation is non-immunologic (Consensus Workshop 1984).

Sensory irritation may be caused by nucleophilic addition, disulfide bond cleavage, and physical interaction. Nucleophilic addition at -SH or -NH₂ groups on proteins is probably the most important mechanism for formaldehyde. Approximately 5% of subjects exposed to a single application of 1% formalin in water with occlusion will develop skin irritation.

Formaldehyde is a primary skin sensitizing agent and has been associated with both immediate, anaphylactic reactions (Type I allergy) and contact dermatitis (Type IV allergy) (Consensus Workshop 1984). More quantitative data were available for contact dermatitis than for skin irritation. The Consensus Workshop reported that the threshold level for induction of contact dermatitis in humans is less than 5% formalin in water. Approximate thresholds for elicitation of allergic contact dermatitis in sensitized subjects range from about 30 ppm for patch testing to 60 ppm for actual use concentrations of formalin. Flyvholm *et al.* (1997) conducted patch tests with formaldehyde solutions ranging from 25 to 10,000 ppm in 20 formaldehyde-sensitive individuals and 20 healthy controls and reported a threshold concentration of 250 ppm. No positive reactions were observed in the control group. Maibach (1983) reported rates of allergic contact dermatitis (patch test responders) ranging from about 3.5% to more than 6%. More recent results indicated positive reaction rates of 7.9% in 1,324 patients at the Mayo Clinic and 9.2% from 5,830 patients tested by the North American Contact Dermatitis Group (Wetter *et al.* 2005). Warshaw *et al.* (2007) reported that formaldehyde was the second most common allergen associated with contact dermatitis of the hands in a cross-sectional analysis of more than 22,000 patients patch tested between 1994 and 2004 in North America. Zug *et al.* (2008) conducted a retrospective cross-sectional analysis of North American contact dermatitis data from 2001 to 2004. Formaldehyde was the fourth most frequently positive allergen (positive patch test in 170 of 1,496) among patients with a scattered generalized distribution of dermatitis.
There are several case reports that document contact dermatitis from exposure to formaldehyde in clothing. Formaldehyde resins were added to clothing to make permanent creases, to make the garments wrinkle resistant, to preserve their new appearance, for mothproofing, and to reduce shrinking. O’Quinn and Kennedy (1965) and Shellow and Altman (1966) reported cases of intermittent or persistent dermatitis that had lasted for years and typically involved the neck, shoulders, upper arms, lower legs, feet, hands, and peripheral areas of the axillae. The patients also had positive patch tests when exposed to 2% or 5% formaldehyde solutions, or when exposed to some samples of clothing that contained formaldehyde. Fowler (2003) also reported a case of urticaria that was associated with formaldehyde use in leather dresses in Finland, and a case of shoe dermatitis in a woman who wore formaldehyde-treated leather shoes. Carlson et al. (2004) conducted patch tests on 852 patients in the University Hospitals of Cleveland Environmental and Occupational Dermatitis Clinic from August 1999 to April 2004. Reactions to formaldehyde and to several formaldehyde textile resins were recorded. Positive reactions to a 1% aqueous solution of formaldehyde were reported for 61 patients (7.2%), while 17 patients had a positive reaction to an ethylene urea/melamine formaldehyde resin. Donovan and Skotnicki-Grant (2007) reported a case of severe contact dermatitis in a 49-year-old pediatrician that was caused by contact with formaldehyde textile resins in her hospital “greens” (or “scrubs”) and mask. Patch testing revealed a very strong reaction to melamine formaldehyde and milder reactions to urea formaldehyde and ethylene urea/melamine formaldehyde.

De Groot et al. (1988) investigated the relationship between allergic contact dermatitis to formaldehyde and patch test reactions to dimethyloldimethyl hydantoin [a formaldehyde donor used as a preservative in cosmetic products]. Patients that had positive patch tests to 0.1% or 0.3% formaldehyde tended to have a higher incidence of positive patch tests to the preservative than those who reacted only to 1% formaldehyde. Takahashi et al. (2007) reported that 2 of 60 medical students had a positive patch test to 1% formaldehyde at the end of a human anatomy class. None of the students had a positive patch test prior to taking the anatomy class. Ravis et al. (2003) reported a 2% incidence of formaldehyde-induced allergic contact dermatitis among 101 dental hygienists or dental assistants. The incidence in 51 control subjects also was 2%.
Kiec-Swierczynska (1996) reported incidences of occupational allergic contact dermatitis among 1,619 patients in Poland that were examined over a five-year period (1990 to 1994). A total of 332 patients were diagnosed with contact dermatitis. Medical histories and occupational exposure data were obtained, and all patients were patch-tested with the standard Polish series of allergens. Sixty individuals had a positive patch test to formaldehyde. Geier et al. (2008) also reported positive patch tests to several formaldehyde releasers in a 39-year-old metalworker with work-related dermatitis of the hands and lower arms. Formaldehyde releasers were used as a biocide in the water-based metalworking fluid used by this worker.

Tang et al. (2009) reported cases of contact dermatitis in 4 of 10 operators of chemical melting devices in a phenol-formaldehyde factory and two thirds of the workers on a mushroom farm that were exposed to formaldehyde developed dermatitis on their arms and forearms. Symptoms included red spots, swelling, irritation, pain, and a burning sensation.

5.4.2.3 Oral exposure

Formaldehyde ingestion is rare because it is a strong irritant and has an unpleasant odor. Only 11 cases of formalin ingestion (usually suicidal or homicidal attempts) have been reported in the English literature since 1950. At least 15 cases have been published in the Japanese literature (Yanagawa et al. 2007), and other cases have been reported in China (Tang et al. 2009). These cases suggest that the fatal oral dose of formaldehyde is 60 to 90 mL (Bartone et al. 1968, Yanagawa et al. 2007). In addition to severe corrosive damage to the gastrointestinal tract, other effects may include central nervous system (CNS) depression, myocardial depression, circulatory collapse, multiple organ failure, kidney and liver damage, and metabolic acidosis. The primary late complication for survivors is cicatrical stricture of the stomach which may require a gastrectomy (Yanagawa et al. 2007).

Köppel et al (1990) presented case reports of two patients (a 55-year-old female and a 34-year-old male) that died after ingesting an unknown quantity of formaldehyde. Both patients survived the initial gastrointestinal necrosis and renal failure, but died several weeks later from respiratory distress and cardiac failure. Autopsy findings in one of the
patients included burns of the entire digestive tract, including the colon, with extensive hemorrhagic jejunitis, ileitis, and colitis. Plasma levels of formic acid were elevated in both patients, but no free formaldehyde was detected in blood or plasma. These authors speculated that formaldehyde may exert systemic toxicity in the form of its labile Schiff’s base with proteins, but not as free formaldehyde. One patient died 28 hours after ingesting 120 mL of a formaldehyde/methanol solution (Eells et al. 1981). Plasma methanol, formaldehyde, and formate levels were measured in a 50-year-old male who was found unconscious and unresponsive at a meat packing plant after drinking about 4 ounces of a formaldehyde solution (Burkhart et al. 1990). The clinical course included an initial CNS depression followed by abdominal pain, retching, seizures, hypotension, and cardiac arrest. The patient died 13 hours after exposure. Methanol levels increased throughout the 13-hour course, while formate and formaldehyde levels increased until bicarbonate and ethanol therapy were instituted after 6 hours. Hilbert et al. (1997) reported a case of fatal poisoning in a 46-year-old woman who deliberately ingested 50 to 100 mL of formalin. She was admitted to the intensive care unit 2 hours later and presented with metabolic acidosis, gastric ulceration, and circulatory shock. The patient died 44 hours after ingesting the formalin from multiple organ failure, including severe ventricular failure.

Two cases of nonfatal poisoning were reviewed (Bartone et al. 1968, Yanagawa et al. 2007). Bartone et al. (1968) reported that a 46-year-old woman drank an estimated 120 mL of a 10% formaldehyde solution and experienced shock and severe abdominal pain, and developed diffuse ulceration, fibrosis, and contracture of most of the stomach. She was admitted to the hospital 3 months after the incident after experiencing frequent episodes of weakness, loss of appetite, weight loss, nausea and vomiting. The lesion culminated in an almost complete, high gastric obstruction and required a total gastrectomy. A 28-year-old man also survived after reportedly ingesting 150 mL of a 40% formalin solution in an attempted suicide (Yanagawa et al. 2007). This patient was admitted to the hospital 2 hours after ingesting the formalin. Endoscopy on hospital day 4 showed esophageal erosion and diffuse corrosive gastric ulcers. By day 6, ascites with multiple spotty hemorrhages on the gastric serosa and omentum had developed. Further complications included bacterial pneumonia, sepsis, enteritis, toxic epidermal necrolysis,
and gastric outlet obstruction. The patient was discharged on day 73. Gastroscopy was repeated on day 132 and showed that the stomach surface was covered by a regenerated mucosa with scattered linear scars. The gastric outlet obstruction had improved by day 148.

In two separate incidences in China, 60 and 38 middle-school students reported symptoms of nausea, vomiting, and dizziness 30 minutes to 2 hours after eating fish illegally preserved in formaldehyde [no further information provided] (Tang et al. 2009).

5.4.2.4 Hematological and immunological effects

Intravascular coagulopathy was described in a 58-year-old man who swallowed 4 ounces of formalin (Burkhart et al. 1990). This patient died shortly thereafter from cardiac arrest.

Kuo et al. (1997) investigated the possible effects of formaldehyde exposure in 50 hemodialysis nurses in four teaching hospitals in Taiwan. The control group included 71 ward nurses who did not work in the hemodialysis unit. A questionnaire was used to gather information on health history, demographic data, exposure to formaldehyde, and symptoms. Symptoms included itching, dizziness, nausea and vomiting, fatigue, impaired concentration, tearing, nasal discharge, cough, and difficulty breathing and were scored from 0 to 3 corresponding to never, seldom, occasionally, and frequently. The values for the symptoms were totaled to derive a total symptom score. The control group was younger, less likely to be married, and more likely to have allergic rhinitis than the exposure group. There was a significant positive correlation between airborne formaldehyde concentrations and total symptom score. Multiple regression analysis indicated that the exposure group’s white blood cell count was significantly lower than the control group.

Most of the studies on the immunologic effects of formaldehyde have focused on the allergic reactions (i.e., contact dermatitis and occupational asthma); however, several studies have reported that formaldehyde exposure may affect immunological parameters. These studies cover acute, subchronic, and chronic exposures and include workers, medical students, residents, and children.
Madison et al. (1991) studied a group of residents who experienced acute symptoms following exposure to formaldehyde and exothermic byproducts of an urea-formaldehyde spill. Three years after the accident, the exposed group was compared with an unexposed group selected from a nearby community. Immunological parameters included white blood cell count, total lymphocyte count, percent and total lymphocyte subsets (CD4, CD5, CD8, CD19, CD25, and CD26 cells), prevalence of autoantibodies, and antibodies to formaldehyde-human serum albumin conjugate. Data were adjusted for age, gender, smoking, mobile home residency, and use of wood stoves. White blood cell, lymphocyte, and T-cell counts were not affected; however, significant differences were reported for elevated percent and absolute numbers of CD26 cells, autoantibodies, and greater titers of isotypes IgG and IgM to formaldehyde-human serum albumin conjugate. The authors concluded that the exposed subjects had an activated immune system in addition to increased autoantibodies.

Vargovà et al. (1992) investigated the immunological and cytogenetic effects (see Section 5.6.4.3) of formaldehyde in a group of 20 workers (10 male and 10 female) who had been occupationally exposed for 5 to more than 16 years. They were compared with a matching control group (similar habits and social status) of 19 individuals from the same plant who had no known exposure to formaldehyde. There were no significant differences between the exposed group and controls in values of natural cellular or specific humoral immunity; however, there were differences in the values of mitogen-induced proliferation of lymphocytes. The authors concluded that formaldehyde exposure interfered with the immune system, but not enough to show changes in the classical clinical-immunological responses.

Ying et al. (1999) examined both genetic and immunological parameters to investigate the effects of formaldehyde exposure on peripheral lymphocytes in 23 non-smoking medical students (11 males and 12 females). The study was conducted during an 8-week anatomy laboratory. Students were exposed three times per week for 3 hours per class. Formaldehyde concentrations were measured in the laboratories and in the students’ dormitories. Blood samples were collected from each student at the beginning of the anatomy laboratory and after completing the laboratory. Lymphocyte subsets were
stained by mouse antihuman monoclonal antibodies CD3 (total T cells), CD4 (T helper-inducer cells), CD8 (T cytotoxic-suppressor), and CD19 (B lymphocytes) surface markers within 24 hours after collecting the blood samples. Genetic effects are discussed in Section 5.6.4.3. Formaldehyde concentrations ranged from 0.071 to 1.28 mg/m³ in the laboratories and 0.011 to 0.016 mg/m³ in the dormitories. The time-weighted average concentration in the laboratories was 0.508 ± 0.299 mg/m³. The results observed in the study were determined to be similar for both males and females; therefore, the data were pooled. The percentage of lymphocyte subsets did show significant changes at the end of the study (Table 5-9). There was a significant increase in B cells, and a significant decrease in total T cells, T-helper-inducer cells, and T-cytotoxic-suppressor cells. There also was a higher ratio of T-helper-inducer cells to T-cytotoxic-suppressor cells.

Table 5-9. Effects of formaldehyde exposure on peripheral lymphocyte subsets in anatomy students

<table>
<thead>
<tr>
<th>Subset</th>
<th>Before exposure (%)</th>
<th>After exposure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B cells</td>
<td>16.87 ± 1.52</td>
<td>23.98 ± 4.52***</td>
</tr>
<tr>
<td>Total T cells</td>
<td>72.63 ± 2.90</td>
<td>65.46 ± 4.65***</td>
</tr>
<tr>
<td>T-helper-inducer cells (T₄)</td>
<td>48.87 ± 4.20</td>
<td>44.68 ± 4.36***</td>
</tr>
<tr>
<td>T-cytotoxic-suppressor cells (T₈)</td>
<td>29.18 ± 3.94</td>
<td>20.14 ± 3.04***</td>
</tr>
<tr>
<td>T₄/T₈</td>
<td>1.71 ± 0.34</td>
<td>2.25 ± 0.44***</td>
</tr>
</tbody>
</table>

Source: Ying et al. 1999.

** P < 0.01 (t-test); *** P < 0.001.

Lyapina et al. (2004) reported that their previous studies demonstrated that the immunotoxic action of formaldehyde resulted in delayed type skin sensitization and reduced resistance to infections (recurrent rhinitis, upper respiratory tract infections and pneumonitis) in exposed workers and suggested that formaldehyde exposure may result in functional changes in neutrophils. Therefore, they examined the effects of formaldehyde exposure on neutrophil respiratory burst activity in 29 workers exposed to formaldehyde. The exposed group was further divided into 12 individuals (group 1a) with a history of frequent viral or bacterial inflammatory relapses of the upper respiratory tract and clinical observations of hypertrophy or atrophy of the upper respiratory mucous membranes, chronic pharyngitis, rhinitis, rhinosinusitis and rhinopharyngitis. Group 1b included the other 17 exposed workers, 12 of whom had no history or clinical findings of upper respiratory tract infections, and 5 who had a history of rare, short, predominantly
acute, inflammatory relapses of viral etiology in the upper respiratory tract. The control
group included 21 non-exposed, age- and gender-matched healthy individuals.
Formaldehyde concentrations measured in the workplace of the exposed group ranged
from 0.64 mg/m³ to 1.92 mg/m³ with a mean of 0.87 ± 0.39 mg/m³. Although routine
hematological tests did not show any differences between the exposed and control
groups, there was a statistically significant negative correlation between the duration of
exposure and erythrocyte count and hematocrit level. Exposed workers had a statistically
significant decreased resistance to infection. Neutrophils generate reactive oxygen
species (the respiratory burst) in response to tissue damage or local invasion of
microorganisms. Although there were no significant differences in the spontaneous or
stimulated neutrophil respiratory burst activity between the exposed group and the
control group, there was a decrease of spontaneous neutrophil respiratory burst activity in
workers with a history and clinical findings of frequent and long-lasting relapses of
chronic inflammation of the upper respiratory tract (group 1a). Therefore, functional
changes in polymorphonuclear neutrophil granulocytes could serve as an early indicator
of an impact of formaldehyde on neutrophil respiratory burst activity.

Erdei et al. (2003) examined the relationship between immune biomarkers and indoor air
quality in 176 school children aged 9 to 11 years. These children had immunologically
related respiratory diseases and lived in Hungarian cities. Nitrogen dioxide,
formaldehyde, benzene, xylene, and toluene were measured in indoor air of the homes of
these children. Higher indoor formaldehyde concentrations were associated with
significantly increased monocyte concentrations and bacterial-specific IgGs.

Ye et al. (2005) examined two populations of formaldehyde-exposed workers in China.
One group of 18 workers was exposed in a formaldehyde manufacturing facility while a
second study group included 16 waiters who were exposed to low levels of formaldehyde
while working in a newly fitted ballroom for 12 weeks. The control group included 23
college students. All study participants were nonsmokers. There was a significantly
increased percentage of B cells accompanied by significantly decreased percentages of
total T cells (CD3) and T-cytotoxic-suppressor cells (CD8) in the manufacturing workers.
compared with the student controls. T-suppressor (CD4) cells were unchanged. These authors also investigated clastogenic effects in these workers (see Section 5.6.4.3).

Veraldi et al. (2006) evaluated the immunotoxic effects of 20 chemicals (including formaldehyde) that are widely used in the work environment. The primary purpose of this study was to document the evidence and to construct a matrix that can be used to estimate the relative risk of the chemicals. This evaluation consisted of three primary steps: (1) conduct a systematic literature search and review the data on immunotoxicity testing and testing schemes, (2) document the evidence (type of immunotoxicity, strength of evidence, and power) in summary tables for each chemical, and (3) assign an index (strong, intermediate, weak, or nil) based on the evidence of toxicity and the type of effect (immunosuppression, autoimmunity, hypersensitivity). The evaluation included both human and experimental animal studies. Based on the overall evidence, these authors placed formaldehyde in the “weak” category. The main immunotoxic effect of formaldehyde was hypersensitivity.

Sasaki et al. (2009) obtained peripheral blood mononuclear cells from nonatopic healthy donors. T cells were isolated and stimulated with anti-CD3/anti-CD28 monoclonal antibodies. Pretreatment with formaldehyde selectively suppressed interferon-γ and interleukin-10 mRNA expression and protein production in stimulated T cells. Formaldehyde also suppressed nuclear factor kappa B (NF-κB) signaling and activated mitogen-activated protein kinases (MAPKs). The authors reported that formaldehyde had both transcriptional and nontranscriptional effects on T cell signaling that promoted a T helper type 2-skewed immune response.

Tang et al. (2009) summarized eight reports of formaldehyde-induced hematotoxicity from Chinese studies (Table 5-10). In general, these studies showed a significant decrease in total white blood cell counts [leucopenia] in exposed workers when compared with controls. Two studies had evidence of pancytopenia [reduced white blood cells, platelets, and red blood cells]. They also presented a case report of pancytopenia in a previously apparently healthy woman after she lived 3 months in a newly remodeled apartment [data
not reported]. Formaldehyde air concentrations were 4-fold above the indoor exposure standard, whereas benzene and toluene were within indoor concentration limits.
Table 5-10. Summary of blood cell counts in Chinese workers with formaldehyde exposure reported by Tang et al. (2009)

<table>
<thead>
<tr>
<th>Subject<sup>a</sup></th>
<th>Concentration (mg/m<sup>3</sup>)</th>
<th>WBC (<sup>×</sup> 10<sup>9</sup>/L)</th>
<th>Plt (<sup>×</sup> 10<sup>9</sup>/L)</th>
<th>Hb (g/L)<sup>b</sup></th>
<th>Notes</th>
<th>Reference (as cited in Tang et al. 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed Control:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>N/A</td>
<td>5.42 ± 2.04***</td>
<td>172.48 ± 87.57***</td>
<td>125.66 ± 21.83</td>
<td>WBC and Plt counts decreased with increasing work years</td>
<td>Tong et al. 2007</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>6.21 ± 1.66</td>
<td>243.10 ± 84.08</td>
<td>128.59 ± 13.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Control1:</td>
<td>239</td>
<td>0.022–0.044</td>
<td>33/239 (14%)**b</td>
<td>77/239 (32%)**</td>
<td>All counts decreased with increasing work years</td>
<td>Yang 2007a</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>8/200 (4%)</td>
<td>26/239 (11%)**b</td>
<td>43/200 (21.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/200 (1%)</td>
<td>77/239 (32%)**</td>
<td>43/200 (21.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Control:</td>
<td>72</td>
<td>0.24–0.93</td>
<td>10/72 (14%)**b</td>
<td>77/239 (32%)**</td>
<td></td>
<td>Cheng et al. 2004</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>8/150 (5%)</td>
<td>26/239 (11%)**b</td>
<td>43/200 (21.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>WBC count decreased with increasing work years</td>
<td>Tang and Zhang 2003</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>5.92 ± 1.51</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Control:</td>
<td>50</td>
<td>0.184</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Control:</td>
<td>55</td>
<td>N/A</td>
<td>5.39***</td>
<td>N/A</td>
<td>Reported increase in IgM, IgA, and eosinophil counts</td>
<td>Qian et al. 1988</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>6.22</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Control:</td>
<td>10</td>
<td>0.44–6.84</td>
<td>5.74 ± 1.35</td>
<td>122.46 ± 32.87</td>
<td>WBC counts decreased, but NS</td>
<td>Xu et al. 2007b</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>6.48 ± 2.15</td>
<td>118.84 ± 22.52</td>
<td>119.77 ± 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 ± 10</td>
<td>119.77 ± 11</td>
<td>119.77 ± 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Control:</td>
<td>104</td>
<td>0.7–19.2</td>
<td>NS</td>
<td>N/A</td>
<td>Original data not provided</td>
<td>Feng et al. 1996</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>N/A</td>
<td>NS</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Most exposed subjects are industrial workers, with the exception of pathologists in the Cheng et al. 2004 study, and nurses in the Kuo et al. 1997 study.

^b Numbers of subjects with decreased blood cell counts are given. Percentage (%) is calculated from subjects with abnormal counts among total subjects.

P < 0.05, **P < 0.01, ***P < 0.001.

WBC = white blood cell, Plt = platelet, Hb = hemoglobin, N/A = not available, NR = not reported, NS = not significant, [FA], formaldehyde concentration.

Tong et al. 2007
Yang 2007a
Cheng et al. 2004
Tang and Zhang 2003
Kuo et al. 1997
Qian et al. 1988
Xu et al. 2007b
Feng et al. 1996

NOT FOR DISTRIBUTION OR ATTRIBUTION September 3, 2009
5.4.2.5 Neurophysiological effects

Neurobehavioral effects have been reported to be related to exposure to formaldehyde in histology technicians (Kilburn et al. 1985a, Kilburn and Warsaw 1992, Kilburn et al. 1987) and fiberglass manufacturing workers (Kilburn 2001, Kilburn et al. 1985a); these effects include lack of concentration and loss of memory, disturbed sleep, impaired balance, variations in mood, alterations of appetite, indigestion, nausea, headache, and fatigue. Many of these studies were reviewed by WHO (2002), and the conclusion of that review was that there was little convincing evidence that formaldehyde is neurotoxic in occupationally exposed populations. Other studies that reported neurobehavioral effects in relation to exposure to formaldehyde include individuals living in homes insulated with urea-formaldehyde foam (Harris et al. 1981, Thun et al. 1982) and in manufactured homes or conventional homes (Kilburn 2000, Loomis 1979, Main and Hogan 1983, Ritchie and Lehnen 1987). Although Ritchie and Lehnen (1987) reported that headaches increased with the formaldehyde concentration in the home in a study of 2,000 residents of nearly 900 mobile and conventional homes in Minnesota, other studies, such as Thun et al. (1982) did not find any significant differences for headache, insomnia, or dizziness. Kuo et al. (1997) (also discussed above under hematological and immunological effects) reported that incidences of dizziness, nausea, difficulty concentrating, tearing, nasal discharge, cough, and difficulty breathing were higher in a group of 50 hemodialysis nurses from four teaching hospitals in Taiwan compared with a control group of 71 ward nurses who did not work in the hemodialysis unit. Dizziness, nausea, fatigue, and difficulty concentrating were associated with formaldehyde exposure, while other symptoms may have been related to sodium perchlorate exposure.

5.4.2.6 Reproductive effects

Epidemiological studies have investigated the reproductive effects of occupational exposures to formaldehyde; however, most of the available studies were not designed specifically for formaldehyde and are confounded by co-exposures to other chemicals (IARC 2006). The reproductive effects examined in these studies included spontaneous abortion, congenital malformations, birth weight, infertility, and sperm abnormalities. IARC reviewed five case control studies and one meta-risk analysis study that included
11 studies. Another study, (Saurel-Cubizolles et al. 1994) that was not included in the
IARC (2006) review investigated pregnancy outcome among operating room nurses. This
study surveyed 17 hospitals in Paris as part of mandatory annual occupational practitioner
visit; analyses were adjusted for age, number and outcome of previous pregnancies, and
tobacco use. Controls were selected from hospital employees that did not work in the
operating room and were matched by hospital, age, and duration of employment. These
studies showed inconsistent reports of higher rates of spontaneous abortion, birth defects,
and low birth weights in women occupationally exposed to formaldehyde. Results are
summarized in Table 5-11.

Table 5-11. Reproductive effects of formaldehyde in humans

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Endpoint</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital staff</td>
<td>Spontaneous abortion</td>
<td>No correlation when adjusted for age, parity, decade of pregnancy, tobacco, and alcohol use</td>
<td>Hemminki et al. 1982 (as cited in IARC 2006)</td>
</tr>
<tr>
<td>Nurses</td>
<td>Spontaneous abortion</td>
<td>No correlation with spontaneous abortion, OR of 1.74 (95% CI = 0.39–7.7) for malformations based on 8 exposed subjects</td>
<td>Hemminki et al. 1985 (as cited in IARC 2006)</td>
</tr>
<tr>
<td></td>
<td>Congenital defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory workers</td>
<td>Spontaneous abortion</td>
<td>OR of 3.5 (95% CI = 1.1–11.2) for spontaneous abortion in women exposed to formalin at least 3 days/wk. No association with congenital malformations.</td>
<td>Taskinen et al. 1994 (as cited in IARC 2006)</td>
</tr>
<tr>
<td></td>
<td>Congenital defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birth weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodworkers</td>
<td>Time to pregnancy</td>
<td>Significant association with delayed conception density and spontaneous abortion.</td>
<td>Taskinen et al. 1999 (as cited in IARC 2006)</td>
</tr>
<tr>
<td></td>
<td>Spontaneous abortion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-risk analysis</td>
<td>Spontaneous abortion</td>
<td>Four studies had higher rates of spontaneous abortion while 5 studies did not. No association with birth weights</td>
<td>Collins et al. 2001b (as cited in IARC 2006)</td>
</tr>
<tr>
<td></td>
<td>Birth weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autopsy service workers</td>
<td>Sperm abnormality</td>
<td>No significant differences between the exposed and control groups</td>
<td>Ward et al. 1984 (as cited in IARC 2006)</td>
</tr>
<tr>
<td>Nurses</td>
<td>Spontaneous abortion</td>
<td>Significant increase ($P < 0.05$) in spontaneous abortion and all birth defects combined in operating room nurses. No significant difference for major birth defects.</td>
<td>Saurel-Cubizolles et al. 1994</td>
</tr>
<tr>
<td></td>
<td>Birth defects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI = confidence interval; OR = odds ratio.

Tang et al. (2009) noted two Chinese studies on formaldehyde exposure and menstrual
disorders. In a food additive factory, 70% of women exposed to formaldehyde through
inhalation (0.82 to 5.96 mg/m3) reported abnormal menstrual cycles, whereas 17%
reported menstrual abnormalities in the control group. In a separate study, anatomy
teachers exposed to over 0.5 mg/m3 formaldehyde reported menstrual disorders and, in
some cases, dysmenorrhea [data not reported].

5.4.3 Toxic effects in experimental animals

The acute and chronic toxicity of formaldehyde has been extensively studied in
experimental animals and recently reviewed by IARC (2006). Acute effects include
irritation, pulmonary hyperreactivity, and cytotoxicity and cell proliferation in the nose
and upper respiratory tract. Mice are more sensitive than rats to respiratory depression.
The primary chronic effects also include cytotoxicity and cell proliferation in the upper
respiratory tract, gastrointestinal irritation and ulceration, and skin sensitization.
Developmental toxicity studies have been conducted on pregnant dams and generally
have not shown a developmental effect at exposure levels that were not maternally toxic.
Other effects reported include oxidative stress, neurotoxicity, immunotoxicity, and
decreased thyroid gland, liver and testis weights. Testicular toxicity has been reported in
rats, mice, and birds. However, effects on male reproductive performance were not
tested.

5.4.3.1 Irritation, sensitization, and respiratory effects

The irritant effects of formaldehyde in experimental animals range from mild irritation to
severe ulceration (IARC 2006). Skin contact sensitization has been reported in mice and
guinea-pigs. Formaldehyde is a potent respiratory tract irritant in rodents, causing slow
and shallow breathing, and histopathological lesions in the nose and upper respiratory
tract. B6C3F$_1$ mice exposed to 4.9 ppm and F344 rats exposed to 31.7 ppm had a 50%
reduction in respiratory rate. Pulmonary hyper-reactivity and bronchoconstriction were
reported in guinea-pigs exposed to 0.3 ppm for 8 hours or >9 ppm for 2 hours. Ingestion
of 82 to 109 mg/kg formaldehyde for 2 years caused severe damage to the gastric mucosa
in male and female Wistar rats (Til et al. 1989).

Both acute and chronic inhalation exposures to formaldehyde can cause cytotoxicity and
cell proliferation in the nasal mucosa and upper respiratory tract of rodents (IARC 2006).
These studies generally show that formaldehyde increases cell proliferation and cell
turnover, inhibits mucociliary function, and causes histopathological changes in the nasal
mucosa in a concentration- and site-specific manner. Histopathological changes include squamous metaplasia, epithelial erosion, epithelial hyperplasia, degeneration of the respiratory and olfactory epithelium, and necrosis. Rats are more susceptible than mice, presumably because mice reduce their minute ventilation more than rats when exposed to high concentrations (Chang et al. 1983, Swenberg et al. 1983a). Furthermore, Swenberg et al. (1983a) and Wilmar et al. (1987) reported that the severity of cytotoxic effects was more dependent upon formaldehyde concentration than the cumulative dose in their studies. Liteplo and Meek (2003) reviewed short-term, subchronic, and chronic studies of the effects of formaldehyde on cell proliferation within the respiratory epithelium of rats and reported that histopathological lesions and a sustained increase in proliferation of nasal epithelial cells were not observed at concentrations of 2 ppm or less. More information on respiratory tract cytotoxicity and cell proliferation is presented in Section 5.7.5.2 as it relates to mechanistic considerations for cancer.

Hilton et al. (1996) conducted a series of tests to study the sensitizing properties of formaldeyde. These included the guinea-pig maximization test, the occluded patch test, the murine local lymph node assay, and the mouse IgE test. The mouse IgE test was used to determine the potential for sensitization of the respiratory tract. Chemicals known to cause respiratory allergy in humans stimulate a significant increase in serum IgE concentrations, while contact allergens do not. Female BALB/c mice and albino Dunkin-Hartley guinea-pigs were used. Formaldehyde elicited strong positive responses in the guinea-pig maximization test, the occluded patch test, and the murine local lymph node assay. The mouse IgE test was negative. The authors concluded that these data indicate that formaldehyde is a potent contact allergen but did not cause sensitization of the respiratory tract.

Lino dos Santos Franco (2006) investigated the mechanisms underlying rat lung injury and airway reactivity changes caused by formaldehyde exposure. Male Wistar rats were exposed to a 1% formaldehyde solution [air concentrations generated from the solution were not reported] for 30, 60, or 90 minutes/day for four days. Methanol (0.32%) was added to the solution to prevent polymerization. Both a non-exposed and a methanol-exposed control groups were included. Animals were killed one day after the final
exposure. The reactivity of isolated trachea and intrapulmonary bronchi were assessed in dose-response curves to methacholine. Local and systemic inflammatory responses were evaluated by counting leukocytes in bronchoalveolar lavage fluid, blood, bone marrow lavage, and spleen. Tracheal reactivity was not affected by formaldehyde exposure, but there was a significant bronchial hyporesponsiveness in exposed rats. Formaldehyde exposure was associated with a significant increase in the total cell numbers in bronchoalveolar lavage fluid, peripheral blood and spleen, but not in bone marrow. The effect was time-dependent in bronchoalveolar fluid with the maximum response observed after 90 minutes exposure. Leukocytes in the bronchoalveolar fluid were composed mainly of mononuclear cells in rats exposed for 30 or 60 minutes, but both mononuclear cells and neutrophils were observed in rats exposed for 90 minutes. The authors proposed that formaldehyde exposure may affect lung resident cells, including macrophages and mast cells that could mediate the lung inflammatory response and the systemic release of inflammatory mediators. The inflammatory mediators may trigger systemic immune responses and be implicated in the increased number of cells in the spleen.

Lino dos Santos Franco et al. (2009) further investigated the lung allergic response in male Wistar rats exposed to formaldehyde vapors produced from a 1% aqueous solution for 90 minutes daily on three consecutive days. The rats were subsequently sensitized with ovalbumin and aluminum hydroxide by i.p. injection. Two weeks later, the rats were challenged with aerosolized ovalbumin. Rats treated with formaldehyde had a lower-intensity lung inflammation response (i.e., reduced number of inflammatory cells in bronchoalveolar lavage) compared with rats that were not treated with formaldehyde. Furthermore, the formaldehyde-treated rats had a reduced number of bone marrow cells and blood leukocytes suggesting that the effects were not localized just to the airways. The authors concluded that formaldehyde may impair the lung cell recruitment after an allergic stimuls, thereby leading to a nonresponsive condition against inflammatory stimuli.

5.4.3.2 Cytotoxicity

Wilmer et al. (1989) compared the effects of intermittent versus continuous formaldehyde exposures in male Wistar rats [age not reported]. Groups of 25 rats were
exposed to formaldehyde at a concentration of 0, 1, or 2 ppm for 8 hours or to a
concentration of 2 or 4 ppm during eight 30-minute intervals separated by 30-minute
non-exposure periods. These concentrations were selected to represent marginally
cytotoxic levels as determined from previous studies. Exposures were carried out 5
days/week for 13 weeks. For examination of cell proliferation, 5 rats from each group
were given a single dose (74 kBq/g) of $[^3]$H]thymidine 18 hours after the third day of
exposure and were killed 2 hours later. The cell-proliferation procedure was repeated in 5
additional rats from each group after 13 weeks. At the end of the study, the animals were
necropsied and examined for gross pathology. Six standard cross sections of the nasal
cavity were processed and examined by light microscopy. Body weight did not differ
between any exposure group and the controls. Exposure-related effects in the nasal cavity
were seen only in the rats exposed to formaldehyde intermittently at 4 ppm. Increased
degrees and incidences of disarrangement, hyperplasia, and squamous metaplasia with or
without keratinization of the respiratory epithelium were reported. The cell-proliferation
study indicated that after 13 weeks, the cell-turnover rate of the nasal respiratory
epithelium was three times as high in the 4-ppm group as in the controls. The cell-
proliferation rates in the other groups were comparable to control values. The authors
concluded that the severity of the cytotoxic effects was determined by the exposure
concentration rather than total dose (concentration × exposure time).

5.4.3.3 Neurotoxicity
IARC (2006) reviewed two animal studies by Pitten et al. (2000) and Malek et al. (2003)
that reported possible neurobehavioral effects of formaldehyde. Pitten et al. (2000)
reported that exposure to formaldehyde by inhalation at either 2.6 or 4.6 ppm
significantly increased the time required to find food and the number of mistakes made
during the trials, and these effects increased with the length of the exposure period.
However, the IARC Working Group concluded that there was no evidence that the
changes seen in this study were due to formaldehyde-induced neurotoxicity and
suggested that loss of olfactory capacity and visual difficulties with irritant effects to the
cornea, changes that would have improved after treatment was stopped, could explain the
results. The study by Malek et al. reported the effects of exposure to formaldehyde on the
performance of male and female Lewis rats in a water maze. The formaldehyde-exposed
rats (0.5 and 5.4 ppm) required significantly longer swimming periods to reach the finish and made significantly more errors that the control animals. Although the authors concluded that formaldehyde affected the learning behavior and memory of rats, IARC noted that complications of blurry vision and loss of olfactory cues were not controlled for, and the Working Group suggested that the treatment-related response was not due to a CNS effect.

A number of other studies of neurobehavioral effects in rats or mice exposed to formaldehyde have been published. Malek et al. (2003) reported that a single exposure to formaldehyde significantly affected the locomotor and explorative behavior of rats, but the effects did not show any linear trends with respect to the formaldehyde concentrations (1, 2.5, or 5 ppm). Malek et al. (2004) also exposed male AB mice to 1.1-, 2.3-, or 5.2-ppm formaldehyde vapor for 2 hours, and locomotion and explorative activity in the open field were significantly affected at both 2 and 24 hours after exposure. Usanmaz et al. (2002) reported that low concentrations (1.8 ppm) of formaldehyde increased the excitability of the CNS in male and female BALB/c mice but, as the concentration increased (up to 14.8 ppm), a general depressant effect on the CNS became more pronounced.

Cellular and biochemical changes in the brains of rats and mice have also been proposed to be related to exposure to formaldehyde. These studies involved measurements of cell number or protein expression in the hippocampus, a region of the brain related to memory and learning. Songur et al. (2003) reported increases in heat shock protein 70 kDa (Hsp70)-positive neurons in the hippocampus of formaldehyde-exposed Wistar rats (0-, 6-, or 12-ppm formaldehyde). The number of pyknotic neurons also increased in the exposed groups. Gurel et al. (2005) reported that male Wistar rats that received i.p. injections of formaldehyde for 10 days had degenerated neurons with pyknotic nuclei and fewer neurons in the frontal cortex and hippocampus compared with controls. Aslan et al. (2006) and Sarsilmaz et al. (2007) reported that male Wistar rats exposed neonatally to 0-, 6-, or 12-ppm formaldehyde for 30 days had significantly increased numbers of granule cells in the hippocampal formation in both low- and high-dose groups (Aslan et al.)
significantly fewer pyramidal cells in the hippocampus in the high-dose group (Sarsilmaz et al.).

Other reports of changes in the hippocampus were published in a series of studies of formaldehyde exposure to ovalbumin-immunized mice by Fujimaki et al. (2004), Tsukuhara et al. (2006), and Ahmed et al. (2007). Exposure to 400-ppb formaldehyde significantly increased brain nerve growth factor (NGF) levels and NGF mRNA in immunized mice (Fujimaki et al.). Exposure to 400-ppb formaldehyde in immunized mice also significantly increased the ratio of Bcl-2 to Bax protein, which the authors concluded would exert a protective effect against cell death by apoptosis (Tsukuhara et al.). In the third paper, Ahmed et al. reported that formaldehyde exposure upregulated expression of hippocampal genes (NR2A, D1 and D2 receptors, and CREB-1) known to play an essential role in the hippocampal synaptic plasticity underlying learning and memory in immunologically sensitized mice.

Lu et al. (2008b) reported that inhaled formaldehyde negatively affected learning and memory in Kun Ming mice (an outbred stock of Swiss albino mice). Mice exposed 6 hours/day to 3 mg/m³ formaldehyde for 1 week had decreased water maze performance and lower dismutase superoxide activity and glutathione levels compared with a control group. Malondialdehyde content and NR1 and NR2B expression increased. Mice exposed to 1 mg/m³ formaldehyde were not affected. Oxidative stress-induced neuron damage to the brain was identified as a possible mechanism.

5.4.3.4 Immunologic and other effects
IARC (2006) reviewed several studies that investigated immunologic effects of formaldehyde in mice and rats. B6C3F1 mice exposed to 15-ppm formaldehyde 6 hours/day, 5 days/week for 3 weeks did not have any significant changes in immune function except for an increase in host resistance to Listeria monocytogenes infection. In other studies in mice, formaldehyde exposure did not alter the number or impair the function of resident peritoneal macrophages. BALB/c mice exposed to 2 mg/m³ [1.6 ppm] 6 hours/day for 10 days had enhanced anti-ovalbumin IgE titer; however, in another study, the IgG1 response of ICR mice to a mite allergen in the respiratory tract was not enhanced after exposure to a 0.5% formaldehyde aerosol. There was no evidence that
long-term exposure to high concentrations (12.6 ppm) of formaldehyde impaired B-cell function.

Vargová et al. (1993) evaluated immune function in male Wistar rats administered formaldehyde by gastric lavage 5 days per week for 4 weeks at doses of 0, 20, 40, or 80 mg/kg. Other routine parameters, including hematology, clinical chemistry, and body and organ weights also were examined. Immune system parameters evaluated included cell-mediated immunity, humoral-mediated immunity, and immunopathology. Lymph node weights were significantly increased in the dosed groups, but the cellularity of lymphoid organs was not affected. The percentage of monocytes was significantly increased, but the percentage of lymphocytes was significantly reduced. There was a dose-dependent decrease in antibody response (IgG + IgM), but there was no significant reduction in the number of antibody-producing (IgM) cells in the spleen. There was a non-significant reduction in microbicidal activity of blood phagocytes (measured by interaction with the yeast Candida albicans). Phagocytic activity (measured by adhesion of hydrophilic synthetic microspheric particles to leukocytes) was significantly reduced only at the 40 mg/kg dose for polymorphonuclear leukocytes and monocytes combined.

Patel et al. (2003) exposed groups of 10 male albino rats to 5, 10, or 15 mg/kg per day for 30 days by i.p. injection. A control group was injected with saline for 30 d. Animals were killed on the 31st day. Rats exposed to 10 or 15 mg/kg had a significantly lower thyroid gland weight, follicular regression, decreased triiodothyronine (T₃) and thyroxine (T₄), and enhanced thyroid stimulating hormone (TSH). Rats in the low-dose group had significantly decreased T₃ and enhanced TSH. Histological examination showed follicular degeneration in the mid-dose group and follicular atrophy in the high-dose group.

Long-term exposure to formaldehyde vapor induced differential immunogenic and neurogenic inflammatory responses in female C3H/He mice (Fujimaki et al. 2004). Mice were exposed to 0, 80, 400, or 2,000 ppb 16 hours/day, 5 days/week for 12 weeks. Some mice were given i.p. injections of ovalbumin (OVA) before exposure to formaldehyde. These mice also were exposed to aerosolized OVA on weeks 3, 6, 9, and 11 for 6 minutes
as a booster. Mice were killed the day after the final formaldehyde exposure. There were no significant increases in various types of inflammatory cells in bronchoalveolar lavage fluid in non-immunized mice, but in the high-dose OVA-immunized group, there was a significant increase in the number of bronchoalveolar cells, macrophages, and eosinophils. There was no histological evidence that formaldehyde caused impairment of the epithelial cells in the lung of any of the exposed groups. Formaldehyde-exposed immunized mice had significantly lower production of IL-1β compared to controls, but TNF-α, IL-6, and granulocyte/macrophage colony stimulating factor remained at control levels. Nerve growth factor in non-immunized mice increased in a dose-dependent manner. Spleen cells, stimulated with lipopolysaccharide to induce cell proliferation, produced significantly higher levels of interferon (IFN-γ) in the high-dose nonimmunized group. Immunized mice exposed to 400 or 2,000 ppb had a significant increase in the production of monocyte chemoattractant protein from spleen cells cultured for 24 hours with OVA. Antigen-specific antibody titers in plasma did not show any significant differences in anti-OVA IgE, total IgE, or anti-OVA IgG2a production. Anti-OVA IgG1 and anti-OVA IgG3 production were significantly decreased in the 400-ppb exposure group. There was a dose-dependent increase in substance P levels in the plasma of nonimmunized mice but not in OVA-immunized mice. The authors noted that if the decreased nerve growth factor is related to modulation of sensory neurons and immune abnormalities, these associations may provide an explanation for the multi-organ symptoms in patients with chemical sensitivities.

Beall and Ulsamer (1984) reviewed the hepatotoxic effects of formaldehyde. They reported that formaldehyde appeared to be associated with hepatotoxicity in mice, rats, hamsters, guinea-pigs, rabbits, dogs, and humans following injection, ingestion, or inhalation. Effects included alterations in weight, centrilobular vacuolization, focal cellular necrosis, and increased alkaline phosphatase concentrations. The hepatic changes were generally not extensive, and were reversible following acute exposure, but the authors believed that the effects could become progressively more serious with repeated exposures. Quantification of dose-response relationships was not possible because the chemical purity, exposure concentrations, and measurement methods were not always
reported. Possible mechanisms, depending on the route of exposure) suggested by the authors included direct effects on hepatocytes, indirect effects through the circulatory and immune systems, and possible additive effects with hepatotoxic chemicals due to glutathione depletion. Some of the effects were probably caused by secondary mechanisms such as passive hepatic congestion, serum pH fluctuations, or tissue damage at other sites.

Woutersen et al. (1987) conducted a 13-week inhalation toxicity study in rats exposed to formaldehyde at 0, 1, 10, or 20 ppm for 6 hours/day, 5 days/weeks. At the high dose, uncoordinated locomotion and excitation was observed during the first 30 minutes of each exposure. Other effects included yellowing of the fur, growth retardation, decreased plasma protein levels, and squamous metaplasia of the nasal epithelium, and increased activities of plasma aspartate amino transferase, alanine amino transferase, and alkaline phosphatase (males only). At 100 ppm, the only effects were yellowing of the fur and squamous metaplasia of the nasal epithelium. There was no histopathological evidence of hepatotoxicity in any treatment group.

Golalipour et al. (2008) reported that exposure to formaldehyde vapor caused morphometric changes in the spleen of albino Wistar rats. A total of 28 rats were divided into 4 groups, including a control group which received no formaldehyde exposure. The treatment groups were exposed to 1.5-ppm formaldehyde for 2 hours/day on 2 days/week; 2 hours/day on 4 days/week, or 4 hours/day on 4 days/week for 18 weeks. The germinal center diameter, germinal center area, and marginal zone diameter were increased by formaldehyde exposure, while the mantle layer diameter was decreased.

5.4.3.5 Reproductive and developmental effects The reproductive and developmental toxicity of formaldehyde by various routes of exposure has been investigated in rats, mice, hamsters, rabbits, and dogs (IARC 2006). Reported effects included prolongation of pregnancy, changes in fetal organ weights, and various clinical and biochemical changes in the spleen, liver, kidney, thymus, and lymphocytes. There was no evidence of embryolethal or developmental effects when pregnant Sprague-Dawley rats were exposed to 0, 5, 10, 20, or 40 ppm for 6 hours/day from gestational day 6 to 20. IARC (2006) noted that 20 ppm would be considered a
toxic dose. Another study in Sprague-Dawley rats reported reduced ossification in offspring at 5 and 10 ppm, but none of the reproductive parameters were affected. At 10 ppm, there was a significant decrease in food consumption and weight gain. Formaldehyde was applied dermally to the shaved backs of anesthetized pregnant Syrian hamsters for a 2 hours period on days 8 to 11 of gestation. The incidence of resorptions increased, but no malformations were reported. The authors noted that the increased resorptions might have been caused by the stress of anesthesia. Female Wistar rats exposed to 0.5 or 1.5 mg/m³, 4 hours/day for up to 4 months were mated with untreated males. There was a significant increase in the number of degenerating embryos (attributed to structural impairment in blastomeres) in the high-dose group.

Thrasher and Kilburn (2001) reviewed the embryo toxicity and developmental toxicity of formaldehyde. Depending upon the exposure period of the dam, the available studies resulted in increased embryo mortality, increased fetal anomalies, decreased concentrations of ascorbic acid, and abnormalities in lysosomal, mitochondrial and endoplasmic reticulular enzymes. Rats exposed before mating had increased embryo mortality while those exposed during mating had increased fetal anomalies. They also reported that 14C-labelled formaldehyde (tail-vein injection) crosses the placenta and that concentrations in fetal brain and liver were higher than in maternal tissues. Using a similar protocol, Katakura et al. (1993) also studied the distribution of radioactivity from 14C-labelled formaldehyde in pregnant ICR mice. They reported formaldehyde or its metabolites are rapidly transported to the fetus and that elimination of radioactivity is slower in fetal tissues than in maternal tissues, especially in the fetal brain and liver.

5.4.3.6 Testicular toxicity
Ten studies (seven in rats, one in mice, and two in birds) were located that investigated the effect of formaldehyde exposure on the testis and are briefly discussed below. After formaldehyde exposure, decreased testis weights, decreased seminiferous tubule diameters, and abnormal spermatogenesis and sperm morphologies were reported.

Exposure to formaldehyde vapor caused morphometric changes in the seminiferous epithelium of Wistar rats (Golalipour et al. 2007). A total of 28 rats were divided into 4 groups. The treatment groups were exposed to 1.5 ppm formaldehyde for 2 hours/day on
2 days/week (E3); 2 hours/day on 4 days/week (E2), or 4 hours/day on 4 days/week (E1) for 18 weeks. The mean seminiferous tubular diameter and seminiferous epithelial height showed a significant decrease with increasing duration of exposure (Table 5-12). The authors also reported a decrease in germ cells in E1 and E2 exposure groups, disruption of the association between Sertoli cells and germinal cells in the E3 exposure group, and arrested spermatogenesis in the E1 exposure group [no quantitative data provided].

Table 5-12. Seminiferous tubular diameter and height in Wistar rats

<table>
<thead>
<tr>
<th>Effect</th>
<th>Control, mean ± SD</th>
<th>E1a, mean ± SD</th>
<th>E2b, mean ± SD</th>
<th>E3c, mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminiferous tubular diameter (µm)</td>
<td>252.12 ± 4.82</td>
<td>204.55 ± 3.29*</td>
<td>232.45 ± 2.42*</td>
<td>238.94 ± 4.37*</td>
</tr>
<tr>
<td>Seminiferous epithelial height (µm)</td>
<td>82.77 ± 2.00</td>
<td>65.26 ± 1.43*</td>
<td>69.46 ± 1.78*</td>
<td>72.80 ± 2.03*</td>
</tr>
</tbody>
</table>

Source: Golalipour et al. 2007.
* P<0.05 (compared with controls)

a Exposed 4 h/d, 4 d/wk.
b Exposed 2 h/d, 4 d/wk.
c Exposed 2 h/d, 2 d/wk.

Özen et al. (2005) also reported decreases in seminiferous tubule diameter and serum testosterone levels and a concomitant increase in immunochemical staining for Hsp 70 in Wistar rats with increasing inhalation exposure to formaldehyde over a 13-week period (Table 5-13).
Table 5-13. Mean seminiferous tubular diameters and testosterone serum levels after 13-week exposure to formaldehyde by inhalation in rats

<table>
<thead>
<tr>
<th>Treatment (ppm)</th>
<th>Tubule diameter, mean ± SEM (µm) N = 100</th>
<th>Serum testosterone, mean ± SEM (ng/dL) N = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>259.22 ± 16.18</td>
<td>406.54 ± 16.82</td>
</tr>
<tr>
<td>5</td>
<td>236.17 ± 13.09***</td>
<td>244.01 ± 23.86***</td>
</tr>
<tr>
<td>10</td>
<td>233.24 ± 10.13***</td>
<td>141.30 ± 8.56***</td>
</tr>
</tbody>
</table>

*** P < 0.001.

In a separate study, Özen et al. (2002) measured trace element concentrations in the testis after subacute (4-weeks) and subchronic (13-weeks) formaldehyde exposures for 8 hours/day and 5 days/week. Both copper and zinc tissue concentrations decreased (P < 0.001) with subacute and subchronic exposure; however, iron levels increased with both exposure durations. The authors noted that decrease in zinc and copper concentrations might affect the functions of some antioxidant metalloenzymes that require these cofactors, such as superoxide dismutase.

Özen et al. (2008) investigated the effect of formaldehyde exposure on antioxidant enzymes in the testis. Adult Wistar rats (7 per group) were injected with formaldehyde (10 mg/kg b.w., i.p. every other day for one month). Glutathione peroxidase, superoxide dismutase and malondialdehyde testicular enzyme levels were determined; the levels of superoxide dismutase and glutathione peroxidase decreased significantly (P < 0.001) with formaldehyde exposure, whereas, the level of malondialdehyde increased significantly (P < 0.001) compared to control values. Co-treatment with melatonin (25 mg/kg-bw, i.p.) inhibited these effects.

A significant dose-related increase in rat sperm-head abnormalities 3 weeks after i.p. injection of formaldehyde for five days (0.125, 0.250, and 0.50 mg/kg b.w. per day) was reported by Odeigah (1997). There was a lower frequency of fertile matings within the first two weeks after treatment, but not after 3 weeks. [IARC (2006) questioned the biological significance of these findings because of the reactivity of formaldehyde and the parenteral route of exposure.]
Majumder and Kumar (1995) treated adult male Wistar rats with i.p. injections of formaldehyde (10 mg/kg b.w. per day) for 30 days. Animals were sacrificed on the 31st day and testis, prostate, seminal vesicles, and epididymis were removed. Significant decreases were noted in sperm counts, viability, and motility in the treated group (Table 5-14). Protein and DNA content were measured in these tissues. Significant decreases in DNA content of the testis (9.8 ± 1.01 vs. 4.6 ± 0.37 μg/mg tissue, $P < 0.001$) and prostate (6.1 ± 1.39 vs. 1.2 ± 0.49 μg/mg tissue, $P < 0.001$) were reported for the treated group.

Table 5-14. *In vivo* effect of formaldehyde on spermatozoa

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control, mean ± SEM (N = 10)</th>
<th>Treated, mean ± SEM (N = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperm count (10⁶/mL)</td>
<td>46.30 ± 5.01</td>
<td>20.40 ± 2.01***</td>
</tr>
<tr>
<td>Sperm viability (%)</td>
<td>87.10 ± 0.83</td>
<td>72.60 ± 2.32***</td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td>75.00 ± 10.90</td>
<td>22.00 ± 6.40***</td>
</tr>
</tbody>
</table>

*Chowdhury et al (1992) treated Charles Foster rats with formaldehyde at i.p. doses of 5, 10, and 15 mg/kg body weight over 30 days. A significant decrease in testicular 3-β,-Δ⁵-hydroxy steroid dehydrogenase (determined by histochemical reaction intensity) and serum testosterone (420, 200, 195, 150 ng/dL for control and increasing dose groups, respectively, $P < 0.01$) was reported for formaldehyde-exposed groups. Leydig cell nuclear diameter and cell number/cm² decreased.

Ward et al. (1984) investigated the effect of oral administration of 100 mg/kg formalin solution (37% formaldehyde, 10% methanol in water) by giving 5 daily doses to B6C3F1 mice. Animals were sacrificed 5 weeks after treatment and sperm morphology analyzed. A non-significant increase in the percentage of abnormal sperm was reported for the formalin-exposed group as compared with the water-exposed control group (1.49 ± 0.90 vs. 1.12 ± 0.39 %).

Two studies in birds examined testicular pathology after oral administration of formaldehyde. Japanese quail (Anwar et al. 2001) were fed formalin-containing feed (20, 10, 5, 2.5, and 0 mL/kg feed) for 8 weeks; relative testis weights and seminiferous tubule diameters were decreased significantly at the three highest doses ($P \leq 0.05$). In a separate
study (Khan et al. 2003), formalin was either mixed in feed (2.5, 5, 10 mL of 37% w/w formalin/kg feed) or a 3% solution administered into the crops of White Leghorn cockerels (5, 10, 15, 20 mL/d). All of the groups given formalin had significantly smaller diameter seminiferous tubules than the control birds ($P \leq 0.05$). Further, testes absolute and relative mass and volumes were significantly decreased in the groups administered 3% formalin in the crop at 15 and 20 mL/day ($P \leq 0.05$)

5.5 Carcinogenicity studies of metabolites and analogues

Formic acid has not been evaluated for carcinogenicity. Acetaldehyde and glutaraldehyde are analogues of formaldehyde that have been tested for carcinogenicity by the NTP, as has the aromatic aldehyde benzaldehyde (see Section 1 for structures of the formaldehyde analogues). Other simple aldehydes, propionaldehyde, butyraldehyde, and n-pentanal, have not been tested in 2-year bioassays by the NTP, but no information on other chronic assays were identified.

Acetaldehyde is currently listed in NTP’s Report on Carcinogens as *reasonably anticipated to be a human carcinogen*. Rats exposed by inhalation to acetaldehyde developed respiratory tract tumors (primarily adenocarcinoma and squamous-cell carcinoma of the nasal mucosa), while hamsters developed laryngeal carcinoma (IARC 1999). IARC also noted that human data are limited but indicate a possible increase in oral, esophageal, pharyngeal, and laryngeal cancers in people who have a genetic polymorphism leading to higher internal levels of acetaldehyde following heavy alcohol intake. In addition, there have been case reports of bronchial and oral cavity tumors among chemical workers exposed to various aldehydes. Glutaraldehyde was tested for carcinogenicity in F344 rats and B6C3F1 mice (NTP 1999). Rats were exposed to 0, 250, 500, or 750 ppb, and mice were exposed to 0, 62.5, 125, or 250 ppb glutaraldehyde vapor 6 hours/day, 5 days/week for 104 weeks. The NTP concluded that there was no evidence of carcinogenic activity of glutaraldehyde in either rats or mice. Hester et al. (2005) concluded that glutaraldehyde’s lack of carcinogenicity may be due to a combination of its greater toxicity from lack of DNA-repair, greater mitochondrial damage, and increased apoptosis compared with formaldehyde (see Section 5.6.5). Benzaldehyde in corn oil was administered by gavage 5 days/week to F344 male and female rats at 0, 200, or 400
mg/kg b.w. for 103 weeks, to male B6C3F1 mice at 0, 200, 400 mg/kg b.w. for 104 weeks, and to female B6C3F1 mice at 0, 300 or 600 mg/kg b.w. for 103 weeks (NTP 1990). The NTP concluded that there was no evidence of carcinogenic activity of benzaldehyde for male and female rats and some evidence of carcinogenic activity for male and female mice as indicated by increased incidences of squamous-cell papillomas and hyperplasia of the forestomach.

5.6 Genetic and related effects

The genetic toxicology of formaldehyde has been investigated in a variety of in vitro and in vivo assays and has been reviewed (ATSDR 1999, Conaway et al. 1996, IARC 1995, 2006, Liteplo and Meek 2003, WHO 1989). This section summarizes the genetic effects in prokaryotes, non-mammalian eukaryotes, in vitro studies with mammalian and human cells, and in vivo studies in experimental animals. The genetic effects of formaldehyde in exposed humans are described in more detail in Section 5.6.4.

5.6.1 Prokaryotes

The studies summarized in this section include those reviewed by Conaway et al. (1996) and IARC (2006) (Table 5-15). Only one additional study published after IARC (2006) was identified (see discussion below).

All of the studies with Salmonella typhimurium strains TA102 and TA104 were positive for base-pair mutations in the presence or absence of metabolic activation. Most (67%) of the studies with TA100 were positive and all studies with TA1535 were negative. Results were mixed for frameshift mutations with S. typhimurium strains TA97, TA98, TA1537, and TA1538. One study with TA97 was positive without metabolic activation. Only two of seven studies with TA98 were positive without metabolic activation, but three studies with this strain were weakly positive with metabolic activation. All studies with TA1537 or TA1538 were negative, with or without metabolic activation. Ma and Harris (1988) reported that about 75% of the reverse mutation studies in S. typhimurium strains were positive. These authors noted that, in general, the mutation efficiency was higher in studies that used the preincubation protocol (a test tube containing a suspension of the tester strain plus S9 mix or plain buffer without S9 is incubated for 20 minutes with the
test chemical before adding agar and pouring into Petri dishes containing bacterial culture
medium) compared with studies that used the plate incorporation protocol (no
preincubation step prior to plating in Petri dishes).

Studies with *Escherichia coli* were positive for forward or reverse mutations without
metabolic activation (Table 5-15) (Conaway *et al.* 1996, IARC 2006). The mutational
spectrum in *E. coli* varied with concentration (Liteplo and Meek 2003). At 4 mmol/L,
formaldehyde induced 41% large insertions, 18% large deletions, and 41% point
mutations. Most of the point mutations were transversions at GC base pairs. However, at
40 mmol/L, point mutations (primarily transitions at a single AT base pair) accounted for
92% of the genetic alterations. In addition, formaldehyde caused differential toxicity,
DNA strand breaks, DNA-protein crosslinks, and related DNA damage in *E. coli* (Table
5-15).

A study by Wang *et al.* (2007) reported that formaldehyde treatment of *E. coli* resulted in
a dose-dependent microsatellite instability. Their results showed that with 2.5 mM
formaldehyde treatment, the complementary dinucleotide repeat microsatellites (GpT)_n
and (ApC)_n were induced at different frequencies (13 to 24-fold vs. 2 to 3-fold higher
than controls, respectively). The authors postulated that this could be due to the
unprotected syn position of the guanosine nucleotides in the DNA; this may specifically
involve the formation of a Z-DNA structure, which is a conformation that is more
difficult for DNA repair enzymes to repair. They further hypothesized that the mutagenic
mechanism of formaldehyde and the formation of Z-DNA might account for the observed
microsatellite instability.
Table 5-15. Genetic effects of formaldehyde in bacteria

<table>
<thead>
<tr>
<th>Test system</th>
<th>Effect</th>
<th>Resultsa</th>
<th>Without S9</th>
<th>With S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. typhimurium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[strains not reported]</td>
<td>Forward mutation</td>
<td>+ (1/1)</td>
<td>+ (1/1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse mutation</td>
<td>− (0/1)</td>
<td>− (0/1)</td>
<td></td>
</tr>
<tr>
<td>S. typhimurium</td>
<td></td>
<td>(+) (8/12)</td>
<td>± (6/9)</td>
<td></td>
</tr>
<tr>
<td>TA100</td>
<td>Reverse mutation (base-pair)</td>
<td>+ (5/5)</td>
<td>+ (1/1)</td>
<td></td>
</tr>
<tr>
<td>TA102</td>
<td></td>
<td>+ (3/3)</td>
<td>+ (1/1)</td>
<td></td>
</tr>
<tr>
<td>TA104</td>
<td></td>
<td>− (0/1)</td>
<td>− (0/1)</td>
<td></td>
</tr>
<tr>
<td>TA1535</td>
<td></td>
<td>+ (1/1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA7005</td>
<td></td>
<td>± (6/9)</td>
<td>± (6/9)</td>
<td></td>
</tr>
<tr>
<td>S. typhimurium</td>
<td></td>
<td>+ (1/1)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>TA97</td>
<td>Reverse mutation (frameshift)</td>
<td>− (2/7)</td>
<td>± (3/6)</td>
<td></td>
</tr>
<tr>
<td>TA98</td>
<td></td>
<td>− (0/5)</td>
<td>− (0/5)</td>
<td></td>
</tr>
<tr>
<td>TA1537</td>
<td></td>
<td>− (0/4)</td>
<td>− (0/3)</td>
<td></td>
</tr>
<tr>
<td>TA1538</td>
<td></td>
<td>± (3/6)</td>
<td>± (3/6)</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>Forward mutation</td>
<td>+ (3/3)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse mutation</td>
<td>+ (13/13)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strand breaks, crosslinks, related damage</td>
<td>+ (2/2)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential toxicity</td>
<td>+ (2/2)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>Instability of induced microsatellites</td>
<td>+ (1/1)</td>
<td>NT</td>
<td></td>
</tr>
</tbody>
</table>

+ = positive studies, − = negative studies, (+) = mostly positive, (−) = mostly negative, ± = at least 2 positive and 2 negative studies; NT = not tested.
a Number of positive studies/total number of studies reviewed shown in parentheses.

5.6.2 Non-mammalian eukaryotes
Formaldehyde induced mutations, DNA damage, strand breaks, crosslinks, and other genetic effects (Table 5-16) in all studies in yeast, fungi, plants, insects, and nematodes (IARC 2006). A micronucleus study in newt larvae was negative. All of these studies were conducted in the absence of metabolic activation. Several of these studies compared effects in wild type and DNA repair-deficient organisms. For example, Magaña-Schwencke et al. (1978) reported that *Saccharomyces cerevisiae* strains that were deficient in excision repair were more susceptible to the lethal effects of formaldehyde and had a reduced capacity to undergo single-strand breaks compared with the wild type. The authors concluded that this indicates that single-strand breaks may be a step in the repair process for formaldehyde-induced lesions. The mutagenic effects of formaldehyde were also different in DNA repair-proficient and repair-deficient strains of *Neurospora*...
crassa (de Serres and Brockman 1999). The mutant frequencies in the repair-deficient strain were higher than in the repair-proficient strain.

Table 5-16. Genetic effects of formaldehyde in non-mammalian eukaryotes

<table>
<thead>
<tr>
<th>Test system</th>
<th>Effect</th>
<th>Results<sup>a</sup> (without S9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>Gene conversion</td>
<td>+ (1/1)</td>
</tr>
<tr>
<td></td>
<td>Strand breaks, crosslinks, related damage</td>
<td>+ (2/2)</td>
</tr>
<tr>
<td></td>
<td>Homozygosis</td>
<td>+ (1/1)</td>
</tr>
<tr>
<td>Neurospora crassa</td>
<td>Forward mutation</td>
<td>+ (4/4)</td>
</tr>
<tr>
<td></td>
<td>Reverse mutation</td>
<td>± (1/3)</td>
</tr>
<tr>
<td>Tradescantia palida</td>
<td>Micronucleus</td>
<td>+ (1/1)</td>
</tr>
<tr>
<td>Various plants</td>
<td>Mutation</td>
<td>+ (1/1)</td>
</tr>
<tr>
<td></td>
<td>DNA damage</td>
<td>+ (1/1)</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>Genetic cross-over or recombination</td>
<td>+ (3/3)</td>
</tr>
<tr>
<td></td>
<td>Sex-linked recessive lethal mutations</td>
<td>+ (8/8)</td>
</tr>
<tr>
<td></td>
<td>Dominant lethal mutations</td>
<td>+ (2/2)</td>
</tr>
<tr>
<td></td>
<td>Heritable translocation</td>
<td>+ (2/2)</td>
</tr>
<tr>
<td></td>
<td>Gene mutation</td>
<td>+ (1/1)</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>Recessive lethal mutation</td>
<td>+ (1/1)</td>
</tr>
<tr>
<td>Pleurodeles walti (newt larvae)</td>
<td>Micronucleus</td>
<td>− (0/1)</td>
</tr>
</tbody>
</table>

Sources: IARC 2006, Conaway et al. 1996.
+ = all studies were positive, ± = both positive and negative studies, − = negative study.
^a Number of positive studies/total number of studies reviewed shown in parentheses.

5.6.3 Mammalian systems

Data are reported here for genetic tests in mammalian cells, including human cells, and in experimental animals. The reported effects of formaldehyde in mammalian systems include DNA adducts, DNA-protein crosslinks, strand breaks, clastogenic effects, mutations, unscheduled DNA synthesis, inhibition of DNA repair, and cell transformation. Section 5.6.5 discusses effects on gene expression in humans.

5.6.3.1 DNA adducts, DNA-protein crosslinks, and DNA damage

Findings from studies that evaluated exposure to formaldehyde and DNA adducts, DNA-protein crosslinks and DNA strand breaks are summarized in Tables 5-17 (*in vitro* studies) and 5-18 (*in vivo* studies).

In *vitro* studies
Formaldehyde has been shown to react with mammalian cell DNA to form hydroxymethyl derivatives. Formaldehyde induced DNA adducts when reacted with deoxyribonucleosides (Cheng et al. 2008), calf thymus DNA (Beland et al. 1984, Von Hippel and Wong 1971), Chinese hamster ovary cells (Beland et al. 1984), human placental DNA (Zhong and Hee 2004a) and human nasal epithelial cells (Speit et al. 2008b, Zhong and Que Hee 2004b) (Table 5-17). Cheng et al. (2008) demonstrated that nitrosamines that generate formaldehyde during metabolism also form formaldehyde adducts when reacted with calf thymus DNA and deoxyribonucleosides. Using HPLC and NMR analysis, hydroxymethyl derivatives at the exocyclic amines of deoxyadenosine, deoxycytidine, and deoxyguanosine were identified after formaldehyde exposure of calf thymus DNA, and hydroxymethyl deoxythymidine derivatives were detected after exposure of Chinese hamster ovary cells (Beland et al. 1984). Zhong and Que Hee (2004b) showed that formaldehyde (in solution, but not in air) caused N6-dA, N2-dG, and N4-dC adducts in human epithelial cells. Formaldehyde-treated DNA and RNA have also yielded methylene-bridged crosslinks connecting exocyclic amino groups between nucleosides (Chaw et al. 1980).

Recently Lu et al. (2009) demonstrated that formaldehyde crosslinks DNA and glutathione to form S-[1-(N2-deoxyguanosinyl)methyl]glutathione. The intermediate in this reaction, S-hydroxymethylglutathione, is involved in formaldehyde detoxification and is highly reactive. However, the authors noted that the adduct formed is reasonably stable and may be useful in biomarker studies of exogenous formaldehyde exposure.

Numerous in vitro studies have shown that formaldehyde exposure (concentrations ranging from 0.01 mM to 62.5 mM) causes DNA-protein crosslinks in human cells (EBV-Burkitt’s lymphoma cells, fibroblasts, lymphocytes, gastric mucosa cells, lung/bronchial epithelial cells, skin keratinocytes, Jurkat E6-1 cells, HeLa cells, and whole blood) and rodent cells (Chinese hamster ovary cells, Chinese hamster V79 cells, mouse hepatocytes, mouse leukemia L1210 cells, rat Yoshida lymphosarcoma cells, rat tracheal epithelial cells, and rat hepatocytes) (Table 5-17). Formaldehyde readily reacts with hydrogens of amino groups forming stable methylene-bridged crosslinks between the amines of proteins and nucleic acids (Conaway et al. 1996). This reaction is specific...
for single-stranded DNA because hydrogen bonding with the opposite strand in double-stranded DNA hinders the reactivity. DNA-protein crosslinks can lead to other genotoxic effects through subsequent DNA replication errors (Casanova et al. 1989, Liteplo and Meek 2003).

The reported removal half-times for these lesions in in vitro studies ranged from about 2 to 4 hours (Conaway et al. 1996, Cosma and Marchok 1988, Grafström et al. 1983, 1984). Craft et al. (1987) reported complete removal of DNA-protein crosslinks from human lymphoblasts within 24 hours. Liu et al. (2006) reported that DNA-protein crosslinks were significantly repaired in HeLa cells within 18 hours after removal of formaldehyde compared with a group without formaldehyde removal. In addition, single-strand breaks were significantly repaired within 30 minutes and were almost completely repaired within 90 minutes. Schmid and Speit (2007) treated human blood cultures with formaldehyde concentrations of up to 300 μM. DNA-protein crosslinks were significantly increased by concentrations ≥ 25 μM. Crosslinks induced by 100 μM formaldehyde were completely removed within 8 hours; however, at higher concentrations (200 or 300 μM), some crosslinks remained after 24 hours.

Formaldehyde exposure (concentrations ranged from 0.001 to 0.8 mM) also caused single-strand breaks in human cells (fibroblasts, lymphocytes, lung/bronchial epithelial cells, and HeLa cells, but not skin keratinocytes) and rodent cells (mouse leukemia L1210, rat Yoshida lymphosarcoma cells, rat tracheal epithelial cells, and rat hepatocytes, but not Chinese hamster V79 cells) (Table 5-17).

Using the alkaline comet assay, Speit et al. (2008b) compared the human cell response to formaldehyde in an established cell line (A549 lung cells) with that of primary cultured cells (human nasal epithelial) under various treatment conditions. They reported no fundamental differences in response between these cells, e.g., observing non-significant decreases in tail moment for both cell cultures at 0.1 mM formaldehyde treatment but a significant (1% level for Dunnett test) effect after a 4-hour treatment with 0.2 mM formaldehyde.
Ridpath et al. (2007) noted that although DNA-protein crosslinks likely play an important role in the genotoxicity and carcinogenicity of formaldehyde, little is known about which DNA damage-response pathways are involved in repairing formaldehyde damage. In patients with diseases such as Fanconi anemia (FANC; an inherited blood disorder that leads to bone marrow failure), DNA damage cannot be repaired due to the presence of an abnormal gene in the cells that prevents DNA repair. Ridpath et al. investigated the DNA response pathways by measuring the reduction of cell survival in several repair-deficient mutants in two different cell types. Chicken DT40 cells with targeted mutations in various DNA repair genes were used to assess levels of DNA damage response to formaldehyde. DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, and translesion DNA synthesis were shown to be hypersensitive (i.e., resulted in reduced cell survival) to formaldehyde. Similar results were observed for the human colorectal cancer (RKO) cell line. Specifically, RKO cells deficient in the FANCC and FANCG genes showed a dose-dependent hypersensitivity to formaldehyde. These results suggest that the BRCA/FANC response pathway in mammalian cells is important in the prevention of DNA damage from formaldehyde.

In a review by Zhang et al. (2009b), the possible roles of formaldehyde, both endogenous and exogenous, on the etiology of leukemia in FANC patients is discussed. The authors hypothesized that endogenous exposure might induce DNA-protein crosslinks, which could play a critical role in the initiation of bone marrow failure or in increasing tumor susceptibility in FANC patients. They suggest that subsequent exogenous exposure to formaldehyde may then result in genotoxic levels of induced DNA-protein crosslinks; however, this assumes that formaldehyde actually reaches the bone marrow cells, which has not yet been demonstrated.
Table 5-17. *In vitro* studies of DNA adducts, DNA-protein crosslinks and strand breaks in mammalian systems

<table>
<thead>
<tr>
<th>Test system</th>
<th>Concentration (LEC or HIC)</th>
<th>Effect</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deoxyribonucleosides</td>
<td>0.1 mM</td>
<td>Adducts</td>
<td>+</td>
<td>Cheng et al. 2008</td>
</tr>
<tr>
<td></td>
<td>0.20 mM</td>
<td></td>
<td>+</td>
<td>Beland et al. 1984</td>
</tr>
<tr>
<td></td>
<td>0.125 mM</td>
<td></td>
<td>+</td>
<td>Von Hippel and Wong 1971</td>
</tr>
<tr>
<td></td>
<td>200 mM</td>
<td></td>
<td>+</td>
<td>Beland et al. 1984</td>
</tr>
<tr>
<td></td>
<td>1 mM</td>
<td>Adducts</td>
<td>+</td>
<td>Zhong et al. 2004b</td>
</tr>
<tr>
<td></td>
<td>0.33 mM</td>
<td>Adducts</td>
<td>+</td>
<td>Speit et al. 2008b</td>
</tr>
<tr>
<td></td>
<td>0.20 mM</td>
<td>DPX</td>
<td>+</td>
<td>Beland et al. 1984</td>
</tr>
<tr>
<td></td>
<td>0.25 mM</td>
<td></td>
<td>+</td>
<td>Olin et al. 1996</td>
</tr>
<tr>
<td></td>
<td>0.125 mM</td>
<td></td>
<td>+</td>
<td>Garcia et al. 2009</td>
</tr>
<tr>
<td></td>
<td>0.12 mM</td>
<td>DPX</td>
<td>+</td>
<td>Swenberg and al. 1983b</td>
</tr>
<tr>
<td></td>
<td>0.01 mM</td>
<td></td>
<td>+</td>
<td>Speit et al. 2007a</td>
</tr>
<tr>
<td></td>
<td>0.125 mM</td>
<td></td>
<td>+</td>
<td>Merk and Speit 1998</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td></td>
<td>–b</td>
<td>Speit et al. 2007a</td>
</tr>
<tr>
<td></td>
<td>62.5 mM</td>
<td></td>
<td>+</td>
<td>Merk and Speit 1999</td>
</tr>
<tr>
<td></td>
<td>0.5 mM</td>
<td>DPX</td>
<td>+</td>
<td>Casanova and Heck 1997</td>
</tr>
<tr>
<td></td>
<td>0.5 mM</td>
<td></td>
<td>+</td>
<td>Casanova et al. 1997</td>
</tr>
<tr>
<td></td>
<td>0.125 mM</td>
<td>DPX</td>
<td>+</td>
<td>Ross et al. 1981</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td></td>
<td>+</td>
<td>Ross and Shipley 1980</td>
</tr>
<tr>
<td></td>
<td>0.25 mM</td>
<td>DPX</td>
<td>+</td>
<td>O’Connor and Fox 1987</td>
</tr>
<tr>
<td></td>
<td>0.05 mM</td>
<td>DPX</td>
<td>+</td>
<td>Cost et al. 1988a</td>
</tr>
<tr>
<td></td>
<td>0.5 mM</td>
<td>DPX</td>
<td>+</td>
<td>Casanova and Heck 1997</td>
</tr>
<tr>
<td></td>
<td>0.003%</td>
<td>DPX</td>
<td>+</td>
<td>Costa et al. 1997</td>
</tr>
<tr>
<td></td>
<td>0.1 mM</td>
<td>DPX</td>
<td>+</td>
<td>Snyder and Van Houten 1986</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td></td>
<td>+</td>
<td>Grafström et al. 1984</td>
</tr>
<tr>
<td></td>
<td>0.25 mM</td>
<td></td>
<td>+</td>
<td>Olin et al. 1996</td>
</tr>
<tr>
<td></td>
<td>0.05 mM</td>
<td>DPX</td>
<td>+</td>
<td>Craft et al. 1987</td>
</tr>
<tr>
<td></td>
<td>0.05 mM</td>
<td></td>
<td>+</td>
<td>Liu et al. 2006</td>
</tr>
<tr>
<td></td>
<td>0.1 mM</td>
<td></td>
<td>+</td>
<td>Shaham et al. 1996a</td>
</tr>
<tr>
<td></td>
<td>0.1 mM</td>
<td></td>
<td>+</td>
<td>Andersson et al. 2003</td>
</tr>
<tr>
<td></td>
<td>1 mM</td>
<td>DPX</td>
<td>+</td>
<td>Blasiak et al. 2000</td>
</tr>
<tr>
<td></td>
<td>0.1 mM</td>
<td>DPX</td>
<td>+</td>
<td>Saladino et al. 1985</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td></td>
<td>+</td>
<td>Grafström et al. 1984</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td></td>
<td>+</td>
<td>Grafström et al. 1986</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td></td>
<td>+</td>
<td>Speit et al. 2008b</td>
</tr>
<tr>
<td></td>
<td>0.4 mM</td>
<td></td>
<td>+</td>
<td>Grafström 1990</td>
</tr>
<tr>
<td></td>
<td>0.8 mM</td>
<td></td>
<td>+</td>
<td>Fornace et al. 1982</td>
</tr>
<tr>
<td></td>
<td>0.025 mM</td>
<td>DPX</td>
<td>+</td>
<td>Emri et al. 2004</td>
</tr>
<tr>
<td>Test system</td>
<td>Concentration (LEC or HIC)</td>
<td>Effect</td>
<td>Results</td>
<td>References</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Human Jurkat E6-1 cells</td>
<td>1 mM</td>
<td>DPX</td>
<td>+</td>
<td>Saito et al. 2005</td>
</tr>
<tr>
<td>Hela cells</td>
<td>0.05 mM</td>
<td>DPX</td>
<td>+</td>
<td>Liu et al. 2006</td>
</tr>
<tr>
<td>Human whole blood</td>
<td>0.025 mM</td>
<td>DPX</td>
<td>+</td>
<td>Schmid and Speit 2007</td>
</tr>
<tr>
<td>Mouse leukemia L1210 cells</td>
<td>0.125 mM</td>
<td>SB</td>
<td>−</td>
<td>Ross et al. 1981</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td>SB</td>
<td>+</td>
<td>Ross and Shipley 1980</td>
</tr>
<tr>
<td>Rat Yoshida lymphosarcoma cells</td>
<td>0.25 mM</td>
<td>SB</td>
<td>+</td>
<td>O'Connor and Fox 1987</td>
</tr>
<tr>
<td>Rat tracheal epithelial cells</td>
<td>0.2 mM</td>
<td>SB</td>
<td>+</td>
<td>Cosma et al. 1988</td>
</tr>
<tr>
<td>Rat hepatocytes</td>
<td>0.75 mM</td>
<td>SB</td>
<td>+</td>
<td>Demkowicz-Dobrzanski and Castonguay 1992</td>
</tr>
<tr>
<td>Chinese hamster V79 cells</td>
<td>0.2 mM</td>
<td>SB</td>
<td>−</td>
<td>Speit et al. 2007a</td>
</tr>
<tr>
<td>Human fibroblasts (skin or bronchus)</td>
<td>0.1 mM</td>
<td>SB</td>
<td>+</td>
<td>Grafström et al. 1984</td>
</tr>
<tr>
<td></td>
<td>0.1 mM</td>
<td>SB</td>
<td>+</td>
<td>Snyder and Van Houten 1986</td>
</tr>
<tr>
<td>Human lymphocytes</td>
<td>0.005 mM</td>
<td>SB</td>
<td>+</td>
<td>Liu et al. 2006</td>
</tr>
<tr>
<td>Human lung/bronchial epithelial cells</td>
<td>0.1 mM</td>
<td>SB</td>
<td>+</td>
<td>Saladino et al. 1985</td>
</tr>
<tr>
<td></td>
<td>0.3 mM</td>
<td>SB</td>
<td>+</td>
<td>Grafström et al. 1984</td>
</tr>
<tr>
<td></td>
<td>0.4 mM</td>
<td>SB</td>
<td>+</td>
<td>Grafström 1990</td>
</tr>
<tr>
<td></td>
<td>0.8 mM</td>
<td>SB</td>
<td>+</td>
<td>Fornace et al. 1982</td>
</tr>
<tr>
<td></td>
<td>1 mM</td>
<td>SB</td>
<td>+</td>
<td>Vock et al. 1999</td>
</tr>
<tr>
<td>Human skin keratinocytes and fibroblasts</td>
<td>0.1 mM</td>
<td>SB</td>
<td>−</td>
<td>Emri et al. 2004</td>
</tr>
<tr>
<td>Hela cells</td>
<td>0.005 mM</td>
<td>SB</td>
<td>+</td>
<td>Liu et al. 2006</td>
</tr>
</tbody>
</table>

+ = positive result for indicated effect, − = negative result for the indicated effect.
LEC = lowest effective concentration, HIC = highest ineffective concentration, DPX = DNA-protein crosslinks, SB = DNA strand breaks (most were single-strand breaks).

* Extended electrophoresis time.

<table>
<thead>
<tr>
<th>Test system</th>
<th>Concentration (LEC or HIC)</th>
<th>Effect</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human lymphocytes</td>
<td>0.005 mM</td>
<td>SB</td>
<td>+</td>
<td>Liu et al. 2006</td>
</tr>
</tbody>
</table>

1. **In vivo**

2. No *in vivo* studies were identified that evaluated DNA adducts in experimental animals directly exposed to formaldehyde, but one study reported induction of DNA adducts of formaldehyde in rats treated with carcinogenic nitrosamines. Several studies reported DNA-protein crosslinks and strand breaks (Table 5-18) in animals exposed directly to formaldehyde. Inhalation exposure to formaldehyde caused DNA-protein cross links (0.3 ppm to 6 ppm) in rodents (nasal mucosa but not bone marrow) and rhesus monkeys (nasal turbinates, nasopharynx, trachea, and bronchi), and strand breaks (5 ppm) in rats (lymphocytes and liver). Instillation of formaldehyde into rat tracheal implants also caused DNA-protein crosslinks. Transplacental exposure to formaldehyde caused both
DNA protein crosslinks and single-strand breaks in the rat fetal liver. These findings are discussed in greater detail below.

Wang et al. (2007) demonstrated that formaldehyde-based DNA adducts were formed in the lung and liver of rats treated s.c. with two N-nitrosomethyl carcinogens, which both metabolize to formaldehyde. The authors provide qualitative and quantitative [statistical significance not given] evidence for in vivo formaldehyde DNA adduct formation for both compounds and suggest that the formaldehyde released by the metabolism of the carcinogens contributes to adduct formation and may, therefore, play a role in the carcinogenic process.

Crosslink formation is an important indicator of tissue and DNA exposure; however, the shape of the concentration-response curve is highly non-linear, showing a sharp increase in the nasal epithelium of rats at concentrations greater than 2 ppm, and without accumulation on repeated exposure (Casanova-Schmitz et al. 1984a, Casanova et al. 1989, Casanova et al. 1994). Casanova-Schmitz et al. (1984a) exposed male F344 rats for 6 hours to formaldehyde concentrations of 0.3, 2, 6, 10, or 15 ppm. Covalent binding of formaldehyde to respiratory mucosal DNA occurred at concentrations ≥ 2 ppm; however, the concentration bound to DNA at 6 ppm was 10.5-fold higher than at 2 ppm. Casanova et al. (1989) exposed groups of F344 rats to formaldehyde concentrations of 0.3, 0.7, 2, 6, or 10 ppm for 6 hours. DNA-protein crosslinks occurred at all concentrations, but the slope of the concentration-response curve at 10 ppm was 7.3-fold greater than at 0.3 ppm. Casanova et al. (1994) compared the yield of crosslinks between groups of pre-exposed and naïve male F344 rats. Groups were pre-exposed to 0.7, 2, 6, or 15 ppm in one experiment and 6 or 10 ppm in another experiment (6 hours/day, 5 days/week) for 11 weeks and 4 days while naïve rats were exposed to room air. On the fifth day of the twelfth week animals were simultaneously exposed (3 hours) to the same concentrations used in pre-exposure. Crosslink yields increased nonlinearly in a concentration-dependent manner in both pre-exposed and naïve groups, but the yields were smaller in pre-exposed rats, suggesting that accumulation of crosslinks did not occur. At low concentrations (≤ 2 ppm) crosslink yields were similar in pre-exposed and naïve rats, but at higher concentrations, crosslink yields were greater in naïve than pre-exposed rats.
Cosma et al. (1988b) used an open-ended, flow-through rat tracheal implant model to investigate DNA-protein crosslinks caused by benzo[a]pyrene and formaldehyde. Two tracheas from male F344 rats were implanted s.c. in the retrocapsular region of syngeneic recipients. After 4 weeks, both ends of the tracheal implants were connected to the surface by two terminal tracheostomies. The tracheas were exposed twice weekly for 2, 4, or 8 weeks to gelatin pellets containing 0.005, 0.01, 0.05, or 2% formaldehyde. There was a dose-dependent increase in crosslinks in the tracheal epithelium. The authors also compared the induction and removal of crosslinks following single and multiple exposures. The response was virtually identical for exposure either once or 5-times twice weekly to 0.2% formaldehyde when measured 3 hours after the last exposure. The removal of crosslinks following 1 or 4 exposures demonstrated nearly complete repair in either case by 72 hours.

DNA-protein crosslink yields were about six-fold higher in the lateral meatus (an area of high tumor yield) than in the medial or posterior meatuses (areas with low tumor yield) of the rat nose (Casanova et al. 1994). In male rhesus monkeys, crosslink concentrations in the nose were highest in the middle turbinates while lower concentrations occurred in the anterior lateral wall, septum, and nasopharynx (Casanova et al. 1991, Heck et al. 1989). Low, but statistically significant concentrations of crosslinks were found in the larynx, trachea, carina, or in the proximal portions of the major bronchi in monkeys exposed to 2 or 6 ppm but not to 0.7 ppm. No crosslinks were found in the maxillary sinuses or lung parenchyma in any of the nine monkeys tested.

Crosslinks and strand breaks in tissues other than the upper respiratory tract also have been reported in rodents. Wang and Liu (2006) [reported in an English abstract] investigated developmental and maternal toxicity in mice. Pregnant mice were injected with 0.2 to 20 mg/kg per day from gestation day 6 to 19. Single-cell gel electrophoresis was used to test for DNA damage (crosslinks and breaks) in maternal and fetal liver cells. There was no DNA damage in the livers of fetal mice in the low-dose group; however, increased DNA breakage was observed in the group exposed to ≥ 1 mg/kg per day, and increased DNA-protein crosslinks occurred at 2 to 20 mg/kg per day. DNA damage
increased with dose in the dams, beginning at 0.2 mg/kg per day, but no increase in DNA-protein crosslinks was observed.

Im et al. (2006) evaluated the genotoxic effects of formaldehyde exposure in rat lymphocytes and liver. Male Sprague-Dawley rats (10 per group) were exposed to 0-, 5-, or 10-ppm formaldehyde 6 hours/day, 5 days/week for 2 weeks in an inhalation chamber. The comet assay was used to evaluate DNA single-strand breaks. Exposure to 5- or 10-ppm formaldehyde resulted in a significant, and dose-dependent, increase in single-strand breaks in both lymphocytes and liver. Speit (2006) criticized this study and stated that formaldehyde-induced DNA-protein crosslinks would be expected to reduce DNA migration as measured by the comet assay. One study did not find crosslinks in bone marrow of rats exposed to 15-ppm formaldehyde for 6 hours (Casanova-Schmitz et al. 1984a).

Lutz (1986) evaluated the levels of DNA-protein crosslinks produced from endogenous formaldehyde generation. This author determined the level of DNA-protein crosslinks in rat liver under conditions of maximum intracellular formaldehyde generation and compared the results with positive control data from in vitro incubations of liver homogenate with formaldehyde and methanol and with literature data on crosslinks in the rat nasal epithelium. Since endogenous formaldehyde is generated by oxidation of methanol (primarily in the liver), male Sprague-Dawley rats were given 1 g methanol per kg body weight by gavage. Another group also received 0.6 g/kg disulfiram, an inhibitor of acetaldehyde oxidation, under the assumption that higher steady-state levels of formaldehyde might be achieved. After 4 hours, the rats were given ethanol by gavage to inhibit further methanol oxidation, and were killed to isolate the chromatin fraction from the liver. The levels of endogenous formaldehyde formed in the liver did not cause an increase in DNA-protein crosslinks.
Table 5-18. *In vivo* studies of DNA-protein crosslinks and strand breaks in mammalian systems

<table>
<thead>
<tr>
<th>Test system</th>
<th>Concentration (LEC or HIC)</th>
<th>Effect</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (nasal mucosa)</td>
<td>0.3 ppm</td>
<td></td>
<td>+</td>
<td>Casanova et al. 1989</td>
</tr>
<tr>
<td></td>
<td>0.7 ppm<sup>b</sup></td>
<td></td>
<td>+</td>
<td>Casanova et al. 1994</td>
</tr>
<tr>
<td></td>
<td>2 ppm</td>
<td>DPX</td>
<td>+</td>
<td>Casanova-Schmitz et al. 1984a</td>
</tr>
<tr>
<td></td>
<td>2 ppm</td>
<td></td>
<td>+</td>
<td>Heck et al. 1986</td>
</tr>
<tr>
<td></td>
<td>6 ppm</td>
<td></td>
<td>+</td>
<td>Casanova and Heck Hd 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>Lam et al. 1985</td>
</tr>
<tr>
<td>Rat (bone marrow, olfactory mucosa)</td>
<td>15 ppm</td>
<td>DPX</td>
<td>−</td>
<td>Casanova-Schmitz et al. 1984a</td>
</tr>
<tr>
<td>Rat (tracheal implant)</td>
<td>0.005%<sup>c</sup></td>
<td>DPX</td>
<td>+</td>
<td>Cosma et al. 1988b</td>
</tr>
<tr>
<td>Rat (fetal liver)</td>
<td>0.2 mg/kg<sup>d</sup></td>
<td>DPX</td>
<td>+</td>
<td>Wang and Liu 2006</td>
</tr>
<tr>
<td>Rhesus monkey (nasal turbinates)</td>
<td>0.7 ppm</td>
<td>DPX</td>
<td>+</td>
<td>Heck et al. 1989</td>
</tr>
<tr>
<td></td>
<td>0.7 ppm</td>
<td></td>
<td>+</td>
<td>Casanova et al. 1991</td>
</tr>
<tr>
<td>Rhesus monkey (larynx, trachea, carina, bronchi)</td>
<td>2 ppm</td>
<td>DPX</td>
<td>+</td>
<td>Casanova et al. 1991</td>
</tr>
<tr>
<td>Rhesus monkey (maxillary sinuses, lung)</td>
<td>6 ppm</td>
<td>DPX</td>
<td>−</td>
<td>Casanova et al. 1991</td>
</tr>
<tr>
<td>Rat (lymphocytes)</td>
<td>5 ppm<sup>e</sup></td>
<td>SB</td>
<td>+</td>
<td>Im et al. 2006</td>
</tr>
<tr>
<td>Rat (liver)</td>
<td>5 ppm<sup>e</sup></td>
<td>SB</td>
<td>+</td>
<td>Wang and Liu 2006</td>
</tr>
<tr>
<td>Rat (maternal liver)</td>
<td>0.2 mg/kg<sup>d</sup></td>
<td>SB</td>
<td>+</td>
<td>Wang and Liu 2006</td>
</tr>
<tr>
<td>Rat (fetal liver)</td>
<td>1 mg/kg<sup>d</sup></td>
<td>SB</td>
<td>+</td>
<td>Wang and Liu 2006</td>
</tr>
</tbody>
</table>

⁺ = positive result for indicated effect; [−] = negative result for indicated effect.
LEC = lowest effective concentration; HIC = highest ineffective concentration; DPX = DNA-protein crosslinks; SB = DNA strand breaks (most were single-strand breaks).
^a Single inhalation exposure (3-6 h) unless otherwise noted.
^b Included pre-exposed groups (6 h/day, 5 d/wk, 11 wk + 4 d).
^c Instillation exposure twice weekly for 2, 4, or 8 wk.
^d Intraperitoneal injection to pregnant mice on gestation days 6 to 19.
^e 5 d/wk for 2 wk.

5.6.3.2 Cytogenetic effects

Studies evaluating cytogenetic effects (SCE, micronucleus formation, and chromosomal aberrations) due to formaldehyde exposure are described below and summarized in Tables 5-19 and 5-20.

In vitro studies

In human and animal cells formaldehyde exposure (0.03 to 2 mM) caused SCE (Chinese hamster ovary cells, Chinese hamster V79 lung fibroblast cells, human lymphocytes, and human whole blood), chromosomal aberrations (Chinese hamster ovary cells, Syrian hamster embryo cells, human lymphocytes and human fibroblasts), and micronuclei.
(Chinese hamster V79 cells, human MRC5 CV cells, and human whole blood) (Table 5-19). All of the reported studies showed a positive correlation between formaldehyde treatment and observed effect, although the lowest effective concentration varied with different test systems, as well as for the same cell assay under similar or modified conditions.

Recent studies have characterized the cytogenetic effects in more detail. Speit et al. (2000) reported that the frequency of micronuclei was increased [statistics not reported] in two different DNA repair-deficient cell lines (xeroderma pigmentosum and Fanconi anemia) compared with human cell lines with normal repair. Micronucleus frequency was increased [statistics not reported] in Chinese hamster V79 cell cultures receiving repeated treatments (3 treatments with time intervals of 3 hours) compared with cultures receiving a single treatment, but not when the repeated treatment interval was increased to 24 hours (Speit et al. 2007a). Schmid and Speit (2007) reported that exposure to formaldehyde only increased micronucleus formation in human blood cultures using protocols in which formaldehyde was added 44 hours after the start of culture (i.e., the last cell cycle before preparation). In their study, 81% of micronuclei were centromere negative, compared with 55% centromere-negative micronuclei in controls.

Characterization of the genotoxic action of formaldehyde was investigated in a study utilizing the SCE assay in two mammalian cell lines, Chinese hamster V79 lung fibroblasts and human A549 lung cells (Neuss and Speit 2008). For each of these cell lines, formaldehyde treatment with 0.1 mM for 1 hour, then growth in the presence of 5-bromodeoxyuridine (BrdU) for two cell cycles, resulted in statistically significant ($P < 0.01$) SCE induction. When the V79 cells were treated with formaldehyde for 1 hour then cultured with BrdU 4 hours later, the effective concentration was increased to 0.2 mM, suggesting DNA repair. Further, when the A549 cells were treated with 0.05 mM formaldehyde for 1 hour then co-cultured with V79 cells immediately, there was enough formaldehyde still present to significantly ($P < 0.05$) induce SCE in the V79 cells. When the A549 cells were treated at a maximum dose of 0.3 mM, then washed before co-cultivating with V79 cells, there was no SCE induction in the V79 cells. The authors
suggested that this lack of response indicated that the formaldehyde was bound and/or
inactivated in the A549 cells.

Although most of these in vitro studies did not report any cytotoxicity findings, in five of
the studies cytotoxic effects were observed in cells treated with doses at which significant
cytogenetic effects were also reported. In 1986, Schmid et al. noted that 0.25 and 0.5 mM
formaldehyde treatments had a marked effect on cultured human lymphocytes and that
there was no cell proliferation at all in cells treated with 1.0 mM formaldehyde. Merk and
Speit (1998) evaluated cytotoxicity in V79 cells using relative cloning efficiency as a
measure of long-term survival. In this study, treatment of cells with 0.125 mM
formaldehyde significantly ($P < 0.05$) reduced the clonal growth of the cells to about
72% of controls. Treatments of clearly genotoxic doses of 0.25 and 0.5 mM
formaldehyde reduced the relative cloning efficiency in these cells to 40% and less than
10%, respectively.

According to Schmid and Speit (2007), the cytotoxic effect of formaldehyde appears to
be concurrent with, or may even precede, the genotoxic response. Specifically, they noted
a reduction in the proliferation index (i.e., increased cytotoxicity) of the blood cultures
treated with 0.2 mM formaldehyde, a dose at which SCE were significantly induced.
Further, there was a non-significant cytotoxic effect noted at 0.1 mM formaldehyde
treatment, which also showed an increased, although not statistically significant,
induction in SCE. Interestingly, in a different paper but using V79 Chinese hamster cells,
the same authors (Speit et al. 2007a), reported that SCE was significantly ($P < 0.01$)
induced at 0.1 mM formaldehyde treatment; however, in these cells the proliferation
index was not reduced, but was equivalent to the control value.

Cytotoxic effects of formaldehyde were evaluated in the human A549 cell line by Speit et
al. (2008b) by measuring colony-forming ability and cell growth inhibition. With
continuous two-week exposure to 0.02 mM formaldehyde, colony-forming ability was
significantly reduced to approximately 40% of controls; cell growth was reduced to less
than 20% with a continuous 48-hour treatment with 0.2 mM formaldehyde (significance
for both determined using Dunnett test, 1% level). Also reported was a non-significant
reduction (about 80% of controls) in cell growth measured after a one-hour treatment
with up to 0.5 mM formaldehyde.
Table 5-19. *In vitro* studies of cytogenetic effects of formaldehyde in mammalian cells

<table>
<thead>
<tr>
<th>Effect</th>
<th>Test system</th>
<th>Lowest effective concentration*, treatment duration</th>
<th>Result</th>
<th>Cytotoxicity or RTG (%) survival</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCE</td>
<td>Chinese hamster ovary cells</td>
<td>[0.03 mM] 24 h</td>
<td>+</td>
<td>ND</td>
<td>Obe and Beek 1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.04 mM] 26 h</td>
<td>+</td>
<td>ND</td>
<td>Natarajan et al. 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.15 mM] 1 h</td>
<td>+</td>
<td>ND</td>
<td>Galloway et al. 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.2 mM] 2 h</td>
<td>+</td>
<td>NA</td>
<td>Garcia et al. 2009</td>
</tr>
<tr>
<td></td>
<td>Chinese hamster V79 cells</td>
<td>0.067 mM 28 h</td>
<td>+</td>
<td>ND</td>
<td>Basler et al. 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.13 mM 2 h</td>
<td>+</td>
<td>ND</td>
<td>Basler et al. 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 mM 2 h</td>
<td>+</td>
<td>100b</td>
<td>Speit et al. 2007a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.125 mM 4 h</td>
<td>+</td>
<td>72c,92c</td>
<td>Merk and Speit 1998, 1999</td>
</tr>
<tr>
<td></td>
<td>Co-cultivation studyd</td>
<td>A549 Human lung cells</td>
<td>+</td>
<td>ND</td>
<td>Neuss and Speit 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V79 cells (4 h recovery)</td>
<td>+</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V79 cells + A549 cells</td>
<td>+</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human lymphocytes</td>
<td>0.125 mM 1 h</td>
<td>+</td>
<td>ND</td>
<td>Schmid et al. 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.167 mM] 24 h</td>
<td>+</td>
<td>ND</td>
<td>Obe and Beck 1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.167 mM] 72 h</td>
<td>+</td>
<td>20</td>
<td>Kreiger and Garry 1983</td>
</tr>
<tr>
<td></td>
<td>Human whole blood</td>
<td>0.2 mM 72 h</td>
<td>+</td>
<td>ND</td>
<td>Schmid and Speit 2007</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chinese hamster ovary cells</td>
<td>[0.53 mM] 8–12 h</td>
<td>+</td>
<td>NA</td>
<td>Galloway et al. 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.2 mM] 2 h</td>
<td>+</td>
<td>ND</td>
<td>Natarajan et al. 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.15 mM] 2 h</td>
<td>+</td>
<td>ND</td>
<td>Garcia et al. 2009</td>
</tr>
<tr>
<td></td>
<td>Chinese hamster lung fibroblasts</td>
<td>[0.6 mM] 24 h</td>
<td>+</td>
<td>ND</td>
<td>Ishidate Jr et al. 1981</td>
</tr>
<tr>
<td></td>
<td>Syrian hamster embryo cells</td>
<td>0.033 mM 24 h</td>
<td>+</td>
<td>94</td>
<td>Hikiba et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.33 mM 24 h</td>
<td>+</td>
<td>91</td>
<td>Hagiwara et al. 2006</td>
</tr>
<tr>
<td></td>
<td>Human lymphocytes</td>
<td>0.5 mM 1 h</td>
<td>+c</td>
<td>0c,e</td>
<td>Schmid et al. 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.33 mM NA</td>
<td>+g</td>
<td>NA</td>
<td>Miretskaya and Shvartsman 1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.125 mM 1 h</td>
<td>+h</td>
<td>ND</td>
<td>Dresp and Bauchinger 1988</td>
</tr>
<tr>
<td></td>
<td>Human fibroblasts</td>
<td>2 mM 0.25 h</td>
<td>+</td>
<td>ND</td>
<td>Levy et al. 1983</td>
</tr>
<tr>
<td>Effect</td>
<td>Test system</td>
<td>Lowest effective concentration(^a), treatment duration</td>
<td>Result</td>
<td>Cytotoxicity or RTG (% survival)</td>
<td>References</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>--------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>MN</td>
<td>Chinese hamster V79 cells</td>
<td>0.075 mM 2 h</td>
<td>+</td>
<td>ND 72(^c)</td>
<td>Speit et al. 2007a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.125 mM 4 h</td>
<td>+</td>
<td></td>
<td>Merk and Speit 1998</td>
</tr>
<tr>
<td></td>
<td>Human MRC5CV (normal)</td>
<td>0.125 mM 2 h</td>
<td>+(^i)</td>
<td>ND</td>
<td>Speit et al. 2000</td>
</tr>
<tr>
<td></td>
<td>XP cell line (repair deficient)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FA cell line (repair deficient)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human whole blood</td>
<td>0.3 mM 72 h</td>
<td>+(^j)</td>
<td>77(^c)</td>
<td>Schmid and Speit 2007</td>
</tr>
</tbody>
</table>

\(^a\) Units in brackets [] were converted to mM from reported exposure data to facilitate comparison.
\(^b\) Cytotoxicity measured by calculating proliferation index, which was equal to control (estimated from graph) at this dose.
\(^c\) Estimated data from graph.
\(^i\) The effect was enhanced in the repair-deficient cell lines compared to the normal cell line.
\(^j\) Modified protocol: cells were cultured 44 hours before treatment; treatments at 0 and 24 hours were negative at this dose.

In vivo studies

Formaldehyde did not cause micronucleus formation in bone marrow or chromosomal aberrations in bone marrow, spleen, or spermatocytes of mice exposed to formaldehyde by i.p. injection; no inhalation studies were available in mice. In vivo studies in rats gave mixed results. Kligerman et al. (1984) did not find SCE or chromosomal aberrations in lymphocytes of F344 rats exposed to 15-ppm formaldehyde 6 hours/day for 5 days. Increasing the duration of the 15-ppm formaldehyde treatment to 4 weeks did not yield SCE or chromosomal aberrations in peripheral blood of F344 male rats (Speit et al. 2009). When administered in a single oral dose of 200 mg/kg to Sprague-Dawley rats, formaldehyde induced micronuclei in the gastrointestinal tract (Migliore et al. 1989). Dallas et al. (1992) investigated chromosomal aberrations in pulmonary lavage cells and bone marrow of male Sprague-Dawley rats exposed to 0-, 0.5-, 3-, or 15-ppm formaldehyde for 6 hour/day, 5 days/week, for 1 to 8 weeks. There was no significant increase in chromosomal aberrations in bone marrow, but there was a statistically significant increase in chromosomal aberrations in pulmonary lavage cells in the high-dose group. Kitaeva et al. (1990) investigated cytogenetic effects of inhaled...
formaldehyde in the bone marrow of female Wistar rats exposed to 0.5 or 1.5 mg/m³ [0.4 ppm or 1.2 ppm] for 4 hours/day (except weekends and holidays) for 4 months. Bone marrow was collected within 48 to 72 hours after exposure was stopped. There was a statistically significant increase in the number of bone marrow cells with chromosomal aberrations at both dose levels compared with controls.

Table 5-20. Cytogenetic effects of formaldehyde in mammals in vivo

<table>
<thead>
<tr>
<th>Effect</th>
<th>Test system</th>
<th>Concentration LEC/HIC</th>
<th>Result</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCE</td>
<td>F344 rat (lymphocytes, inh., 6 h/d, 5 d)</td>
<td>15 ppm</td>
<td>–</td>
<td>Kligerman et al. 1984</td>
</tr>
<tr>
<td></td>
<td>F344 male rat (peripheral blood, inh., 6h/d, 5 d/wk, 4 wk)</td>
<td>15 ppm</td>
<td>–</td>
<td>Speit et al. 2009</td>
</tr>
<tr>
<td>CA</td>
<td>F344 rat (lymphocytes, inh., 6 h/d, 5 d)</td>
<td>15 ppm</td>
<td>–</td>
<td>Kligerman et al. 1984</td>
</tr>
<tr>
<td></td>
<td>F344 male rat (peripheral blood, inh., 6h/d, 5 d/wk, 4 wk)</td>
<td>15 ppm</td>
<td>–</td>
<td>Speit et al. 2009</td>
</tr>
<tr>
<td></td>
<td>Sprague-Dawley rat (bone marrow, inh., 6 h/d, 1–8 wk)</td>
<td>15 ppm</td>
<td>–</td>
<td>Dallas et al. 1992</td>
</tr>
<tr>
<td></td>
<td>Sprague-Dawley rat (pulmonary lavage cells, inh., 6 h/d, 1–8 wk)</td>
<td>15 ppm</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wistar rat (bone marrow, inh., 4 h/d, 4 mo)</td>
<td>0.4 ppm</td>
<td>+</td>
<td>Kitaeva et al. 1990</td>
</tr>
<tr>
<td></td>
<td>Mouse (bone marrow, i.p.)</td>
<td>25 mg/kg</td>
<td>–</td>
<td>Natarajan et al. 1983</td>
</tr>
<tr>
<td></td>
<td>Mouse (spleen, i.p.)</td>
<td>25 mg/kg</td>
<td>–</td>
<td>Natarajan et al. 1983</td>
</tr>
<tr>
<td></td>
<td>Mouse (spermatocytes, i.p.)</td>
<td>50 mg/kg</td>
<td>–</td>
<td>Fontignie-Houbrechts 1981</td>
</tr>
<tr>
<td>MN</td>
<td>Sprague-Dawley rat (G.I., p.o.)</td>
<td>200 mg/kg</td>
<td>+</td>
<td>Migliore et al. 1989</td>
</tr>
<tr>
<td></td>
<td>Mouse (bone marrow, i.p.)</td>
<td>30 mg/kg</td>
<td>–</td>
<td>Gocke et al. 1981</td>
</tr>
</tbody>
</table>

CA = chromosomal aberration; FA = Fanconi anemia; HIC = highest ineffective concentration; inh. = inhalation; i.p. = intraperitoneal; LEC = lowest effective concentration; MN = micronucleus; p.o. = per os (by mouth); SCE = sister chromatid exchange; XP = xeroderma pigmentosum.

+ = positive result for indicated effect, – = negative result for indicated effect.

*The effect was enhanced in the repair-deficient cell lines compared to the normal cell line.

5.6.3.3 Mutations
Formaldehyde exposure has caused mutations in mammalian cells in vitro and dominant lethal mutations in mice and rats (Table 5-21). All but one of the in vitro studies was positive. Two i.p. injection studies reported negative results for dominant lethal mutations in mice, while one study (given a higher dose) reported a weak positive response.

Dominant lethal mutations were observed in rats exposed to formaldehyde by inhalation and i.p. injection.
Heritable mutations in mice were reported in a study by Liu et al. (2009b) exposing male specific-pathogen-free ICR mice to 2 to 200 mg/m³ formaldehyde [formalin vapor] for 2 hours. After a 6-week recovery, the mice were bred and sperm DNA was extracted from the male mice. Somatic DNA for analysis was extracted from tail tissue of both parents as well as from offspring. Utilizing three expanded simple tandem repeats (ESTR) probes, mutation rates were quantitatively and qualitatively evaluated to be both dose dependent and mainly inherited from the paternal germ line. The authors speculated that ramifications of this altered DNA, and subsequent abnormal protein expression, could result in malformations in the offspring.

<table>
<thead>
<tr>
<th>Test system</th>
<th>Concentration LEC/HIC</th>
<th>Result</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese hamster V79 cells (Hprt locus)</td>
<td>0.3 mM, 0.5 mM</td>
<td>+</td>
<td>Grafström et al. 1993</td>
</tr>
<tr>
<td>Mouse lymphoma L5178Y cells (Tk<sup>+</sup>/− locus)</td>
<td>0.8 mM, > 0.067 mM</td>
<td>+</td>
<td>Mackerer et al. 1996</td>
</tr>
<tr>
<td>Human lymphoblast (TK6)</td>
<td>0.13 mM, 0.03 mM, 0.15 mM</td>
<td>+</td>
<td>Goldmacher and Thilly 1983, Craft et al. 1987, Crosby et al. 1988, Liber et al. 1989</td>
</tr>
<tr>
<td>Human bronchial fibroblasts and epithelial cells (HPRT locus)</td>
<td>0.1 mM, 0.1 mM</td>
<td>+</td>
<td>Grafström et al. 1985, Grafström 1990</td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse (dominant lethal, i.p.)</td>
<td>20 mg/kg, 50 mg/kg</td>
<td>−</td>
<td>Epstein and Shafner 1968, Epstein et al. 1972, Fontignie-Houbrechts 1981</td>
</tr>
<tr>
<td>Rat (dominant lethal, inh., 4 h/d, 4 mo)</td>
<td>1.2 ppm</td>
<td>(+)</td>
<td>Kitaeva et al. 1990</td>
</tr>
<tr>
<td>Rat (dominant lethal, i.p.)</td>
<td>0.125 mg/kg</td>
<td>+</td>
<td>Odeigah 1997</td>
</tr>
<tr>
<td>Mouse (heritable mutation, inh.)</td>
<td>200 mg/m³</td>
<td>+</td>
<td>Liu et al. 2009b</td>
</tr>
</tbody>
</table>

+ = positive study, (+) = weak positive study, − = negative study.
inh. = inhalation; i.p. = intraperitoneal; LEC = lowest effective concentration; HIC = highest ineffective concentration; SCC = squamous cell carcinoma.

5.6.3.4 Other effects

Other genetic and related effects reported in mammalian in vitro studies include unscheduled DNA synthesis (UDS), inhibition of DNA repair, and cell transformation.
UDS was observed in rat hepatocytes (Williams et al. 1989), human HeLa cells (Martin et al. 1978), and Syrian hamster embryo cells (Hamaguchi and Tsutsui 2000), but not in human bronchial epithelial cells (Doolittle et al. 1985). Other studies indicate that formaldehyde can inhibit DNA repair processes and induce cell transformation. Emri et al. (2004) investigated the interactions of low concentrations of formaldehyde and UV radiation in human skin cells. Keratinocytes and fibroblasts exposed to 10 μM formaldehyde prior to UV irradiation inhibited DNA repair kinetics after UVB and UVC, but not after UVA irradiation. Single-strand breaks that were repaired within 3 to 6 hours following exposure to UVB or UVC radiation, were still present at these time points in the presence of formaldehyde. UVC-induced chromosomal damage was also increased in the presence of formaldehyde at a concentration (12.5 μM) that did not cause micronuclei. These authors concluded that environmental exposure to formaldehyde might contribute to UV-induced skin carcinogenesis.

Table 5-22. Other genetic effects of formaldehyde in mammalian systems

<table>
<thead>
<tr>
<th>Test system</th>
<th>Concentration LEC/HIC</th>
<th>Effect</th>
<th>Result</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat hepatocytes</td>
<td>400 mM UDS</td>
<td>+</td>
<td>Williams et al. 1989</td>
<td></td>
</tr>
<tr>
<td>Syrian hamster embryo cells</td>
<td>0.1 mM UDS</td>
<td>+</td>
<td>Hamaguchi and Tsutsui 2000</td>
<td></td>
</tr>
<tr>
<td>Human HeLa cells</td>
<td>10⁻⁴ mM UDS</td>
<td>+</td>
<td>Martin et al. 1978</td>
<td></td>
</tr>
<tr>
<td>Human bronchial epithelial cells</td>
<td>0.1 mM UDS</td>
<td>–</td>
<td>Doolittle et al. 1985</td>
<td></td>
</tr>
<tr>
<td>Human bronchial epithelial cells and fibroblasts and skin fibroblast</td>
<td>0.2 mM DNA repair (inhibition)</td>
<td>+</td>
<td>Grafström et al. 1984</td>
<td></td>
</tr>
<tr>
<td>Human MRC5CV normal cells XP cell line (repair deficient) FA cell line (repair deficient)</td>
<td>0.125 mM DNA repair (inhibition)</td>
<td>+</td>
<td>Speit et al. 2000</td>
<td></td>
</tr>
<tr>
<td>Human skin fibroblasts and keratinocytes</td>
<td>10 mM DNA repair (inhibition)</td>
<td>+</td>
<td>Emri et al. 2004</td>
<td></td>
</tr>
<tr>
<td>C3H10T1/2 mouse cells</td>
<td>0.017 mM Cell transformation</td>
<td>+</td>
<td>Ragan and Boreiko 1981</td>
<td></td>
</tr>
</tbody>
</table>

+= positive study; − = negative study.
LEC = lowest effective concentration; HIC = highest ineffective concentration; UDS = unscheduled DNA synthesis.
* Positive only in the presence of 12-O-tetradecanoylphorbol 13-acetate.
5.6.4 Human in vivo studies
The genetic effects of formaldehyde have been investigated in humans that were exposed in a number of settings (e.g., hospitals, pathology and anatomy laboratories, woodworking facilities, formaldehyde manufacturing facilities, mortuaries, and residences) and are described below. Most of these studies were reviewed by WHO (1989), Conaway et al. (1996), IARC (1995, 2006), or Liteplo and Meek (2003).

5.6.4.1 DNA-protein crosslinks and strand breaks
Shaham et al. (1996a, 1997) conducted a pilot study to investigate the use of DNA-protein crosslinks as a biomarker of formaldehyde exposure in humans. DNA-protein crosslinks were measured in white blood cells from 12 exposed workers (physicians and technicians at the Pathology Institute) and 8 controls. The workers had been exposed to formaldehyde from 2 to 31 years with a mean of 13 years. Formaldehyde concentrations were measured in the room air and by personal samples. Concentrations ranged from about 1.4 to 3.1 ppm. There was a significant difference ($P = 0.03$, t-test) between the levels of crosslinks in exposed workers and controls, and a significant difference ($P < 0.05$) between the most-exposed workers (technicians) and less-exposed workers (physicians) (Table 5-23). Furthermore, there was a linear relationship between the years of exposure and levels of crosslinks. Smoking did not influence the results. This was the first study to measure DNA-protein crosslinks in humans exposed to formaldehyde.

Shaham et al. (2003) conducted a follow-up study of the relationship of occupational exposure to formaldehyde and DNA-protein crosslinks. This study also investigated effects on p53 protein expression. The workers included physicians, laboratory assistants and technicians, and hospital orderlies from 14 hospital pathology departments that had a mean exposure period of 15.9 years (range 1 to 51 years). Fifty-nine (59) men and 127 women were included in the exposed group and were further divided into subgroups based on low and high exposures. The low-exposure group (0.04 to 0.7 ppm) included laboratory assistants and technicians, while the high-exposure group (0.72 to 5.6 ppm) included physicians and orderlies. [No explanation was given for physicians being in the less highly exposed group in the 1996-97 study but in the highly exposed group in the 2003 study.] The control group included 213 administrative workers (127 men and 86
women) from the same hospitals. There were significant differences in the age
distribution, sex, origin, and education between the exposed and control group.
Therefore, the data were adjusted for these variables. DNA-protein crosslinks were
measured in the mononuclear cell fraction of peripheral blood. Also, p53 proteins,
including pantropic p53 (wild type and mutant) and mutant p53, were measured in serum.

The adjusted means of crosslinks between the exposed and unexposed groups were
compared by analysis of variance, the comparison between the two levels of exposure
was evaluated by the Mann-Whitney U test, and the Chi square test was used to compare
prevalence of high p53 levels. The adjusted mean amount of crosslinks was significantly
higher ($P < 0.01$) in the total exposed group compared with the control group (Table 5-
23). Age, smoking habits, years of education, and origin were not significant
confounders. The mean amount of crosslinks did not show significant differences based
on level of exposure or median years of exposure (≤ 16 versus > 16). Formaldehyde
exposure was associated with an increased risk of having a higher level of pantropic p53
protein above 150 pg/mL. A significantly higher proportion of exposed workers with
DNA-protein crosslink levels above the median level of 0.187 had elevated pantropic p53
protein levels compared with exposed workers with crosslink levels less than 0.187.

Table 5-23. DNA-protein crosslinks and pantropic p53 protein levels in medical
workers exposed to formaldehyde

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>DNA-protein crosslinks/total DNA</th>
<th>Pantropic p53 > 150 pg/mL (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8</td>
<td>0.23 ± 0.067^a</td>
<td>NT</td>
<td>Shaham et al. 1996a, 1997</td>
</tr>
<tr>
<td>Exposed (total)</td>
<td>12</td>
<td>$0.28 \pm 0.055^*$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low exposure</td>
<td>6</td>
<td>0.26 ± 0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High exposure</td>
<td>6</td>
<td>0.32 ± 0.043^{ab}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>213</td>
<td>0.14 ± 0.006^c</td>
<td>36.3</td>
<td>Shaham et al. 2003</td>
</tr>
<tr>
<td>Exposed</td>
<td>186</td>
<td>$0.21 \pm 0.006^{**}$</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>Low exposure</td>
<td>NR</td>
<td>≤ 0.187</td>
<td>33.3d</td>
<td></td>
</tr>
<tr>
<td>High exposure</td>
<td>NR</td>
<td>> 0.187</td>
<td>55.7ab,d</td>
<td></td>
</tr>
</tbody>
</table>

* $P < 0.05$; ** $P < 0.01$ (compared with controls, unless otherwise noted, see text for method).
NR = not reported, NT = not tested
$^a \pm$ SD.
c Compared with low-exposure group.
$^b \pm$ SE.
d Low and high exposure groups based on DNA-protein crosslink levels above or below the median value of 0.187.
Costa et al. (2008) compared DNA damage in 30 pathology anatomy laboratory workers in four hospitals in Portugal with 30 matched controls (age, sex, lifestyle factors, and smoking habits) selected from administrative staff in the same hospitals. This study also examined SCE and micronuclei (discussed below) and the association between biomarkers and polymorphic genes of xenobiotic metabolizing and DNA repair enzymes. The exposed group had been employed for 5 months to 27 years (mean 11 years). The mean level of exposure measured at the breathing zone of the subjects was 0.44 ppm (range 0.04 to 1.58 ppm). The subjects began work at 9 a.m. and blood samples were collected between 10 and 11 a.m. The alkaline version of the comet assay was used to evaluate DNA damage in lymphocytes. There was a significant increase ($P < 0.05$) in comet tail length in exposed workers compared with controls, and a positive association was found between formaldehyde exposure level and comet tail length. The polymorphisms, age, and smoking status examined did not have a significant effect on DNA damage. DNA damage was significantly increased in exposed females compared with exposed males, but no effect on gender was observed in controls. Age and smoking status did not affect DNA damage.

Genotoxicity studies published on peripheral lymphocytes of Chinese workers exposed to formaldehyde were reviewed by Tang et al. (2009). Increases in DNA damage to lymphocytes (comet assay) were reported in three studies in exposed workers (Jiang et al. 2006, Tong et al. 2006, Yu et al. 2005).

5.6.4.2 DNA repair and mutations

Three studies were reviewed that examined the effects of formaldehyde exposure on DNA repair (Hayes et al. 1997, Orsiere et al. 2006, Schlink et al. 1999). The study populations included medical or mortuary science students and anatomy laboratory workers. One study investigated the mutagenicity of urine samples collected from medical workers (Connor et al. 1985a).

Hayes et al. (1997) examined the effects of formaldehyde exposure on DNA repair capacity in mortuary science students. O^6-alkylguanine DNA alkyltransferase (AGT) activity was measured in peripheral blood lymphocytes of 23 students (16 males and 7 females) before and after a 9-week course in embalming techniques. Personal
formaldehyde exposure was measured at the breathing zone during embalming, and short-term (peak) exposure was measured with a continuous reading instrument. Cumulative formaldehyde exposure was measured as ppm-hours formaldehyde for each subject. The average air concentration of formaldehyde during embalming was about 1.5 ppm, but short-term monitoring during some embalmings showed that peak exposures were 3 to 9 times higher than the time-weighted average concentration. Most students performed between five and nine embalmings during the class. However, 15 students reported prior exposure to formaldehyde during embalming procedures conducted within 90 days of the class. Differences in AGT activity were assessed by the Wilcoxon signed rank test and by analysis of variance. Baseline AGT activity was somewhat lower ($P = 0.08$) in students who reported a prior history of embalming. There were no significant differences in baseline AGT activity based on gender, age, or current tobacco use. At the end of the study, AGT activity decreased in 17 students and increased in 6 students compared with baseline values ($P < 0.05$). Among the eight students with no previous embalming experience, AGT activity decreased in all but one. Although post-exposure AGT activity tended to decrease, no clear link was established between formaldehyde exposure and AGT activity. The authors noted several study limitations. These included a small number of subjects, many of which had prior exposure to formaldehyde, and the study did not allow for a detailed temporal association between formaldehyde exposure and AGT activity.

In a subsequent study by the same group of researchers, Schlink et al. (1999) measured AGT (also known as O^6-methylguanine DNA methyltransferase [MGMT]) activity in mononuclear blood cells in 57 medical students before and after taking an anatomy course. The students were exposed to an average formaldehyde concentration of 0.2 mg/m3 [0.16 ppm] for 6 hours/week for about 16 weeks. Age, sex, cigarette smoking, alcohol consumption, and allergic disease did not significantly affect MGMT activity. The mean MGMT activity after 111 days of exposure was 128.2 fmol/106 cells, which was not significantly different from the baseline value of 133.2 fmol/106 cells. There also was no significant difference in MGMT activity in a second group of 16 medical students with mean formaldehyde exposure of 0.8 mg/m3 [0.64 ppm] compared with a group of 51...
students without formaldehyde exposure. Thus, formaldehyde did not affect MGMT activity in mononuclear blood cells in medical students.

Orsière et al. (2006) examined the genotoxic effects of formaldehyde in 59 pathology and anatomy laboratory workers from five hospitals. Personal air sampling was conducted for short-term (15 minutes) and long-term (8 hours) intervals. The mean formaldehyde concentrations were 2 ppm (range < 0.1 to 20.4 ppm) and 0.1 ppm (range < 0.1 to 0.7 ppm) in the short-term and long-term air samples. The highest formaldehyde concentrations were recorded during macroscopic examination of formaldehyde-preserved specimens. Blood samples were collected from each worker in the morning before beginning work and at the end of the work day. The chemiluminescence microplate assay was used to measure primary DNA damage (ex vivo base or nucleotide excision-repair activity) in peripheral lymphocytes. Data were expressed in relative light units (RLU) per ng of DNA. Chromosomal damage was determined using the cytokinesis-blocked micronucleus assay (see Section 5.6.4.3 for a description of these results). There was no difference in DNA damage at the beginning of the work day compared with the end of the work day. The mean pre-shift RLU was 3.9 ± 0.5 compared with the post-shift value of 3.6 ± 0.5. There was no correlation of DNA damage with work practices or with personal air sampling data.

Connor et al. (1985a) tested the mutagenicity of urine samples from 19 autopsy service and pathology department workers at the University of Texas medical school. The control group included 20 individuals selected from the staff, faculty, and student populations and were matched to the exposure group based on sex, age, and alcohol, tobacco, and marijuana use. Medical history, past use of medications, exposure to industrial chemicals, and other factors that could possibly affect the outcome of the study were considered in the analysis. Urine samples were collected three times at 2-month intervals and were tested for mutagenicity in S. typhimurium strains TA98 and TA100 with and without S9 metabolic activation. Formaldehyde concentrations ranged from 0.1 ppm (detection limit) outside the immediate work area to 5.8 ppm in the work area. The estimated time-weighted average formaldehyde concentrations in the work areas ranged from 0.61 to 1.32 ppm. Urine concentrates were tested at 50 and 100 μL per plate. There was no
difference in mutagenicity between the autopsy service workers and the control group. The only samples that demonstrated substantial levels of mutagenicity were from two individuals in the control group. One of these had received metronidazole therapy during the study and was not included in the final analysis. The other individual was a heavy smoker (2 packs a day). Urine samples from this individual contained the mutagenic compound 2-naphthylamine. In addition, urine from two individuals in the exposed group (both smokers) showed slight mutagenic responses when assayed in strain TA98 with the addition of S9. However, there was a significant difference (P value was not reported) in the number of urine samples from the exposed group (13) that were toxic compared with the control group (4) (Table 5-24). Toxicity (determined by plates with a partial or complete absence of a background lawn) was reduced in the presence of S9, and when the urine samples were tested at lower concentrations, no mutagenicity was observed. Analyses of the toxic samples showed that most of them contained a compound identified as a glucuronide conjugate that did not appear to be related to formaldehyde exposure.

Table 5-24. Distribution of autopsy service and pathology department workers with mutagenic or toxic urine samples

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Non-mutagenic or non-toxic</th>
<th>Mutagenic</th>
<th>Toxic</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>16 (42)a</td>
<td>1 (3)b</td>
<td>2 (4)</td>
<td>19 (49)</td>
</tr>
<tr>
<td>Exposed</td>
<td>11 (27)</td>
<td>2 (5)bc</td>
<td>5 (13)</td>
<td>18 (45)</td>
</tr>
<tr>
<td>Total</td>
<td>27 (69)</td>
<td>3 (8)</td>
<td>8 (17)</td>
<td>37 (94)</td>
</tr>
</tbody>
</table>

Source: Connor et al. 1985a.

aThe number in parentheses is the total number of samples in each category.

bAll mutagenic samples are from smokers.

cBoth individuals were smokers; urine from both was slightly mutagenic in strain TA98, but only with S9 metabolic activation; urine was not mutagenic in strain TA100 with or without S9.

5.6.4.3 Cytogenetic effects

A number of studies have examined the cytogenetic effects of formaldehyde exposure in peripheral blood lymphocytes or nasal mucosa in humans exposed to formaldehyde. The findings are discussed below and summarized in Table 5-25 (chromosomal aberrations) Table 5-26 (SCE) and Table 5-27 (micronuclei).

Genotoxicity studies published on peripheral lymphocytes in Chinese workers exposed to formaldehyde were reviewed by Tang et al. (2009). Increases in micronucleus...
frequencies in lymphocytes were reported for exposures over 1 year (Wang et al. 1997, Yu et al. 2005) and in nasal epithelial cells after 8 weeks exposure to high levels (0.508 to 0.985 mg/m\(^3\)) of formaldehyde (Cheng et al. 1995). Also, multiple chromosome aberrations were reported in workers exposed to an average of 2.51 mg/m\(^3\) of formaldehyde for 10.5 years (Jin and Zhu 1992). In contrast, two studies reported no increase in SCE in lymphocytes from formaldehyde-exposed workers (Jin and Zhu 1992, Li et al. 1988, Ye et al. 2005). [These findings are not discussed in detail in the text or the tables since the information comes from a secondary source.]

Fleig et al. (1982) conducted a cytogenetic analysis of 15 employees at a formaldehyde manufacturing and processing facility in Germany. The workers had been employed for 23 to 35 years. The control group included 15 administrative or office staff employees at the same facility who were matched by age and sex with the exposed group. Personal air samplers were used to determine 8-hour time-weighted average formaldehyde exposures for each individual. Mean formaldehyde concentrations at the work areas did not exceed the maximum workplace concentrations (MAK value). MAK values were 5 ppm before 1971 and 1 ppm after 1971. Chromosomal aberrations were measured in peripheral blood lymphocytes. One hundred (100) cells per individual were scored. There was no difference in the incidences of aberrant cells including gaps (all types of aberrations with both chromatid and isochromatid gaps between the exposed (3.07%) and control group (3.33%). The mean incidence of aberrant cells excluding gaps (breaks, fragments, deletions, chromatid exchanges, rings, and dicentric chromosomes) was greater in the exposed group than in the controls (1.67 % versus 1.07%); however, this difference was not statistically significant. There was no correlation between formaldehyde exposure and the number of aberrant metaphases. The authors reported that chromosomal aberrations were not increased among smokers.

Suskov and Sasanova (1982) examined peripheral lymphocytes from 31 persons, including individuals of both sexes, exposed to formaldehyde in the air at 0.5 mg/m\(^3\) [0.41 ppm], the average concentration in an area in which phenolformaldehyde resin was produced. The control group included 74 healthy individuals that had no occupational contact with synthetic resins. The control group was matched for sex, smoking, alcohol
consumption, and medication. The average frequency of metaphases with chromosomal aberrations was 5.0% for the exposed workers and 2.4% for the control group, which was significant at $P < 0.001$ by χ^2 test. No difference in the average frequency of chromosome breaks per chromosome was found.

Thomson et al. (1984) examined incidences of chromosomal aberrations and SCE [results for SCE reported below] in the peripheral blood lymphocytes of six pathology workers and five unexposed controls. Smoking history was obtained for each individual. The pathology workers had been employed for 4 to 11 years and were exposed to formaldehyde for 2 to 4 hours/day, 2 to 3 days/week. Time-weighted average formaldehyde concentrations ranged from 1.14 to 6.93 mg/m3 [0.93 to 5.65 ppm]. One hundred (100) first-division metaphases from each 48-hour culture were scored for chromosomal aberrations for each individual. There were no significant differences in the incidences of chromosomal aberrations between the exposed and control groups. The most common chromosomal aberrations were aneuploid cells (36 in the exposed group and 15 in the controls) and chromatid aberrations (8 in the exposed group and 6 in the controls). Only one dicentric chromosome was observed, and this was from the control group. [Although smoking history data were collected, there was no discussion of how these data were used.]

Bauchinger and Schmid (1985) investigated the clastogenic effects of formaldehyde in paper factory workers. Chromosomes were analyzed in peripheral blood lymphocytes from 20 male papermakers who had occupational exposure to formaldehyde for 2 to 30 years. The control group included 20 male workers from the same factory that were not exposed to formaldehyde. The exposed and control groups were matched for age, smoking history, and social environment. The mean accumulated exposure time was estimated to be about 45 to 90 minutes per 8-hour shift. Formaldehyde concentrations in workroom air did not exceed 0.2 ppm; however, workers were required to enter the paper machine for short periods to take samples or change the paper type, and formaldehyde concentrations as high as 3 ppm were encountered. Five hundred (500) cells per individual were scored for chromosomal aberrations, and 50 cells per individual were scored for SCEs from 54-hour cultures [results for SCE are reported below]. The Mann-
Whitney rank U test was used to compare incidences of chromosomal changes. Incidences of dicentrics or dicentrics and ring chromosomes were significantly higher than in controls; however, there were no significant differences in structural chromosome changes, acentric fragments, chromatid-type aberrations, or gaps. Stratified analyses by supervisors and operators showed that only supervisors (mean occupational exposure 2.5 times higher than operators) had significantly higher incidence of dicentrics and dicentric and ring chromosomes.

Chebotarev et al. (1986)2 reported a significantly higher level of chromosomal aberrations in lymphocytes from 40 woodworkers (2.76\%) compared with 22 control workers (1.64\%). The incidence of chromosomal breakage was also significantly higher in woodworkers compared with controls (2.95\% vs. 1.64\%).

Vargová et al. (1992) compared chromosomal aberrations in peripheral blood lymphocytes from 20 workers (10 men and 10 women) exposed to formaldehyde in a wood-product manufacturing facility with 19 matched non-exposed workers from the same factory. The control and exposed groups had similar habits and a similar social status. The exposed workers had been employed at the facility for 5 to more than 16 years and were exposed to time-weighted average formaldehyde concentrations of 0.55 to 10.36 mg/m3 (0.46 to 8.6 ppm). There were no significant differences between the exposed workers and controls for chromatid and chromosome gaps, breaks, exchanges, breaks per cell, or percentage of cells with aberrations. The exposed workers had 3.08\% aberrant cells and 0.045 breaks per cell compared with 3.6\% aberrant cells and 0.08 breaks per cell in the control group. The authors noted that the frequency of aberrations in the control group was higher than reported in the general population (1.2\% to 2\%) and noted that smoking and alcohol consumption may have been a factor. The authors concluded that both the exposed and control groups had a potential increased genotoxic risk, but they had no explanation for the increased levels of chromosomal aberrations in the control group. Both controls and the exposed groups had increased numbers of inactive lymphocytes and decreased lymphoblast frequency, and exposed groups had a

2 Russian publication, information based on the English summary.
significant decrease in the mitotic index. Significant differences in immunological effects were also found between the exposed group and the matched controls and the matched controls and background controls (see Section 5.4.2).

Kitaeva et al. (1996) reported a significant increase in the frequency of chromosomal aberrations in peripheral blood lymphocytes of workers at a nitrogen fertilizer manufacturing plant who were exposed to formaldehyde concentrations above the maximum permissible occupational limits (see Table 15-25).

Vasudeva and Anand (1996) compared chromosomal aberrations in peripheral blood lymphocytes from 30 female medical students, who were exposed to formaldehyde for 15 months during an anatomy laboratory, to 30 age-matched, unexposed controls (non-medical students). All participants were healthy, had unremarkable medical histories, and had received no or insignificant radiation exposure. The average exposure concentration was less than 1 ppm. The incidences of chromosomal aberrations were not significantly different between the exposed and control groups.

He et al. (1998) examined the clastogenic effects of formaldehyde exposure in 13 students during a 12-week anatomy class. The control group included 10 students from the same school who were not exposed to formaldehyde. All participants were nonsmokers, and the sex and age of the two groups were similar. Breathing-zone air samples were collected during dissection procedures and showed a mean formaldehyde concentration of 2.37 ppm. Lymphocytes were examined for chromosomal aberrations, SCE, and micronuclei. [Results for SCE and micronuclei are reported below.] Chromosomal aberrations occurred at a significantly higher frequency in the exposed group than in the controls ($P < 0.01$, [statistical method not identified]). The authors also reported a correlation between micronuclei and chromosomal aberrations.

Lazutka et al. (1999) evaluated chromosomal aberrations among 97 (34 male and 63 female) plasticware workers who were exposed to formaldehyde (0.5 to 0.9 mg/m3), styrene (4.4 to 6.2 mg/m3), and phenol (0.5 to 0.75 mg/m3) for 2 months to 25 years. Non-exposed donors were used as controls (64 male and 26 females) and were matched by age and similar smoking habits as the exposed workers. The mean frequency of
chromosomal aberrations was significantly higher in the exposed workers than controls. Significant increases in chromosomal aberrations were observed among workers with short and long exposures; however, the frequency of chromosomal aberrations induced did not increase with exposure duration. The study was not able to identify which exposure caused the chromosomal aberrations; however, the authors noted that styrene has been reported to cause chromosomal aberrations.

Neri et al. (2006) addressed some of the critical issues of environmental research in pediatric populations. Data from several field studies that were focused on various exposures in children were reviewed. One of these studies evaluated the frequency of chromosomal aberrations in pre-school children (boys and girls, aged 5 to 6 years) and elementary school boys (aged 8 to 12 years) from 1984 to 1986. These children were exposed to elevated levels of formaldehyde from an adhesive that was used to secure pressboard panels in prefabricated schools in Czechoslovakia in the 1980s. Formaldehyde concentrations in the elementary school were 0.32 mg/m³ [0.26 ppm] in 1984, 0.13 mg/m³ [0.11 ppm] in 1985, and 0.037 mg/m³ [0.03 ppm] in 1986. Formaldehyde concentrations in the pre-school were reported as 0.21 to 0.36 mg/m³ [0.17 to 0.29 ppm] in 1984. Chromosomal aberrations were determined in lymphocytes from 20 elementary school children in 1984, 16 in 1985, and 18 in 1986 and in 13 pre-school children in 1984. The control groups included 17 elementary school children in 1984 and 1985 and 24 pre-school children in 1984. There were significantly increased percentages of aberrant cells in 1984 and 1985 in the elementary school children compared with the controls ($P < 0.01$, [statistical method not reported]).
Table 5-25. Chromosomal aberrations in peripheral blood lymphocytes from humans exposed to formaldehyde

<table>
<thead>
<tr>
<th>Study population</th>
<th>N</th>
<th>No. cells examined/person</th>
<th>Exposure</th>
<th>Aberrant cells (%)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched controls</td>
<td>15</td>
<td>100</td>
<td>0 < 5</td>
<td>23–35 yr</td>
<td>3.33</td>
<td>Controls matched for age and sex</td>
</tr>
<tr>
<td>Formaldehyde workers</td>
<td></td>
<td>100</td>
<td>0 < 5</td>
<td>23–35 yr</td>
<td>3.07</td>
<td>CA not increased for smokers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.67)a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>100</td>
<td>0 < 5</td>
<td>23–35 yr</td>
<td>0.0005c</td>
<td>Controls matched for sex, smoking, alcohol consumption and medication</td>
</tr>
<tr>
<td>Phenolformaldehyde resin workers</td>
<td>74</td>
<td>93</td>
<td>0.41</td>
<td>0.33–30 yr</td>
<td>2.4</td>
<td>Controls matched for sex, smoking, alcohol consumption and medication</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>104</td>
<td></td>
<td></td>
<td>5.0***</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>5</td>
<td>100</td>
<td>0 0.9–9</td>
<td>4–11 yr</td>
<td>[4.6]b</td>
<td>Controls consisted of 3 females and 2 males, mean age 27.8; exposed consisted of 2 females and 4 males, mean age 33.5. Smoking histories collected but analyses (if any) not reported</td>
</tr>
<tr>
<td>Pathology workers</td>
<td>6</td>
<td>100</td>
<td></td>
<td></td>
<td>[7.7]b</td>
<td></td>
</tr>
<tr>
<td>Matched controls</td>
<td>20</td>
<td>500</td>
<td>0 0.2–3</td>
<td>2-30 yr</td>
<td>0.0005c</td>
<td>Controls from the same factory were matched for age, smoking history and social environment. Stratified analyses by supervisors and operators showed that only supervisors (mean occupational exposure 2.5 times higher than operators) had significantly higher incidence of dicentrics and dicentric and ring chromosomes.</td>
</tr>
<tr>
<td>Papermakers</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>0.0013*e</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>22</td>
<td>100</td>
<td>NRd</td>
<td>NRd</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>Woodworkers</td>
<td>40</td>
<td>100</td>
<td></td>
<td></td>
<td>2.76*</td>
<td></td>
</tr>
<tr>
<td>Study population</td>
<td>N</td>
<td>No. cells examined/person</td>
<td>Exposure</td>
<td>Aberrant cells (%)</td>
<td>Comments</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>---------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Matched controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood-splinter product workers</td>
<td>19</td>
<td>100</td>
<td>0</td>
<td>0.46–8.6</td>
<td>5–> 16 yr</td>
<td>3.60<sup>d</sup> 3.08</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>6</td>
<td>NR</td>
<td>0</td>
<td>1.2-2.4 ml/m<sup>3</sup></td>
<td>10 yr</td>
<td>1.8 5.4*</td>
</tr>
<tr>
<td>Nitrogen fertilizer workers</td>
<td>8</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matched controls</td>
<td>30</td>
<td>100</td>
<td>0</td>
<td><1</td>
<td>15 mo</td>
<td>0.9 1.2</td>
</tr>
<tr>
<td>Medical students</td>
<td>30</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>2.37</td>
<td>12 wk</td>
<td>3.4 5.9**</td>
</tr>
<tr>
<td>Anatomy class students</td>
<td>13</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls (donors)</td>
<td>90</td>
<td>100</td>
<td>0.5–0.9</td>
<td>2 mo to 25 yr</td>
<td></td>
<td>1.68 4.2*</td>
</tr>
<tr>
<td>Plasticware workers</td>
<td>97</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study population

<table>
<thead>
<tr>
<th>Study population</th>
<th>N</th>
<th>No. cells examined/person</th>
<th>Exposure ppm</th>
<th>duration</th>
<th>Aberrant cells (%)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (1984)</td>
<td>17</td>
<td>100</td>
<td>0</td>
<td></td>
<td>1.37</td>
<td>Children were exposed to formaldehyde from adhesive used to secure pressboard panels in prefabricated schools.</td>
<td>Neri et al. 2006</td>
</tr>
<tr>
<td>School children (1984)</td>
<td>20</td>
<td>100</td>
<td>0.26</td>
<td></td>
<td>4.71**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School children (1985)</td>
<td>16</td>
<td>100</td>
<td>0.11</td>
<td></td>
<td>2.83**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School children (1986)</td>
<td>18</td>
<td>100</td>
<td>0.03</td>
<td>1–3 yr</td>
<td>2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls (preschool, 1984)</td>
<td>24</td>
<td>100</td>
<td>0</td>
<td></td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preschool children (1984)</td>
<td>13</td>
<td>100</td>
<td>0.17-0.3</td>
<td></td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = \(P < 0.05 \), ** = \(P < 0.01 \), *** = \(P < 0.001 \).

CA = chromosomal aberrations, NR = not reported, NS = not significant compared with controls.

* Data reported for aberrant cells including gaps and excluding gaps (in parenthesis).

* b Frequencies were calculated from the totals for aneuploid cells, Cs cells, acentrics, dicentrics, rings, and chromatid aberrations.

* c Data are mean frequencies of dicentrics/cell. The frequency of dicentrics combined with ring chromosomes was also significantly different from controls. No significant differences were observed for structural chromosome changes, acentric fragments, gaps/cells, or chromatid-type aberrations.

* d Exceeded the frequency of aberrations (1.2% to 2%) reported in the general population.
Occupational exposure to formaldehyde and SCE were evaluated in 11 studies. Three of
the earliest published studies (discussed above) did not find increased incidences of SCEs
among workers exposed to formaldehyde (Thomson et al. 1984, Bauchinger and Schmid
1985, Chebotarev et al. 1986). Thompson et al. examined incidences of SCE in the
peripheral blood lymphocytes of six pathology workers and five unexposed controls.
Bauchinger and Schmid (1985) studied 20 male paper factory workers who were
occupationally exposed to formaldehyde for 2 to 30 years, and Chebotarev et al. studied
40 woodworkers.

Yager et al. (1986) measured SCEs in the peripheral lymphocytes of eight non-smokers
exposed to formaldehyde embalming solution during a 10-week anatomy class. The
embalming fluid contained 5.6% formalin (37% formaldehyde and 15% methanol),
22.4% ethanol, 10% phenol, and 62% water. The class met two afternoons per week, but
students had free access to the laboratory throughout the week. None of the participants
had any known exposure to formaldehyde during the preceding year. Blood samples were
collected before, and at the end of the class. The mean concentration of formaldehyde in
the classroom air was 0.33 ppm, while the mean concentration from breathing zone
samples collected during dissection procedures was 1.2 ppm. The mean number of SCEs
per cell increased from 6.39 ± 0.11 before taking the class to 7.2 ± 0.33 at the end of the
class. The increase was statistically significant (P = 0.02, paired t-test).

Suruda et al. (1993) examined SCEs in lymphocytes in mortuary science students
following low-level formaldehyde exposure during an embalming class. The students
performed an average of 6.9 embalmings (range 2 to 15) during the 85-day study period.
However, several of the students lived at funeral homes or had part-time jobs in funeral
homes, and participated in embalmings outside the class. Mean formaldehyde
concentrations measured during embalming ranged from 0.15 to 4.3 ppm with peak
concentrations as high as 6.6 ppm. The calculated 8-hour time-weighted average
formaldehyde concentration ranged from 0.1 to 0.96 ppm with an overall mean of 0.33
ppm. Furthermore, air sample measurements indicated little to no exposure to chemicals
other than formaldehyde. SCE frequency showed a significant decrease (7.5%, P < 0.05,
Student’s *t*-test) compared with baseline values. No association was observed with cumulative exposure to formaldehyde and SCE frequency.

Shaham *et al.* (1997) evaluated the frequency of SCE in peripheral blood lymphocytes in 13 workers (6 physicians and 7 technicians) at the Pathology Institute who were occupationally exposed to formaldehyde compared with 20 unexposed, age-matched controls [sex not reported]. There were 3 smokers in the exposed group (23%) and 6 smokers in the control group (30%). The workers had been occupationally exposed to formaldehyde for 2 to 25 years (mean of 13 years). No past exposures to other mutagenic agents were identified. Formaldehyde concentrations were measured in ambient air at various periods throughout the day and ranged from 1.4 to 1.6 ppm in the rooms of the Pathology Institute. Personal samples collected while work was in progress resulted in slightly higher concentrations (2.8 to 3.1 ppm). There was a significant difference in the mean number of SCEs per chromosome in the exposed workers compared with controls (0.212 ± 0.039 [mean ± SD] vs. 0.188 ± 0.035; *P* = 0.05, *t*-test). Significant differences remained after adjustment for smoking. There was a linear relationship between years of exposure and the number of SCE.

Ying *et al.* (1999) examined SCE frequency in lymphocytes of 23 students (11 males and 12 females) enrolled in an anatomy class for 8 weeks. Each student served as their own control and none of the students were smokers. Formaldehyde concentrations were measured in the anatomy laboratory as well as the student’s dormitories. The 3-hour time-weighted average formaldehyde concentrations were 0.51 ± 0.3 mg/m³ [0.41 ± 0.24 ppm] in the anatomy laboratory and 0.012 ± 0.0025 mg/m³ [0.01 ± 0.002 ppm] in the dormitories. There was no significant difference in SCE frequency in lymphocytes before and after completing the 8-week anatomy course. (See Section 5.4.2.4) for lymphocyte subset analyses)

He *et al.* (1998) reported that there was a statistically significant increase (*P* < 0.05, [statistical method not identified]) in SCE frequency in 13 students exposed to formaldehyde during a 12-week anatomy class compared with a control group of 10 students from the same school who were not exposed to formaldehyde. All participants
were nonsmokers, and the sex and age of the two groups were similar. Breathing-zone air samples were collected during dissection procedures and showed a mean formaldehyde concentration of 2.37 ppm. (This study also evaluated chromosomal aberrations.)

Shaham et al. (2002) investigated the mean number of SCEs per chromosome and the proportion of high frequency cells (HFC, i.e., cells with more than eight SCEs) in the peripheral lymphocytes of 90 workers (25 males and 65 females, mean age 44.2 ± 8.5 years) from 14 hospital pathology departments in Israel. The control group included 52 unexposed workers (44 males and 8 females, mean age 41.7 ± 11.4) from the administrative staff of the same hospitals. The percent of active smokers was somewhat higher ($P > 0.05$) in the control group (46.9%) than the exposed group (34.4%). Differences between the controls and exposed groups were (1) sex, higher percentage of females in the exposed ($P < 0.01$), (2) origin, higher number of workers with European/American origin in the exposed ($P < 0.05$) and (3) education, higher level of education in the exposed ($P = 0.06$). The mean exposure period was 15.4 years (range 1 to 39 years). No one in the exposed group was known to have been occupationally exposed to other genotoxic substances, and no one in the control group was known to have ever been occupationally exposed to formaldehyde. The exposed group was further divided into a low-exposure group (formaldehyde concentrations of 0.04 to 0.7 ppm) and a high-exposure group (formaldehyde concentrations of 0.72 to 5.6 ppm) based on personal and field samples of ambient air in the pathology departments at various times during the typical work day. The low-exposure group primarily included laboratory assistants and technicians and the high-exposure group primarily included physicians and hospital orderlies. Adjustments were made for sex, smoking habits, education, and national origin (age was introduced in the model but it did not correlate with SCE measures). Both measures of SCEs (SCE per chromosome and proportion of HFC) were significantly higher in the exposed compared with the control group ($P < 0.01$, Mann-Whitney test), and were significantly higher among workers with 15 years of exposure compared with workers with less than 15 years of exposure ($P < 0.05$). There were no significant differences between the low- and high-exposure groups; however, among smokers, both variables of SCE were higher in the high-exposure subgroup.
Ye et al. (2005) examined nasal mucosa cells and lymphocytes in two populations of formaldehyde-exposed workers in China. One group of 18 workers (11 males and 7 females) was exposed in a formaldehyde manufacturing facility. The mean length of employment was 8.5 years (range 1 to 15 years). The second group included 16 waiters (4 males and 12 females) who worked in a newly fitted ballroom for 12 weeks and were exposed to low levels of formaldehyde from building material, tobacco smoke and furniture. The control group included 23 college students (12 males and 11 females). The average ages in each of the groups were: manufacturing workers, 29 years (range 19 to 39); waiters, 22 years (range 19 to 27); and students, 19 years (range 18 to 23). The 8-hour time-weighted average formaldehyde concentration in the formaldehyde factory was 0.99 mg/m³ [0.8 ppm]. The 5-hour time-weighted average concentration measured in the ballroom was 0.11 mg/m³ [0.09 ppm]. A background indoor air concentration of 0.011 mg/m³ [0.009 ppm] was measured in the student dormitories. All study participants were nonsmokers. The workers, but not the waiters, had a significantly increased frequency of SCEs in lymphocytes compared with the controls (P < 0.05, one-way ANOVA). (See Section 5.4.2.4 for lymphocyte subset analyses).

Costa et al. (2008) investigated DNA damage (see Section 5.6.4.2), SCE, and micronuclei (results reported below) in 30 workers exposed to formaldehyde in four hospital pathology anatomy laboratories in Portugal. Thirty non-exposed hospital employees (matched by age, gender, lifestyle, and smoking) served as the control group. Formaldehyde concentrations measured in the breathing zone of the laboratory workers averaged 0.44 ppm. SCE values were significantly higher in the exposed group (P < 0.05) compared with the control group. There was no association between SCE values and genetic polymorphisms in genes involved with xenobiotic metabolism or DNA repair or with duration of exposure. SCE frequency was higher among control smokers than non-smokers but no differences were observed in the exposed groups. Age and sex did not affect the observed SCE frequency.
Table 5-26. Sister chromatid exchange in peripheral blood lymphocytes from humans exposed to formaldehyde

<table>
<thead>
<tr>
<th>Study population</th>
<th>N</th>
<th>No. cells examined/person</th>
<th>Exposure</th>
<th>SCE frequency/cell (± SE)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls Pathology workers</td>
<td>5</td>
<td>50</td>
<td>0 0.9–>9</td>
<td>6.44 ± 0.38 6.78 ± 0.31</td>
<td>Controls consisted of 3 females and 2 males, mean age 27.8 and exposed</td>
<td>Thomson et al. 1984</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>4–11 yr</td>
<td></td>
<td>consisted of 2 females and 4 males, mean age 33.5. Smoking histories</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>collected but analyses (if any) not reported</td>
<td></td>
</tr>
<tr>
<td>Matched controls Papermakers</td>
<td>20</td>
<td>50</td>
<td>0 0.2–3</td>
<td>9.53 ± 0.35 8.87 ± 0.24</td>
<td>Controls from the same factory and were matched for age, smoking history</td>
<td>Bauchinger and Schmid 1985</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>2–30 yr</td>
<td></td>
<td>and social environment.</td>
<td></td>
</tr>
<tr>
<td>Controls Woodworkers</td>
<td>22</td>
<td>NR a</td>
<td>NR a</td>
<td>8.24 ± 0.37 8.01 ± 0.24</td>
<td></td>
<td>Chebotarev et al. 1986</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>NR a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy class students</td>
<td>8</td>
<td>80</td>
<td>1.2</td>
<td>6.39 ± 0.11 7.20 ± 0.33*</td>
<td>All students were non-smokers</td>
<td>Yager et al. 1986</td>
</tr>
<tr>
<td>Pre-exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortuary science students</td>
<td>29b</td>
<td>50</td>
<td>0.1–0.96</td>
<td>7.72 ± 0.13 7.14 ± 0.89b</td>
<td>Several students had part time jobs involving formaldehyde exposure</td>
<td>Suruda et al. 1993</td>
</tr>
<tr>
<td>Pre-exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No association was observed with cumulative exposure to formaldehyde</td>
<td></td>
</tr>
<tr>
<td>Post-exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matched controls Physicians and technicians</td>
<td>20</td>
<td>32</td>
<td>0 1.4–3.1</td>
<td>0.186 ± 0.035c 0.212 ± 0.039ac</td>
<td>Controls matched on age; 3 (23%) smokers in exposed group, and 6 (30%)</td>
<td>Shaham et al. 1997</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>28</td>
<td>13 yr</td>
<td></td>
<td>in control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Significant differences remained after adjustment for smoking</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Linear relationship between years of exposure and SCE</td>
<td></td>
</tr>
<tr>
<td>Anatomy class students</td>
<td>23b</td>
<td>30</td>
<td>0.01–</td>
<td>6.38 ± 0.41</td>
<td>All students were non-smokers without</td>
<td>Ying et al. 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 wk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study population</td>
<td>No. cells examined/person</td>
<td>Exposure</td>
<td>SCE frequency/cell (± SE)</td>
<td>Comments</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>ppm</td>
<td>duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>10</td>
<td>0.4</td>
<td></td>
<td>6.61 ± 0.79, exposure to x-ray (6 months)</td>
<td>He et al. 1998</td>
<td></td>
</tr>
<tr>
<td>Anatomy class students</td>
<td>13</td>
<td>2.37</td>
<td>12 wk</td>
<td>All students were non-smokers and control and exposed groups had similar sex and age distributions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>52</td>
<td>0</td>
<td>0.04–5.6, 1–39 yr</td>
<td>Controls were similar in age, but significant differences were found for sex, and level of education. Non-significant differences were found for active smokers and place of origin. Analyses were adjusted for smoking, sex, education, and origin. Higher SCE were found among those with longer exposure duration but not among workers with higher level of exposure</td>
<td>Shaham et al. 2002</td>
<td></td>
</tr>
<tr>
<td>Hospital pathology staff</td>
<td>90</td>
<td>30-31</td>
<td>30-32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>23</td>
<td>0.009</td>
<td>1–15 yr</td>
<td>6.38 ± 0.41, 8.24 ± 0.89*, All subjects were non-smokers and had similar ages (average ages were 19 for controls, 22 for waiters and 29 for formaldehyde workers).</td>
<td>Ye et al. 2005</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde factory workers</td>
<td>18</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiters</td>
<td>16</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matched controls</td>
<td>30</td>
<td>0</td>
<td>0.5–27 yr</td>
<td>4.49 ± 0.16, 6.13 ± 0.29*, Controls were matched by age, sex, lifestyle factors and smoking habits. Age and sex did not effect SCE; higher SCE were seen in control unexposed smokers than control unexposed non-smokers.</td>
<td>Costa et al. 2008</td>
<td></td>
</tr>
<tr>
<td>Pathology/anatomy lab workers</td>
<td>30</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study population</td>
<td>N</td>
<td>No. cells examined/person</td>
<td>Exposure ppm</td>
<td>duration</td>
<td>SCE frequency/cell (± SE)</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>

* = \(P < 0.05 \), ** = \(P < 0.01 \), *** = \(P < 0.001 \) compared with controls.

* Not reported in the English summary of a Russian publication.

b Significant decrease in post-exposure samples compared to baseline values.

c Data are SCEs per chromosome ± SD.

d Value was estimated from a figure (exact value was not provided by the study authors).
Ballarin et al. (1992) reported an increase in micronuclei in plywood factory workers compared with an age- and sex-matched control group, who were university or hospital workers. All subjects were non-smokers. The exposed group included 15 workers employed at the plywood factory for 1.5 to 19 years (mean 6.8 years), 7 of which worked in the warehouse, 6 in the shearing-pressing department, and 2 in the sawmill. The time-weighted average formaldehyde concentrations were about 0.1 mg/m3 [0.08 ppm] in the sawmill and shearing press and 0.39 mg/m3 [0.32 ppm] in the warehouse. The highest concentration of 0.6 mg/m3 [0.5 ppm] was recorded in the warehouse. Wood dust levels also were measured and ranged from about 0.23 mg/m3 to 0.73 mg/m3. Respiratory nasal mucosa cells were scraped from the inner turbinates and examined for micronuclei. No fewer than 6,000 cells were counted for each slide. The frequency of micronucleated cells was significantly higher in the exposed group compared with controls (0.90 ± 0.47 vs. 0.25 ± 0.22, $P < 0.01$, Mann-Whitney U test). No significant difference in micronuclei frequency was found between workers in the warehouse (0.97 ± 0.39) and the sawmill and shearing-pressing departments (0.74 ± 0.53).

Two studies (Suruda et al. 1993, Titenko-Holland et al. 1996) examined micronuclei in buccal cells, nasal epithelial cells, and/or lymphocytes in mortuary science students following low-level formaldehyde exposure during an embalming class. Titenko-Holland et al. (1996) used previously unstained and unanalyzed slides collected from participants in the Suruda et al. (1993) study, and used fluorescence in situ hybridization (FISH) rather than a staining method to detect micronuclei. The results of the two studies were similar. Suruda et al. reported that post-exposure micronucleus frequencies increased significantly in buccal epithelial cells and lymphocytes compared with baseline values ($P < 0.05$, Wilcoxon sign-rank test). A significant dose-response relationship was reported for increases in buccal micronuclei (but not nasal or lymphocyte micronuclei) in the 22 male subjects but not in the 7 female subjects. There was a non-significant increase in nasal epithelial micronucleus frequency. Titenko-Holland et al. (1996) reported that there was a significant increase in micronucleus frequency in buccal cells ($P = 0.007$, Wilcoxon sign-rank test) but not in nasal epithelial cells. Total buccal micronuclei were weakly associated ($r = 0.44, P = 0.06$) with cumulative exposure to embalming fluid (90
days). In both tissues, a higher increase in centromere-negative micronuclei (9-fold, \(P = 0.005 \) for buccal cells; 2-fold, \(P = 0.03 \) for nasal cells) was found than for centromere-positive micronuclei (> 2-fold, \(P = 0.08 \) for buccal cells; no change, \(P = 0.31 \) for nasal cells), suggesting that the primary mechanism of micronucleus formation appeared to be chromosome breakage.

Kitaeva et al. (1996) reported a higher sensitivity to formaldehyde exposure for females than males in a study of micronucleus induction in buccal epithelium. There was an increased frequency (\(P < 0.05 \)) of micronuclei reported in buccal mucosa cells collected from 8 female but not from 5 male anatomy workers. However, there were significant increases in both female (\(P < 0.01 \)) and male (\(P < 0.05 \)) students (6 female and 6 male) exposed for 40 minutes. The number of micronucleated cells detected in the students remained elevated 48 hours after the class.

Ying et al. (1997) examined the changes in the frequency of micronuclei in the nasal mucosa, oral mucosa, and lymphocytes of 25 students (13 males and 12 females) enrolled in an anatomy class for 8 weeks. Each student served as their own control; none of the students were smokers, or had a history of drug use in the last 3 weeks or X-rays in the last 6 months. Formaldehyde concentrations were measured in the anatomy laboratory as well as the student’s dormitories. The 3-hour time-weighted average formaldehyde concentrations were \(0.51 \pm 0.3 \text{ mg/m}^3 \) [0.41 \pm 0.24 ppm] in the anatomy laboratory and \(0.012 \pm 0.0025 \text{ mg/m}^3 \) [0.01 \pm 0.002 ppm] in the dormitories. There was a significantly higher frequency of micronuclei in nasal and oral mucosal cells after exposure to formaldehyde (\(P < 0.001 \), paired \(t \)-test). There was no significant difference in the frequency of micronuclei in lymphocytes.

He et al. (1998) examined the frequency of chromosomal aberrations, SCE (see above), and micronuclei in peripheral blood lymphocytes in 13 students during a 12-week anatomy class. The control group included 10 students from the same school who were not exposed to formaldehyde. All participants were nonsmokers, and the sex and age of the two groups were similar. Micronuclei occurred at a significantly higher frequency in
the exposed group than in the controls ($P < 0.01$, [statistical method not identified]). The authors also reported a correlation between micronuclei and chromosomal aberrations.

Burgaz et al. (2001, 2002) reported the frequency of micronuclei in nasal and buccal mucosa cells in individuals exposed to formaldehyde in pathology and anatomy laboratories. The first study examined cells from the nasal mucosa and included 23 pathology or anatomy department staff (11 females and 12 males) and a control group of 25 healthy males selected from university and hospital staff. The numbers of smokers was much higher in the control group (19/25, 75%) compared with the exposed groups (9/23, 39%), but the workers had similar ages, dietary habits and use of medicine. The second study examined cells from the buccal mucosa and included 28 subjects (15 males and 13 females) who worked in pathology and anatomy laboratories and 18 male volunteer controls who were university staff. Some of the subjects were apparently used in both studies; however, details of the overlap were not provided. None of the referents had been occupationally exposed to genotoxic materials. Workers and controls in the second study reported similar diets, alcohol consumption, smoking habits and use of medications. The formaldehyde concentrations in the laboratories ranged between 2 and 4 ppm. Formaldehyde exposure was associated with a statistically significant increase in micronuclei frequency in nasal ($P < 0.01$, non-parametric statistics) and buccal ($P < 0.05$, Student’s t-test and Mann-Whitney test) mucosa cells. Nasal mucosa micronucleus frequency was significantly higher in exposed smokers compared with control smokers. There was no significant effect of age, sex, smoking status, or exposure duration.

Ye et al. (2005) (see discussion under SCE for details) also examined micronucleus formation in nasal mucosa cells from workers at a formaldehyde manufacturing facility and in a group of waiters who worked in a newly fitted ballroom and were exposed to low levels of formaldehyde from building material, tobacco smoke, and furniture. All study participants were nonsmokers. The workers, but not the waiters, had a significantly increased frequency of micronuclei in nasal mucosa cells compared with the controls ($P < 0.05$, one-way ANOVA).
Orsière et al. (2006) also evaluated the effects of formaldehyde on micronucleus formation in lymphocytes in the study of 59 pathology and anatomy laboratory workers and 37 controls described above (see Section 5.6.4.2). Both the control and exposed workers were matched for age, gender, and smoking habits. Chromosomal damage was assessed with the cytokinesis-blocked micronucleus assay. Samples of whole blood were cultured and prepared, then smeared on microscope slides and air dried. The frequency of micronuclei was expressed per 1,000 cells. Micronuclei were measured using the cytokinesis-blocked micronucleus (CMBN) assay. The binucleated micronucleated cell rate (BMCR) was significantly higher in the lymphocytes of exposed workers compared with controls (see Table 5-27). BMCR was correlated with exposure duration in unadjusted analyses, but was no longer significant after controlling for age. Age and gender, but not smoking and drinking habits, were associated with BMCR.

The presence of centromeres in the micronuclei was determined using fluorescent hybridization (FISH) and a pan-centromeric DNA probe in combination with the CMBN assay on 18 exposed and 18 controls randomized from the initial population. Micronucleated cells were classified as centromere positive or negative. Centromere-positive cells were further classified based on the presence of a single centromere or multiple centromeres. BMCR was statistically higher in the exposed group compared with the controls, and the frequencies of micronuclei and centromere-positive micronuclei were higher (but not statistically significant) in the exposed subjects, however, no increased frequency was found for centromere-negative micronuclei. Monocentromeric micronuclei frequency was significantly higher in the exposed group (11.0% ± 6.2 versus 3.1% ± 2.4; \(P < 0.001 \)), but the frequency of micronuclei containing more than one centromere was similar in controls and exposed groups.

Iarmarcovai et al. (2007) pooled data from three biomonitoring studies of untreated cancer patients, welders, and the subset of 18 pathologists/anatomists who were exposed to formaldehyde and 18 unexposed controls from the study population reported by Orsière et al. (2006). In addition to the findings reported above, they reported the results of multivariate regression analysis that adjusted for age, sex, cigarette smoking, and alcohol consumption, and was weighted for the number of scored cells.
Pathologists/anatomists had significantly higher frequency ratios (FR) of centromere-positive micronuclei (FR = 1.65, 95% CI = 1.05 to 2.59), and monocentromeric micronuclei (FR = 3.29 (95% CI = 2.04 to 5.30) compared with the controls. In the pooled studies, alcohol drinking and gender affected endpoints measuring aneuploidy (centromere positive micronuclei frequency and monocentromeric micronuclei frequency), and total micronuclei whereas age only affected total micronuclei frequency.

Micronuclei were not induced in buccal mucosa cells in a study of healthy volunteers exposed to formaldehyde vapors. In this study by Speit et al. (2007b), 10 women and 11 men were divided into 5 groups and exposed to formaldehyde in test chambers 4 hours per day for 10 days. For each group, exposure varied from one day to the next from a constant 0.15 ppp throughout the day, to 0.5 ppp with four peaks of 1.0 ppm for 15 minutes each. Exposure also varied daily across groups. The exposure scenarios resulted in cumulative exposures of 13.5 ppm-hours over the 10 working days. Control buccal smears were prepared for each subject one week prior to treatment as well as immediately prior to the exposure to formaldehyde. Treatment buccal smears were taken following the 10-day exposure and 7, 14 and 21 days afterwards. The authors noted that these results demonstrated that formaldehyde vapors in the range of current Occupational Exposure Limits (e.g., 0.5 ppm in Germany and 2.0 ppm in the United Kingdom) did not induce micronuclei in buccal mucosa cells.

Costa et al. (2008) reported a significantly higher frequency ($P = 0.003$) of micronuclei in 30 workers exposed to formaldehyde in four hospital pathology anatomy laboratories in Portugal compared with matched controls. Heparinized whole blood was used to establish duplicate lymphocyte cultures for evaluation by the cytokinesis-blocked micronucleus test. Micronuclei were significantly higher in the exposed group compared with the controls (see Table 5-27), and a positive correlation was found between formaldehyde exposure levels and micronuclei frequency ($r = 0.384$, $P = 0.001$). Genetic polymorphisms of xenobiotic metabolizing or DNA repair genes did not show a significant effect. Age, gender and smoking habits were not significantly associated with micronucleus frequency. [This study also evaluated DNA damage and SCE.]
<table>
<thead>
<tr>
<th>Study population</th>
<th>N</th>
<th>Cell type</th>
<th>No. cells examined/person</th>
<th>Exposure</th>
<th>Micronuclei frequency/1000 cells (± SD)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched controls Plywood factory workers</td>
<td>15</td>
<td>Nasal epithelium</td>
<td>6,000</td>
<td>0.07–0.32</td>
<td>0.25 ± 0.22 0.90 ± 0.47**</td>
<td>All subjects were non-smokers. Controls matched for age and sex</td>
<td>Ballarin et al. 1992</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Buccal epithelium</td>
<td>1,500</td>
<td>0.1–0.96</td>
<td>0.41 ± 0.52 0.50 ± 0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lymphocytes</td>
<td>2,000</td>
<td>85 d</td>
<td>2.5 ± 1.3 0.6 ± 0.5 2.0 ± 2.0**</td>
<td>Several students had part time jobs involving formaldehyde exposure. Cumulative exposure to formaldehyde was associated with buccal MN among male (22) subjects (r = 0.5, P < 0.01); no association was observed with nasal or lymphocyte MN.</td>
<td>Suruda et al. 1993</td>
</tr>
<tr>
<td>Mortuary science students (Pre-exposure and post-exposure measurements)</td>
<td>29</td>
<td>Nasal epithelium</td>
<td>187–5,000</td>
<td>0.1–0.96</td>
<td>2 ± 1.3 2.5 ± 1.3 b 0.6 ± 0.5 2.0 ± 2.0**</td>
<td>Cumulative exposure and buccal MN (r = 0.44, P = 0.06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buccal epithelium</td>
<td>503–4,113</td>
<td>90 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortuary science students (Same participants as Suruda et al. 1993)</td>
<td>13a</td>
<td>Nasal epithelium</td>
<td>> 2000</td>
<td>NRc</td>
<td>0.64 2.94** 1.18</td>
<td>Controls for students were pre-exposure measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19a</td>
<td>Buccal epithelium</td>
<td></td>
<td>17 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy lab workers Controls (all female) Females</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy class students Females (pre-exp.)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5-27. Micronuclei in various cell types from humans exposed to formaldehyde
<table>
<thead>
<tr>
<th>Study population</th>
<th>N</th>
<th>Cell type</th>
<th>No. cells examined/person</th>
<th>Exposure</th>
<th>Micronuclei frequency/1000 cells (± SD)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>exposed</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>2.50**</td>
<td>All students were non-smokers, and did not have a history of drug use (3 weeks) or X rays (6 months).</td>
<td>Ying et al. 1997</td>
</tr>
<tr>
<td>Males (pre-exp.)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exposed</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>2.02*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy class students</td>
<td>25</td>
<td>Nasal epithelium</td>
<td>2,870 2,962</td>
<td>0.01–0.4</td>
<td>1.20 ± 0.68 3.84 ± 1.5*** 0.57 ± 0.32 0.86 ± 0.56** 0.91 ± 0.39 1.11 ± 0.54</td>
<td>All students were non-smokers, and did not have a history of drug use (3 weeks) or X rays (6 months).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25a</td>
<td>Oral epithelium</td>
<td>3,167 3,088</td>
<td>8 wk</td>
<td>1.20 ± 0.68 3.84 ± 1.5*** 0.57 ± 0.32 0.86 ± 0.56** 0.91 ± 0.39 1.11 ± 0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23a</td>
<td>Lymphocytes</td>
<td>4,000 4,000</td>
<td></td>
<td>1.20 ± 0.68 3.84 ± 1.5*** 0.57 ± 0.32 0.86 ± 0.56** 0.91 ± 0.39 1.11 ± 0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>10</td>
<td>Lymphocytes</td>
<td>1,000</td>
<td>2.37</td>
<td>3.15 ± 0.146 6.38 ± 2.5**</td>
<td>All students were non-smokers and control and exposed groups had similar sex and age distributions.</td>
<td>He et al. 1998</td>
</tr>
<tr>
<td>Anatomy class students</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>25</td>
<td>Nasal epithelium</td>
<td>3,000 2–4</td>
<td>1–13 yr</td>
<td>0.61 ± 0.27 1.01 ± 0.62**</td>
<td>Controls and exposed group reported similar ages, dietary habits and medicine use; however, there was a greater number of smokers in the control than in the exposed group.</td>
<td>Burgaz et al. 2001</td>
</tr>
<tr>
<td>Pathology/anatomy lab workers</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>18</td>
<td>Buccal epithelium</td>
<td>3,000 2–4</td>
<td>1–13 yr</td>
<td>0.33 ± 0.30 0.71 ± 0.56*</td>
<td>Control and exposed reported similar diets, alcohol consumption,</td>
<td>Burgaz et al. 2002</td>
</tr>
<tr>
<td>Pathology/anatomy lab</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study population</td>
<td>N</td>
<td>Cell type</td>
<td>No. cells examined/person</td>
<td>Exposure</td>
<td>Micronuclei frequency/10 00 cells (± SD)</td>
<td>Comments</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>--------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Workers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Study population may overlap with that of Burgaz et al. 2001]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde factory workers</td>
<td>23</td>
<td>Nasal epithelium</td>
<td>3,000</td>
<td>0.009</td>
<td>1.25 ± 0.65</td>
<td>smokers and had similar ages (average ages were 19 for controls, 22 for waiters and 29 for formaldehyde workers).</td>
<td>Ye et al. 2005</td>
</tr>
<tr>
<td>Waiters</td>
<td>18</td>
<td>0.8</td>
<td></td>
<td>0.09</td>
<td>2.70 ± 1.50*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.09</td>
<td></td>
<td></td>
<td>~1.9 ± 1d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology/anatomy lab workers</td>
<td>37</td>
<td>Lymphocytes</td>
<td>1,000</td>
<td>< 0.1–20.4</td>
<td>11.1 ± 6.0</td>
<td>Controls matched for age, smoking habits and use of medications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>0.5–34 yr</td>
<td></td>
<td></td>
<td>16.9 ± 9.3***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.9 ± 5.6</td>
<td>Micronuclei were correlated with age and gender but not smoking or drinking habits.</td>
<td>Orsiere et al. 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.1 ± 10.1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathologists/anatomists (randomly chosen from the 37 controls and 59 exposed workers described above)</td>
<td>18</td>
<td>Lymphocytes</td>
<td>1,000</td>
<td>0.4–7</td>
<td>11.9 ± 5.6</td>
<td>Controls matched for age, smoking habits</td>
<td>Orsiere et al. 2006</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>NR</td>
<td></td>
<td></td>
<td>19.1 ± 10.1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volunteer subjects (10 women and 11 men)</td>
<td>21</td>
<td>Buccal epithelium</td>
<td>2,000</td>
<td>1.0 peak (with daily variation) max 13.5 ppm-h cum. exp.</td>
<td>0.86 ± 0.84</td>
<td>Subjects served as own controls, measured before first exposure.</td>
<td>Speit et al. 2007b</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>10 d</td>
<td></td>
<td></td>
<td>1.33 ± 1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology/anatomy lab</td>
<td>30</td>
<td>Lymphocytes</td>
<td>1,000</td>
<td>0.5–27 yr</td>
<td>3.27 ± 0.69</td>
<td>Controls were matched by age, gender, lifestyle factors</td>
<td>Costa et al. 2008</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.44</td>
<td></td>
<td></td>
<td>5.47 ±</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study population</td>
<td>N</td>
<td>Cell type</td>
<td>No. cells examined/person</td>
<td>Exposure</td>
<td>Micronuclei frequency/10 00 cells (± SD)</td>
<td>Comments</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>-----------</td>
<td>---------------------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>workers</td>
<td></td>
<td></td>
<td></td>
<td>ppm</td>
<td>duration 0.76**</td>
<td>and smoking habits. MN frequency was significantly associated with formaldehyde exposure levels ($r = 0.384$, $P = 0.001$)</td>
<td></td>
</tr>
</tbody>
</table>

* = $P < 0.05$; ** = $P < 0.01$; *** = $P < 0.001$.

MN = micronuclei; NR = not reported; NS = not significant compared to controls.

a There was a total of 28 subjects in the study but only 19 with complete data for buccal mucosa and 13 with complete data for nasal mucosa were included in the analyses.

b There was a significant increase in centromere-negative micronuclei.

c Exposure considered long-term for workers but no measurements reported for them or for anatomy students.

d Value estimated from a figure.

e Binucleated micronucleated cell rate.

f Significant increase in centromere-positive micronuclei and monocentromeric micronuclei frequencies.
5.6.5 Gene expression

Kim et al. (2002) investigated the possible role of formaldehyde in sick-building syndrome. These authors reported that formaldehyde increased the surface expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on human mucosal microvascular endothelial cells (HMMECs), and enhanced the adhesiveness between these cells and eosinophils. HMMECs were incubated with formaldehyde at concentrations ranging from 1 ng/mL to 1 μg/mL for 24 hours. There was a statistically significant up-regulation of both ICAM-1 and VCAM-1 at 0.1 and 1.0 μg/mL. The authors concluded that induction of ICAM-1 and VCAM-1 by formaldehyde might play an important role in allergic inflammation associated with sick building syndrome.

Parfett et al. (2003) measured changes in proliferin mRNA over 1 to 3 days in response to various promoters (including formaldehyde) of morphological transformation of C3H/10T1/2 cells. Members of the proliferin protein family are known to influence aspects of cell differentiation or proliferation. Cell cultures were seeded and grown for 2 to 4 d before treatment with test compounds. Formaldehyde was added to the cell cultures at 50, 100, or 200 μM and incubated for 18 to 20 hours. At 50 μM, proliferin mRNA levels were between 5- and 10-fold higher than controls but increased to 40-fold higher than control levels at 100 μM. Formaldehyde was thought to be toxic to the cell cultures at 200 μM because induction was reduced to four-fold above control levels.

Hester et al. (2003) investigated gene expression in the rat nasal respiratory epithelium after exposure to formaldehyde. Groups of male F344 rats received either 40 μL of distilled water or 400 mM formaldehyde instilled into each nostril. The rats were killed 24 hours later and the nasal epithelium was removed and examined for gene expression. The analysis revealed that 24 of 1,185 genes queried were significantly upregulated and 22 genes were downregulated. The identified genes belonged to the functional categories involved in xenobiotic metabolism, cell-cycle control, apoptosis, and DNA repair. Thus multiple pathways are dysregulated by formaldehyde exposure, including those involved in DNA synthesis and repair and regulation of cell proliferation.
Hester et al. (2005) compared the effects of formaldehyde and glutaraldehyde in male F344 rats. Groups of rats were exposed to formaldehyde (400 mM) or glutaraldehyde (20 mM) by nasal instillation for 1, 5, or 28 days. Animals were killed at the end of the experiments, and the nasal respiratory epithelium was removed for gene expression analysis. Both compounds induce similar acute and subchronic histopathology characterized by inflammation, hyperplasia, and squamous metaplasia; however, glutaraldehyde does not cause nasal tumors in rats. Differences in the gene expression profiles in rats exposed to formaldehyde and glutaraldehyde help explain the different cancer response from these two aldehydes. Acute exposures generated alterations in gene profiles associated with cellular proliferation, stress, and xenobiotic metabolism; however, longer exposures induced a different subset of genes. Apoptosis gene expression was increased by exposure to formaldehyde compared with controls but was less than observed in glutaraldehyde-exposed rats. In addition, formaldehyde exposure induced a greater increased expression of DNA repair genes than glutaraldehyde. Decreased DNA repair could stimulate apoptosis, while increased DNA repair following formaldehyde exposure could increase DNA misrepair. Misrepaired cells could persist and pass on genetic damage.

Sul et al. (2007) investigated the effects of formaldehyde exposure on mRNA expression in rat lung tissues. Male Sprague-Dawley rats were exposed to 0-, 5-, or 100-ppm formaldehyde 6 hours/day, 5 days/week for 2 weeks. Cytotoxic effects were determined by the malondialdehyde lipid peroxidation and the carbonyl protein oxidation assays and showed that the cytotoxic effects increased with exposure. Gene expression analysis indicated that there were 2 up-regulated and 19 down-regulated genes. Nine of these genes were confirmed by real time PCR and included cytochrome P450, hydroxymethylbilane synthase, glutathione reductase, carbonic anhydrase 2, natriuretic peptide receptor 3, lysosomal-associated protein transmembrane 5, regulator of G-protein signaling 3, olfactomedin-related ER-localized protein, and poly (ADP-ribose) polymerase-1. These genes are involved in apoptosis, immunity, metabolism, signal transduction, transportation, coagulation, and oncogenesis.
Andersen et al. (2008) investigated the relationship between histopathological changes in nasal tissues and changes in gene expression in rats exposed to 0-, 0.7-, 2-, and 6-ppm formaldehyde by inhalation, 5 days/week for up to 3 weeks. In addition, other groups of rats were exposed to 15 ppm for 6 hours or to 40 µL (400 mM) formaldehyde instilled in the nostrils just inside the nares. Unequivocal treatment-related lesions were evident only in the 6-ppm group. In this group, cell proliferation increased at day 5 but was not increased at the end of day 15. Squamous metaplasia occurred at day 5 and epithelial hyperplasia occurred at day 5 and day 15. Lesions were observed primarily in the transitional and respiratory epithelium and displayed an anterior to posterior gradient. The microarray analysis indicated that about 100 genes showed altered expression across all time points and doses. No significant gene expression changes were observed in the 0.7-ppm group at any time point. One gene showed increased expression in the 2-ppm group on day 1, while on day 5, 1 gene was decreased and 14 were increased. No gene expression changes occurred in the 2-ppm group on days 6 or 15. The majority of gene expression changes were seen in the 6-ppm group (day 1, 24 genes increased and 18 decreased; day 5, 24 increased and 4 decreased; day 6, 9 increased and 0 decreased; day 15, 23 increased and 31 decreased). In the acute studies, inhalation of 15 ppm or instillation of 400 mM formaldehyde altered many more genes than were affected at 6 ppm, and instillation altered more than three times as many genes as the 15-ppm exposure. U-shaped dose-response curves were observed in the acute study for many genes that were also altered at 2 ppm on day 5. Many of the genes that showed increased expression were involved in response to wounding, control and induction of apoptosis, inflammation pathways, and receptor tyrosine kinase signaling.

5.7 Mechanistic considerations

Although the biological mechanisms associated with formaldehyde-induced cancer are not completely understood, it is important to recognize that chemicals can act through multiple toxicity pathways and mechanisms to induce cancer or other health effects (Guyton et al. 2009). These authors identified at least 15 key events representing diverse carcinogenic modes of action, the relative importance of which may vary with life stage, genetic background, and dose. These events include DNA reactivity (covalent binding),
gene mutation, chromosomal breakage, aneuploidy, enzyme-mediated effects on DNA
damage or repair, epigenetic effects, cell signaling (nuclear-receptor mediated or other
than nuclear-receptor mediated), immune response modulation, inflammation,
cytotoxicity and compensatory cell proliferation, mitogenicity, chronic metabolic or
physiologic overload, nutrient deficiency, and interference with intercellular
communication (e.g., gap junctions). Nine of these (DNA reactivity, gene mutation,
chromosomal breakage, aneuploidy, enzyme-mediated DNA damage/repair, cell
signaling other than nuclear-receptor mediated, immune response modulation,
inflammation, and cytotoxicity) were listed as key events for formaldehyde. Although
epigenetic effects were not listed as a key event for formaldehyde, a recent study (Lu et
al. 2008a) indicates that formaldehyde may alter epigenetic regulation. This section
discusses the evidence for genotoxic and cytotoxic modes of action in formaldehyde
carcinogenesis and the mutational spectra of these tumors. Most of the literature has
focused on upper respiratory tract cancer; however, several investigators have discussed
possible modes of action for systemic cancers (i.e., leukemia).

5.7.1 Genotoxicity
Formaldehyde is highly reactive and can induce a number of genotoxic effects (see
Section 5.6), including DNA-protein crosslinks, strand breaks, mutations, cell
transformation, sister chromatid exchange, and micronuclei from both aneugenic and
clastogenic effects.

DNA-protein crosslinks, in particular, have been identified as a marker of formaldehyde-
induced genotoxicity and have frequently been used as a surrogate for formaldehyde
exposure in dose-response modeling. Crosslinks have been detected in many in vitro
studies with a number of human and experimental animal cell types, and in vivo in
experimental animals and humans. The in vitro studies also showed consistent dose-
response relationships, with crosslinks forming at doses that have low cytotoxicity (up to
75% cell survival). DNA-protein crosslinks were not repaired as efficiently in human
peripheral blood lymphocytes as in established cell lines. Formaldehyde might interfere
with DNA repair by inhibiting repair enzymes, inhibiting removal of DNA lesions, or
altering gene expression. Merk and Speit (1998) and Speit et al. (2000) reported that
formaldehyde-induced DNA-protein crosslinks are related to chromosomal effects (SCE and micronuclei), but not directly to gene mutations.

In vivo studies with rats indicated that inhalation of formaldehyde vapors does result in crosslinks in their nasal mucosa. Furthermore, crosslink yields were highest in the area of the nose (lateral meatus) where tumor yields are the highest. Several studies have examined dose-response relationships for the formation of these crosslinks in nasal tissues of experimental animals and compared these results with nasal tumor data (Casanova-Schmitz et al. 1984a, Casanova et al. 1989, Casanova et al. 1994, Casanova et al. 1991, Heck et al. 1986, Heck et al. 1989). The dose-response curves for DNA-protein crosslink formation and nasal tumor formation in rats showed a similar pattern (Liteplo and Meek 2003). They are nonlinear, with the slope increasing sharply at concentrations above 2 ppm (Table 5-28). This biphasic dose-response curve suggests protective mechanisms, which may become saturated at high concentrations. Two protective mechanisms have been identified: the mucous layer lining the nasal epithelium and glutathione-mediated oxidation of formaldehyde to formate (Conaway et al. 1996).

Casanova et al. (1994) reported that the yield in pre-exposed versus naïve rats was about the same. Crosslinks were not detected in rat bone marrow in rats [only one study reviewed] or in the olfactory mucosa or bone marrow of mice exposed to formaldehyde.

<table>
<thead>
<tr>
<th>Exposure (ppm)</th>
<th>DNA-protein crosslinks (pmol/mg DNA)</th>
<th>Tumor incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High tumor region<sup>a</sup></td>
<td>Low tumor region<sup>b</sup></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 5-28. Formaldehyde exposure, DNA-protein crosslinks, and nasal tumor incidence

Adapted from Liteplo and Meek 2003.
nd = no data.
^a Includes the complete lateral meatus.
^b Includes medial aspects of naso- and maxilloturbinates, posterior lateral wall, posterior dorsal septum (excluding olfactory region), and nasopharyngeal meatuses.
In monkeys, crosslink yields were highest in the middle turbinates. Casanova et al. (1991) reported that the level of DNA-protein crosslinks in rhesus monkeys declined in the order: middle turbinates > anterior lateral wall-septum > nasopharynx, which is consistent with the location and severity of proliferative lesions reported in another study (Monticello et al. 1989) in monkeys exposed to 6-ppm formaldehyde for up to 6 weeks. Low levels of crosslinks also were found in the trachea and carina of some monkeys. The yield of crosslinks in monkeys was about an order of magnitude lower than observed in rats, which is primarily attributed to differences in minute volume and quantity of DNA in the nasal mucosa (Casanova et al. 1991). These authors used the crosslink data from rats and monkeys to extrapolate crosslink concentrations in humans and predicted that adult men would have significantly lower rates than rats and slightly lower rates than monkeys.

DNA-protein crosslinks were detected in peripheral lymphocytes of health professionals (physicians, laboratory assistants and orderlies from pathology departments) exposed to formaldehyde. (see Section 5.6.4). There was a linear relationship between years of exposure and DNA-protein crosslinks.

Other genotoxic endpoints have been examined in *in vitro* and *in vivo* studies. DNA damage (single-strand breaks) was detected in *Saccharomyces cerevisiae* and in mammalian cells *in vitro*, including human cells such as fibroblasts, lymphocytes, and lung/bronchial epithelial cells. Strand breaks were also reported in rat lymphocytes (inhalation exposure), and in maternal and fetal liver following i.p. injection on gestation days 6 to 19. DNA damage, as assessed by the alkaline comet assay, increased in lymphocytes from pathology laboratory workers exposed to formaldehyde compared with unexposed controls (reviewed in Section 5.6.4.1): comet tail length for lymphocytes was positively associated with formaldehyde exposure levels.

In prokaryotes, formaldehyde induced mainly base-pair mutations, in either the presence or absence of metabolic activation at 100% frequency in certain *S. typhimurium* strains (TA102, TA104, and TA7005), at a lower rate in TA100, and not at all in TA1535. Mutations were induced in mammalian cells *in vitro* by exposure to formaldehyde, and dominant lethal mutations were reported in multiple studies in both rats and mice. No
reports of mutations in humans were identified, and three studies of health professionals were negative for effects of formaldehyde on DNA repair.

Chromosomal aberrations were positive in both animal and human cells in vitro in all studies summarized in Table 5-19. However, studies in mice with i.p. injection were negative for chromosomal aberrations in bone marrow, spleen, and sperm. Exposure of rats by inhalation caused chromosomal aberrations in pulmonary lavage cells at the highest dose (15 ppm) tested. One study reported chromosomal aberrations in rat bone marrow following inhalation exposure to 0.4 ppm formaldehyde for 4 months, but another study did not find an increase in chromosomal aberrations in rat bone marrow when exposed to 15 ppm for up to 8 weeks (see Section 5.6.3.2). The frequency of chromosomal aberrations was increased in studies of lymphocytes from humans (mainly workers) exposed to formaldehyde were found in 6 of the 11 reviewed in Table 5-25 and one additional positive study published in Chinese and reviewed by Tang et al. (2009). Of the five negative studies reported in Table 5-25, Thompson et al. (1984) reported on small numbers of workers (six exposed and five controls) and Vargová et al. (1992) noted that the frequency of chromosomal aberrations in the controls in their study was higher than that reported in the general population. The results for chromosomal aberrations are potentially of greater interest than other endpoints because of the report by Bonassi et al. (2000) that high levels of chromosomal aberrations were associated with increased risk of cancer in otherwise healthy individuals.

Sister chromatid exchange was positive in all studies in animal and human cells in vitro summarized in Table 5-19, but negative results were reported for two studies in rats in Table 5-10. Slightly more than half (i.e., 6) of the 11 studies of lymphocytes from humans exposed to formaldehyde summarized in Table 5-26 were positive. Of the five negative studies, the study by Thompson et al. (1984) was based on small numbers of subjects, and there were two additional negative studies from the Chinese literature reviewed by Tang et al. (2009).

Micronuclei were induced in all in vitro animal studies and studies of formaldehyde exposed workers or subjects summarized in Table 5-19, but results were mixed for in vivo rat studies, with one oral study positive for the GI tract and one i.p. study negative.
for bone marrow cells. Speit et al. reported that micronucleus formation was enhanced in repair-deficient cell lines, particularly in xeroderma pigmentosum cells, which are deficient in nucleotide excision repair. Loss of glutathione (i.e., GSH) did not affect repair rates. Studies of workers or medical staff or students exposed to formaldehyde measured micronuclei frequency in buccal or oral epithelium, nasal epithelium, and lymphocytes: increased incidences of micronuclei were found in lymphocytes in 5 of 6 available studies, buccal or oral epithelium in 4 of the 5 available studies, and nasal epithelium in 4 of the 6 available studies (see Table 5-27). In addition, a review of the Chinese literature by Tang et al. 2009 of studies of humans exposed to formaldehyde exposed reported increased micronuclei frequency in nasal epithelial cells in one study, and in lymphocyte in three studies of long-term (> 1 year) formaldehyde exposure. Micronuclei may form from clastogenic or aneugenic events. Titenko-Holland et al. (1996) reported a greater increase of centromere-negative micronuclei in buccal and nasal mucosa cells from mortuary science students and concluded that chromosome breakage was the primary mechanism responsible for these effects. In contrast, Orsière et al. (2006) and Iarmarcovai et al. (2007) reported greater increases in centromere-positive micronuclei (evidence of aneugenic effects) in peripheral lymphocytes of untreated cancer patients, welders, and pathologists/anatomists exposed to formaldehyde. Shaham et al. (2003) reported an association between DNA-protein crosslinks in formaldehyde-exposed workers and increased serum p53 protein. Furthermore, a positive correlation was found between increased p53 and mutant p53 protein, indicating a possible causal relationship between crosslinks and p53 mutations that may represent steps in formaldehyde carcinogenesis.

5.7.2 Glutathione depletion and oxidative stress

5.7.2.1 In vitro studies

Ku and Billings (1984) reported that the metabolism and toxicity of formaldehyde in isolated rat hepatocytes was dependent upon the intracellular glutathione concentration. Hepatocytes depleted of glutathione were more susceptible to formaldehyde toxicity (loss of membrane integrity and lipid peroxidation). Cells treated with L-methionine had increased concentrations of glutathione and were protected from formaldehyde toxicity. Cells treated with antioxidants also showed a dose-related protection against toxicity.
suggesting that formaldehyde toxicity in glutathione-depleted cells may be mediated by a free radical mechanism.

Grafström (1990) studied the ability of formaldehyde and acrolein to cause various effects associated with carcinogenesis in cultured human bronchial cells. These included cell viability, differentiation and growth, membrane integrity, thiol and ion homeostasis, and genetic damage. Concentrations of formaldehyde associated with 50% inhibition were as follows: 0.4 mM (colony-forming efficiency), 0.2 mM (clonal growth rate), and 2 mM (membrane integrity measured by trypan blue exclusion). Free cytosolic Ca\(^{2+}\) in bronchial fibroblasts was increased by 50% at 0.5 mM. In addition, 0.2 mM formaldehyde decreased glutathione content to 80% of controls and increased the percentage of crosslinked envelopes, a marker for squamous differentiation, to 12% compared with 2% for controls. Grafström et al. (1996) also reported toxic effects of formaldehyde in cultured human bronchial epithelial cells under defined serum- and thiol-free exposure conditions. Formaldehyde was associated with the formation of thiohemiacetal, but not with overt oxidative stress; however, active re-reduction of oxidized glutathione by glutathione reductase may have masked an oxidant effect. Loss of membrane integrity coincided with extensive loss of intracellular glutathione.

Formaldehyde-induced growth inhibition may be explained by decreased glutathione levels because decreased glutathione levels are known to inhibit cell growth. These authors also noted that genetic damage may be responsible for some of the cytotoxic action of formaldehyde because inhibition of DNA repair occurred in bronchial cells exposed to 0.1 to 0.3 mM formaldehyde. Thus, loss of enzyme function (particularly enzymes that carry a thiol moiety in their active site) might be an essential aspect of formaldehyde toxicity.

Nilsson et al. (1998) investigated the role of exogenous and endogenous thiols in formaldehyde toxicity in human oral fibroblasts and epithelial cells. Formaldehyde decreased the colony-forming efficiency of both cell types in a concentration-dependent manner, but was more toxic to fibroblasts than epithelial cells. The difference in toxicity was attributed to the comparatively lower cellular levels of thiols (glutathione and cysteine) in fibroblasts.
Teng et al. (2001) also investigated the cytotoxic effects of formaldehyde in isolated rat hepatocytes. Hepatocytes were treated with 2, 4, or 10 mM formaldehyde. Dose-dependent effects included a decrease in mitochondrial membrane potential, inhibition of mitochondrial respiration that was accompanied by formation of reactive oxygen species, glutathione depletion, and lipid peroxidation. Cells depleted of glutathione were much more susceptible to the cytotoxic effects of formaldehyde. Cytotoxicity was associated with a decrease in metabolism and an increase in lipid peroxidation.

Tyihák et al. (2001) exposed human HT-29 colon carcinoma and HUV-EC-C endothelial cell cultures to formaldehyde concentrations of 0.1 to 10 mM. Cultures were evaluated at 24, 48, and 72 hours after treatment. The cell cultures exposed to the high dose were completely eradicated. At 1 mM, enhanced apoptosis and reduced mitosis were observed in cultures of both cell types, while at the low dose (0.1 mM), enhanced cell proliferation and decreased apoptotic activity occurred. Tumor cells were more responsive than endothelial cells at the low-dose level. The authors proposed that low doses of exogenous or intrinsic formaldehyde may increase cell proliferation and inhibit apoptosis leading to neoplasia, whereas at high doses, formaldehyde may cause damage to endothelial, epithelial, or other cells by inducing apoptosis, and inhibiting repair.

Saito et al. (2005) investigated the cytotoxic effects exerted by formaldehyde in the presence or absence of reactive oxygen species. Jurkat E6-1 cells from a human T-leukemia cell line were cultured with variable concentrations of formaldehyde (< 1 to 100 mM) for 3 hours. There was a concentration-dependent decrease in cell viability with significant decreases at concentrations greater than 1 mM. Cells cultured with the water-soluble radical initiator, 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) at concentrations up to 8 mM showed no decrease in viability. However, cell viability was significantly decreased at AIPH concentrations of more than 3 mM in the presence of 1 mM formaldehyde. Further analysis indicated that cell death resulted from necrosis rather than apoptosis. Cell death was preceded by a significantly increased cellular level of reactive oxygen species. Total cellular glutathione was reduced to about 60% of the control value in cells treated with 1 mM formaldehyde for 2 hours, while 6 mM AIPH reduced glutathione levels to about 5% of the control value. Glutathione was
completely depleted in cell cultures treated with both formaldehyde and AIPH. These results indicate a synergistic interaction of formaldehyde and free radicals.

5.7.2.2 In vivo studies

In vitro studies (discussed above) indicated that formaldehyde exposure resulted in the formation of reactive oxygen species, glutathione depletion, and lipid peroxidation and that antioxidants had a protective effect (Ku and Billings 1984, Teng et al. 2001). Several in vivo studies have examined oxidative stress in rats exposed to formaldehyde. These studies show that formaldehyde exposure can cause oxidative stress in the rat liver, plasma, lymphocytes, heart, and brain.

Söögüt et al. (2004) investigated the oxidant/antioxidant status of albino Wistar rats exposed to 0-, 10-, or 200-ppm formaldehyde 8 hours/day, 5 days/week for 4 weeks. Glutathione levels in liver tissues were significantly reduced at both exposure levels. Xanthine oxidase levels were reduced in the high-dose group. There were no significant changes in malondialdehyde or nitric oxide levels. Thus, the authors suggested that the antioxidant system of liver tissue is moderately impaired by excessive formaldehyde exposure. The authors also concluded that glutathione depletion from subacute exposures to formaldehyde may increase susceptibility to oxidative damage.

Gurel et al. (2005) investigated the biochemical and histopathological changes occurring in the frontal cortex and hippocampal tissue of the rat brain after formaldehyde exposure. Male Wistar rats were divided into three groups of six rats each. One group received i.p. injections of 10 mg/kg formaldehyde (37% solution) for 10 days. The second group received i.p. injections of formaldehyde and vitamin E, and the third group was untreated (controls). The animals were killed at the end of the treatment period, and the frontal cortex and hippocampal tissues were removed. Malondialdehyde and protein carbonyl levels were significantly increased in these tissues, while superoxide dismutase and catalase enzyme activities were decreased in the formaldehyde-only treatment group compared with controls. Rats treated with both formaldehyde and vitamin E showed lower malondialdehyde and protein carbonyl levels with no inhibition of superoxide dismutase or catalase. The authors concluded that formaldehyde caused oxidative damage to tissues in the brain, which was likely mediated through the production of free radicals.
Gülec et al. (2006) evaluated the oxidant/antioxidant status and lipid peroxidation in the hearts of rats exposed to formaldehyde. Groups of 10 adult Wistar rats [sex was not identified] were placed in inhalation chambers and exposed to 0-, 10-, or 20-ppm formaldehyde 8 hours/day, 5 days/week for 4 or 13 weeks. The animals were checked daily and body weights were recorded weekly. At the end of the experiment, the animals were necropsied, examined grossly for pathological changes, and heart tissues were prepared for biochemical analysis. Superoxide dismutase levels were increased in all exposed groups compared with controls. Catalase activity was significantly decreased at both exposure levels in groups exposed for 4 weeks. Thiobarbituric acid-reactant substances were measured as an index of lipid peroxidation and were slightly increased in exposed groups compared with controls but the differences were not significant. Nitric oxide levels were not affected. The authors concluded that subacute and subchronic exposure to formaldehyde might stimulate oxidative stress in cardiac cells and tissues. The increased superoxide dismutase activity was thought to be secondary to decreased catalase activity, as a compensatory mechanism, thus protecting heart tissue from damage.

Im et al. (2006) evaluated the effects of formaldehyde exposure on rat plasma proteins. Male Sprague-Dawley rats (10 per group) were exposed to 0-, 5-, or 10-ppm formaldehyde 6 hours/day, 5 days/week for 2 weeks in an inhalation chamber. Lipid peroxidation and protein oxidation levels in plasma, lymphocytes, and liver were determined using the malondialdehyde assay and carbonyl spectrometric assay. The comet assay was used to evaluate DNA damage (see Section 5.6.3.1). Lipid peroxidation and protein oxidation were dose-dependently increased in plasma, lymphocytes, and liver of exposed rats. In addition, a proteomic analysis identified 19 up-regulated and 13 down-regulated proteins as biomarkers of formaldehyde exposure. These included proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility.

Kum et al. (2007a) measured oxidative stress in the adult and developing rat liver after inhalation exposure to formaldehyde and xylene. Four age groups (embryonic day 1, 1-day-old, 4-weeks-old, and adults), each containing 24 female Sprague-Dawley rats were
used. Each age group was further divided into four experimental groups of six rats each. In addition to the control group, rats were exposed to 6-ppm formaldehyde, 300-ppm xylene, or xylene + formaldehyde for 8 hours/day for 6 weeks. Body and liver weights were measured, and superoxide dismutase, catalase, glutathione, and malondialdehyde levels were determined. Body and liver weights were decreased in all exposure groups compared with controls in the embryonic day 1 group compared with controls. Body and liver weights were significantly decreased in the xylene + formaldehyde exposure groups of 1-day-old rats, but not in the xylene + formaldehyde combined exposure group. Liver weights were significantly higher in the xylene and xylene + formaldehyde combined exposure groups of 4-week-old rats. There were no significant differences in body or liver weights in the adult rat exposure groups compared with controls. Superoxide dismutase levels were significantly decreased in the formaldehyde-exposed group of 4-week-old rats. Glutathione levels were significantly decreased in the xylene and xylene + formaldehyde combined exposure groups of 1-day-old rats. Malondialdehyde levels were not significantly different from controls in any of the formaldehyde or xylene + formaldehyde combined exposure groups. Catalase activity was slightly increased in the xylene + formaldehyde combined exposure group of embryonic rats. The authors concluded that these data suggested that the developing rat liver is more susceptible to the toxic effects of formaldehyde and xylene than the adult rat liver.

5.7.3 Mutational spectra
Recio (1997) reviewed the literature on oncogene and tumor-suppressor gene alterations in rodent nasal tumors. Molecular genetic studies on nasal squamous-cell carcinomas in rats indicated that \(p53 \) mutations occur at a high frequency. This finding combined with the high prevalence of \(p53 \) mutations among human squamous-cell carcinomas suggests that a common molecular alteration is shared between human and rodent squamous-cell carcinomas. The \(HPRT \) mutational spectra in formaldehyde-exposed human lymphoblasts show about 50% deletions and 50% point mutations, with the majority of point mutations occurring at A:T base pairs (Liber et al. 1989). However, this finding is inconsistent with the G:C base-pair mutations observed in formaldehyde-induced nasal squamous-cell carcinomas in rats (Recio et al. 1992). Recio (1997) concluded that the lack of \(p53 \) point mutations at A:T base pairs in formaldehyde-induced squamous-cell carcinomas...
suggested an indirect mechanism of genotoxicity rather than a direct effect of
formaldehyde on the cellular genome. The origin of the point mutations in p53 observed
in formaldehyde-induced nasal squamous-cell carcinomas in rats is unknown, but
inflammation and regenerative cell proliferation are thought to be important factors.

Recio et al. (1992) examined the complementary DNA of the tumor-suppressor gene p53
from 11 primary nasal squamous-cell tumors taken from rats exposed to formaldehyde.
Point mutations at G:C base pairs were found in p53 in 5 of 11 tumors analyzed. All of
the mutated p53 codons found in rat tumors have also been identified in a variety of
human cancers. In particular, one of the mutations that occurred at rat codon 271
(analogous to human codon 273), is a known p53 mutational hot spot in human cancers.
In addition, Wolf et al. (1995) used an immunohistochemical technique to measure p53
protein, proliferating cell nuclear antigen (PCNA), and tumor growth factor-α in these
tumors. These authors observed p53-positive immunostaining and preneoplastic
hyperkeratotic plaques in the tumors but not in normal nasal mucosa. There was a
correlation between both the pattern and distribution of immunostaining of proliferating
cell nuclear antigen and p53. Four cell lines were established from these squamous-cell
carcinomas (Bermudez et al. 1994). All the cell lines were aneuploid and overexpressed
keratin, transforming growth factor-α, epidermal growth factor receptors, and p53.
Expression of transforming growth factor-α and epidermal growth factor is a common
feature of squamous-cell carcinoma and is frequently found in human tumors. When
injected into nude mice, the two cell lines that contained a p53 mutation were
tumorigenic, but the two cell lines that had wild-type p53 were not.

5.7.4 Epigenetic effects
Lu et al. (2008a) reported that formaldehyde induced histone modifications in vitro.
Lysine residues on histones are subject to post-translational modifications (e.g.,
methylation, phosphorylation, and acetylation) which impact gene expression. DNA-
protein crosslinks involve all the major histones and are a dominant form of
formaldehyde-induced DNA damage (Quievryn and Zhitkovich 2000). Lu et al. (2008a)
isolated histone 4 with post-translational modification from calf thymus tissues.
Unmodified human recombinant histone 4 was purified after expression in E. coli cells.
Both proteins had identical sequences. Formaldehyde was reacted with histone 4 and analyzed by liquid chromatography-mass spectrometry. All the lysine residues located in both the histone \(N \)-terminal tail and the globular fold domain were identified as binding sites for formaldehyde. Formaldehyde could only bind to lysine residues without post-translational modification, thus, post-translational modification of lysine blocks the reaction with formaldehyde. However, formaldehyde reactions with unmodified lysine residues resulted in the formation of methylol groups followed by the formation of Schiff bases. Formaldehyde-induced Schiff bases inhibited post-translational modifications of lysine \textit{in vitro}. Therefore, formaldehyde could alter epigenetic regulation by impairing the post-translational modification pattern and possibly disturb subsequent protein recruitment and trigger a series of abnormal cascade effects. Furthermore, the balance between histone acetylation and deacetylation (which is important for normal cell growth) could be disturbed. An imbalance of acetylation in promoter regions could induce the deregulation of gene expression and affect carcinogenesis and cancer progression. The authors noted that they used a simplified \textit{in vitro} model and that further testing in cells or tissues would be needed to demonstrate that such effects would occur \textit{in vivo}.

5.7.5 \textit{Nasal tumors}

Increased incidences of nasal tumors were found in studies in experimental animals (see Section 4). In addition, oral administration of formaldehyde to rats resulted in increased incidences of gastrointestinal tract cancers. There is considerable evidence that airway deposition, genotoxicity, cytotoxicity, and cell proliferation are important factors in nasal tumor formation (IARC 2006). A number of studies have investigated the underlying mechanisms of the nasal tumor response (reviewed by Heck \textit{et al.} 1990, Morgan 1997). In parallel with the mechanistic studies, anatomically accurate three-dimensional computation fluid dynamics (CFD) models have been developed to provide high resolution predictions of nasal air flow and regional flux of inhaled formaldehyde (see Section 5.2) into adjacent nasal tissue. CFD models also have been used to predict crosslink formation, and, when combined with a two-stage clonal growth model, to link crosslink and regenerative cellular proliferation with tumor formation (Conolly \textit{et al.} 2003, 2004, Conolly \textit{et al.} 2000).
5.7.5.1 Airway deposition models and predictions

Morgan (1997) considered that although the nasal passages of rats and humans are fundamentally identical biological target organs, minor differences could be critically important. Regional deposition of inhaled gases and tissue susceptibility are the two major factors that influence the distribution of lesions in the respiratory tract. Tissue susceptibility is frequently related to differences in local enzyme-mediated biotransformation to a toxic species or to local doses that exceed detoxification thresholds. Keller et al. (1990) conducted a histochemical analysis of formaldehyde dehydrogenase (the primary metabolizing enzyme for formaldehyde) and reported that regional differences were insufficient to account for the localized toxicity of formaldehyde in the rat nose, which would indicate that nasal airflow and intranasal uptake patterns of formaldehyde were important. CFD models have allowed researchers to investigate interspecies differences in airflow patterns, formaldehyde flux and absorption, and effects on the upper respiratory tract, and to gain a better understanding of mechanisms and modes of action.

Studies with formaldehyde-exposed rats and rhesus monkeys show site- and species-specific patterns for both carcinogenic and noncarcinogenic lesions in the upper respiratory tract (Casanova et al. 1994, Kimbell et al. 1997, Monticello et al. 1996). The nasal vestibule in rats, monkeys, and humans is lined with squamous epithelium; however, areas posterior to the nasal vestibule are lined with respiratory, transitional, and olfactory epithelia (Kimbell et al. 1997). Inhaled formaldehyde does not result in lesions in the nasal vestibule, but a common response in other epithelia is conversion to the squamous form (i.e., squamous metaplasia). This observation suggests that squamous epithelium is resistant to formaldehyde toxicity and that squamous metaplasia may be an adaptive response. Further, squamous epithelium may be protective by absorbing less formaldehyde than other epithelial types. Kimbell et al. (1997) compared CFD model predictions and observed squamous metaplasia incidence in the area of the rat nose (lateral meatus and mid-septum) where squamous-cell carcinoma occurred in chronic inhalation studies (Figure 5-3). Regional formaldehyde flux was correlated with the distribution of formaldehyde-induced squamous metaplasia in rats exposed to 10- or 15-
ppm formaldehyde. Kepler et al. (1998) conducted a similar study in the rhesus monkey.

Simulated airflow patterns showed good agreement with experimental observations.
Figure 5-3. Sagital (A) and cross-section (B) through the rat nose.

A) Sagital section through the rat nose. The curved dashed lines indicate the junction of the squamous/transitional and respiratory epithelia (anterior line) and the respiratory and olfactory epithelia (posterior line). N = nasoturbinates, M = maxilloturbinates, E = ethmoturbinates, ID = incisive duct, NPD = nasopharyngeal duct, OB = olfactory bulb, 2PR = second palatal ridge.

B) Cross section through the rat nose at the level indicated by the slanted line in panel A.
Kimbell et al. (2001a) predicted formaldehyde flux in the entire nasal passages of rats, monkeys, and humans, estimated flux in specific sites for correlation with formaldehyde-induced cell proliferation data, and compared the flux values predicted for the three species. Regions of the nasal passages in rats and monkeys that had similar cell proliferation rates also had similar predicted flux values with a rat to monkey ratio of 0.98 for the highest site-specific flux values. Simulations using the human CFD model predicted that flux values in an anterior portion of the human nose were similar to fluxes predicted in a region of high tumor incidence in the rat nose. The authors concluded that proliferative and carcinogenic responses could be expected to occur in humans under conditions similar to those inducing these effects in rats and monkeys. Kimbell et al. (2001b) further refined the CFD models to obtain quantitative descriptions of nasal uptake patterns. Their simulations indicated a decreasing gradient of flux values from anterior to posterior regions of the nasal cavity in all three species with steeper gradients in rats and monkeys than in humans. Nasal flux patterns in humans shifted posteriorly, and the overall nasal uptake decreased as inspiratory flow rate increased. The authors noted that these results are consistent with an increased airflow pushing inhaled gas further into the respiratory tract.

Cohen-Hubal et al. (1997) conducted the first quantitative demonstration of the role of site-specific formaldehyde flux and crosslink formation. These authors used a CFD model to link dosimetry predictions with measured tissue deposition. Crosslink predictions compared well with experimentally measured data. Conolly et al. (2000) expanded on the work of Cohen-Hubal et al. and used an improved CFD model to predict regional flux of formaldehyde and crosslink formation in the respiratory and olfactory mucosa of the rat, monkey, and human. Simulated formaldehyde concentrations ranged from 0.1 to 20 ppm over a 3-hour exposure. Good fits to the rat and monkey crosslink data were obtained. Differences in the predictions between regions of the nasal mucosa were accounted for by site-specific tissue thickness and flux estimates. The predicted crosslink dose response for the human case was compared with the rat and monkey and was similar for all three species even though there were significant interspecies differences in nasal anatomy, breathing rates, and parameter estimates.
Conolly et al. (2003) described biologically motivated quantitative modeling of the exposure-tumor response continuum in the rat using a CFD model linked with a two-stage clonal growth model. Regenerative cell proliferation was used as a surrogate for cytolethality. The average division rate constants were based on labeling index data reported by Monticello et al. (1991, 1996). A time-weighted unit length labeling index was calculated for the entire 78 weeks of exposure. The calculated rate constants were plotted against formaldehyde concentrations and resulted in a J-shaped exposure-response curve. The probability of mutation per cell generation (a function of the tissue crosslink concentration and the rate of cell division) was used in the clonal growth model to predict tumor yield. A sensitivity analysis indicated that the directly mutagenic pathway had little influence and that the tumor outcome was due primarily to regenerative cellular proliferation.

Conolly et al. (2004) extended the approach used by Conolly et al. (2003) to humans. The primary objective was to maximize the use of relevant mechanistic data in predicting human cancer response to inhaled formaldehyde. The only structural difference between the rat and human tumor-response models was that the human model included the entire respiratory tract to provide the capability for predicting tumor risk associated with oronasal breathing at higher exertion levels. The human clonal growth model used three sets of baseline parameters for nonsmokers, smokers, and a mixed population of nonsmokers and smokers in order to estimate human respiratory tract tumor incidences not explicitly related to formaldehyde exposure. Cancer risk predictions were based on J-shaped and hockey stick-shaped dose-response curves and included 18 exposure scenarios involving continuous (80-year environmental exposure), and light or heavy working occupational scenarios. Predicted risks for smokers were about an order of magnitude higher than for nonsmokers. Their data indicated that excess risk for continuous environmental exposure to formaldehyde at concentrations below 1 ppm (J-shaped dose-response model) or 0.2 ppm (hockey-stick dose-response model) were de minimis (< 10⁻⁶). Breathing rate changes based on various activity levels did not result in large changes to the calculated risk.
Results from Conolly et al. (2003, 2004) were later challenged by Subramaniam et al. (2008, 2007) and Crump et al. (2008). These authors identified sources of uncertainty in the CFD models and modified selected features to examine the sensitivity of the predicted dose response to select assumptions. They found that the dose-response predictions below the range of exposures where tumors were observed were highly sensitive to the choice of control data. In contrast to the results reported by Conolly et al. (2003), their reanalysis indicated that up to 74% of the added tumor probability could be attributed to formaldehyde’s mutagenic action. Furthermore, slight numerical perturbations in the assumptions regarding the effects of formaldehyde on the division rates and death rates of initiated cells resulted in risk estimates that were up to 10,000 times those reported by Conolly et al. (2004).

5.7.5.2 Cytotoxicity and cellular proliferation in experimental animals

At high concentrations formaldehyde is highly irritating and cytotoxic, causing loss of cilia and cell death in the nasal cavity (Conaway et al. 1996). IARC (2006) provided a comprehensive review of formaldehyde-induced cytotoxicity and cell-proliferation studies. Increased cell proliferation is believed to contribute to carcinogenesis by providing additional cell divisions, thus increasing the probability of spontaneous or chemically induced mutations (Monticello and Morgan 1997).

Studies in rats and mice show species differences in the cytotoxicity of inhaled formaldehyde to the respiratory epithelium (Chang et al. 1983, Monticello et al. 1991, Monticello et al. 1996). The sequence of effects, which are more severe in the rat, include rhinitis, epithelial dysplasia, squamous metaplasia and hyperplasia, and squamous-cell carcinoma. Mice were able to compensate for increased concentrations of formaldehyde by reducing minute ventilation, thus reducing deposition and subsequent tissue damage. Eighteen hours after a single 6-hour exposure to 15 ppm, cell proliferation increased 13-fold in rats and 8-fold in mice compared with controls. Cell proliferation was not evident until exposure concentrations exceeded 6 ppm following acute, subchronic, or chronic exposures; however, histopathological effects and a sustained increase in cell proliferation did not occur at concentrations less than 2 ppm, regardless of the exposure duration.
A sustained increase in cellular proliferation subsequent to epithelial-cell toxicity is believed to be an important determinant of neoplastic progression associated with formaldehyde exposure (Liteplo and Meek 2003). Monticello et al. (1996) examined the proliferative response in various regions of the rat nose following exposures to formaldehyde concentrations of 0, 0.7, 2, 6, 10, or 15 ppm for up to 24 months (6 hours/day, 5 days/week). Animals were sacrificed at 3, 6, 12, 18, and 24 months. The incidence of regional formaldehyde-induced nasal tumors was correlated with the population-weighted unit length labeling index (i.e., the product of the S-phase nuclei per millimeter of basement membrane and the total number of cells per site) at 3 months. Thus the weighted labeling index incorporates both the cell replication rate and the number of cells at the specific site. A sustained increase in the labeling index was observed only at exposure concentrations that yielded significant numbers of nasal tumors (10 and 15 ppm) (Table 5-29). The authors concluded that target-cell population size, cell proliferation, and local dosimetry play a significant role in the concentration-response curve for formaldehyde-induced nasal cancer in rats.

Table 5-29. Formaldehyde exposure, cell proliferation, and nasal tumor incidence

<table>
<thead>
<tr>
<th>Exposure (ppm)</th>
<th>Cell proliferation (population-weighted S-phase nuclei/mm basement membrane × 10^6)</th>
<th>Tumor incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALM</td>
<td>PLM</td>
</tr>
<tr>
<td>0</td>
<td>9.9</td>
<td>3.9</td>
</tr>
<tr>
<td>0.7</td>
<td>10.3</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>9.6</td>
<td>5.7</td>
</tr>
<tr>
<td>6</td>
<td>15.4</td>
<td>4.9</td>
</tr>
<tr>
<td>10</td>
<td>74.9</td>
<td>7.8</td>
</tr>
<tr>
<td>15</td>
<td>91.0</td>
<td>30.2</td>
</tr>
</tbody>
</table>

Adapted from Monticello et al. 1996.
ALM = anterior lateral meatus; PLM = posterior lateral meatus; AMS = anterior mid-septum.
* Calculated as the product of the unit length labeling index and the total number of nasal epithelial cells at each site.
[These data were presented in Figure 8 of Monticello et al. (1996); however, the paper incorrectly reported the value as 10^7. The correct value is 10^6.]

Woutersen et al. (1989) studied the role of cell proliferation in formaldehyde carcinogenesis (see Section 4.1.2.2). These authors reported that compound-related degenerative, inflammatory, and hyperplastic changes of the nasal respiratory and olfactory mucosa were observed when rats with undamaged noses were exposed to 10-ppm formaldehyde for 3 months but not when exposed to 0.1 or 1 ppm. These effects
were increased in similarly exposed rats that had severe injury to the nasal mucosa from electrocoagulation. Furthermore, nasal tumors were observed in rats with damaged noses exposed to 10 ppm for 28 months but not in rats with undamaged noses. The authors suggested that tissue damage followed by epithelial regeneration may contribute to formaldehyde-induced carcinogenesis.

McGregor et al. (2006) reviewed the carcinogenicity and toxicity data of formaldehyde and glutaraldehyde. Although inhalation of these compounds caused similar effects in the nasal epithelium of rats and mice, only formaldehyde induced a dose-related increase in nasal tumors. The postulated mode of action for the carcinogenicity of formaldehyde is that prolonged exposure above a critical concentration induces sustained cytotoxicity and cell proliferation. Genetic changes, occurring secondary to the cytotoxicity, metaplasia, and hyperplasia, result in neoplasia. This mode of action is supported by observations of a consistent, nonlinear dose-response relationship for three key events (sustained cell proliferation, DNA-protein crosslink formation, and tumors) and concordance of these effects across regions of the nasal passages. The nonlinearity of the response may be explained by saturation of glutathione-mediated detoxification at concentrations above 4 ppm. However, key events postulated in the mode of action for formaldehyde (cytotoxicity, cell proliferation, and DNA-protein crosslink formation) have been demonstrated with glutaraldehyde exposure without causing nasal tumors in rats and mice. A possible explanation for this discrepancy is that the dialdehyde function of glutaraldehyde may inhibit the macromolecules from further reaction. If these macromolecules are proteins involved in maintenance of survival, then their inhibition may be more likely to lead to cell death instead of a change in the differentiation state. If glutaraldehyde reacts with DNA, then repair of these lesions may be more difficult. This is consistent with the conclusions of Hester et al. (2005) (see Section 5.6.5) based on a comparison of gene-expression profiles, DNA repair, and apoptosis following exposures to formaldehyde or glutaraldehyde, which found that glutaraldehyde had increased apoptosis, greater mitochondrial damage and decreased DNA repair compared to formaldehyde.
5.7.6 Other tumors

Other potential tissue target sites include lymphohematopoietic tumors in humans (acute myelogenous leukemia and other lymphohematopoietic tumors, see Section 3) and experimental animals (hemolymphoreticular tumors, see Section 4), and malignant mammary gland tumors, testicular interstitial-cell adenoma, and gastrointestinal leiomyosarcoma in experimental animals (see Section 4.2). No studies were identified evaluating potential mechanisms for mammary gland, gastrointestinal, or testicular tumors although toxic effects on the testes have been reported in experimental animals (see Section 5.4.3.5). In contrast, numerous mechanistic studies were identified discussing the association between lymphohematopoietic cancers and formaldehyde exposure. This section briefly reviews lymphohematopoietic cancer, and arguments supporting and against the biological plausibility of formaldehyde-induced leukemia.

In humans, the bone marrow is the source of all blood cells in the circulation by the time of birth. The blood cells arise from a common pluripotent progenitor cell (stem cell). In the bone marrow, this stem cell forms two multipotent progenitor cells, the common myeloid stem cell and the common lymphoid stem cell. These cells in turn form committed stem cell lines that form fully differentiated blood cells. The myeloid series forms eosinophils, monocytes, polymorphonuclear leukocytes, platelets, erythrocytes, and basophils, whereas the lymphoid series forms plasma cells (B cells), natural killer (NK) cells, and T cells. Hematopoietic progenitor cells have been identified outside of the bone marrow in the peripheral circulation (Fritschi and Siemiatycki 1996), lymph, and in lymphoid tissue and can circulate back to the bone marrow.

Malignant blood diseases (leukemia, lymphomas, and myeloma) are a heterogenous group of neoplasms that arise from stem cells at different hierarchical levels of hematopoietic and lymphoid cell development (Greaves 2004). The hierarchical cell population structure includes different stages of stem cells, which are associated with different types of malignancies. Mutations can occur at any stem cell level, and stem cells at any one level undergoing mutations and clonal expansion can produce a variety of different types of neoplasms. The type of neoplasm depends on the target cell undergoing transformation and the phenotype produced as a result of the different genetic
abnormalities (Greaves 2004). Examples of lymphoid neoplasms are chronic lymphocytic leukemia, multiple myeloma, Hodgkin’s lymphoma, and non-Hodgkin’s lymphoma. The terms lymphocytic leukemia and lymphoma are used to describe the usual tissue distribution of the disease (bone marrow and peripheral blood vs. discrete mass in lymphoid tissue) at the time of clinical presentation, but both types of neoplasms can be present in bone marrow, circulating blood, and lymphoid tissues. Acute myelogenous leukemia (AML) is a heterogeneous group of neoplasms that primarily involve the bone marrow. Some lymphatic tumors, especially non-Hodgkin’s lymphoma, appear to originate outside the bone marrow (Pyatt et al. 2008).

Chromosomal translocations (two-way or reciprocal) are present in the majority of white cell neoplasms, and gene deletion and mutations are also common. Chromosomal translocations in blood neoplasm may arise from disruption of the normal processors of DNA double-strand breakage repair or rearrangements (Greaves 2004).

Two groups of researchers have proposed potential mechanisms for formaldehyde-induced leukemia: (1) Zhang et al. (2009a) and (2) the Environmental Protection Agency (EPA) [Note the EPA did not publish their proposed mechanism in the peer-reviewed literature, but the major points are discussed in a criticism published by Pyatt et al. 2008.] The basic concepts of these proposed mechanisms are similar.

Zhang et al. (2009a,b) identified three potential mechanisms for formaldehyde-induced leukemia: (1) direct damage to stem cells in bone marrow, (2) damage to circulating hematopoietic stem/progenitor cells in the blood, or (3) damage to pluripotent stem cells present within the nasal turbinates and/or olfactory mucosa. Although the biological plausibility of the first model has been questioned (discussed below), these authors suggested that absorbed formaldehyde would dissolve in the blood and be converted to its hydrated form (methanediol) and could be transported to bone marrow in this form. However, if formaldehyde is not able to reach bone marrow in sufficient quantities to damage stem cells, the two alternate mechanisms involving damage to circulating stem/progenitor cells that travel to bone marrow and become initiated leukemic cells are plausible. Thus, the critical DNA or macromolecular binding occurs in the blood,
when the affected cells proliferate, unrepaired lesions could lead to mutations and cellular

toxicity. The initiated stem cell could be re-incorporated into the bone marrow, and

eventually lead to leukemia. The authors cited the detection of DNA-protein crosslinks

and cytogenetic damage in circulating lymphocytes of exposed workers as supporting
evidence. The same type of damage would be expected to occur in circulating

hematopoietic stem cells. The third mechanism is similar to the second but involves pre-

mutagenic or mutagenic damage to primitive pluripotent stem cells that reside in the oral

or nasal passages. Damaged stem cells could be released from the nasal passages, perhaps

enhanced by formaldehyde-induced cytotoxicity, circulate through the blood, and

eventually be incorporated into the bone marrow. Supporting evidence for this

mechanism includes toxicity and DNA-protein crosslinks in the nasal passages of

laboratory animals exposed to formaldehyde, reports of increased micronuclei in the

nasal and oral mucosa of formaldehyde-exposed humans, and a study (Murrell et al.

2005) that showed that olfactory epithelial cells obtained from rat nasal passages

contained hematopoietic stem/progenitor cells. These cells were shown to re-populate the

hematopoietic tissues of irradiated rats and to form hematopoietic stem/progenitor cells

of multiple lineages in vivo.

Tang et al. reviewed eight studies conducted in China on hematological parameters

among formaldehyde-exposed humans. The authors concluded that most of the studies

showed that long-term exposure can decrease the number of white blood cells, and

possibly lower platelet and hemoglobin (see Section 5.4.2.4). One case report was

identified of a previously healthy woman diagnosed with pancytopenia (decreased levels

of all formed elements in the blood) shortly after moving into a newly remodeled

apartment.

According to Pyatt et al. (2008), the EPA-proposed mode of action relies on the

following assumptions: (1) many lymphoid malignancies arise outside of the bone

marrow, (2) lymphoid tissue present at the portal of entry represents a target cell in nasal-

associated lymph tissue, (3) circulating stem cells or hematopoietic progenitor cells can

be exposed to formaldehyde in the lungs or nasal passages, (4) formaldehyde has been
reported to cause leukemia or lymphomas in rats and mice exposed by inhalation\(^3\) and oral routes, (5) formaldehyde is genotoxic, and (6) some epidemiological studies suggest an association between formaldehyde exposure and lymphohematopoietic malignancies.

Several authors have questioned the biological plausibility of an association of formaldehyde and systemic tumors (primarily leukemia) because of formaldehyde reactivity and lack of evidence for bone marrow toxicity (Cole and Axten 2004, Golden \textit{et al.} 2006, Goldstein 2009, Heck and Casanova 2004, Pyatt \textit{et al.} 2008). Evidence that suggests that formaldehyde would not be a leukemogen includes the following: (1) normal metabolic processes prevent formaldehyde from entering the systemic circulation as formaldehyde is rapidly metabolized by circulating erythrocytes, and blood concentrations of formaldehyde did not increase in humans exposed to 1.9 ppm for 40 minutes, in rats exposed to 14.4 ppm for 2 hours, or in rhesus monkeys exposed to 6 ppm for 4 weeks, (reviewed by Golden \textit{et al.} 2006); (2) formaldehyde does not cause overt bone marrow toxicity or pancytopenia at high doses, a common feature of known leukemogens; (3) there is no credible evidence that formaldehyde induces leukemia in experimental animals; and (4) epidemiological studies provide limited evidence that occupational exposure to formaldehyde is associated with leukemia. Pyatt \textit{et al.} (2008) concluded that all known leukemogenic chemicals cause dose-related hematotoxicity, induce bone marrow hypoplasia and dysplastic morphological changes in the bone marrow, and produce hematopoietic neoplasias in rodents.

Both EPA (as reviewed by Pyatt \textit{et al.} 2008) and Zhang \textit{et al.} (2009a,b) stated that their proposed mechanisms are supported by human studies demonstrating increased micronuclei in nasal and buccal epithelial cells; by the presence of DNA crosslinks, micronuclei, chromosomal aberrations, and SCE in lymphocytes of formaldehyde-exposed workers or students; and by animal studies showing increased micronuclei and SCE in pulmonary lavage cells of formaldehyde-exposed rats. Pyatt \textit{et al.} (2008) argued

\(^3\) Pyatt \textit{et al.} (2008) stated that the EPA proposal cited the unpublished Batelle data (which is the inhalation study reported by Kerns \textit{et al.} [1983]) as showing a significant increase (and dose-response) in lymphomas in female mice and leukemia in female rats but that the author’s review of the data does not support the EPA conclusion.
that the human studies lack consistency, genotoxic effects in animals are limited to local
effects, and an *in vitro* study by Schmid and Speit (2007a) found that DNA crosslinks are
repaired before lymphocytes begin to replicate. Further, non-Hodgkin’s lymphoma is not
associated with formaldehyde exposure in human studies, which would argue against
nasal tissue as a target of formaldehyde mutagenic effects.

Goldstein (2009) noted that although the hypothesis of formaldehyde inducing leukemias
through interaction with lymphoid cells in the nose could not be ruled out, it was not
supported by the rarity of chloromas (myeloid tumor cells) in the nasal cavity and the fact
that other nasal carcinogens such as nickel are not leukemogens. Chloromas, also called
granulocytic sarcomas or myeloid sarcomas, are rare tumors that can occur almost
anywhere in the body, including the head and neck (Prades *et al.* 2002). Occurrence of
these tumors in the nasal passages has been reported in a few instances (Prades *et al.*

5.8 Summary

5.8.1 Adsorption, distribution, metabolism, and excretion
Formaldehyde is a metabolic intermediate that is essential for the biosynthesis of purines,
thymidine, and some amino acids. The metabolism of formaldehyde is similar in all
mammalian species studied. Differences in distribution following inhalation exposure can
be related to anatomical differences. For example, rats are obligate nose breathers while
monkeys and humans are oronasal breathers. Thus, in humans, some inhaled
formaldehyde will bypass the nasal passages and deposit directly into the lower
respiratory tract. The endogenous concentrations in the blood of humans, rats and
monkeys are about 2 to 3 μg/g and do not increase after ingestion or inhalation of
formaldehyde from exogenous sources. Although formaldehyde is rapidly and almost
completely absorbed from the respiratory or gastrointestinal tracts, it is poorly absorbed
from intact skin. When absorbed after inhalation or ingestion, very little formaldehyde
reaches the systemic circulation because it is rapidly metabolized at the site of absorption
to formate, which is excreted in the urine or oxidized to carbon dioxide and exhaled.
Although the metabolic pathways are the same in all tissues, the data indicate that route
of absorption does affect the route of elimination. When inhaled, exhalation is the
primary route of elimination; however, when ingested, urinary excretion as formate is more important. Unmetabolized formaldehyde reacts non-enzymatically with sulfhydryl groups or urea, binds to tetrahydrofolate and enters the single-carbon intermediary metabolic pool, or reacts with macromolecules to form crosslinks (primarily between protein and single-stranded DNA).

5.8.2 Toxic effects

Formaldehyde is a highly reactive chemical that causes tissue irritation and damage on contact. Because of its reactivity and rapid metabolism, toxicity is generally limited to local effects. *In vitro* studies have demonstrated that formaldehyde is cytotoxic and affects cell viability, cell differentiation and growth, cell proliferation, gene expression, membrane integrity, mucociliary action, apoptosis, and thiol and ion homeostasis. Furthermore, cells depleted of glutathione are more susceptible to formaldehyde toxicity.

Formaldehyde concentrations that have been associated with various toxic effects in humans show wide interindividual variation and are route dependent. Symptoms are rare at concentrations below 0.5 ppm; however, upper airway and eye irritation, changes in odor threshold, and neurophysiological effects (e.g., insomnia, memory loss, mood alterations, nausea, fatigue) have been reported at concentrations ≤ 0.1 ppm. The most commonly reported effects include eye, nose, throat and skin irritation. Other effects include allergic contact dermatitis, histopathological abnormalities (e.g., hyperplasia, squamous metaplasia, and mild dysplasia) of the nasal mucosa, occupational asthma, reduced lung function, and altered immune response. Some studies suggest that long-term exposure to formaldehyde can decrease the number of white blood cells, and possibly lower platelet and hemoglobin, and other studies have shown that formaldehyde exposure affects changes in the percentage of lymphocyte subsets. Higher rates of spontaneous abortion and low birth weights have been reported among women occupationally exposed to formaldehyde. Oral exposure is rare, but there have been several suicides and attempted suicides where individuals drank formaldehyde. These data indicate that the lethal dose is 60 to 90 mL. Formaldehyde ingestion results in severe corrosive damage to the gastrointestinal tract followed by CNS depression, myocardial depression, circulatory collapse, metabolic acidosis, and multiple organ failure.
The toxic effects of formaldehyde in experimental animals include irritation, cytotoxicity, and cell proliferation in the upper respiratory tract, ocular irritation, pulmonary hyperactivity, bronchoconstriction, gastrointestinal irritation, and skin sensitization.

Histopathological lesions of the upper respiratory tract and cell proliferation have not been reported at concentrations less that 2 ppm. Other reported effects include oxidative stress, neurotoxicity, immunotoxicity, testicular toxicity, and decreased liver, thyroid gland, and testis weights.

5.8.3 Carcinogenicity of metabolites and analogues
Formic acid (formate + H\(^+\)), the major metabolite of formaldehyde, has not been tested for carcinogenic effects. Acetaldehyde, an analogue of formaldehyde, is listed as reasonably anticipated to be a human carcinogen by the NTP. Acetaldehyde induced respiratory tract tumors in rats (adenocarcinoma and squamous-cell carcinoma of the nasal mucosa) and laryngeal carcinoma in hamsters. In addition, epidemiological data provide some evidence that acetaldehyde may be associated with oral, esophageal, pharyngeal, laryngeal, and bronchial tumors in humans. Glutaraldehyde and benzaldehyde have also been tested for carcinogenicity in 2-year bioassays by the NTP. Glutaraldehyde was not considered to be carcinogenic in rats and mice, and benzaldehyde was not considered to be carcinogenic in rats. The NTP concluded that there was some evidence of carcinogenicity for benzaldehyde in mice based on an increased incidence of squamous-cell papillomas and hyperplasias in the forestomach of male and female mice.

5.8.4 Genetic and related effects
Formaldehyde is a direct-acting genotoxic compound that affects multiple gene expression pathways, including those involved in DNA synthesis and repair and regulation of cell proliferation. Most studies in bacteria were positive for forward or reverse mutations without metabolic activation and for microsatellite induction. Studies in non-mammalian eukaryotes and plants also were positive for forward and reverse mutations, dominant lethal and sex-linked recessive lethal mutations, and DNA single-strand breaks. In vitro studies with mammalian and human cells were positive for DNA adducts, DNA-protein crosslinks, unscheduled DNA synthesis, single-strand breaks, mutations, and cytogenicic effects (chromosomal aberrations, sister chromatid exchange,
and micronuclei induction). In in vivo studies, formaldehyde caused DNA-protein cross
links (in the nasal mucosa and fetal liver but not bone marrow), DNA strand breaks
(lymphocytes and liver), dominant lethal mutations, chromosomal aberrations
(pulmonary lavage cells and bone marrow in one of two studies), and micronuclei
induction in the gastrointestinal tract; however it did not induce sister chromatid
exchange or chromosomal aberrations in lymphocytes. P53 mutations were detected in
nasal squamous-cell carcinomas from rats. Inhalation exposure of formaldehyde also
induced DNA-protein cross links in the nasal turbinates, nasopharynx, trachea, and
bronchi of rhesus monkeys. In mice, formaldehyde exposure did not cause dominant
lethal mutations, micronuclei induction, or chromosomal aberrations when exposed by
intraperitoneal injection, but did induced heritable mutations when exposed by inhalation.

In studies of lymphocytes humans exposed to formaldehyde, increased frequencies of
chromosomal aberrations were observed in seven of twelve reviewed studies, sister
chromatid aberrations in six of thirteen studies, and micronuclei induction in fifteen of
sixteen studies reviewed. Increased frequencies of micronuclei were also observed in the
buccal or oral epithelium, nasal epithelium in all but one of the available studies. DNA-
protein cross links and DNA strand breaks have also been observed in lymphocytes from
medical personnel exposed to formaldehyde.

5.8.5 Mechanistic considerations
Although the biological mechanisms associated with formaldehyde-induced cancer are
not completely understood, it is important to recognize that chemicals can act through
multiple toxicity pathways and mechanisms to induce cancer or other health effects.
Potential carcinogenic modes of actions for formaldehyde include DNA reactivity
(covalent binding), gene mutation, chromosomal breakage, aneuploidy, and epigenetic
effects.

Studies evaluating nasal tumors in rats have shown that, regional dosimetry, genotoxicity,
and cytotoxicity are believed to be important factors. Computational fluid dynamics
models have been developed to predict and compare local flux values in the nasal
passages of rats, monkeys, and humans. Regions of the nasal passages with the highest
flux values are the regions most likely affected by formaldehyde exposure. Similar flux
values were predicted for rats and monkeys for regions of the nasal passages with elevated cell proliferation rates, thus providing support for the hypothesis that formaldehyde flux is a key factor for determining toxic response. Furthermore, DNA-protein crosslinks and cell-proliferation rates are correlated with the site specificity of tumors. Cell proliferation is stimulated by the cytotoxic effects of formaldehyde. Increased cell proliferation may contribute to carcinogenesis by increasing the probability of spontaneous or chemically induced mutations. The dose-response curves for DNA-protein crosslinks, cell proliferation, and tumor formation show similar patterns with sharp increases in slope at concentrations greater than 6 ppm. The observed sequence of nasal lesions is as follows: rhinitis, epithelial dysplasia, squamous metaplasia and hyperplasia, and squamous-cell carcinoma.

Biological mechanisms have been proposed for the possible association between lymphohematopoietic cancers and formaldehyde exposure. Proposed mechanisms for formaldehyde-induced leukemia are: (1) direct damage to stem cells in the bone marrow, (2) damage to circulating stem cells, (3) damage to pluripotent stem cells present in the nasal turbinate or olfactory mucosa. Evidence in support of the potential for DNA damage to circulating hematopoietic stem cells is that DNA-protein crosslinks have been identified in the nasal passages of laboratory animals exposed to formaldehyde and increased micronuclei have been identified in the nasal and oral mucosa of formaldehyde-exposed humans. In addition, olfactory epithelial cells obtained from rat nasal passages contain hematopoietic stem cells, which have been shown to re-populate the hematopoietic tissue of irradiated rats. However, some authors have questioned the biologically plausibility of an association between formaldehyde exposure and leukemia, because formaldehyde is rapidly metabolized and would not enter the systemic circulation. They state that formaldehyde does not cause bone marrow toxicity or pancytopenia, which are common features of known leukemogen, and that the genotoxic and carcinogenic effects in animals and humans are limited to local effects.
6 References

12. Andersen SK, Jensen OM, Oliva D. 1982. [Exposure to formaldehyde and lung cancer in Danish physicians]. *Ugeskr Laeger* 144(21): 1571-1573. (Support and affiliations not identified due to foreign language.)

20. Armstrong RW, Imrey PB, Lye MS, Armstrong MJ, Yu MC, Sani S. 2000. Nasopharyngeal carcinoma in Malaysian Chinese: occupational exposures to particles, formaldehyde and heat. *Int J Epidemiol* 29(6): 991-998. (Supported by NCI. Authors affiliated with University of Illinois, IL; Institute for Medical Research, Malaysia; University of Southern California School of Medicine, CA; Universiti Kebangsaan Malaysia, Malaysia.)

22. Aslan H, Songur A, Tunc AT, Ozen OA, Bas O, Yagmurca M, Turgut M, Sarsilmaz M, Kaplan S. 2006. Effects of formaldehyde exposure on granule cell number and volume of dentate gyrus: a histopathological and stereological study. *Brain Res* 1122(1): 191-200. (Support not reported. Authors affiliated with Gaziosmanpasa University School of Medicine, Turkey; Afyon Kocatepe University School of Medicine, Turkey; Adnan Menderes University School of Medicine, Turkey; Firat University School of Medicine, Turkey; Ondokuz Mayis University School of Medicine, Turkey.)

37. Beland FA, Fullerton NF, Heflich RH. 1984. Rapid isolation, hydrolysis and chromatography of formaldehyde-modified DNA. *J Chromatogr* 308: 121-131. (Supported by the U.S. Consumer Product Safety Commission and the Veteran's Administration Hospital, AR. Authors affiliated with the National Center for Toxicological Research, AR.)

42. Berrino F, Richiardi L, Boffetta P, Estève J, Belletti I, Raymond L, Troschel L, Pisani P, Zubiri L, Ascunce N, Gubéran E, Tuyns A, Terracini B, Merletti F. 2003. Occupation and larynx and hypopharynx cancer: a job-exposure matrix approach in an international case-control study in France, Italy, Spain and Switzerland. *Cancer Causes Control* 14(3): 213-223. (Supported by the National Institute for Research on Alcohol Abuse and Alcoholism, the City of Turin: Progetto Finalizzato 'Oncologia', the Associazione Italiana per la Ricerca sul Cancro, CPO-Piemonte, MURST, Special Project 'Oncology,' Compagnia di Sa Paolo/FIRMS, the Province of Varese: CNR 'Progetto Finalizzato Oncologia,' the Ministry of Health, Geneva: Fonds national de la recherche scientifique and the Ligue Suisse contre le Cancer. Authors affiliated with National Cancer Institute, Italy; University of Turin, Italy; Karolinska Institutet, Sweden; IARC; Lyon University, France; Geneva Cancer Registry, Switzerland; Zaragoza Cancer Registry, Spain; Institute of Public Health, Spain; Medical Inspectorate of Factories, Switzerland; Milan Job Exposure Matrix Working Group, Italy.)

44. Bertazzi PA, Pesatori A, Guercilena S, Consonni D, Zocchetti C. 1989. [Carcinogenic risk for resin producers exposed to formaldehyde: extension of follow-up], Med Lav 80(2): 111-122. (Support not identified due to foreign language. Authors affiliated with Universita degli Studi di Milano, Italy; Clinica del Lavoro, Italy.)

51. Blair A, Purdue MP, Weisenburger DD, Baris D. 2007. Chemical exposures and risk of chronic lymphocytic leukaemia. Br J Haematol 139(5): 753-761. (Supported by NIH. Authors affiliated with NCI; University of Nebraska Medical Center, NE.)

52. Blasiak J, Trzeciak A, Malecka-Panas E, Drzewoski J, Wojewódzka M. 2000. In vitro genotoxicity of ethanol and acetaldehyde in human lymphocytes and the gastrointestinal tract mucosa cells. Toxicol In Vitro 14(4): 287-295. (Supported by the Committee of Scientific Research. Authors affiliated with University of Lodz, Poland; Medical University of Lodz, Poland; Institute of Nuclear Chemistry and Technology, Poland.)

43(4): 554-9. (Support not reported. Authors affiliated with American Cancer Society, NY; University of Torino, Italy.)

73. Burge PS, Harries MG, Lam WK, O'Brien IM, Patchett PA. 1985. Occupational asthma due to formaldehyde. *Thorax* 40(4): 255-60. (Support not reported. Authors affiliated with East Birmingham Hospital, UK; Cardiothoracic Institute, UK.)

74. Burkhart KK, Kulig KW, McMartin KE. 1990. Formate levels following a formalin ingestion. *Vet Hum Toxicol* 32(2): 135-7. (Support not reported. Authors affiliated with University of Colorado, CO; Louisiana State University Medical Center, LA.)

77. Carlson RM, Smith MC, Nedorost ST. 2004. Diagnosis and treatment of dermatitis due to formaldehyde resins in clothing. *Dermatitis* 15(4): 169-75. (Support not reported. Authors affiliated with University Hospitals of Cleveland/Case Western Reserve University, OH.)

81. Casanova M, Heck Hd A. 1987. Further studies of the metabolic incorporation and covalent binding of inhaled \(^{3}\text{H}\)- and \(^{14}\text{C}\)formaldehyde in Fischer-344 rats: effects of glutathione depletion. *Toxicol Appl Pharmacol* 89(1): 105-121. (Support not reported. Authors affiliated with Chemical Industry Institute of Toxicology, NC.)

85. Casanova M, Morgan KT, Gross EA, Moss OR, Heck HA. 1994. DNA-protein cross-links and cell replication at specific sites in the nose of F344 rats exposed subchronically to formaldehyde. *Fundam Appl Toxicol* 23(4): 525-536. (Support not reported. Authors affiliated with Chemical Industry Institute of Toxicology, NC.)

86. Casanova M, Bell DA, Heck HD. 1997. Dichloromethane metabolism to formaldehyde and reaction of formaldehyde with nucleic acids in hepatocytes of rodents and humans with and without glutathione S-transferase \(T1\) and \(M1\) genes. *Fundam Appl Toxicol* 37(2): 168-180. (Support not reported. Authors affiliated with Chemical Industry Institute of Toxicology, NC; NIEHS.)

89. Chang JC, Gross EA, Swenberg JA, Barrow CS. 1983. Nasal cavity deposition, histopathology, and cell proliferation after single or repeated formaldehyde exposures in B6C3F1 mice and F-344 rats. *Toxicol Appl Pharmacol* 68(2): 161-176. (Support not reported. Authors affiliated with Chemical Industry Institute of Toxicology. NC.)

97. Chen J, So S, Lee H, Fraser MP, Curl RF, Harman T, Tittel FK. 2004. Atmospheric formaldehyde monitoring in the Greater Houston area in 2002. *Appl Spectrosc* 58(2): 243-247. (Supported by the Dreyfus Foundation, the Welch Foundation, the National Science Foundation, and the Gulf Coast Hazardous Substance Research Center. Authors affiliated with Rice University, TX; University of Houston-Clear Lake, TX.)

119. Conolly RB, Lilly PD, Kimbell JS. 2000. Simulation modeling of the tissue disposition of formaldehyde to predict nasal DNA-protein cross-links in Fischer 344 rats, rhesus monkeys, and humans. *Environ Health Perspect* 5: 919-924. (Supported by the member companies of the Chemical Industry Institute of Toxicology. Authors affiliated with Chemical Industry Institute of Toxicology, NC.)

124. Cosma GN, Jamasbi R, Marchok AC. 1988a. Growth inhibition and DNA damage induced by benzo[a]pyrene and formaldehyde in primary cultures of rat tracheal epithelial cells. *Mutat Res* 201(1): 161-8. (Supported by the National Cancer Institute, the U.S. Dept. of Energy and NIH. Authors affiliated with Oak Ridge National Laboratory, TN; Bowling Green State University, OH.)

Institute, NIH and the U.S. Department of Energy. Authors affiliated with Oak Ridge National Laboratory, TN; New York University Medical Center, NY.)

inhalation. *J Appl Toxicol* 12(3): 199-203. (Support not reported. Authors affiliated with University of Georgia College of Pharmacy, GA; University of Texas Medical Branch, TX; Warner-Lambert, MI.)

135. Dally KA, Hanrahan LP, Woodbury MA, Kanarek MS. 1981. Formaldehyde exposure in nonoccupational environments. *Arch Environ Health* 36(6): 277-284. (Supported by the EPA. Authors affiliated with Wisconsin Division of Health, WI; University of Wisconsin, WI.)

139. de Groot AC, van Joost T, Bos JD, van der Meeren HL, Weyland JW. 1988. Patch test reactivity to DMDM hydantoin. Relationship to formaldehyde allergy. *Contact Dermatitis* 18(4): 197-201. (Support not reported. Authors affiliated with Carolus & Willem-Alexander Hospital, Netherlands; Academic Hospital Dijkzigt, Netherlands; Academisch Medisch Centrum, Netherlands; Diakonessenhuis, Netherlands; Food Inspection Service, Netherland.)

140. de Serres FJ, Brockman HE. 1999. Comparison of the spectra of genetic damage in formaldehyde-induced ad-3 mutations between DNA repair-proficient and -deficient heterokaryons of *Neurospora crassa*. *Mutat Res* 437(2): 151-163. (Supported by NIEHS. Authors affiliated with NIEHS; Illinois State University, IL.)

143. Demkowicz-Dobrzanski K, Castonguay A. 1992. Modulation by glutathione of DNA strand breaks induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its aldehyde metabolites in rat hepatocytes. *Carcinogenesis* 13(8): 1447-1454. (Support not reported. Authors affiliated with Laval University, Canada; Medical Academy, Poland.)

146. Donovan J, Skotnicki-Grant S. 2007. Allergic contact dermatitis from formaldehyde textile resins in surgical uniforms and nonwoven textile masks. *Dermatitis* 18(1): 40-4. (Supported by the Workplace Safety and Insurance Board. Authors affiliated with St. Michael's Hospital, Canada; Bay Dermatology Centre Toronto, Canada.)

695-710. (Support not reported. Authors affiliated with Universite catholique de Louvain, Belgium.)

156. Edling C, Hellquist H, Ödkvist L. 1988. Occupational exposure to formaldehyde and histopathological changes in the nasal mucosa. *Br J Ind Med* 45(11): 761-765. (Supported by the Swedish Work Environment Fund. Authors affiliated with University Hospital, Sweden; College of Medicine, Sweden; King Saud University, Saudi Arabia.)

173. Feick P, Haas SR, Singer MV, Böcker U. 2006. Low-dose exposure of intestinal epithelial cells to formaldehyde results in MAP kinase activation and molecular alteration of the focal adhesion protein paxillin. *Toxicology* 219(1-3): 60-72. (Supported by the Medical Faculty at Mannheim, University Hospital Mannheim, University of Heidelberg, and the Deutsche Forschungsgemeinschaft. Authors affiliated with University of Heidelberg, Germany.)

179. Flyvholm MA, Hall BM, Agner T, Tiedemann E, Greenhill P, Vanderveken W, Freeberg FE, Menne T. 1997. Threshold for occluded formaldehyde patch test in formaldehyde-sensitive patients. Relationship to repeated open application test with a product containing formaldehyde releaser. *Contact Dermatitis* 36(1): 26-33. (Support not reported. Authors affiliated with National Institute of Occupational Health, Denmark; Proctor & Gamble Company, UK; Proctor & Gamble Company, OH; Gentofte Hospital, Denmark; Proctor & Gamble Company, Belgium.)

183. Fowler JF. 2003. Formaldehyde as a textile allergen. *Curr Probl Dermatol* 31: 156-65. (Support not reported. Authors affiliated with University of Louisville School of Medicine, KY.)

187. Fritschi L, Siemiatycki J. 1996. Lymphoma, myeloma and occupation: results of a case-control study. *Int J Cancer* 67(4): 498-503. (Supported by the Institut de recherche en sante et en securite du travail du Quebec, the Fonds de recherche en sante du Quebec, the National Health Research and Development Program and the National Cancer Institute of Canada. Authors affiliated with Institut Armand-Frappier, Canada.)

198. Gérin M, Siemiatycki J, Nadon L, Dewar R, Krewski D. 1989. Cancer risks due to occupational exposure to formaldehyde: results of a multi-site case-control study in Montreal. Int J Cancer 44(1): 53-58. (Supported by the Institut de recherche en sante et securite du Travail du Quebec, the National Health Research and Development Program and the National Cancer Institute of Canada. Authors affiliated with Universite de Montreal, Canada; Institut Armand-Frappier, Canada; McGill University, Canada; Health and Welfare Canada; Carlton University, Canada.)

199. GI. 2006. Economic Primer on Formaldehyde. Lexington, MA: Global Insights. 9 pp. (Support and author affiliations not reported.)

201. Godderis L, Deschuyffeleer T, Roelandt H, Veulemans H, Moens G. 2008. Exposure to metalworking fluids and respiratory and dermatological complaints in a secondary aluminium plant. Int Arch Occup Environ Health 81(7): 845-53. (Supported by the company where this study took place. [Company not named in article.] Authors affiliated with IDEWE, Belgium; Katholieke Universiteit Leuven, Belgium.)

208. Goldstein BD. 2009. Clinical and hematotoxicological evaluation of current evidence does not support formaldehyde as a cause of human leukemia. *Hum Exp Toxicol* (Pre-publication). (No grant support was received. Author affiliated with University of Pittsburgh Graduate School of Public Health, PA.)

Swedish Tobacco Company, and the Health Effects Institute. Authors affiliated with Karolinska Institutet, Sweden.)

223. Gulec M, Songur A, Sahin S, Ozen OA, Sarsilmaz M, Akyol O. 2006. Antioxidant enzyme activities and lipid peroxidation products in heart tissue of subacute and subchronic formaldehyde-exposed rats: a preliminary study. *Toxicol Ind Health* 22(3): 117-24. (Support not reported. Authors affiliated with Ankara Numune Education and Research Hospital, Turkey; Afyon Kocatepe University Medical School, Turkey; Gaziomanpasa University Medical School, Turkey; Firat University Medical Faculty, Turkey; Hacettepe University Medical School, Turkey.)

227. Haas EM, Bailey HR, Farragher I. 2007. Application of 10 percent formalin for the treatment of radiation-induced hemorrhagic proctitis. *Diseases of the Colon and Rectum* 50(2): 213. (Support not reported. Authors affiliated with Methodist Hospital, TX; UT Health Science Center, TX; Western Hospital, Australia.)

229. Hagiwara M, Watanabe E, Barrett JC, Tsutsui T. 2006. Assessment of
genotoxicity of 14 chemical agents used in dental practice: ability to induce
cromosome aberrations in Syrian hamster embryo cells. Mutat Res 603(2):
111-120. (Support not reported. Authors affiliated with The Nippon Dental
University, Japan; Novartis Institutes for BioMedical Research Inc., MA; NIH,
MD.)

Am J Ind Med 20(1): 83-89. (Support not reported. Authors affiliated with
University of Birmingham, UK.)

231. Hamaguchi F, Tsutsui T. 2000. Assessment of genotoxicity of dental antiseptics:
ability of phenol, guaiacol, p-phenolsulfonic acid, sodium hypochlorite, p-
chlorophenol, m-cresol or formaldehyde to induce unscheduled DNA synthesis
(Support not reported. Authors affiliated with Nippon Dental University, Japan.)

employees in Denmark. Cancer Causes Control 6(4): 354-360. (Support not
reported. Authors affiliated with Danish Cancer Society, Denmark; National
Institute of Occupational Health, Denmark.)

233. Hansen J, Olsen JH. 1996. [Occupational exposure to formaldehyde and risk of
cancer]. Ugeskr Laeger 158(29): 4191-4194. (Support and affiliations not
identified due to foreign language.)

laboratory technicians. Br Med J 4(5992): 329-332. (Supported by the
Department of Health and Social Security and the Scottish Home and Health
Department. Authors affiliated with London School of Hygiene and Tropical
Medicine, UK.)

Br J Ind Med 41(2): 188-191. (Supported by the DHSS. Authors affiliated with
University of Birmingham, UK; London School of Hygiene and Tropical
Medicine, UK.)

236. Harris JC, Rumack BH, Aldrich FD. 1981. Toxicology of urea formaldehyde
Authors affiliated with University of Colorado, CO; Denver General Hospital,
CO; B.F. Stolinsky Laboratories, CO; IBM Corporation, CO.)

lymphohematopoietic malignancies among workers in formaldehyde industries.
J Natl Cancer Inst 95(21): 1615-1623. (Supported by the National Cancer
Institute, National Institutes of Health, Department of Health and Human
Services. Authors affiliated with NCI.)

246. Heck HD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ, Tosun T. 1985. Formaldehyde (CH₂O) concentrations in the blood of humans and Fischer-344 rats exposed to CH₂O under controlled conditions. *Am Ind Hyg Assoc J* 46(1): 1-3. (Supported by the Formaldehyde Institute. Authors affiliated with Chemical Industry Institute of Toxicology, NC; Yale University School of Medicine, CT.)

254. Hemminki K, Kyyronen P, Lindbohm ML. 1985. Spontaneous abortions and malformations in the offspring of nurses exposed to anaesthetic gases, cytostatic drugs, and other potential hazards in hospitals, based on registered information of outcome. *J Epidemiol Community Health* 39(2): 141-7. (Supported by the Medical Research Council, Finland. Authors affiliated with Institute of Occupational Health, Finland.)

263. Hester SD, Barry WT, Zou F, Wolf DC. 2005. Transcriptomic analysis of F344 rat nasal epithelium suggests that the lack of carcinogenic response to glutaraldehyde is due to its greater toxicity compared to formaldehyde. *Toxicol*
Pathol 33(4): 415-424. (Support not reported. Authors affiliated with University of North Carolina, NC; U.S. EPA.)

266. Hildesheim A, Dosemeci M, Chan CC, Chen CJ, Cheng YJ, Hsu MM, Chen IH, Mittl BF, Sun B, Levine PH, Chen JY, Brinton LA, Yang CS. 2001. Occupational exposure to wood, formaldehyde, and solvents and risk of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 10(11): 1145-1153. (Support not reported. Authors affiliated with NCI; Chang-Gung Memorial Hospital, Taiwan; George Washington University, Washington, D.C; National Health Research Institute, Taiwan.)

270. Holly EA, Aston DA, Ahn DK, Smith AH. 1996. Intraocular melanoma linked to occupations and chemical exposures. Epidemiology 7(1): 55-61. (Supported by NCI. Authors affiliated with University of California San Francisco, CA; Stanford University, CA; University of California Berkeley, CA.)

Karolinska Institutet, Sweden; King Saud University, Saudia Arabia; National Board of Occupational Safety and Health, Sweden.)

273. Holness DL, Nethercott JR. 1989. Health status of funeral service workers exposed to formaldehyde. *Arch Environ Health* 44: 222-228. (Supported by the Ontario Ministry of Labour. Authors affiliated with University of Toronto, Canada.)

288. Iarmarcovai G, Bonassi S, Sari-Minodier I, Baciuchka-Palmaro M, Botta A, Orsiere T. 2007. Exposure to genotoxic agents, host factors, and lifestyle influence the number of centromeric signals in micronuclei: a pooled re-analysis. *Mutat Res* 615(1-2): 18-27. (Supported by Direction Regionale du Travail, de l'Emploi et de la Formation Professionnelle of the Provence-Alpes-Cote d'Azur region, the Fondation Philippe Daher, the Associazione Italiana per la Ricerca sul Cancro and the Agenzia Spaziale Italiana. Authors affiliated with Universite de la Mediterranee, France; National Cancer Research Institute, Italy.)

289. ICIS. 2007. Chemical Profile: Formaldehyde. *ICIS Chemical Business Americas* April 30 - May 6: 34. (Support and author affiliations not reported.)

292. IRSST. 2006. *Prevention Guide: Formaldehyde in the Workplace*. Montreal, Canada: Institut de recherche Robert-Sauve en sante et en securite du travail 55 pp. (Supported by the Commission de la sante et de la securite du travail. Authors affiliated with IRSST; University of Montreal, Canada.)

294. Iversen OH. 1986. Formaldehyde and skin carcinogenesis. *Environ Int* 12: 541-544. (Support not reported. Authors affiliated with University of Oslo, Norway; National Hospital, Norway.)

300. Kagi N, Fujii S, Tamura H, Namiki N. 2009. Secondary VOC emissions from flooring material surfaces exposed to ozone or UV irradiation. *Building And Environment* 44(6): 1199-1205. (Support not reported. Authors affiliated with National Institute of Public Health, Japan; Tokyo Institute of Technology, Japan; Techno Ryowa Ltd., Japan; Kogakuin University, Japan.)

Accessed on 5/20/09.

317. Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA. 1983. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. *Cancer Res* 43(9): 4382-92. (Supported by the Chemical Industry Institute of Toxicology. Authors affiliated with Battelle, OH; Chemical Industry Institute of Toxicology, NC; Smith, Kline & French Laboratories, PA.)

322. Kilburn KH, Warshaw R, Thornton JC. 1987. Formaldehyde impairs memory, equilibrium, and dexterity in histology technicians: effects which persist for days after exposure. *Arch Environ Health* 42(2): 117-20. (Support not reported. Authors affiliated with University of Southern California, CA; Mount Sinai School of Medicine, NY.)

325-34. (Support not reported. Authors affiliated with CIIT Centers for Health Research, NC; U.S. EPA.)

335. Kitaeva LV, Kitaev EM, Pimenova MN. 1990. [The cytopathic and cytogenetic sequelae of chronic inhalational exposure to formaldehyde on female germ cells and bone marrow cells in rats]. *Tsitologiia* 32(12): 1212-1216. (Support not identified due to foreign language. Authors affiliated with Academy of the Medical Sciences of the USSR, Russia.)

336. Kitaeva LV, Mikheeva EA, Shelomova LF, Shvartsman PY. 1996. Genotoxic effects of formaldehyde in somatic human cells *in vivo*. *Genetika* 32: 1287-1290. (Support not identified due to foreign language. Authors affiliated with Mechnikov State Medical Academy, Russia; Gertsen State Pedagogical University, Russia.)

342. Korhonen K, Liukkonen T, Ahrens W, Astrakianakis G, Boffetta P, Burdorf A, Heederik D, Kauppinen T, Kogevinas M, Osvoll P, Rix BA, Saalo A, Sunyer J, Szadkowska-Stanczyk I, Teschke K, Westberg H, Widerkiewicz K. 2004. Occupational exposure to chemical agents in the paper industry. *Int Arch Occup Environ Health* 77(7): 451-460. (Supported by the European Commission. Authors affiliated with Lappeenranta Regional Institute of Occupational Health, Finland; Bremen Institute for Prevention Research and Social Medicine, Germany; BC Cancer Agency, Canada; IARC; Erasmus University, Netherlands; University of Utrecht, Netherlands; Institute of Occupational Health, Finland; Institut Municipal d'Investigacio Medica, Spain; National Institute of Occupational Health, Norway; Danish Cancer Society, Denmark; Nofer Institute of Occupational Medicine, Poland; University of British Columbia, Canada; Orebro Medical Center Hospital, Sweden; Regional Sanitary Epidemiological Station, Poland.)

European Surgery-Acta Chirurgica Austriaca 39(2): 118-121. (Support not reported. Authors affiliated with Technical University of Aachen, Germany.)

349. Krzyzanowski M, Quackenboss JJ, Lebowitz MD. 1990. Chronic respiratory effects of indoor formaldehyde exposure. Environ Res 52: 117-125. (Supported by the EPA, EPRI and NIH. Authors affiliated with University of Arizona, AZ; National Institute of Hygiene, Poland.)

354. Kum C, Kiral F, Sekkin S, Seyrek K, Boyacioglu M. 2007a. Effects of xylene and formaldehyde inhalations on oxidative stress in adult and developing rats livers. Exp Anim 56(1): 35-42. (Support not reported. Authors affiliated with Adnan Menderes University, Turkey.)

356. Laforest L, Luce D, Goldberg P, Bégin D, Gérin M, Demers PA, Brugère J, Leclerc A. 2000. Laryngeal and hypopharyngeal cancers and occupational exposure to formaldehyde and various dusts: a case-control study in France. Occup Environ Med 57(11): 767-773. (Support not reported. Authors affiliated with Institut National de la Sante et de la Recherche Medicale, France; Universite de Montreal, Canada; University of British Columbia, Canada; Institut Curie, France.)

358. Lamb B, Westberg H, Bryant P. 1985. Air filtration rates in pre- and post-

376. Lillienberg L, Burdorf A, Mathiasson L, Thorneby L. 2008. Exposure to metalworking fluid aerosols and determinants of exposure. *Ann Occup Hyg* 52(7): 597-605. (Supported by the Swedish Council for Working Life and Social Research. Authors affiliated with Sahlgrenska University Hospital, Sweden; Erasmus University, Netherlands; Lund University, Sweden.)

378. Lino dos Santos Franco A, Damazo AS, Beraldo de Souza HR, Domingos HV, Oliveira-Filho RM, Oliani SM, Costa SK, Tavares de Lima W. 2006. Pulmonary neutrophil recruitment and bronchial reactivity in formaldehyde-exposed rats are modulated by mast cells and differentially by neuropeptides and nitric oxide. *Toxicol Appl Pharmacol* 214(1): 35-42. (Supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Pesquisa. Authors affiliated with University of Sao Paulo, Brazil; University of Sao Paulo State, Brazil; UNIFESP, Brazil.)

379. Lino dos Santos Franco A, Domingos HV, Damazo AS, Breithaupt-Faloppa AC, de Oliveira AP, Costa SK, Oliani SM, Oliveira-Filho RM, Vargaftig BB, Tavares-de-Lima W. 2009. Reduced allergic lung inflammation in rats following formaldehyde exposure: long-term effects on multiple effector systems. *Toxicology* 256(3): 157-63. (Supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Pequisa. Authors affiliated with University of Sao Paulo, Brazil; Sao Paulo State University, Brazil.)

380. Linos A, Blair A, Cantor KP, Burmeister L, VanLier S, Gibson RW, Schuman L, Everett G. 1990. Leukemia and non-Hodgkin's lymphoma among embalmers and funeral directors. *J Natl Cancer Inst* 82(1): 66. (Support not reported. Authors affiliated with Athens Medical School, Greece; NCI; University of Iowa, IO; University of Minnesota, MN; Orlando Regional Medical Center, FL.)

382. Liu Y, Li CM, Lu Z, Ding S, Yang X, Mo J. 2006. Studies on formation and repair of formaldehyde-damaged DNA by detection of DNA-protein crosslinks and DNA breaks. *Front Biosci* 11: 991-997. (Supported by the China National Key Technologies R&D Program for the 10th 5-Year Plan from the Chinese Ministry of Science and Technology and the Nanyang Technological University of Singapore. Authors affiliated with Central China Normal University, China; Nanyang Technological University, Singapore; Kumetrix, Inc., CA.)

Taiwan National Science Council. Authors affiliated with National Cheng Kung
University, China.)

385. Lodén M. 1986b. The *in vitro* permeability of human skin to benzene, ethylene
glycol, formaldehyde, and n-hexane. *Acta Pharmacol Toxicol (Copenh)* 58(5):
382-389. (Supported by the Swedish Work Environment Fund. Authors
affiliated with National Defense Research Institute, Sweden.)

386. Logue JN, Barrick MK, Jessup GL, Jr. 1986. Mortality of radiologists and
(Supported by the American College of Radiology and the College of American
Pathologists. Authors affiliated with U.S. FDA; Pennsylvania Department of
Health.)

(Support not reported. Authors affiliated with University of Washington, WA.)

cytotoxicity in three human cell types assessed in three different assays. *Toxicol
In Vitro* 16(1): 63-69. (Supported by Calcin-fondin. Authors affiliated with
University of Aarhus, Denmark.)

(Supported by NIH and the Formaldehyde Council, Inc. Authors affiliated with
University of North Carolina, NC.)

Deoxyguanosinyl)methyl]glutathione between Glutathione and DNA Induced by
Formaldehyde. *J Am Chem Soc*. (Supported by NIH and the Formaldehyde
Council, Inc. Authors affiliated with University of North Carolina, NC.)

392. Lu Z, Li CM, Qiao Y, Yan Y, Yang X. 2008b. Effect of inhaled formaldehyde on learning and memory of mice. *Indoor Air* 18(2): 77-83. (Supported by the China National Science Foundation, the Chinese Ministry of Science and the Nanyang Technological University. Authors affiliated with Central China Normal University, China; Nanyang Technological University, China.)

393. Luce D, Gérin M, Leclerc A, Morcet JF, Brugère J, Goldberg M. 1993a. Sinonasal cancer and occupational exposure to formaldehyde and other substances. *Int J Cancer* 53(2): 224-231. (Support not reported. Authors affiliated with INSERM, France; Universite de Montreal, Canada; Institut Curie, France.)
394. Luce D, Leclerc A, Bégin D, Demers PA, Gérin M, Orlowski E, Kogevinas M, Belli S, Bugel I, Bolm-Audorff U, Brinton LA, Comba P, Hardell L, Hayes RB, Magnani C, Merler E, Preston-Martin S, Vaughan TL, Zheng W, Boffetta P. 2002. Sinonasal cancer and occupational exposures: a pooled analysis of 12 case-control studies. *Cancer Causes Control* 13(2): 147-157. (Supported by the Commission of the European Union, Directorate General for Employment, Industrial Relations, and Social Affairs and the Biomedical and Health Research Programme. Authors affiliated with INSERM, France; Universite de Montreal, Canada; University of British Columbia, Canada; Institut Municipal d’Investigacio Medica, Spain; Instituto Superiore di Sanita, Italy; Hessiches Ministerium fur Frauen, Arbeit und Sozialordnung, Germany; NCI; Orebro Medical Center, Sweden; University of Turin, Italy; Centro per lo Studio et la Prevenzione Oncologica, Italy; University of Southern California, CA; Fred Hutchinson Cancer Research Center, WA; Vanderbilt University, TN; IARC.)

396. Lutz WK. 1986. Endogenous formaldehyde does not produce detectable DNA-protein crosslinks in rat liver. *Toxicol Pathol* 14(4): 462-465. (Supported by the Swiss National Science Foundation. Authors affiliated with University of Zurich, Switzerland.)

397. Lyapina M, Zhelezova G, Petrova E, Boev M. 2004. Flow cytometric determination of neutrophil respiratory burst activity in workers exposed to formaldehyde. *Int Arch Occup Environ Health* 77(5): 335-40. (Supported by the Faculty of Medicine at the Medical University, Sofia. Authors affiliated with Medical University, Bulgaria; University Hospital of St. Ivan Rilski, Bulgaria.)

405. Majumder PK, Kumar VL. 1995. Inhibitory effects of formaldehyde on the reproductive system of male rats. *Indian J Physiol Pharmacol* 39(1): 80-82. (Support not reported. Authors affiliated with All India Institute of Medical Sciences, India)

417. Marsh GM, Stone RA, Esmen NA, Henderson VL, Lee KY. 1996. Mortality among chemical workers in a factory where formaldehyde was used. *Occup Environ Med* 53(9): 613-627. (Supported by the American Cyanamid Company. Authors affiliated with University of Pittsburgh, PA; University of Oklahoma, OK; Department of Veteran Affairs, Washington, D.C.)

Cytec Industries, Inc. Authors affiliated with University of Pittsburgh, PA; University of Oklahoma, OK.)

426. McDuffie HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S, Dosman JA, Robson D, Skinnider LF, Choi NW. 2001. Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev 10(11): 1155-63. (Supported by Health Canada, the British Columbia Health Research Foundation, and the University of Saskatchewan. Authors affiliated with University of Saskatchewan, Canada; University of Toronto, Canada; St. Paul's Hospital, Canada; Alberta Cancer Board, Canada; Saskatchewan Cancer Agency, Canada; Manitoba Cancer Treatment and Research Foundation, Canada.)

434. Merletti F, Boffetta P, Ferro G, Pisani P, Terracini B. 1991. Occupation and cancer of the oral cavity or oropharynx in Turin, Italy. *Scand J Work Environ Health* 17(4): 248-254. (Supported by the Consiglio Nazionale della Ricerca, Rome, the Associazione Italiana per le Ricerca sul Cancro, the Ministry of Public Education and the Consorzio per il Sistema Informativo. Authors affiliated with University of Turin, Italy; IARC; National Cancer Institute, Italy.)

438. Milton DK, Walters MD, Hammond K, Evans JS. 1996. Worker exposure to endotoxin, phenolic compounds, and formaldehyde in a fiberglass insulation manufacturing plant. *Am Ind Hyg Assoc J* 57: 889-896. (Supported by Owens-Corning Corporation, NIEHS and NIOSH. Authors affiliated with Harvard School of Public Health, MA; University of Massachusetts, MA; Polaroid Corp; University of California - Berkeley, CA.)

446. Morgan KT, Monticello TM. 1990. Airflow, gas deposition, and lesion distribution in the nasal passages. *Environ Health Perspect* 85: 209-218. (Support not reported. Authors affiliated with Chemical Industry Institute of Toxicology, NC.)

448. Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, Perry C, Lee G, Mackay-Sim A. 2005. Multipotent stem cells from adult olfactory mucosa. *Dev Dyn* 233(2): 496-515. (Supported by Queensland Health, the Garnett Passe and Rodney Williams Foundation and the Stanley Medical Research Institute. Authors affiliated with Griffith University, Australia; Princess Alexandra Hospital, Australia; Royal Adelaide Hospital, Australia; Universite de Marseille, France.)

168-71. (Support not reported. Authors affiliated with Autonomous University of Barcelona, Spain; Tecnologia y Distribucion Medico y Cientifica, Spain.)

454. Neri M, Bonassi S, Knudsen LE, Sram RJ, Holland N, Ugolini D, Merlo DF. 2006. Children's exposure to environmental pollutants and biomarkers of genetic damage. I. Overview and critical issues. *Mutat Res* 612(1): 1-13. (Supported by the European Union and the Associazione Italiana per la Ricerca sul Cancro. Authors affiliated with National Cancer Research Institute, Italy; University of Copenhagen, Denmark; Institute of Experimental Medicine, Czech Republic; Health Institute of Central Bohemia, Czech Republic; University of California Berkeley, CA; University of Genoa, Italy.)

481. O'Quinn SE, Kennedy CB. 1965. Contact dermatitis due to formaldehyde in clothing textiles. *Jama* 194(6): 593-6. (Support not reported. Authors affiliated with Louisiana University State School of Medicine, LA.)

Toxicol Pharmacol 11(3): 220-236. (Supported by the U.S. Navy. Authors affiliated with Oak Ridge National Laboratory, TN.)

499. Ozen OA, Akpolat N, Songur A, Kus I, Zararsiz I, Ozacmak VH, Sarsilmaz M. 2005. Effect of formaldehyde inhalation on Hsp70 in seminiferous tubules of rat testes: an immunohistochemical study. Toxicol Ind Health 21(10): 249-254. (Support not reported. Authors affiliated with Afyon Kocatepe University, Turkey; Firat University, Turkey; Z. Karaelmas University, Turkey.)

500. Ozen OA, Kus MA, Kus I, Alkoc OA, Songur A. 2008. Protective effects of melatonin against formaldehyde-induced oxidative damage and apoptosis in rat testes: an immunohistochemical and biochemical study. Syst Biol Reprod Med 54(4-5): 169-176. (Support not reported. Authors affiliated with Afyon Kocatepe University, Turkey; Firat University, Turkey; Namik Kemal University, Turkey.)

506. Park JS, Ikeda K. 2006. Variations of formaldehyde and VOC levels during 3 years in new and older homes. *Indoor Air* 16(2): 129-35. (Supported by the ERC program of MOST and Hanyang University. Authors affiliated with Hanyang University, Korea; National Institute of Public Health, Japan.)

511. Paustenbach D, Alarie Y, Kulle T, Schachter N, Smith R, Swenberg J, Witschi H, Horowitz SB. 1997. A recommended occupational exposure limit for formaldehyde based on irritation. *J Toxicol Environ Health* 50(3): 217-263. (Support not reported. Authors affiliated with McLaren/Hart, CA; University of Pittsburgh, PA; Environmental Health Sciences, MD; Mount Sinai Medical Center, NY; University of Michigan, MI; University of North Carolina, NC; University of California at Davis, CA; ChemRisk, CA.)

adenocarcinoma of the nasal cavity and paranasal sinuses in the German wood industry. *Occup Environ Med* 65(3): 191-196. (Support not reported. Authors affiliated with BGFA-Forschungsinstitut für Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Germany; Stadtsches Klinikum Braunschweig, Germany; Holz-Berufsgenossenschaft, Germany.)

524. Prades JM, Alaani A, Mosnier JF, Dumollard JM, Martin C. 2002. Granulocytic sarcoma of the nasal cavity. *Rhinology* 40(3): 159-161. (Support not reported. Authors affiliated with Saint-Etienne University Hospital Centre, France.)

534. Ravis SM, Shaffer MP, Shaffer CL, Dehkhaghani S, Belsito DV. 2003. Glutaraldehyde-induced and formaldehyde-induced allergic contact dermatitis among dental hygienists and assistants. *J Am Dent Assoc* 134(8): 1072-8. (Supported by the American Dental Association Health Foundation. Authors affiliated with University of Miami, FL; University of Iowa, IA; University of Kansas, MO.)

542. Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, Buerstedde JM, Gillespie DA, Sale JE, Yamazoe M, Bishop DK, Takata M, Takeda S, Watanabe M, Swenberg JA, Nakamura J. 2007. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. *Cancer Res* 67(23): 11117-11122. (Supported by NIEHS and University of North Carolina. Authors affiliated with University of North Carolina at Chapel Hill, NC; University of Virginia, VA; Kyoto University, Japan; Department of Radiation Genetics Graduate School of Medicine, Japan; GSF-National Research Center for Environment and Health, Germany; Beatson Institute for Cancer Research, UK; Medical Research Council Laboratory of Molecular Biology, UK; University of Chicago, IL; Hiroshima University, Japan.)

552. Saladino AJ, Willey JC, Lechner JF, Grafofstrom RC, LaVeck M, Harris CC. 1985. Effects of formaldehyde, acetaldehyde, benzoyl peroxide, and hydrogen peroxide on cultured normal human bronchial epithelial cells. *Cancer Res* 45(6): 2522-2526. (Support not reported. Authors affiliated with NCI, MD; Baltimore Veterans Administration Medical Center, MD; Heart, Lung and Blood Institute, MD; CDC, GA; Karolinska Institutet, Sweden.)

555. Sanford DM, Becker GD. 1967. Acute leukemia presenting as nasal obstruction. *Arch Otolaryngol* 85(1): 102-104. (Support not reported. Authors affiliated with Gorgas Hospital; Womack Army Hospital, NC.)

556. Sarsilmaz M, Kaplan S, Songur A, Colakoglu S, Aslan H, Tunc AT, Ozen OA, Turgut M, Bas O. 2007. Effects of postnatal formaldehyde exposure on pyramidal cell number, volume of cell layer in hippocampus and hemisphere in the rat: a stereological study. *Brain Res* 1145: 157-67. (Support not reported. Authors affiliated with Firat University School of Medicine, Turkey; Ondokuz Mayıs University School of Medicine, Turkey; Afyon Kocatepe University School of Medicine, Turkey; Gaziosmanpasa University School of Medicine, Turkey; Adnan Menderes University School of Medicine, Turkey.)

557. Sasaki Y, Ohtani T, Ito Y, Mizuashi M, Nakagawa S, Furukawa T, Horii A, Aiba S. 2009. Molecular events in human T cells treated with diesel exhaust particles or formaldehyde that underlie their diminished interferon-gamma and interleukin-10 production. *Int Arch Allergy Immunol* 148(3): 239-250. (Supported by Tohoku University, Japan Society for the Promotion of Science, and the New Energy and Industrial Technology Development Organization. Authors affiliated with Tohoku University Graduate School of Medicine, Japan.)

563. Sax SN, Bennett DH, Chillrud SN, Kinney PL, Spengler JD. 2004. Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles. *J Expo Anal Environ Epidemiol* 14(Suppl 1): S95-109. (Supported by the Mickey Leland National Urban Air Toxics Research Center, NIEHS, the Center for Environmental Health in Northern Manhattan, the Columbia Center for Children's Environmental Health and the Akira Yamaguchi endowment fund. Authors affiliated with University of Harvard School of Public Health, MA; Columbia University, NY.)

567. Schmid E, Göggelmann W, Bauchinger M. 1986. Formaldehyde-induced cytotoxic, genotoxic and mutagenic response in human lymphocytes and
Salmonella typhimurium. Mutagenesis 1(6): 427-431. (Support not reported. Authors affiliated with Institut fur Strahlenbiologie, Germany; Institut fur Toxikologie, Germany.)

570. Schupp T, Bolt HM, Hengstler JG. 2005. Maximum exposure levels for xylene, formaldehyde and acetaldehyde in cars. Toxicology 206(3): 461-470. (Support not reported. Authors affiliated with Elastogran, Germany; Institut fur Arbeitsphysiologie an der Universitat Dortmund, Germany; Institute of Legal Medicine and Rudolf-Broehm Institute of Pharmacology and Toxicology, Germany; Universitat Mainz, Germany.)

574. Seiber JN. 1996. Toxic air contaminants in urban atmospheres: experience in California. Atmos Environ 30: 751-756. (Support not reported. Authors affiliated with University of Nevada, NV.)

586. Siemiatycki J, Dewar R, Nadon L, Gérin M. 1994. Occupational risk factors for bladder cancer: results from a case-control study in Montreal, Quebec, Canada. *Am J Epidemiol* 140(12): 1061-1080. (Supported by the Institut de recherche en sante et en securite du Travail du Quebec, the Fonds de recherche en sante du Quebec, the National Health and Research Development Program, and the National Cancer Institute of Canada. Authors affiliated with Institut Armand-Frappier, Canada; McGill University, Canada; Universite de Montreal, Canada.)

591. Sogut S, Songur A, Ozen OA, Ozyurt H, Sarsilmaz M. 2004. Does the subacute (4-week) exposure to formaldehyde inhalation lead to oxidant/antioxidant imbalance in rat liver? *Eur J Gen Med* 1(3): 26-32. (Support not reported. Authors affiliated with Mustafa Kemmel University; Afyon Kocatepe University; Gaziosmanpasa University; Firat University.)

592. Songur A, Akpolat N, Kus I, Ozen OA, Zararsiz I, Sarsilmaz M. 2003. The effects of inhaled formaldehyde during the early postnatal period in the hippocampus of rats: a morphological and immunohistochemical study. *Neurosci Res Commun* 33: 168-178. (Supported by Firat University. Authors affiliated with Afyon Kocatepe University School of Medicine, Turkey; Firat University School of Medicine, Turkey; Karaelmas University, Turkey.)

595. Speit G. 2006. The implausibility of systemic genotoxic effects measured by the comet assay in rats exposed to formaldehyde. *J Proteome Res* 5(10): 2523-4. (Support not reported. Authors affiliated with Universitat Ulm, Germany.)

610. Sterling TD, Weinkam JJ. 1989a. Reanalysis of lung cancer mortality in a National Cancer Institute Study on "Mortality among industrial workers exposed to formaldehyde". *Exp Pathol* 37(1-4): 128-132. (Supported by L'Office de Protection du Consommateur of the Province of Quebec, Canada. Authors affiliated with Simon Fraser University, Canada.)

(Support not reported. Authors affiliated with Mount Sinai School of Medicine, NY.)

621. Stroup NE, Blair A, Erikson GE. 1986. Brain cancer and other causes of death in anatomists. *J Natl Cancer Inst* 77(6): 1217-1224. (Supported by the Public Health Service, NIEHS and Brown University. Authors affiliated with Yale University, CT; CDC; NIH; Brown University, RI.)

Assoc J 47(12): 725-730. (Supported by NIOSH and the American Industrial Hygiene Foundation. Authors affiliated with Hewlett Packard, CA; Colorado State University, CO; NIOSH.)

623. Subramaniam RP, Richardson RB, Morgan KT, Kimbell JS, Guilmette RA. 1998. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. *Inhal Toxicol* 10: 91-120. (Supported by the U.S. EPA. Authors affiliated with Chemical Industry Institute of Toxicology, NC; Lovelace Respiratory Institute, NM.)

626. Sul D, Kim H, Oh E, Phark S, Cho E, Choi S, Kang HS, Kim EM, Hwang KW, Jung WW. 2007. Gene expression profiling in lung tissues from rats exposed to formaldehyde. *Arch Toxicol*. (Supported by the Medical Research Center for Environmental Toxico-Genomics and Proteomics, Korea Science and Engineering Foundations, the Ministry of Science and Technology and the Ministry of Environment. Authors affiliated with Korea University, South Korea; MyGene Bioscience Institute, South Korea; Chonnam University, South Korea; Chung-Ang University, South Korea.)

affiliated with Chemical Industry Institute of Toxicology, NC; Battelle Columbus Laboratories, OH.)

638. Tang X, Bai Y, Duong A, Smith MT, Li L, Zhang L. 2009. Formaldehyde in China: Production, consumption, exposure levels, and health effects. Environ Int. (Supported by the Department of Science and Technology of Guangdong Province, China, and the Northern California Center for Occupational and

645. Thomson EJ, Shackleton S, Harrington JM. 1984. Chromosome aberrations and sister-chromatid exchange frequencies in pathology staff occupationally exposed to formaldehyde. *Mutat Res* 141(2): 89-93. (Support not reported. Authors affiliated with Western General Hospital, UK; University of Birmingham, UK.)

646. Thrasher JD, Kilburn KH. 2001. Embryo toxicity and teratogenicity of formaldehyde. *Arch Environ Health* 56(4): 300-11. (Support provided by the law firm, Gordon, Edlestein, Krepak, Grant, Felton, and Goldstein (Los Angeles, CA), for the cost of translating papers published in Russian and Japanese. Authors affiliated with Sam-1 Trust, NM; University of Southern California, CA.)

651. Titenko-Holland N, Levine AJ, Smith MT, Quintana PJ, Boeniger M, Hayes R, Suruda A, Schulte P. 1996. Quantification of epithelial cell micronuclei by fluorescence in situ hybridization (FISH) in mortuary science students exposed to formaldehyde. *Mutat Res* 371(3-4): 237-248. (Supported by NIOSH, NIH and NCI. Authors affiliated with University of California at Berkeley, CA; NIOSH, OH; NCI, MD; San Diego State University, CA; University of Utah, UT.)

657. TRI. 2009. *Trends Report: TRI On-site and Off-site Reported Disposed of or Otherwise Released (in pounds)*, Trend Report for facilities in All Industries,

670. Vasudeva N, Anand C. 1996. Cytogenetic evaluation of medical students exposed to formaldehyde vapor in the gross anatomy dissection laboratory. *J Am Coll Health* 44(4): 177-179. (Support not reported. Authors affiliated with All India Institute of Medical Sciences, India; Lady Hardinge Medical College, India.)

673. Vaughan TL, Stewart PA, Teschke K, Lynch CF, Swanson GM, Lyon JL, Berwick M. 2000. Occupational exposure to formaldehyde and wood dust and nasopharyngeal carcinoma. *Occup Environ Med* 57(6): 376-384. (Supported by NCI. Authors affiliated with Fred Hutchinson Cancer Research Center, WA; University of Washington, WA; NCI; University of British Columbia, Canada; University of Iowa, IO; Michigan State University, MI; University of Utah, UT; Memorial Sloan-Kettering Cancer Research Center, NY.)

674. Veraldi A, Costantini AS, Bolejack V, Miligi L, Vineis P, van Loveren H. 2006. Immunotoxic effects of chemicals: A matrix for occupational and environmental epidemiological studies. *Am J Ind Med* 49(12): 1046-55. (Supported by the "Fondazione S. Paolo" in Turin. Authors affiliated with Unit of Environmental and Occupational Epidemiology, Italy; University of Turin, Italy; Imperial

Vock EH, Lutz WK, Ilinskaya O, Vamvakas S. 1999. Discrimination between genotoxicity and cytotoxicity for the induction of DNA double-strand breaks in cells treated with aldehydes and diepoxides. *Mutat Res* 441(1): 85-93. (Support not reported. Authors affiliated with University of Wurzburg, Germany; Kazan State University, Russia.)

Wang B, Liu DD. 2006. [Detection of formaldehyde induced developmental toxicity assessed with single cell gel electrophoresis]. *Fen Zi Xi Bao Sheng Wu Xue Bao* 39(5): 462-466. (Support not identified due to foreign language. Authors affiliated with Central China Normal University, China.)

Wang W, Xu J, Xu L, Yue B, Zou F. 2007. The instability of (GpT)n and (ApC)n microsatellites induced by formaldehyde in Escherichia coli. *Mutagenesis* 22(5): 353-357. (Support not reported. Authors affiliated with Sichuan University, China; Southwest Jiaotong University, China.)

dissection course: A possible source of IgE-mediated sensitization? Allergy 51: 837-841 (as cited in IARC 2006).

687. Warshaw EM, Ahmed RL, Belsito DV, DeLeo VA, Fowler JF, Jr., Maibach HI, Marks JG, Jr., Toby Mathias CG, Pratt MD, Rietschel RL, Sasseville D, Storrs FJ, Taylor JS, Zug KA. 2007. Contact dermatitis of the hands: cross-sectional analyses of North American Contact Dermatitis Group Data, 1994-2004. J Am Acad Dermatol 57(2): 301-14. (Supported by NIH. Authors affiliated with Veterans Affairs Medical Center, MN; University of Minnesota, MN; American Dermatology Associates; Columbia University; University of Louisville; University of California San Francisco; Pennsylvania State University; University of Cincinnati; University of Ottawa; University of Arizona; McGill University; Oregon Health Science University; Cleveland Clinic; Dartmouth-Hitchcock Medical Center.)

688. West RR, Stafford DA, Farrow A, Jacobs A. 1995. Occupational and environmental exposures and myelodysplasia: a case-control study. Leuk Res 19(2): 127-139. (Supported by the Medical Research Council and the Health and Safety Executive. Authors affiliated with University of Wales College of Medicine, UK.)

75-81. (Supported by the University of California. Authors affiliated with University of California, CA.)

697. Williams GM, Mori H, McQueen CA. 1989. Structure-activity relationships in the rat hepatocyte DNA-repair test for 300 chemicals. *Mutat Res* 221(3): 263-286. (Support not reported. Authors affiliated with American Health Foundation, NY; Gifu University School of Medicine, Japan.)

704. Wong EY, Ray R, Gao DL, Wernli KJ, Li W, Fitzgibbons ED, Feng Z, Thomas DB, Checkoway H. 2006. Reproductive history, occupational exposures, and thyroid cancer risk among women textile workers in Shanghai, China. *Int Arch Occup Environ Health* 79(3): 251-258. (Supported by the National Cancer Institute [NCI] and the National Institute of Environmental Health Sciences [NIEHS]. Authors affiliated with University of Washington, WA; Fred Hutchinson Cancer Research Center, WA; Zhong Shan Hospital Cancer Center, China.)

718. Ying CJ, Yan WS, Zhao MY, Ye XL, Xie H, Yin SY, Zhu XS. 1997. Micronuclei in nasal mucosa, oral mucosa and lymphocytes in students exposed to formaldehyde vapor in anatomy class. *Biomed Environ Sci* 10(4): 451-5. (Support not reported. Authors affiliated with Tongji Medical University, China; Wengzhou Medical College, China.)
719. Ying CJ, Ye XL, Xie H, Yan WS, Zhao MY, Xia T, Yin SY. 1999. Lymphocyte subsets and sister-chromatid exchanges in the students exposed to formaldehyde vapor. *Biomed Environ Sci* 12(2): 88-94. (Support not reported. Authors affiliated with Tongji Medical University, China; Wenzhou Medical College, China.)

721. Yu LQ, Jiang SF, Leng SG, He FS, Zheng YX. 2005. [Early genetic effects on workers occupationally exposed to formaldehyde]. *Zhonghua Yu Fang Yi Xue Za Zhi* 39(6): 392-395. (Support not identified due to foreign language. Authors affiliated with North China Coal Medical College, China; Chinese Center for Disease Control and Prevention, China.)

mechanisms, and implications for risk assessment. *Environ Mol Mutagen* (in press): 25 pp. (Supported by NCI and the U.S. EPA. Authors affiliated with University of California Berkeley, CA; NCI; University of North Carolina, NC; University of Minnesota, MN; U.S. EPA;)

This Page Intentionally Left Blank
Glossary of Terms

Acinar: Pertaining to one of the granular masses which constitute a racemose or compound gland such as the pancreas.

Acute lymphocytic leukemia (also called: Acute lymphoblastic leukemia, Acute lymphoid leukemia, Acute lymphatic leukemia): A group of neoplasms composed of immature precursor B or T lymphocytes (lymphoblasts).

Acute myeloid leukemias: Leukemias characterized by accumulation of immature myeloid forms in the bone marrow and suppression of normal hematopoiesis.

Acute: The clinical term is used for a disease having a short and relatively severe course. In rodent testing, usually pertains to administration of an agent in a single dose.

Adduct: A complex that forms when a chemical binds to a biological molecule such as DNA or a protein.

Adenocarcinoma: A cancer that develops in the lining or inner surface of an organ.

Adenoma: An ordinarily benign neoplasm of epithelial tissue in which the neoplastic cells form glands or gland-like structures in the stroma.

Adipose tissue: Fatty tissue.

Aleukemia: A condition where the leukemic cells are primarily in the bone marrow and not in the peripheral circulation; white blood cell count is normal or depressed.

Allele: Any one of a series of two or more different genes that occupy the same position (locus) on a chromosome.

Alveolar/bronchiolar: Pertaining to the alveoli or bronchi of the lungs.

Ambient air: Outdoor air to which the general public is exposed.

Ameloblastoma: A malignant jaw tumor which stems from the ameloblasts, cells which form tooth enamel.

Anemia: Lower than normal limits of circulating red blood cells.

Aneuploidy: One or a few chromosomes above or below the normal chromosome number.

Anthropogenic: Caused by humans.

Apoptosis: A mechanism of cellular suicide which occurs after sufficient cellular damage, also called programmed cell death.
Aquifer: Geologic formations containing sufficient saturated porous and permeable material to transmit water.

Aromatic hydrocarbon: An organic chemical compound formed primarily from carbon and hydrogen atoms with a structure based on benzene rings and resembling benzene in chemical behavior; substituents on the rings(s) may contain atoms other than carbon or hydrogen.

Ascites: Effusion and accumulation of serous fluid in the abdominal cavity.

Atypia: an abnormality in cells.

Autoignition: The temperature at or above which a material will spontaneously ignite (catch fire) without an external spark or flame.

Bacteriostatic: Inhibiting the growth or multiplication of bacteria.

Benign tumor: An abnormal mass of tissue that does not spread and that is not life-threatening.

Betel nut: The nut of the Areca palm tree and an ingredient of betel nut quid, an addictive mix chewed in some Pacific and Asian cultures. Its use is associated with aggressive oral cancers affecting especially the inner lining of the cheeks and lips; other sites include the tongue, lower lip, tonsil and floor of the mouth.

Bilirubin: A pigment produced when the liver processes waste products.

Bioaccumulation: The process by which a material in an organism's environment progressively concentrates within the organism.

Bioassay: The determination of the potency or concentration of a compound by its effect upon animals: Isolated tissues: Or microorganisms: As compared with a chemical or physical assay.

Bioconcentrate: Accumulation of a chemical in tissues of a fish or other organism to levels greater than in the surrounding medium.

Biodegradation: Biotransformation; the conversion within an organism of molecules from one form to another: A change often associated with change in pharmacologic activity.

Bronchiogenic carcinoma: a carcinoma originating in the bronchi of the lung.

Bronchioloalveolar: Derived from epithelium of terminal bronchioles.

Buccal cavity: The vestibule in the mouth between the teeth and the cheeks.

Calendaring: A process of smoothing or glazing paper or cloth by pressing it between plates or passing it through rollers.
Cannula: A tube for insertion into a duct or cavity.

Carcinoma: A malignant neoplasm of the epithelium.

Carina: A projection of the lowest tracheal cartilage.

Chelating agent: A substance used to reduce the concentration of free metal ion in solution by complexing it; often used to remove toxic metals from the body.

Chromosomal aberrations: Any abnormality of a chromosome's number or structure.

Chronic lymphocytic leukemia: A lymphoid leukemia arising from B-cells.

Chronic myeloid leukemia: A cancer of the blood-forming tissues associated with an increased production of terminally differentiated myeloid cells.

Chronic: Continuing for a long period time. In rodent testing, pertains to dosing schedules of greater than 3 months.

Cicatrical stricture: A scar formed in the healing of a wound that causes a decrease in the diameter of a canal, duct, or other passage.

Clastogen: Any substance which causes chromosomal breaks.

Colitis: Inflammation of the colon.

Confounding: A relationship between the effects of two or more causal factors observed in a set of data such that it is not logically possible to separate the contribution of any single causal factor to the observed effects.

Copolymers: A polymer of two or more different monomers.

Creatinine: A waste product of protein metabolism that is found in the urine.

Critical temperature: the temperature above which a gas cannot be liquefied, regardless of the pressure applied.

Critical temperature: The temperature of a gas above which it is no longer possible by use of any pressure: However great: To convert it into a liquid.

Cytogenetic: The cellular constituents concerned in heredity.

Cytotoxic: An agent that is toxic to cells.

Dam: Female parent.

Dehydrogenation: The removal of one or more hydrogen ions or protons from a molecule.
Differentiated squamous-cell types: Neoplastic squamous cells similar in appearance to normal squamous cells, but are less orderly.

Diffusion coefficient: The rate at which a substance moves from an area of high concentration to an area of low concentration.

Dissociation constant (pKa): The equilibrium constant for the breaking apart of a weak acid into its hydrogen and conjugate base in a water solution.

Dorsal: relating to the back or posterior of a structure.

Dysplasia: Alteration in the size, shape, and organization of adult cells.

Dysplasia: an abnormality of development; in pathology, alteration in size, shape, and organization of adult cells.

Ectoparasitic infection: An infection caused by a parasite that lives on the outside of the body.

Effluents: Waste material such as water from sewage treatment or manufacturing plants discharged into the environment.

Electrocoagulation: use of a high-frequency electric current to bring about the coagulation and destruction of tissue.

Endogenous: Originating within an organism.

Endogenously: Derived or produced internally.

Eosinophil: A granular leukocyte with a nucleus that usually has two lobes connected by a slender thread of chromatin and is readily stained by eosin.

Epidemiology: A science concerned with the occurrence and distribution of disease in populations.

Epididymis: The epididymis is a coiled segment of the spermatic ducts that serves to store and transport spermatozoa between the testis and the vas deferens.

Epigenetics: Changes in phenotype (appearance) or gene expression caused by mechanisms other than changes in the underlying DNA sequence.

Epithelial: Relating to or consisting of epithelium.

Epithelium: the cellular covering of internal and external surfaces of the body, including the lining of vessels and other small cavities.

Erythema: Redness of the skin produced by congestion of the capillaries.

Erythrocytes: Cells that carry oxygen to all parts of the body (red blood cells).
Esthesioneuroepithelioma: tumor consisting of undifferentiated cells of sensory nerve epithelium.

Esthesioneuroma: (Olfactory neuroma) A nasal cavity tumor of nervous tissue from olfactory epithelium.

Eukaryote: An organism whose cells contain a limiting membrane around the nuclear material and which undergoes mitosis.

Ever hourly: Workers who had ever worked in an hourly job.

Exogenous: Developed or originating outside the body.

Extrahepatic: Outside of, or unrelated to, the liver.

Fibroblasts: Connective tissue cells.

Fibrosarcoma: a type of soft tissue sarcoma that begins in fibrous tissue, which holds bones, muscles, and other organs in place.

Flash point: The lowest temperature at which the vapor of a combustible liquid can be made to ignite momentarily in air.

Flux: The rate of mass flow across a unit area.

Follicular lymphoma: The most common form of Non-Hodgkin’s lymphoma in the US.

Forestomach: A non-glandular expansion of the alimentary canal between the esophagus and the glandular stomach. Rodents have a forestomach and a glandular stomach, whereas, humans have a glandular stomach.

Formalin: a solution of formaldehyde in water typically containing 37% formaldehyde by mass and 10% to 15% methanol as a stabilizer.

Fundus: in anatomy, it is used for the bottom or base of an organ, or the part of a hollow organ farthest from its mouth.

Gastrectomy: Surgical removal of the stomach.

Gavage: In animal experiments, the introduction of material through a tube passed through the mouth into the stomach.

Genotoxicity: The amount of damage caused to a DNA molecule.

Glandular stomach: the muscular sac between the esophagus and the small intestine containing glandular tissue. The glands of the stomach secrete mucous, hydrochloric acid and digestive enzymes.
Grana cheese: a class of hard, mature cheeses from Italy which have a granular texture and are often used for grating (e.g., Parmigiano-Reggiano or parmesan cheese).

Half-life: The time required for a substance to be reduced to one-half its present value through degradation or through elimination from an organism.

Healthy-worker effect: Phenomenon of workers usually exhibiting overall death rates lower than those of the general population due to the fact that the severely ill and disabled are ordinarily excluded from employment.

Hematocrit: The volume percentage of the erythrocytes in the whole blood.

Hematopoietic: Pertaining to the formation of blood or blood cells.

Hemolymphoreticular: pertaining to the network of cells and tissues of the blood and lymph nodes found throughout the body.

Henry’s law: The relationship that defines the partition of a soluble or partially soluble species between the gas and solution phases.

Hepatoblastoma: A malignant neoplasm occurring in young children, primarily in the liver, composed of tissue resembling embryonal or fetal hepatic epithelium, or mixed epithelial and mesenchymal tissues.

Hepatocellular: Pertaining to cells of the liver.

Hepatotoxic: A substance that is toxic to the liver.

Heterozygotes: An organism that has different alleles at a particular gene locus on homologous chromosomes.

Histones: The chief protein components of chromatin. They act as spools around which DNA winds, and they play a role in gene regulation.

Hodgkin’s disease: (Hodgkin’s lymphoma) A form of malignant lymphoma characterized by painless progressive enlargement of the lymph nodes, spleen, and general lymphoid tissue.

Homozygotes: An organism that has the same alleles at a particular gene locus on homologous chromosomes.

Hydrolysis: a chemical reaction in which the interaction of a compound with water results in the decomposition of that compound.

Hydrolysis: The chemical breakdown of a compound due to reaction with water.

Hydroxyl radicals: A particularly reactive, damaging type of free radical that is formed when superoxide radicals react with hydrogen peroxide.
Hyperkeratosis: excessive thickening of the outer layer of the skin, which contains keratin.

Hyperplasia: an abnormal increase in the number of normal cells in an organ or tissue.

Hyperplasia: The abnormal multiplication or increase in the number of normal cells in normal arrangement in a tissue.

Hypertrophy: increase in volume of a tissue or organ produced entirely by enlargement of existing cells.

Hypopharynx: The lowermost section of the pharynx.

Hypopharynx: The lowermost section of the pharynx.

Ileitis: Inflammation of the ileum (distal portion of the small intestine extending from the jejunum to the cecum).

In situ: Latin phrase meaning confined to the site of origin; a cancer that has not metastasized or invaded neighboring tissues

In vitro: Biological process taking place in a test tube: Culture dish: Or elsewhere outside a living organism.

In vivo: Biological processes taking place in a living organism.

Intraperitoneal [i.p.] injection: Injection within the peritoneal cavity, i.e., the area that contains the abdominal organs.

Intravesical: occurring within the urinary bladder.

Isoenzymes: Any of the chemically distinct forms of an enzyme that perform the same biochemical function.

Jejunitis: Inflammation of the jejunum (a portion of the small intestine extending from the duodenum to the ileum).

Keratinizing squamous-cell types: Neoplastic squamous cells with keratin in the cytoplasm.

K_{oc} (soil organic carbon-water partitioning coefficient): A measure of the tendency for organics to be adsorbed by soil and sediment which is useful in predicting the mobility of organic contaminants in soil.

Lacrimation: the production, secretion, and shedding of tears.

Large B-cell lymphomas: Types of lymphomas of the B cell lineage; a common form of non-Hodgkin’s lymphoma.
Large-cell diffuse lymphoma: An aggressive B cell non-Hodgkin’s lymphoma.

Larynx: Also called the voice box, it is located below the pharynx in the neck.

Larynx: Also called the voicebox, it is located below the pharynx in the neck.

Latency: The time between the instant of stimulation (exposure to a substance) and the beginning of a response (disease).

LD50: The dose that kills 50 percent of a group of test animals.

Leachate: The liquid produced in a landfill from the decomposition of waste within the landfill.

Leiomyosarcoma: A malignant (cancer) tumor of smooth muscle cells that can arise almost anywhere in the body, but is most common in the uterus, abdomen, or pelvis.

Leukemia: A cancer of the blood-forming tissues that is characterized by a marked increase in the number of abnormal white blood cells (leukocytes).

Leukemia: A cancer of the blood-forming tissues that is characterized by a marked increase in the number of abnormal white blood cells (leukocytes) in the peripheral blood.

Leukocyte: White blood cell.

Lipid peroxidation: The oxidative degradation of lipids by free radicals resulting in cell damage.

Lipophilicity: The affinity of a molecule or a moiety for a lipophilic (as fats) environment.

Lymphatic: A small sac or node in which lymph is stored; or pertaining to the lymph, lymph nodes, or vascular channels that transport lymph to the lymph nodes.

Lymphocyte: A mononuclear leukocyte that is primarily a product of lymphoid tissue and participates in humoral and cell-mediated immunity.

Lymphohaematopoietic: Of, relating to, or involved in the production of lymphocytes and cells of blood, bone marrow, spleen, lymph nodes, and thymus.

Lymphohematopoietic: Of, relating to, or involved in the production of lymphocytes and cells of blood, bone marrow, spleen, lymph nodes, and thymus.

Lymphoma: A neoplasm of the lymphatic tissue.

Lymphoma: A neoplasm of the lymphatic tissue.
Lymphosarcoma: Any of various malignant neoplastic disorders of lymphoid tissue; excluding Hodgkin's disease.

Macrophage: A large cell that is present in blood, lymph, and connective tissues, removing waste products, harmful microorganisms, and foreign material from the bloodstream.

Lymphosarcoma: Any of various malignant neoplastic disorders of lymphoid tissue; excluding Hodgkin's disease.

Macroarray: A term for microarrays with larger and fewer spots in the array.

Malignant: Tending to become progressively worse; life-threatening.

Meta-analysis: The process or technique of synthesizing research results by using various statistical methods to retrieve, select, and combine results from previous separate but related studies.

Metabolism: The whole range of biochemical processes that occur within living organisms, consisting both of anabolism and catabolism (the buildup and breakdown of substances, respectively).

Metabolite: A substance produced by metabolism.

Metaplasia: A change in morphology of one differentiated cell type to a differentiated cell type that does not normally occur in that tissue.

Micronuclei: Nuclei separate from, and additional to, the main nucleus of a cell, produced during the telophase of mitosis or meiosis by lagging chromosomes or chromosome fragments derived from spontaneous or experimentally induced chromosomal structural changes.

Microsatellite instability: A condition manifested by damaged DNA due to defects in the normal DNA repair process. Sections of DNA called microsatellites, which consist of a sequence of repeating units of 1 to 6 base pairs in length, become unstable and can shorten or lengthen.

Mitogen: A substance that induces mitosis.

Monocyte: A mononuclear phagocytic leukocyte.

Monomer: A chemical subunit that is joined to other similar subunits so as to produce a polymer.
Multiple myeloma: A malignant neoplasm derived from plasma cells and found at several locations in the body.

Multiple myeloma: A malignant neoplasm derived from plasma cells and found at several locations in the body.

Myelodysplasia: A description for hemopoietic stem cells that do not mature normally.

Myelodysplastic syndromes: A group of clonal stem cell disorders associated with ineffective hematopoiesis and associated cytopenias.

Myeloid leukemias: A heterogeneous group of neoplasms that originate from hematopoietic progenitor cells of the myeloid series (red blood cells, white blood cells, and platelets).

Nasal cavity: Air-filled space above and behind the nose.

Nasal turbinates: (nasal conchae, nasoturbinates) Scrolled spongy bones in the posterior part of the nasal cavity.

Nasopharyngeal: Associated with the nasal (uppermost) part of the pharynx

Nasopharynx: The upper part of the pharynx, posterior to the nasal cavity and above the soft palate.

Nasopharynx: The upper part of the pharynx, which leads from the nasal passages to the trachea.

Necropsy: The examination of the dead body of an animal by dissection so as to detail the effects of the disease.

Necrosis: The pathologic death of one or more cells, or of a portion of tissue or organ, resulting from irreversible damage.

Neoplasm: An abnormal mass of cells.

Neutrophil: A granular leukocyte having a nucleus with three to five lobes connected by slender threads of chromatin.

Non-Hodgkin’s lymphoma: A heterogeneous group of malignant lymphomas; the only common feature being an absence of the giant Reed-Sternberg cells characteristic of Hodgkin's disease.

Non-Hodgkin’s lymphoma: A heterogeneous group of malignant lymphomas; the only common feature being an absence of the giant Reed-Sternberg cells characteristic of Hodgkin's disease.

Nucleoside: An organic compound consisting of a purine or pyrimidine base linked to a sugar but lacking the phosphate residues that would make it a nucleotide.
Nucleotide: The molecular subunit of nucleic acids; consists of a purine or pyrimidine base, a sugar, and phosphoric acid.

Octanol-water partition coefficient (K_{ow}): A measure of the equilibrium concentration of a compound between octanol and water.

Oral cavity: The cavity of the mouth, bounded above by the hard and soft palates and below by the tongue and the mucous membrane connecting it with the inner part of the mandible.

Oronasal: Pertaining to the mouth and the nose.

Oropharyngeal: Associated with the part of the pharynx between the soft palate and the epiglottis.

Oropharynx: The part of the pharynx between the soft palate and the epiglottis; located below the nasopharynx.

Oropharynx: The part of the pharynx consisting of the base of the tongue, soft palate, and tonsils; it is located below the nasopharynx.

Osteochondroma: a benign bone tumor consisting of projecting adult bone capped by cartilage.

Oxidation: the addition of oxygen to a compound with a loss of electrons; always occurs accompanied by reduction.

Pancytopenia: Lower than normal circulating red blood cells, white blood cells, and platelets.

Pantropic: Having an affinity for many tissues; capable of attacking derivatives of any of the three embryonic layers.

Papilloma: a benign tumor derived from epithelium that can arise from skin, mucous membranes, or glandular ducts.

Paraformaldehyde: a polymer of formaldehyde.

Paranasal sinuses: Air-filled cavities surrounding the nasal cavity. There are 4 pairs of paranasal sinuses: maxillary, frontal, ethmoid, and sphenoid.

Parenchyma: The distinguishing or specific cells of a gland or organ, contained in and supported by the connective tissue, framework, or stroma.

Percutaneous: Effected or performed through the skin.

Perirenal: Of, relating to, occurring in, or being the tissues surrounding the kidney.

Phagocyte: Any cell that ingest microorganisms or other cells and foreign particles.
Pharyngitis: Inflammation of the pharynx.

Pharynx: A tube leading from the nose to the esophagus and trachea, which then leads to the lungs.

Pharynx: The passageway connecting the oral and nasal cavities to the larynx and esophagus.

Photolysis: The decomposition or separation of molecules by the action of light.

Polymer: A chemical formed by the joining together of similar chemical subunits.

Polymorphism: A variation in the DNA that is too common to be due merely to new mutation.

Polypoid: resembling a polyp; i.e., a growth that protrudes from a mucous membrane.

Prills: Granules or pellets that flow freely and do not clump together.

Proctitis: Inflammation of the mucous membrane that lines the rectum.

Prokaryote: An organism that does not have a true nucleus (e.g., bacteria).

Pulmonary: of or relating to the lungs.

Pyknosis: Contraction of nuclear contents to a deep staining irregular mass; a sign of cell death.

Pylorus: a small circular opening between the stomach and the duodenum.

Racemic: Denoting a mixture that is optically inactive, being composed of an equal number of dextro- and levorotary substances which are separable.

Rales: wet, crackly lung noises heard on inspiration which indicate fluid in the air sacs of the lungs; often indicative of pneumonia.

Resin: any of a class of solid or semisolid viscous substances obtained either as exudations from certain plants or prepared by polymerization of simple molecules.

Rhabdomyosarcomas: a highly malignant tumor of striated muscle.

Rhinitis: a nonspecific term that covers infections, allergies, and other disorders in which the mucous membranes become infected or irritated, producing a discharge, congestion, and swelling of the tissues.

Rhinitis: Inflammation of the mucous membrane of the nose.

Rhinosinusitis: Inflammation of the nose and sinuses.
Sarcoma: A malignant tumor of connective tissue.

Seroprevalence: The overall occurrence of a disease within a defined population at one time, as measured by blood tests.

Sinonasal: Pertaining to the nasal and sinus cavities.

Sister chromatid exchange (SCE): The exchange during mitosis of homologous genetic material between sister chromatids; increased as a result of inordinate chromosomal fragility due to genetic or environmental factors.

Small-cell diffuse lymphoma: Lymphoma affecting immature B cells.

Specific gravity: the ratio of the density of a substance to the density of a standard substance. For liquids and solids the standard substance is usually water, for gases the standard substance is air.

Spelt-wheat: hardy wheat of inferior quality, grown mostly in Europe for livestock feed.

Squamous-cell histotype: Cellular structure that is stratified.

Subacute: Between acute and chronic; denoting the course of a disease of moderate duration or severity. In rodent testing, usually pertains to a dosing schedule of less than one month.

Subchronic: In rodent testing, generally refers to a dosing schedule lasting from one to three months.

Subcutaneous injection: Injection beneath the skin.

Syngenic: Individuals or tissues that have identical genotypes (i.e., identical twins or animals of the same inbred strain, or their tissues).

Tachycardia: Abnormally rapid heart rate.

Thermosetting resin: a resin that has the property of becoming permanently hard and rigid when heated or cured.

Thoracolumbar: pertaining to the thoracic and lumbar vertebrae.

Threshold limit value (TLV): The maximum permissible concentration of a material, generally expressed in parts per million in air for some defined period of time.

Time-weighted average (TWA): The average exposure concentration of a chemical measured over a period of time (not an instantaneous concentration).

Trioxane: a trimer of formaldehyde used as fuel and in plastics manufacture.

Ubiquitous: Present everywhere at once.
Upper respiratory tract: Consists of the nasal and oral cavities, pharynx, larynx, and trachea.

Urticaria: A vascular reaction of the skin marked by the transient appearance of smooth, slightly elevated patches (wheals) and often attended by severe itching (also called hives).

Uveal carcinoma (intraocular melanoma): A malignant tumor arising from melanocytes in the uvea (iris, ciliary body, choroid) of the eye.

Vacuolation: Creation of small cavities containing air or fluid in the tissues of an organism.

Vapor density: The ratio of the weight of a given volume of one gas to the weight of an equal volume of another gas at the same temperature and pressure.

Vapor pressure: The pressure exerted by a vapor in equilibrium with its solid or liquid phase.

Vestibulum: an anatomical cavity, chamber, or channel; vestibule.

Volatile: Quality of a solid or liquid allowing it to pass into the vapor state at a given temperature.

Xenobiotic: A pharmacologically, endocrinologically, or toxicologically active substance not endogenously produced and therefore foreign to an organism.

Z-DNA: a form of DNA in which the double helix twists in a left-hand direction, thus producing a zigzag appearance.