Report on Carcinogens

Appendix A
Manufacturing Processes, Occupations, and Exposure Circumstances Classified by IARC as Category 1, Carcinogenic to Humans

Appendix B
Substances Delisted from the Report on Carcinogens

Appendix C
Substances Reviewed but Not Recommended for Listing in the Report on Carcinogens

Appendix D
List of Participants

Appendix E
Chemicals Nominated to the NTP for In-Depth Toxicological Evaluation

Appendix F
Substance Names and Common Synonyms

Appendix G
List of Substances by CAS Number
Appendix A:
Manufacturing Processes, Occupations, and Exposure Circumstances Classified By IARC
As Category 1, Carcinogenic To Humans

Certain manufacturing processes, occupations, and exposure circumstances have been considered by the International Agency for Research on Cancer (IARC) and have been classified by IARC as sources that are known to be carcinogenic to humans because of the associated increased incidences of cancer in workers in these settings. The National Toxicology Program has not reviewed the data supporting the listings of these occupational situations or exposure circumstances as posing a carcinogenic threat to humans, and recognizes that certain aspects of these exposures may differ in different parts of the world or may have changed over time. In addition, the manufacturing processes and occupations reviewed by IARC in its determinations may differ greatly from what has been or is currently used in the United States. In the interest of public health and for completeness, these occupational exposures and exposure circumstances are referenced here with the corresponding IARC citation given. The interested reader is referred to these documents for details.

- Aluminum production, occupational exposures during (IARC vol. 100F, 2012)
- Auramine production (IARC vol. 100F, 2012)
- Coal gasification (IARC vol. 100F, 2012)
- Coal, indoor emissions from household combustion of (IARC vol. 100E, 2012)
- Coal-tar distillation, occupational exposures during (IARC vol. 100F, 2012)
- Coke production (IARC vol. 100F, 2012)
- Hematite mining, underground, with exposure to radon (IARC vol. 100D, 2012)
- Iron and steel founding, occupational exposure during (IARC vol. 100F, 2012)
- Isopropyl alcohol manufacture by the strong-acid process (IARC vol. 100F, 2012)
- Magenta production (IARC vol. 100F, 2012)
- Painter, occupational exposure as a (IARC vol. 100F, 2012)
- Rubber-manufacturing industry, occupational exposures in the (IARC vol. 100F, 2012)

The following occupational exposure circumstances were previously listed by IARC as Group 1, but they are no longer considered by IARC as separate “agents.” IARC working groups for volume 100 (which reviewed all Group 1 carcinogens) concluded that the cancers observed in these industries were due to specific exposures, which are listed as Group 1 carcinogens:

- Boot and Shoe Manufacture and Repair (IARC vol. 25, 1981, IARC suppl. 4, 1982)
Appendix B: Substances Delisted from the Report on Carcinogens

The agents, substances, mixtures, or exposure circumstances contained in this appendix were previously listed in the Report on Carcinogens as either known or reasonably anticipated to be human carcinogens. For substances removed from the Report on Carcinogens prior to the 1996 establishment of a formal review procedure for delisting substances from the Report on Carcinogens, the table below shows the reason for delisting. The reason for delisting is in some cases the fact that residents of the United States are not exposed to these substances because since they are no longer produced or used in the United States and in other cases that the rulings or findings as to the carcinogenic potential of the substances have been revised (e.g., as a result of new studies). The table indicates the last edition of the Report on Carcinogens in which these substances appeared, to which reference can be made for all information available.

For each substance removed from the Report on Carcinogens as a result of a formal review for delisting (from the Eighth Edition forward), a profile is provided following the table, which summarizes the review for delisting, including the relevant information and the issues identified by the scientific review groups that led to the substance’s delisting. Background documents outlining in more detail the issues considered during the reviews for delisting these substances can be obtained by contacting the National Toxicology Program at the following address: National Toxicology Program, Report on Carcinogens Center, P.O. Box 12233, MD K2-14, Research Triangle Park, NC 27709.

<table>
<thead>
<tr>
<th>Substance Name</th>
<th>CAS Number</th>
<th>Last Listing</th>
<th>Reason for Delisting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramphenicol</td>
<td>56-75-7</td>
<td>known</td>
<td>Human data considered inadequate</td>
</tr>
<tr>
<td>Aramite</td>
<td>140-57-8</td>
<td>reasonably anticipated</td>
<td>No U.S. residents exposed</td>
</tr>
<tr>
<td>N,N-Bis(2-chloroethyl)-2-naphthylamine (chlornaphazine)</td>
<td>494-03-1</td>
<td>known</td>
<td>No U.S. residents exposed</td>
</tr>
<tr>
<td>Cycasin</td>
<td>14901-08-7</td>
<td>reasonably anticipated</td>
<td>No U.S. residents exposed</td>
</tr>
<tr>
<td>Methyl iodide</td>
<td>78-88-4</td>
<td>reasonably anticipated</td>
<td>Reevaluated by IARC; evidence now considered equivocal</td>
</tr>
<tr>
<td>5-Nitro-o-anisidine</td>
<td>99-59-2</td>
<td>reasonably anticipated</td>
<td>Insufficient evidence of carcinogenicity</td>
</tr>
<tr>
<td>p-Nitrosodiphenylamine</td>
<td>156-10-5</td>
<td>reasonably anticipated</td>
<td>Insufficient evidence of carcinogenicity</td>
</tr>
<tr>
<td>Ethyl acrylate</td>
<td>140-88-5</td>
<td>reasonably anticipated</td>
<td>See following profile</td>
</tr>
<tr>
<td>Saccharin</td>
<td>81-07-2</td>
<td>reasonably anticipated</td>
<td>See following profile</td>
</tr>
</tbody>
</table>
Report on Carcinogens Review Group
Actions on the Nomination of Ethyl Acrylate for Delisting from the Report on Carcinogens

Summary of data contained in the Ethyl Acrylate Background Document (December 1998)

Ethyl Acrylate
CAS No. 140-88-5

Ethyl acrylate is used in various industries as an intermediate in the production of emulsion-based polymers which are then used in paint formulations, industrial coatings, and latex products. It is also used as a synthetic flavoring substance and fragrance adjuvant in consumer products. Human exposure to ethyl acrylate occurs mostly through inhalation of ethyl acrylate vapors, but it may also result from skin contact or ingestion as a food additive or from drinking of contaminated water. The Report on Carcinogens review groups considered the data underlying the nomination to remove ethyl acrylate from the Report on Carcinogens, where it has been listed as reasonably anticipated to be a human carcinogen since 1989. The basis for this listing was a gavage study that resulted in dose-related benign and malignant forestomach neoplasms in rats and mice. The Basic Acrylic Monomer Manufacturers, Inc. (BAMM), submitted a nomination to remove ethyl acrylate from the Report on Carcinogens based upon the following information: (1) negative tumorigenicity results from chronic-exposure studies using routes other than gavage in corn oil, (2) research results suggesting that the forestomach carcinogenicity observed in the gavage studies was secondary to a site-specific and concentration-dependent irritating effect of ethyl acrylate, and (3) the fact that significant human exposure to ethyl acrylate monomer is unlikely in light of current manufacturing practices and patterns of usage (see Human Exposure and Cancer Studies in Humans, below).

The majority opinion of the Report on Carcinogens review groups was to recommend that ethyl acrylate be removed from the Report on Carcinogens. This opinion was based on the facts that (1) the forestomach tumors induced in animal studies were seen only when ethyl acrylate was administered by gavage at high concentrations that induced marked local irritation and cellular proliferation, (2) animal studies using other routes of administration, including inhalation, gave negative results, and (3) significant chronic human oral exposure to high concentrations of ethyl acrylate monomer is unlikely. Therefore, ethyl acrylate does not meet the criteria to be listed in the Report on Carcinogens as reasonably anticipated to be a human carcinogen.

Summary of Available Carcinogenicity Data and Other Relevant Information

Cancer Studies in Experimental Animals

Although mutagenic in some in vitro tests, ethyl acrylate is not genotoxic under in vivo physiological conditions, perhaps because of its rapid metabolism to acrylic acid and ethanol by carboxyesterases and detoxification through binding to non-protein sulphydryls. Target tissue toxicity in the form of irritation was observed in the skin in a lifetime mouse skin-painting study, in the nasal olfactory mucosa in 27-month inhalation studies in rats and mice, and in the forestomach in two-year corn-oil gavage studies in rats and mice. Only body-weight reduction was observed in a two-year study of exposure via drinking water in rats. The forestomach carcinogenicity observed in the corn-oil gavage studies was the only treatment-related tumorigenic response in the various animal studies. The irritation, hyperplasia, and tumor responses in the forestomach were related more to target-tissue concentration of ethyl acrylate than to delivered dose in the chronic gavage study. Based upon stop-exposure studies, gavage doses of ethyl acrylate in corn oil sufficient to induce sustained mucosal hyperplasia in the forestomach must be administered for longer than six months to induce forestomach neoplasia.

Human Exposure and Cancer Studies in Humans

Prolonged consumer exposure to high levels of ethyl acrylate monomer by the oral route is unlikely. Potentially significant exposures would most likely occur in an occupational setting where the routes of exposure would be dermal or by inhalation. Ethyl acrylate has a strong acrid odor (odor threshold ~ 0.5 ppb) and is a known irritant to the skin, eyes, and mucous membranes, making it unlikely that humans would be chronically exposed to high concentrations. Data provided in the BAMM nomination on worker exposure showed occupational exposure well below the threshold limit value (TLV = 5 ppm for an eight-hour time-weighted average) and the short-term exposure limit (STEL = 15 ppm), although exposure of painters in an unventilated room has been reported to be as high as 8 ppm in the painter’s breathing zone.

An epidemiology study reported on mortality from cancer of the colon and rectum in three separate cohorts of workers from two plants manufacturing and polymerizing acrylate monomers. Workers were exposed to ethyl acrylate and methyl methacrylate monomer between 1933 and 1982. Risks for both types of cancer were associated with exposure in the earliest cohort, although the rectal cancer results are imprecise because of the small number of cases involved. The greatest relative risk was found in workers with the highest level of exposure and a 20-year latency. The other two cohorts, with later dates of hire, showed no excess risk, but very few cases were available for observation. This study, by itself, can neither establish nor rule out a causal relationship of ethyl acrylate with cancer.

Action on Nomination

Ethyl acrylate will be removed from the Report on Carcinogens because the relevant data are not sufficient to meet the current criteria to list this chemical as reasonably anticipated to be a human carcinogen. This is based on the fact that the forestomach tumors induced in animal studies were seen only when the chemical was administered by gavage at high concentrations that induced marked local irritation and cellular proliferation, and because significant chronic human exposure to high concentrations of ethyl acrylate monomer is unlikely.

Report on Carcinogens Review Group
Actions on the Nomination of Saccharin for Delisting from the Report on Carcinogens

Summary of data contained in the Saccharin Background Document (October 1997)

Saccharin
CAS No. 81-07-2

Saccharin and its sodium and potassium salts have been produced commercially in the United States for over 80 years. Saccharin is primarily used as a non-nutritive sweetening agent. Potential exposure to saccharin occurs through the consumption of dietetic foods and drinks and the use of some personal hygiene products. Potential exposure to saccharin also occurs in the workplace, specifically in occupations, industries, or facilities that produce and deal with saccharin.
and its salts. The Report on Carcinogens review groups considered the data underlying the nomination to remove saccharin from the Report on Carcinogens where it has been listed as reasonably anticipated to be a human carcinogen since 1981. The basis for this listing was sufficient evidence of carcinogenicity in experimental animals. The Calorie Control Council submitted a nomination to the NTP to consider removing saccharin from the Report on Carcinogens based upon mechanistic data related to development of urinary-bladder cancers in rats (see Studies on Mechanisms of Carcinogenesis, below).

The majority opinion of the review groups was to recommend that saccharin be removed from the Report on Carcinogens. There is evidence for the carcinogenicity of saccharin in rats, but less convincing evidence in mice. Studies indicate that the observed urinary-bladder cancers in rats are related to the physiology of the rat urinary system, including urinary pH, osmolality, volume, the presence of precipitate, and urothelial damage with attendant hyperplasia following consumption of diets containing sodium saccharin at concentrations of 3% or higher, with inconsistent findings at lower dietary concentrations. The factors thought to contribute to tumor induction by sodium saccharin in rats would not be expected to occur in humans. The mouse data are inconsistent and require verification by additional studies. Results of several epidemiology studies indicate no clear association between saccharin consumption and urinary-bladder cancer. Although it is impossible to conclude with absolute certainty that it poses no threat to human health, sodium saccharin is not reasonably anticipated to be a human carcinogen under conditions of general usage as an artificial sweetener.

Summary of Available Carcinogenicity Data and Other Relevant Information

Cancer Studies in Experimental Animals

In four studies of up to 30 months’ duration, sodium saccharin was carcinogenic in Charles River CD and Sprague-Dawley male rats, as evidenced by a dose-related increased incidence of benign or malignant urinary-bladder neoplasms at dietary concentrations greater than 1% (Tisdel et al. 1974, Arnold et al. 1980, Taylor et al. 1980, Schoenig et al. 1985). Non-statistically-significant increases in urinary-bladder cancer also were seen in saccharin-exposed male rats in studies showing a positive effect in males (Arnold et al. 1980, Taylor et al. 1980). Furthermore, several initiation/promotion studies in different rat strains showed a reduced latency and/or increased incidence of similar urinary-bladder cancers in male and female rats fed sodium saccharin after treatment with various urinary-bladder tumor initiators (e.g., Hicks and Chownieck 1977, Cohen et al. 1979, Nakanishi et al. 1980a, West et al. 1986, Fukushima et al. 1990). Several additional rat studies in which sodium saccharin was administered either in the diet or in drinking water gave negative results for tumorigenesis (Fitzhugh et al. 1951, Lessel 1971, Schmähl 1973, Chownieck and Hicks 1979, Hooson et al. 1980, Schmähl and Habs 1984).

Three mouse studies reported carcinogenicity following exposure to saccharin. Two of these studies involved surgical implantsation of saccharin-containing cholesterol pellets into the urinary bladders and resulted in development of malignant urothelial neoplasms (Allen et al. 1957, Bryan et al. 1970). In the third study, dietary exposure to sodium saccharin resulted in increased incidences of malignant thyroid-gland neoplasms (Prasad and Rai 1986). Although the data from studies in mice cannot be discounted, some of these studies had methodological flaws, provided limited information, did not show a dose-response relationship, or had unexpected outcomes that may be species- or strain-specific, and should be verified by additional studies. The results of four studies in mice were judged negative for tumorigenesis (Roe et al. 1970, Kroes et al. 1977, Homberger 1978, Frederick et al. 1989), as were limited studies in nonhuman primates (McChesney et al. 1977, Sieber and Adamson 1978, Thorgierson et al. 1994, Cohen et al. 1996) and a single hamster study (Althoff et al. 1975).

Cancer Studies in Humans

Most of the relevant human epidemiology studies examined associations between urinary-bladder cancer and artificial sweeteners, rather than saccharin per se. The time-trend data for urinary-bladder cancer showed no clear indication that the increased use of saccharin or artificial sweeteners commencing in the 1940s was associated with a general increase in urinary-bladder cancer when confounding factors, chiefly smoking, were controlled for. Risks of urinary-bladder cancer in diabetics, who presumably consume greater amounts of artificial sweeteners than the general population, were no greater than risks in the general population (Armstrong and Doll 1975). Based upon several case-control studies, there was no overall association between use of artificial sweeteners and urinary-bladder cancer (reviewed by IARC 1980, 1987b, JECFA 1993). However, an association between use of artificial sweeteners and urinary-bladder cancer could not be ruled out in some case-control subgroups, albeit involving small numbers (Howe et al. 1980, Hoover and Strasser 1980, Cartwright et al. 1981, Morrison et al. 1982, Momsen et al. 1983). Taken together, the available epidemiology data show no consistent evidence that saccharin is associated with increased urinary-bladder cancer in general; however, a small increased risk in some subgroups, such as heavy users of artificial sweeteners, cannot be unequivocally excluded. With regard to the general population, if sodium saccharin is a risk factor, it is weak, and a causal relationship with cancer cannot be proven or disproven, because of a lack of exposure data and intrinsic limitations of the available epidemiology studies.

Studies on Mechanisms of Carcinogenesis

Extensive studies of the mutagenicity and genotoxicity of saccharin have shown generally negative but occasionally conflicting results. Sodium saccharin is essentially nonmutagenic in conventional bacterial systems, but is weakly clastogenic or genotoxic in short-term in vitro and in some in vivo test systems (reviewed by Ashby 1985, IARC 1987a,b, Whysner and Williams 1996). Urine from mice exposed to sodium saccharin was mutagenic in Salmonella typhimurium in one study (Batzinger et al. 1977). Saccharin does not covalently bind to DNA and does not induce unscheduled DNA synthesis in urinary-bladder urothelium.

Saccharin-induced carcinogenesis in rats showed a sex predilection for males (Tisdel et al. 1974, Arnold et al. 1980, Taylor et al. 1980), an organ specificity for urinary bladder (Tisdel et al. 1974, Arnold et al. 1980, Taylor et al. 1980, Fukushima et al. 1983, Schoenig et al. 1985), and a dose-response when exposure to dietary concentrations of 1% to 7.5% of the sodium salt of saccharin was begun early in life (beginning at birth or immediately at weaning) and continued for approximately two years (Schoenig et al. 1985). The results of mechanistic studies have shown that certain physiological conditions must be simultaneously or sequentially present for induction of urinary-bladder tumorigenesis. These conditions include a urinary pH greater than 6.5, increased urinary sodium concentration, increased urine volume, decreased urinary osmolality, and presence of urinary crystals or precipitate, with resulting damage to the urothelium prompting a proliferative (hyperplastic) response of the urinary-bladder epithelium. All of these conditions have been studied extensively in male rats but less so in female rats or in mice. The high levels of urinary protein characteristically produced by male rats may partially explain
the sex predilection. The high intrinsic rate of urothelial proliferation at about the time of weaning is also believed to contribute to the observed tumorigenic effects. The urinary milieu in rats, especially male rats, is sufficiently different from that in humans or other species to support the contention that these observations are specific to rats. Pharmacokinetic and metabolism data on sodium saccharin do not explain the male rat’s sensitivity for induction of urinary-bladder neoplasms (Swateman and Renwrick 1979, 1980).

Action On Nomination

Saccharin will be removed from the Report on Carcinogens, because the data on cancer in rodents are not sufficient to meet the current criteria to list this chemical as reasonably anticipated to be a human carcinogen. This decision is based on the perception that the observed urinary-bladder tumors in rats arise by mechanisms not relevant to humans, and the lack of data in humans suggesting a carcinogenic hazard.

References

Appendix C: Substances Reviewed but Not Recommended for Listing in the Report on Carcinogens

Nominated agents, substances, mixtures, or exposure circumstances all are considered for possible listing in the Report on Carcinogens. For many of these, it is possible to determine that there are insufficient data available to warrant any formal consideration by the scientific review groups without carrying out an extensive evaluation. For others, relevant animal or human cancer studies do exist, but, after a formal consideration, the review groups reach the conclusion that the data do not warrant listing the agent, substance, mixture, or exposure circumstance in the Report on Carcinogens. The following table contains a record of nominations that were formally considered for listing by the NTP and, after evaluation by the Report on Carcinogens review groups, were recommended not to be listed in the Report on Carcinogens. Background documents outlining in more detail the issues considered during formal reviews of a nomination can be obtained by contacting the National Toxicology Program at the following address: National Toxicology Program, Report on Carcinogens Center, P.O. Box 12233, MD K2-14, Research Triangle Park, NC 27709.

<table>
<thead>
<tr>
<th>Substance Name</th>
<th>CAS Number</th>
<th>Reviewed for Listing in</th>
<th>Reason for not Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl tert-butyl ether (MTBE)</td>
<td>1634-04-4</td>
<td>Ninth RoC (1999)</td>
<td>Rodent cancer data not sufficient</td>
</tr>
<tr>
<td>Nickel alloys</td>
<td></td>
<td>Tenth RoC (2000)</td>
<td>Human data are inadequate and rodent cancer data not sufficient</td>
</tr>
</tbody>
</table>
Appendix D: List of Participants

National Institute of Environmental Health Sciences (NIEHS) / National Toxicology Program (NTP) Members

Linda Birnbaum, Ph.D., D.A.B.T., A.T.S.
Director, NIEHS & NTP

John R. Bucher, Ph.D.
Associate Director, NTP

Mary Wolfe, Ph.D.
Deputy Program Director for Policy; Director, Office of Liaison, Policy, and Review

Ruth Lunn, Dr.P.H.
Director, Office of the Report on Carcinogens

Gloria Jahnke, D.V.M., D.A.B.T.
Health Scientist
Office of the Report on Carcinogens

Diane L. Spencer, M.S.
Health Scientist
Office of the Report on Carcinogens

Lori D. White, Ph.D.
Health Scientist Administrator
Office of Liaison, Policy, and Review

Yun Xie, Ph.D.
Health Scientist
Office of Liaison, Policy, and Review

Report on Carcinogens Center Contract Support Staff

Independent Consultant

Susan Dakin, Ph.D.
Technical and Scientific Writing and Editing
Durham, North Carolina

Integrated Laboratory Systems, Inc.

Sanford Garner, Ph.D.
Project Manager

Stanley Atwood, M.S., D.A.B.T.
Toxicologist

Ella Darden, B.S.
Administrative Support Specialist

Andrew Ewens, Ph.D., D.A.B.T.
Toxicologist

Jessica Geter, M.S.L.S.
Information Specialist

Alton Peters, M.S.
Environmental Scientist

Jennifer Ratcliffe, Ph.D.
Epidemiologist

Tracy Saunders, B.S.
Administrative Support Specialist

Pamela Schwingl, Ph.D.
Epidemiologist

Social & Scientific Systems, Inc.

Whitney Arroyave, Ph.D.
Epidemiologist

Technical Advisors or Reviewers of RoC Monographs

NIEHS or Other Federal Agency Scientists

Mamta Behl, Ph.D., D.A.B.T.
(Cobalt)
General Toxicology and Cancer Group
NTP Toxicology Branch

Chad Blystone, Ph.D., D.A.B.T.
(Cobalt)
Developmental and Reproductive Toxicology Group
NTP Toxicology Branch

Abee Boyles, Ph.D.
(Trichloroethylene)
NTP Office of Health Assessment and Translation

Christopher B. Buck, Ph.D.
(MCV)
Laboratory of Cellular Oncology
Center for Cancer Research
National Cancer Institute

Janet Carter, M.P.H.
(Cobalt)
Office of Biological Hazards
Occupational Safety and Health Administration
Department of Labor

Caroline Dilworth, Ph.D.
(Trichloroethylene)
Population Health Branch
NIEHS Division of Extramural Research and Training

Steve Ferguson, Ph.D.
(Trichloroethylene)
Molecular Toxicology and Genomics Group
NTP Biomolecular Screening Branch

Genoveffa Franchini, M.D.
(HTLV-1)
Animal Models and Retroviral Vaccines Section
Center for Cancer Research
National Cancer Institute

Dori Germolec, Ph.D.
(Trichloroethylene)
Systems Toxicology Group
NTP Toxicology Branch

Jim Goedert, M.D.
(EBV, KSHV, HIV, HTLV-1, MCV)
Infections and Immunopathology Branch
Division of Cancer Epidemiology and Genetics
National Cancer Institute

Michelle Hooth, Ph.D., D.A.B.T.
(Cobalt)
Chief, NTP Program Operations Branch

Robert Luebke, Ph.D.
(Trichloroethylene)
Cardiopulmonary and Immunotoxicology Branch
U.S. Environmental Protection Agency
Scott Masten, Ph.D.
(Trichloroethylene)
Director, NTP Office of Nominations and Selection

Alex Merrick, Ph.D.
(Trichloroethylene)
Molecular Toxicology and Genomic Group
NTP Biomolecular Screening Branch

Sam M. Mbulaiteye, M.D.
(EBV)
Infections and Immunoepidemiology Branch
Division of Cancer Epidemiology and Genetics
National Cancer Institute

Arun Pandiri, Ph.D., D.A.C.V.P.
(Trichloroethylene, Cobalt)
Molecular Pathology Group
NTP Cellular and Molecular Pathology Branch

Christine Parks, Ph.D.
(Trichloroethylene)
Contractor to the Epidemiology Branch
NIEHS Division of Intramural Research

Mark Purdue, Ph.D.
(Trichloroethylene)
Occupational and Environmental Epidemiology Branch
Division of Cancer Epidemiology and Genetics
National Cancer Institute

Elizabeth Read-Conole, Ph.D.
(EBV, KSHV, HIV, HTLV-I, MCV)
Cancer Immunology and Hematology Etiology Branch
Division of Cancer Biology
National Cancer Institute

Cynthia Rider, Ph.D.
(Trichloroethylene)
General Toxicology and Cancer Group
NTP Toxicology Branch

Avima Ruder, Ph.D.
(Trichloroethylene)
Division of Surveillance, Hazard Evaluations, and Field Studies
National Institute for Occupational Safety and Health

Cheryl Siegel Scott, M.S.P.H.
(Deceased August 24, 2014)
(Trichloroethylene)
National Center for Environmental Assessment
U.S. Environmental Protection Agency

Matthew Stout, Ph.D., D.A.B.T.
(Cobalt)
Toxicology Study Management Group
NTP Program Operations Branch

Erik Tokar, Ph.D.
(Cobalt)
Stem Cell Toxicology Group
NTP National Toxicology Program Laboratory

Suramya Waidyanatha, Ph.D.
(Trichloroethylene)
Chemistry and ADME Resources Group
NTP Program Operations Branch

Nigel Walker, Ph.D.
(Trichloroethylene)
NTP Deputy Division Director for Science

John Wheeler, Ph.D., D.A.B.T.
(Cobalt)
Region 4 Office
Agency for Toxic Substances and Disease Registry
Centers for Disease Control and Prevention

Denise Whitby, Ph.D.
(KSHV)
Viral Oncology Section
AIDS and Cancer Virus Program
Frederick National Laboratory for Cancer Research
National Cancer Institute

Robert Yarchoan, M.D.
(HIV)
HIV and AIDS Malignancy Branch
Retroviral Diseases Section
Office of HIV and AIDS Malignancy
National Cancer Institute

Other Advisors or Reviewers

Anneclaire De Roos, Ph.D., M.P.H.
(Trichloroethylene)
Environmental and Occupational Health Program
Dornsife School of Public Health
Drexel University

Patricia Ganey, Ph.D.
(Trichloroethylene)
Dept. of Pharmacology and Toxicology
Institute for Integrative Toxicology
Michigan State University

Kathleen M. Gilbert, Ph.D.
(Trichloroethylene)
Dept. of Microbiology and Immunology
University of Arkansas for Medical Sciences

Bernard D. Goldstein, M.D.
(Trichloroethylene)
Dept. of Environmental and Occupational Health
University of Pittsburgh

Neela Guha, Ph.D.
(Trichloroethylene)
IARC Monographs Section
International Agency for Research on Cancer
World Health Organization

Rafael Ponce, Ph.D.
(Trichloroethylene)
Comparative Biology and Safety Assessment Group
Amgen
Seattle, WA

Patricia Stewart, Ph.D.
(Trichloroethylene)
Stewart Exposure Assessments, LLC
Arlington, VA

Peer Review Panelists

Trichloroethylene

David A. Eastmond, Ph.D.
(Chair)
Environmental Toxicology Graduate Program
and Dept. of Cell Biology and Neuroscience
University of California, Riverside

Lisa A. Peterson, Ph.D. (Chair, December 2014, Chair, December 2015, Chair June 2016)
Division of Environmental Health Sciences
University of Minnesota School of Public Health;
Carcinogenesis and Chemoprevention Program
Masonic Cancer Center
University of Minnesota Academic Health Center

Cynthia A. Afshari, Ph.D. (June 2016)
Discovery Toxicology Group
Comparative Biology and Safety Sciences Dept.
Amgen, Inc.

Norman J. Barlow, D.V.M., Ph.D. (December 2015, June 2016)
Toxicology, Pathology, and Laboratory Animal Medicine Group
Janssen Research and Development, LLC
Johnson and Johnson

Robert E. Chapin, Ph.D. (December 2014, December 2015)
Developmental and Reproductive Toxicology Group
Drug Safety Research and Development
Pfizer Global Research and Development

George B. Corcoran, Ph.D., A.T.S. (December 2014, December 2015, June 2016)
Dept. of Pharmaceutical Sciences
Eugene Applebaum College of Pharmacy and Health Sciences
Wayne State University

Dept. of Molecular Biomedical Sciences
College of Veterinary Medicine
North Carolina State University

Mary Beth Genter, Ph.D. (December 2014, December 2015, June 2016)
Dept. of Environmental Health
University of Cincinnati

Dept. of Pathobiology and Diagnostic Investigation
Center for Integrative Toxicology
College of Veterinary Medicine
Michigan State University

Dale Hattis, Ph.D. (December 2014, December 2015)
George Perkins Marsh Institute
Clark University

Daniel Kass, M.S.P.H. (June 2016)
Division of Environmental Health
New York City Dept. of Health & Mental Hygiene

Steven Markowitz, M.D., Dr.P.H. (December 2014, December 2015, June 2016)
School of Earth and Environmental Sciences
Queens College, City University of New York

Kenneth E. McMartin, Ph.D. (June 2016)
Dept. of Pharmacology, Toxicology and Neuroscience
Louisiana State University Health Sciences Center at Shreveport

Kenneth S. Ramos, M.D., Ph.D. (June 2016)
Center for Applied Genetics and Genomic Medicine
Precision Health Sciences
University of Arizona Health Sciences;
Dept. of Medicine
University of Arizona College of Medicine

Sonya Sobrian, Ph.D. (December 2014, December 2015)
Dept. of Pharmacology
Howard University College of Medicine

James Stevens, Ph.D. (December 2016)
Lilly Research Laboratories
Eli Lilly and Company

Iris G. Udasin, M.D. (June 2013; April 2014)
Dept. of Environmental and Occupational Medicine
Robert Wood Johnson Medical School
University of Medicine and Dentistry of New Jersey
Appendix E: Chemicals Nominated to the NTP for In-Depth Toxicological Evaluation

A searchable database of substances nominated to the NTP for toxicological testing is available on the NTP website at http://ntp.niehs.nih.gov/go/nom-search. The available information includes the substance nominated and the nomination date, source, rationale, and status. If NTP testing has been conducted, a link is provided to the results and status information. Nominations can be searched by substance name, Chemical Abstract Service Registry Number (CASRN) or keyword.

The Management Status Report (http://ntp.niehs.nih.gov/go/MSR-index) gives the status of substances selected for study using standard 2-week, 13-week, and/or 2-year toxicology and carcinogenicity protocols. Abstracts for all published NTP long-term carcinogenicity technical reports and short-term toxicity study reports are available electronically on the NTP Web site. To view the abstracts or download full reports, visit http://ntp.niehs.nih.gov.

For additional information about NTP studies, contact Central Data Management, Mail Drop K2-05, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709 (phone: 919-541-3419; e-mail: CDM@niehs.nih.gov).
Appendix F: Substance Names and Common Synonyms

A

2-AAF see 2-Acetylaminofluorene
ABP see 4-Aminobiphenyl
ABVD therapy see Dacarbazine
ADBAQ see 1-Amino-2,4-dibromoanthraquinone
ABF1 see Aflatoxins
As see Arsenic and Inorganic Arsenic Compounds
5-AzaC see Azacitidine
2-acetamidofluorene see 2-Acetylaminofluorene
2-acetaminofluorene see 2-Acetylaminofluorene
acetate blue G see Disperse Blue 1
acetic aldehyde see Acetaldehyde
acetothioamide see Thioacetamide
acetylatedehyde see Acetaldehyde
acetylhydride see Acetaldehyde
acid red 114 (C.I.) see 3,3’-Dimethylbenzidine and Dyes Metabolized to 3,3’-Dimethylbenzidine, Dyes Metabolized to 3,3’-Dimethylbenzidine
aciform carbon see Soots
crylic acid amide see Acrylamide
actinolite see Asbestos
actinon see Ionizing Radiation, Radon
apcohol drinking see Alcoholic Beverage Consumption
aluminum-beryllium alloy see Beryllium and Beryllium Compounds
o-aminoisole see o-Anisidine and Its Hydrochloride
2-aminoisole hydrochloride see o-Anisidine and Its Hydrochloride
2-amino-9,10-anthracenedione see 2-Aminoanthraquinone
β-aminoanthraquinone see 2-Aminoanthraquinone
2-aminoazotoluene see o-Aminoazotoluene
p-aminoanisole see 4-Aminobiphenyl
2-amino-3,4-dimethylimidazo[4,5-F]quinoline see Heterocyclic Amines (Selected)
2-amino-3,8-dimethylimidazo[4,5-F]quinoxaline see Heterocyclic Amines (Selected)
4-amidophenyl see 4-Aminobiphenyl
p-amidophenyl see 4-Aminobiphenyl
para-amidophenyl see 4-Aminobiphenyl
1-amino-2-methyl-9,10-anthracenedione see 1-Amino-2-methylanthraquinone
2-amino-3-methyl-3H-imidazo[4,5-F]quinoline see Heterocyclic Amines (Selected); 2-Amino-3-methylimidazo[4,5-F]quinoline (IQ)
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine see Heterocyclic Amines (Selected)
2-amino-3-methylimidazo[4,5-F]quinoline see Heterocyclic Amines (Selected)
4-[(4-aminophenyl)-3-imino-2,5-cyclohexadien-1-ylidene]methyl]-benzenamine, monohydrochloride see Basic Red 9 Monohydrate
4-amino-1-β-p-ribofuranosyl-1,3,5-triazin-2(1H)-one see Azacitidine
3-amino-1,2,4-triazol see Amitrole
aminotriazole see Amitrole
amosite see Asbestos

analgesic mixtures containing phenacetin see Phenacetin and Analgesic Mixtures Containing Phenacetin
2-anisidine hydrochloride see o-Anisidine and Its Hydrochloride
anthophyllite see Asbestos
Aroclor 1016 see Polychlorinated Biphenyls
Arocolor 1221 see Polychlorinated Biphenyls
Aroclor 1242 see Polychlorinated Biphenyls
Aroclor 1248 see Polychlorinated Biphenyls
Aroclor 1254 see Polychlorinated Biphenyls
Aroclor 1260 see Polychlorinated Biphenyls
Aroclor 1262 see Polychlorinated Biphenyls
arsanilic acid see Arsenic and Inorganic Arsenic Compounds
arsenate see Arsenic and Inorganic Arsenic Compounds
arsenite see Arsenic and Inorganic Arsenic Compounds
arsenous oxide see Arsenic and Inorganic Arsenic Compounds
arsenous trichloride see Arsenic and Inorganic Arsenic Compounds
arsine see Arsenic and Inorganic Arsenic Compounds
5-azacytidine see Azacitidine

B

B-1 glass fibers see Certain Glass Wool Fibers (Inhalable)
B-09 glass fibers see Certain Glass Wool Fibers (Inhalable)
B-20 glass fibers see Certain Glass Wool Fibers (Inhalable)
BA see Polycyclic Aromatic Hydrocarbons: 15 Listings, Benz[a]anthracene
B[a]P see Polycyclic Aromatic Hydrocarbons: 15 Listings, Benz[a]pyrene
BB-153 (hexabromobiphenyl) see Polybrominated Biphenyls
B[b]F see Polycyclic Aromatic Hydrocarbons: 15 Listings, Benz[b]fluoranthene
BBMP see 2,2'-Bis(bromomethyl)-1,3-propanediol (Technical Grade)
BCME see Bis(chloromethyl) Ether and Technical-Grade Chloromethyl Methyl Ether
BCNU see Nitrosourea Chemotherapeutic Agents, Bis[chloroethyl] Nitrosourea
Be see Beryllium and Beryllium Compounds
BHA see Butylated Hydroxyanisole
B[k]F see Polycyclic Aromatic Hydrocarbons: 15 Listings, Benz[k]fluoranthene
basic fuchsin see Basic Red 9 Monohydrate
basic red 9 see Basic Red 9 Monohydrate
basic red 9 monohydrochloride (C.I.) see Basic Red 9 Monohydrate
basic zinc chromate see Chromium Hexavalent Compounds
beer see Alcoholic Beverage Consumption
1,2-benzanthracene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Benz[a]anthracene
benz[a]anthracene see Polycyclic Aromatic Hydrocarbons: 15 Listings
benz[b]fluoranthene see Polycyclic Aromatic Hydrocarbons: 15 Listings
benz[b]fluoranthene see Polycyclic Aromatic Hydrocarbons: 15 Listings
benzo[j]fluoranthene see Polycyclic Aromatic Hydrocarbons: 15 Listings
benzo[k]fluoranthene see Polycyclic Aromatic Hydrocarbons: 15 Listings
benzoic trichloride see Benzotrifluoride
benzol see Benzene
benzo[rz][pentaphene] see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,l]pyrene
benzo[a]pyrene see Polycyclic Aromatic Hydrocarbons: 15 Listings
beryll ore see Beryllium and Beryllium Compounds
beta-aminoanthraquinone see 2-Aminoanthraquinone
beta-naphthylamine see 2-Naphthylamine
bidis see Tobacco-Related Exposures, Tobacco Smoking
2,2’-bioxirane see Diépoxybutane
4-biphenylamine see 4-Aminobiphenyl
2,2-bis(bromomethyl)propane-1,3-diol see 2,2-Bis(bromomethyl)-1,3-propanediol (Technical Grade)
bischloroethyl nitrosourea see Nitrosourea Chemotherapeutic Agents, Bis(chloroethyl) Nitrosourea
4-[(bis(2-chloroethyl)amino)-1-phenylalanine see Melphalan
4-[(p-[(bis[2-chloroethyl]amino)phenyl]butyric acid see Chlorambucil
bis(2-chloroethyl)sulfide see Mustard Gas
4-[(bis-2-chloromethyl)benzenebutanoic acid see Chlorambucil
4,4’-bis(dimethylamino)benzophenone see Michler’s Ketone
bis(2-ethylhexyl) ester 1,2-benzenedicarboxylic acid see Di(2-ethylhexyl) Phthalate
bis(2-ethylhexyl phthalate) see Di(2-ethylhexyl) Phthalate
3,3-bis(4-hydroxyphenyl)-1-(3H)-isobenzofuranone see Phenolphthalein
broad-spectrum ultraviolet radiation see Ultraviolet Radiation Related Exposures
bromoethene see Vinyl Halides (Selected), Vinyl Bromide
busulfan see 1,4-Butanediol Dimethanesulfonate
Busulfex see 1,4-Butanediol Dimethanesulfonate
1,3-butanediene diopoxide see Diepoxynbutane
butane diopoxide see Diepoxynbutane
1,4-butanediol dimethanesulphonate see 1,4-Butanediol Dimethanesulfonate
butter yellow see 4-Dimethylaminoazobenzene
C
Cd see Cadmium and Cadmium Compounds
CEP see Epichlorohydrin
C.I. direct blue 15 see 3,3’-Dimethoxybenzidine and Dyes Metabolized to 3,3’-Dimethoxybenzidine, Dyes Metabolized to 3,3’-Dimethoxybenzidine
C.I. direct brown 95 see Benzidine and Dyes Metabolized to Benzidine, Dyes Metabolized to Benzidine
C.I. disperse orange see 1-Amino-2-methylnaphthoquinone
C.I. solvent yellow 3 see o-Aminoazotoluene
CCNU see Nitrosourea Chemotherapeutic Agents, 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea
CMME see Bis(chloromethyl) Ether and Technical-Grade Chloromethyl Methyl Ether
Co see Cobalt-Related Exposures, Cobalt and Cobalt Compounds That Release Cobalt Ions In Vivo
Co/WC see Cobalt-Related Exposures, Cobalt-Tungsten Carbide: Powders and Hard Metals
calcium arsenate see Arsenic and Inorganic Arsenic Compounds
calcium arsinite see Arsenic and Inorganic Arsenic Compounds
calcium chromate see Chromium Hexavalent Compounds
camphechlor see Toxaphene
carbamic acid ethyl ester see Urethane
carbamothioic acid, diethyl-, 2-chloro-2-propenyl ester see Sulfate
carbon cenospheres see Soots
carbonaceous xerogel particles see Soots
carmustine see Nitrosourea Chemotherapeutic Agents, Bis(chloroethyl) Nitrosourea
cemented carbides see Cobalt-Related Exposures, Cobalt–Tungsten Carbide: Powders and Hard Metals
CertainTeed B glass fiber see Certain Glass Wool Fibers (Inhalable)
chewing tobacco see Tobacco-Related Exposures, Smokeless Tobacco
chinofer see Iron Dextran Complex
2-chlorallyl diethylthiocarbamate see Sulfate
clordecone see Kerene
clorethamine see Nitrogen Mustard Hydrochloride
chlorinated camphene see Toxaphene
4-chloro-1,2-benzenediamine see 4-Chloro-o-phenylenediamine
2-chloro-1,3-butanediene see Chloroprene
chlorocarpmene see Toxaphene
2-chloro-N-(2-chloroethyl)-N-methylethanamine see Nitrogen Mustard Hydrochloride
1-chloro-2,3-dibromopropene see 1,2-Dibromo-3-chloropropane
3-chloro-1,2-dibromopropene see 1,2-Dibromo-3-chloropropane
chlorodiphenyls see Polychlorinated Biphenyls
1-chloro-2,3-epoxypropene see Epichlorohydrin
chloroethene see Vinyl Halides (Selected), Vinyl Chloride
2-(((2-chloroethyl)nitrosamo)(carbonyl)amino)-2-deoxy-d-glucose see Nitrosourea Chemotherapeutic Agents, Chlorozotocin
chloromethyl methyl ether see Bis(chloromethyl) Ether and Technical-Grade Chloromethyl Methyl Ether
chloromethyl oxirane see Epichlorohydrin
4-chloro-2-methylamine see p-Chloro-o-toluidine and Its Hydrochloride
4-chloro-2-methylbenzamine see p-Chloro-o-toluidine and Its Hydrochloride
4-chloro-2-methylbenzamine hydrochloride see p-Chloro-o-toluidine and Its Hydrochloride
1-chloro-2-methylpropene see Dimethylvinyl Chloride
1-chloro-2-methyl-1-propene see Dimethylvinyl Chloride
3-chloro-2-methyl-1-propene see 3-Chloro-2-methylpropene
4-chloro-1,2-phenylenediamine see 4-Chloro-o-phenylenediamine
4-chloro-o-toluolide see p-Chloro-o-toluolide and Its Hydrochloride
4-chloro-o-toluolide hydrochloride see p-Chloro-o-toluolide and Its Hydrochloride
chromated copper arsenate (CCA) see Arsenic and Inorganic Arsenic Compounds and Chromium Hexavalent Compounds
chromates see Chromium Hexavalent Compounds
chromic trioxide see Chromium Hexavalent Compounds
chromium VI see Chromium Hexavalent Compounds
chrysazin see Danthon
chrysotile see Asbestos
ciclosporin see Cyclosporin A
cigarettes see Tobacco-Related Exposures, Tobacco Smoking
cigars see Tobacco-Related Exposures, Tobacco Smoking
cis-dichlorodiamidine platinum (II) see Cisplatin
cis-1,3-dichloropropene see 1,3-Dichloropropene (Technical Grade)
Clophen A see Polychlorinated Biphenyls
Clophens see Polychlorinated Biphenyls
cobalt see Cobalt-Related Exposures, Cobalt and Cobalt Compounds
That Release Cobalt Ions In Vivo
cobalt(II) chloride see Cobalt-Related Exposures, Cobalt and Cobalt Compounds
That Release Cobalt Ions In Vivo
cobalt(II) oxide see Cobalt-Related Exposures, Cobalt and Cobalt Compounds
That Release Cobalt Ions In Vivo
cobalt(II) sulfate see Cobalt-Related Exposures, Cobalt and Cobalt Compounds
That Release Cobalt Ions In Vivo
coke and char fragments see Soots
conjugated estrogens see Estrogens, Steroidal
copper-beryllium alloy see Beryllium and Beryllium Compounds
cristobalite see Silica, Crystalline (Respirable Size)
crocodilite see Asbestos
crystalline quartz see Silica, Crystalline (Respirable Size)
crystalline silica, respirable see Silica, Crystalline (Respirable Size)
crystalline silicon dioxide see Silica, Crystalline (Respirable Size)
(R-(R',R',R'-E'))-cyclic (L-alanyl-D-alanyl-N-methyl-L-leucyl-N-methyl-L-leucyl-L-lysyl-3-hydroxy-N-4-dimethyl-L-2-amino-6-oxocetinyl-L-a-aminobutyryl-N-methylglcycl-N-methyl-L-leucyl-L-valyl-N-methyl-L-leucyl) see Cyclosporin A
cyclosporine see Cyclosporin A
dBCP see 1,2-Dibromo-3-chloropropane
DBP see 2,3-Dibromo-1-propanol
DDT see Dichlorodiphenyltrichloroethane
o-o'-DDT see Dichlorodiphenyltrichloroethane
o-p'-DDT see Dichlorodiphenyltrichloroethane
p.p'-DDT see Dichlorodiphenyltrichloroethane
DEHP see Di(2-ethylhexyl) Phthalate
DEN see N-Nitrosamines: 15 Listings, N-Nitrosodiethymalein
DES see Diethylstilbestrol
DMN see N-Nitrosamines: 15 Listings, N-Nitrosodiethymalein
dantrol see Danthon
decabromobiphenyl see Polybrominated Biphenyls
1,1a,3,3a,4,5,5a,5b,6-decachlorooctahydro-1,3,4-metheno-2H-cyclobuta[cd]pentalen-2-one see Kepone
2-deoxy-2((methyl-nitrosoamino)carbonyl)amino)-d-glucopyranose see Nitrosourea Chemotherapeutic Agents, Streptozotocin
dextran iron complex see Iron Dextran Complex
4,4'-diaminobiphenyl see Benzidine
4,4'-diaminodiphenyl ether see 4,4'-Oxydianiline
diaminodiphenyl ether see 4,4'-Oxydianiline
4,4'-diaminodiphenyl sulfide see 4,4'-Thiodianiline
4,4'-diaminodiphenylmethane see 4,4'-Methylendianiline and Its Dihydrochloride
-o-dianisidine see 3,3'-Dimethoxybenzidine and Dyes Metabolized to 3,3'-Dimethoxybenzidine, Dyes Metabolized to 3,3'-Dimethoxybenzidine
dibenzo[a,h]acridine see Polycyclic Aromatic Hydrocarbons: 15 Listings
dibenzo[a,j]acridine see Polycyclic Aromatic Hydrocarbons: 15 Listings
dibenzo[a,j]anthracene see Polycyclic Aromatic Hydrocarbons: 15 Listings
7H-dibenzo[c,g]carbazole see Polycyclic Aromatic Hydrocarbons: 15 Listings
dibenzo[b,c,e,f]chrysene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,h]pyrene
dibenzo[def,p]chrysene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,i]pyrene
1,2,4,5-dibenzo(p)pyrene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,e]pyrene
3,4,9,10-dibenzo(p)pyrene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,l]pyrene
dibenzo[a,e]pyrene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,e]pyrene
5Dibenzo[a,h]pyrene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,h]pyrene
5Dibenzo[a,l]pyrene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo[a,l]pyrene
2,4-dibromo-1-anthraquinonylamine see 1-Amino-2,4-dibromoanthraquinone
dibromopropyl glycol see 2,2-Bis(bromomethyl)-1,3-propanediol (Technical Grade)
2,3-dibromopropanol see 2,3-Dibromo-1-propanol
2,3-dibromopropan-1-ol see 2,3-Dibromo-1-propanol
2,3-dibromo-1-propanol phosphate (3:1) see Tris(2,3-dibromopropyl) Phosphate
Amines (Selected), 2-Amino-3,4-dimethylimidazo[4,5-f]quinolin-2-amine see Heterocyclic Amines (Selected), 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline (MelQ)

3,3'-diaminoimidazo[4,5-f]quinolin-2-amine see Heterocyclic Amines (Selected), 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline (MelQ)

3,8-dimethyl-3H-imidazo[4,5-f]quinolin-2-amine see Heterocyclic Amines (Selected), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoline (MelQx)

5-(3,3-dimethyl-1-triazenyl)1H-imidazol-4-carboxamide see Dacarbazaine

1,6-dinitropyrene see Nitroarenes (Selected)

1,8-dinitropyrene see Nitroarenes (Selected)

diocetyl phthalate see Di(2-ethylhexyl) Phthalate
di-sec-octyl phthalate see Di(2-ethylhexyl) Phthalate
dioxin see 2,3,7,8-Tetrachlorodibenzo- p-dioxin
diphenylan see Phenyltoin and Phenyltoin Sodium

(Z)-2-[4-(1,2-diphenyl-1-butanyl)phenox]-N,N-dimethylethanamine see Tamoxifen
diphenylhydrantoin see Phenyltoin and Phenyltoin Sodium

5,5-diphenylhydrantoin see Phenyltoin and Phenyltoin Sodium

1,2-diphenyldihydrazine see Hydrazobenzene

5,5-diphenyl-2,4-imidazolidinedione see Phenyltoin and Phenyltoin Sodium

1,3-diphenytriazene see Diazooaminobenzene
direct black 38 (C.I.) see Benzidine and Dyes Metabolized to Benzidine, Dyes Metabolized to Benzenzidine
direct blue 1 (C.I.) see 3,3'-Dimethoxybenzidine and Dyes Metabolized to 3,3'-Dimethoxybenzidine, Dyes Metabolized to 3,3'-Dimethoxybenzidine
direct blue 2 (C.I.) see Benzidine and Dyes Metabolized to Benzidine
direct blue 6 (C.I.) see Benzidine and Dyes Metabolized to Benzidine, Dyes Metabolized to Benzidine
direct blue 8 (C.I.) see 3,3'-Dimethoxybenzidine and Dyes Metabolized to 3,3'-Dimethoxybenzidine, Dyes Metabolized to 3,3'-Dimethoxybenzidine
direct blue 14 (C.I.) see 3,3'-Dimethoxybenzidine and Dyes Metabolized to 3,3'-Dimethoxybenzidine, Dyes Metabolized to 3,3'-Dimethoxybenzidine
direct blue 15 (C.I.) see 3,3'-Dimethoxybenzidine and Dyes Metabolized to 3,3'-Dimethoxybenzidine, Dyes Metabolized to 3,3'-Dimethoxybenzidine
direct blue 218 (C.I.) see 3,3'-Dimethoxybenzidine and Dyes Metabolized to 3,3'-Dimethoxybenzidine, Dyes Metabolized to 3,3'-Dimethoxybenzidine
direct green 6 (C.I.) see Benzidine and Dyes Metabolized to Benzidine, Dyes Metabolized to Benzidine

direct red 28 (C.I.) see Benzidine and Dyes Metabolized to Benzidine, Dyes Metabolized to Benzidine
disodium hydrogen arsenate see Arsenic and Inorganic Arsenic Compounds
disperse orange see 1-Amino-2-methylanthraquinone

1,1a,2,2,3,3a,4,5,5,5a,5b,6-dodecachloro-octahydro-1,3,4-metheno-1H-cyclobuta(cd)pentalene see Mirex
dowicide EC-7 see Pentachlorophenol and By-products of its Synthesis
doxorubicin hydrochloride see Adriamycin
dyes metabolized to benzidine see Benzidine and Dyes Metabolized to Benzidine, Dyes Metabolized to Benzidine
dyes metabolized to 3,3'-dimethoxybenzidine see 3,3'-Dimethoxybenzidine and Dyes Metabolized to 3,3'-Dimethoxybenzidine, Dyes Metabolized to 3,3'-Dimethoxybenzidine
dyes metabolized to 3,3'-dimethylbenzidine see 3,3'-Dimethylbenzidine and Dyes Metabolized to 3,3'-Dimethylbenzidine

1-ethyl-1-nitrosourea
1-epoxyethyl-3,4-epoxycyclohexane
1,2-epoxyethylbenzene

National Toxicology Program, Department of Health and Human Services

Report on Carcinogens, Fourteenth Edition

- Norheterostrone

gamma radiation see Ionizing Radiation, X-Radiation and Gamma Radiation

gamma-hexachlorocyclohexane see Lindane, Hexachlorocyclohexane (Technical Grade), and Other Hexachlorocyclohexane Isomers
glass code 104 see Certain Glass Wool Fibers (Inhalable)
glass code 108b see Certain Glass Wool Fibers (Inhalable)
glass code 110 see Certain Glass Wool Fibers (Inhalable)
glass wool fiber B see Certain Glass Wool Fibers (Inhalable)
glass wool fiber P see Certain Glass Wool Fibers (Inhalable)
glass wool fiber V see Certain Glass Wool Fibers (Inhalable)
glycidaldehyde see Glycidol

H

7H-DB[c,g]C see Polycyclic Aromatic Hydrocarbons: 15 Listings, 7H-Dibenzo[c,g]carbazole
7H-dibenzo[c,g]carbazole see Polycyclic Aromatic Hydrocarbons: 15 Listings

HBV see Viruses (Selected), Hepatitis B Virus
HCAs see Heterocyclic Amines (Selected)
HCH see Lindane, Hexachlorocyclohexane (Technical Grade), and Other Hexachlorocyclohexane Isomers
HCV see Viruses (Selected), Hepatitis C Virus
HHV-4 see Viruses (Selected), Epstein-Barr Virus

HPV see Human Papillomaviruses: Some Genital-Mucosal Types

HTLV-1 see Viruses (Selected), Human T-Cell Lymphotropic Virus Type 1

I

IP see Indeno[1,2,3-cd]pyrene

IQ see Heterocyclic Amines (Selected), 2-Amino-3-methylimidazo[4,5-f]quinoline

2-imidazolidinethione see Ethylene Thiourea

indeno[1,2,3-cd]pyrene see Polycyclic Aromatic Hydrocarbons: 15 Listings

Infed see Iron Dextran Complex

inorganic acid mists see Strong Inorganic Acid Mists Containing Sulfuric Acid

insulation glass fibers see Certain Glass Wool Fibers (Inhalable)
involuntary smoking see Tobacco-Related exposure, Environmental Tobacco Smoke

iron-carbohydrate complexes see Iron Dextran Complex
isocyanic acid see Toluene Diisocyanates
isopropylbenzene see Cumene

J

JM 104/475 glass fibers see Certain Glass Wool Fibers (Inhalable)

K

KSHV see Viruses (Selected), Kaposi Sarcoma-associated Herpesvirus
Kanechlor 500 see Polychlorinated Biphenyls

L

lead acetate see Lead and Lead Compounds
lead arsenate see Arsenic and Inorganic Arsenic Compounds
lead chromates see Chromium Hexavalent Compounds and Lead and Lead Compounds
lead phosphate see Lead and Lead Compounds
lomustine see Nitrosourea Chemotherapeutic Agents, 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea
lubricant base oils see Mineral Oils: Untreated and Mildly Treated

M

MOCA see 4,4'-Methylenebis(2-chloroaniline)
5-MC see Polycyclic Aromatic Hydrocarbons: 15 Listings, 5-Methylchrysene
MCPyV see Viruses (Selected), Merkel Cell Polyomavirus
MCPV see Viruses (Selected), Merkel Cell Polyomavirus
MeCCNU see Nitrosourea Chemotherapeutic Agents, 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea
MelQ see Heterocyclic Amines (Selected), 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline
MelQx see Heterocyclic Amines (Selected), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoline
MNNG see N-Nitrosamines: 15 Listings, N-Methyl-N-nitro-N-nitrosoguanidine
MMVF 33 glass fibers see Certain Glass Wool Fibers (Inhalable)
MMVF 10 see Certain Glass Wool Fibers (Inhalable)
MMVF 10a see Certain Glass Wool Fibers (Inhalable)
MMVF 11 see Certain Glass Wool Fibers (Inhalable)
MOCA see 4,4'-Methylenebis(2-chloroaniline)
MOPP see Nitrogen Mustard Hydrochloride and Procarbazine and Its Hydrochloride
MVNA see N-Nitrosamines: 15 Listings, N-Nitrosomethylvinylamine
mainstream smoke see Tobacco-Related Exposures, Environmental Tobacco Smoke
man-made mineral fibers see Ceramic Fibers (Respirable Size) and Certain Glass Wool Fibers (Inhalable)
Manville 901 glass fiber see Certain Glass Wool Fibers (Inhalable)
mechlorethamine see Nitrogen Mustard Hydrochloride
mechlorethamine hydrochloride see Nitrogen Mustard Hydrochloride
mestranol see Estrogens, Steroidal
metallic arsenic see Arsenic and Inorganic Arsenic Compounds
metallic nickel see Nickel Compounds and Metallic Nickel
methallyl chloride see 3-Chloro-2-methylpropene
4-methoxy-1,3-benzenediamine see 2,4-Diaminoanisole Sulfate
9-methoxy-7H-furo[3,2-g][1]benzopyran-7-one see Methoxsalen with Ultraviolet A Therapy
2-methoxy-5-methylbenzenamine see p-Cresidine
1-methoxy-2-nitrobenzene see o-Nitroanisole
4-methoxy-m-phenylenediamine sulfate see 2,4-Diaminoanisole Sulfate
2-methoxybenzenamine see o-Anisidine and Its Hydrochloride
8-methoxypsoralen see Methoxsalen with Ultraviolet A Therapy
methyl chloromethyl ether see Bis(chloromethyl) Ether and Technical-Grade Chloromethyl Methyl Ether
methyl ester methanesulfonic acid see Methyl Methanesulfonate
methyl eugenol see Methyl Eugenol
methyl 18β-hydroxy-11,17α-dimethoxy-3β,20α-yohimb-16β-carboxylate 3,4,5-trimethoxybenzoate (ester) see Reserpine
2-methylenbenzamine see o-Toluidine
4-methyl-1,3-benzenediamine see 2,4-Diaminotoluene
4-methyl-1,3-butanediene see Isoprene
methyl-CCNU see Nitrosourea Chemotherapeutic Agents, 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea
5-methylchrysene see Polycyclic Aromatic Hydrocarbons: 15 Listings
methylene-bis-o-chloroaniline see 4,4'-Methylenebis(2-chloroaniline)
3-methyl-3H-imidazo[4,5-f]quinolin-2-amine see Heterocyclic Amines (Selected), 2-Amino-3,4-methylimidazo[4,5-f]quinoline (IQ)
2-methyl-4-[(2-methylphenyl)azo]-benzenamine see o-Aminoazotoluene
2-methyl-5-nitro-imidazol-1-ethanol see Metronidazole
6-[(1-methyl-4-nitro-1H-imidazol-5-yl)thio]-1H-purine see Azathioprine
1-methyl-3-nitro-1-nitosoguanidine see N-Nitrosamines: 15 Listings, N-Methyl-N'-nitro-N-nitrosoguanidine
4-(methylnitrosamino)-1-(3-pyridyl)-1-butane see N-Nitrosamines: 15 Listings, 4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butane
2-methyloxirane see Propylene Oxide
methyl-m-phenylene ester see Toluene Diisocyanates
1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine see Heterocyclic Amines (Selected), 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)
methylene chloride see Dichloromethane
4,4'-methylenebis(2-chlorobenzamidine) see 4,4'-Methylenebis(2-chloroaniline)
4,4'-methylenebisbenzenamine see 4,4'-Methylenedianiline and Its Dihydrochloride
4,4'-methylenebisbenzenamine dihydrochloride see 4,4'-Methylenedianiline and Its Dihydrochloride
methyleneedianiline dihydrochloride see 4,4'-Methylenedianiline and Its Dihydrochloride
4,4'-methyleneedianiline dihydrochloride see 4,4'-Methylenedianiline and Its Dihydrochloride
methyleneedianiline dihydrochloride see 4,4'-Methylenedianiline and Its Dihydrochloride
4-(methylnitrosamino)-1-(3-pyridyl)-1-butane see N-Nitrosamines: 15 Listings, 4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butane
methylxiran see Propylene Oxide
Miehler's base see 4,4'-Methylenebis(N,N-dimethyl)benzene
mildly treated mineral oils see Mineral Oils: Untreated and Mildly Treated
mists, strong inorganic acid see Strong Inorganic Acid Mists Containing Sulfuric Acid
Myleran see 1,4-Butanediol Dimethanesulfonate
N

NDEA see N-Nitrosamines: 15 Listings, N-Nitrosodiethylamine

NEU see N-Nitrosamines: 15 Listings, N-Nitroso-N-ethylurea

Ni see Nickel Compounds and Metallic Nickel

NMU see N-Nitrosamines: 15 Listings, N-Nitroso-N-methylurea

NNK see N-Nitrosamines: 15 Listings, 4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone

NNN see N-Nitrosamines: 15 Listings, N-Nitrosornornicotinone

n-propyl bromide see 1-Bromopropane

6-n-propylthiouracil see Propylthiouracil

N-(2-chloroethyl)-N'-cyclohexyl-N'-nitrosourea see Nitrosourea Chemotherapeutic Agents, 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea

N-(2-chloroethyl)-N-(1-methyl-2-phenoxbenzenemethanamine hydrochloride see Phenoxbenzamine Hydrochloride

N-dibutylnitrosamine see N-Nitrosamines: 15 Listings, N-Nitrosodi-n-butylamine

N-(4-ethoxyphenyl)acetamide see Phenacetin and Analgesic Mixtures Containing Phenacetin

N-ethyl-N-nitroso-ethanamine see N-Nitrosamines: 15 Listings, N-Nitrosodiethylamine

N-ethyl-N-nitrosourea see N-Nitrosamines: 15 Listings, N-Nitrosourea

N-2-fluorenylacetamide see 2-Acetylaminofluorene

N-fluoren-2-yl-acetamide see 2-Acetylaminofluorene

N-methyl-N-nitroso-ethylnylanine see N-Nitrosamines: 15 Listings, N-Nitrosomethylvinylamine

N-methyl-N-nitroso-glycine see N-Nitrosamines: 15 Listings, N-Nitrososarcosine

N-methyl-N-nitroso-N'-nitroguanidine see N-Nitrosamines: 15 Listings, N-Methyl-N'-nitro-N-nitroguanidine

N-methyl-N-nitrosomethanamine see N-Nitrosamines: 15 Listings, N-Nitrosodimethylamine

N-methyl-N-nitrosourea see N-Nitrosamines: 15 Listings, N-Nitroso-N-methylurea

N-(1-methylethyl)-4-[2-methylhydrazino)methyl]-benzamide monohydrochloride see Procarbazine and Its Hydrochloride

N-methylvinylnitrosamine see N-Nitrosamines: 15 Listings, N-Nitrosomethylvinylamine

N,N-bis(carboxymethyl)glycine see N-Nitrosamines: 15 Listings, N-Nitrosodiethylamine

N,N'-bis(2-chloroethyl)-N-nitrosourea see N-Nitrosamines: 15 Listings, N-Nitrosodiethylamine

N,N'-bis(2-chloroethyl)-N-nitrosourea see N-Nitrosourea Chemotherapeutic Agents, Bis(chloroethyl) Nitrosourea

N,N'-bis(2-chloroethyl)tetrahydro-2H-1,3,2-oxaphosphorin-2-amine, 2-oxide monohydrate see Cyclophosphamide

N,N'-dibutylthiourosamine see N-Nitrosamines: 15 Listings, N-Nitrosodi-n-butylamine

N,N-ditietylthiocarbamic acid 2-chorallyl ester see Sulfaflate

N,N-dimethyl-4-aminoazobenzene see 4-Dimethylaminazobenzene

N,N-dimethyl-4-(phenylazo)-benzenamine see 4-Dimethylaminobenzene

N-Nitroso-N'-methylglycine see N-Nitrosamines: 15 Listings, N-Nitrososarcosine

N-nitroso-N-propyl-1-propanamine see N-Nitrosamines: 15 Listings, N-Nitrosodi-n-propylamine

N-nitrosodipropylamine see N-Nitrosamines: 15 Listings, N-Nitrosodi-n-propylamine

N-nitrosoethyurea see N-Nitrosamines: 15 Listings, N-Nitroso-N-ethylurea

N-nitrosomethyurea see N-Nitrosamines: 15 Listings, N-Nitroso-N-methylurea

N-nitrosophenylhydroxylamine, ethanolamine salt see Cupferron

naphtho(1,2,3-4-def)chrysene see Polycyclic Aromatic Hydrocarbons: 15 Listings, Dibenzo(a,e)pyrene

β-naphthylamine see 2-Naphthylamine

beta-naphthylamine see 2-Naphthylamine

neutrons see Ionizing Radiation

nickelocene see Nickel Compounds and Metallic Nickel

niclofen see Nitrofen

2-nitroanisole see o-Nitroanisole

nitrochlor see Nitrofen

6-nitrochrysene see Nitroarenes (Selected)

nitrogen mustard see Nitrogen Mustard Hydrochloride

nitropyrene see Nitroarenes (Selected)

4-nitropyrene see Nitroarenes (Selected)

nitrosodibutylamine see N-Nitrosamines: 15 Listings, N-Nitrosodibutylamine

2,2′-(nitrosoimino)bis[ethanol] see N-Nitrosamines: 15 Listings, N-Nitrosodimethylamine

4-nitrosomorpholine see N-Nitrosamines: 15 Listings, N-Nitrosomorpholine

1-nitroso-piperidine see N-Nitrosamines: 15 Listings, N-Nitrosopiperidine

1-(1-nitroso-2-pyrrolidinyl)pyridine see N-Nitrosamines: 15 Listings, N-Nitrosopiperidine

3-(1-nitroso-2-pyrrolidinyl)pyridine see N-Nitrosamines: 15 Listings, N-Nitrosopiperidine

2-nitrotoluene see o-Nitrotoluene

norethindrone see Norethisterone

O

o-o′-DDT see Dichlorodiphenyltrichloroethane

o-p′-DDT see Dichlorodiphenyltrichloroethane

o-aminoanisole see o-Anisidine and Its Hydrochloride

o-dianisidine see 3,3′-Dimethoxybenzidine and Dyes Metabolized to 3,3′-Dimethoxybenzidine

o-tolidine see 3,3′-Dimethoxybenzidine and Dyes Metabolized to 3,3′-Dimethoxybenzidine

octabromobiphenyl see Polybrominated Biphenyls

Oleum see Strong Inorganic Acid Mists Containing Sulfuric Acid

orange 16 see 3,3′-Dimethoxybenzidine and Dyes Metabolized to 3,3′-Dimethoxybenzidine

orthoarsenic acid see Arsenic and Inorganic Compounds

Owens-Corning FG insulation fiberglass with binder see Certain Glass Wool Fibers (Inhalable)

Owens-Corning FM series air filter media see Certain Glass Wool Fibers (Inhalable)

Owens-Corning glass wool see Certain Glass Wool Fibers (Inhalable)

1,2-oxathiolane, 2,2-dioxide see 1,3-Propane Sultone

2-oxetanone see β-Propiolactone

oxiane see Ethylene Oxide

oxiranemethanol see Glycidol

3-oxiranyl-7-oxabicyclo[4.1.0]heptane see 4-Vinyl-1-cyclohexene Diepoxide
4,4'-oxybisbenzenamine see 4,4'-Oxydianiline

P

p-aminobiphenyl see 4-Aminobiphenyl
p-aminodiphenyl see 4-Aminobiphenyl
p-dichlorobenzene see 1,4-Dichlorobenzene
p-dimethylaminoazobenzene see 4-Dimethylaminoazobenzene
p-rosaniline hydrochloride see Basic Red 9 Monohydrate
pp'-DDT see Dichlorodiphenyltrichloroethane
pp'-tetrachlorodiaminodiphenylmethane see 4,4'-Methylenebis(N,N-dimethyl)benzenamine
PAHs see Polycyclic Aromatic Hydrocarbons: 15 Listings
Pb see lead
PBBs see Polychlorinated Biphenyls
PCBs see Polychlorinated Biphenyls
PCDD see 2,3,7,8-Tetrachlorodibenzo-p-dioxin
PhIP see 2-Acetyl-5-amino-3-methylimidazo[4,5-b]pyridine
PROP see Propylthiouracil
PUVA see Methoxsalen with Ultraviolet A Therapy
p-rosaniline hydrochloride see Basic Red 9 Monohydrate
para-aminodiphenyl see 4-Aminobiphenyl
para-dimethylaminoazobenzene see 4-Dimethylaminoazobenzene
paraffins, chlorinated see Chlorinated Paraffins
paraformaldehyde see Formaldehyde
pararosaniline hydrochloride see Basic Red 9 Monohydrate
passive smoke see Tobacco-Related Exposures, Environmental Tobacco Smoke
pentabromobiphenyl see Polychlorinated Biphenyls
pentachlorobiphenyl see Polychlorinated Biphenyls
perc see Tetrachloroethylene
perchloroethylene see Tetrachloroethylene
petroleum see Mineral Oils: Untreated and Mildly Treated
1-phenylalanine, N-[(5-chloro-3,4-di-hydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl)-carbonyl]-, (R)- see Ochratoxin A
3-phenylazo-2,6-diaminopyridine hydrochloride see Phenazopyridine Hydrochloride
3-(phenylazo)-2,6-pyridinediamine monohydrochloride see Phenazopyridine Hydrochloride
2,2'-[phenylenebis(oxymethylene)]bisoxirane see Diglycidyl Resorcinol Ether
phenoxirane see Styrene-7,8-oxide
1,1',1''-phosphinothiolidylnetrisaziridine see Thiotepa
Phthalate esters see Di(2-ethylhexyl) Phthalate
pipe smoking see Tobacco-Related Exposures
piperazine estrone sulfate see Estrogens, Steroidal
platinum, diaminedichloro- see Cisplatin
polychlorinated camphenes see Toxaphene
polychlorocamphene see Toxaphene
polychlorophenols see 2,4,6-Trichlorophenol
polynuclear aromatic hydrocarbons see Polycyclic Aromatic Hydrocarbons: 15 Listings
potassium arsenate see Arsenic and Inorganic Arsenic Compounds
potassium arsenite see Arsenic and Inorganic Arsenic Compounds
potassium chromate see Chromium Hexavalent Compounds
potassium dichromate see Chromium Hexavalent Compounds
pregn-4-ene-3,20-dione see Progesterone
progestin see Progesterone
propane sulfone see 1,3-Propane Sultone
2-propenamide see Acrylamide
2-propenenitrile see Acrylonitrile
5-(2-propenyl)-1,3-benzodioxole see Safrole
n-propyl bromide see 1-Bromopropane
6-propyl-2-thiouracil see Propylthiouracil
6-n-propylthiouracil see Propylthiouracil
propylamine see 2-Methylaziridine
psoralen see Methoxsalen with Ultraviolet A Therapy
pyridine see Phenazopyridine Hydrochloride
 quartz see Silica, Crystalline (Respirable Size)

Q

Rn see Ionizing Radiation, Radon
radiation, ionizing see Ionizing Radiation
radon see Ionizing Radiation
refractory ceramic fibers see Ceramic Fibers (Respirable Size)
resorcinol diglycidyl ether see Diglycidyl Resorcinol Ether
respirable crystalline silica see Silica, Crystalline (Respirable Size)
 p-rosaniline hydrochloride see Basic Red 9 Monohydrate

S

SCCP see Chlorinated Paraffins
sawdust see Wood Dust
Schleicher and Schuell (S&S 106) glass wool fibers see Certain Glass Wool Fibers (Inhalable)
secondhand smoke see Tobacco-Related Exposures, Environmental Tobacco Smoke
Selsun see Selenium Sulfide
semustine see Nitrosourea Chemotherapeutic Agents, 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea
short-chain chlorinated paraffins see Chlorinated Paraffins
sidestream smoke see Tobacco-Related Exposures, Environmental Tobacco Smoke
sintered carbides see Cobalt-Related Exposures, Cobalt–Tungsten Carbide: Powders and Hard Metals
smokeless tobacco see Tobacco-Related Exposures, Smokeless Tobacco
snuff see Tobacco-Related Exposures, Smokeless Tobacco
sodium arsenate see Arsenic and Inorganic Arsenic Compounds
sodium arsenite see Arsenic and Inorganic Arsenic Compounds
sodium chromate see Chromium Hexavalent Compounds
sodium dichromate see Chromium Hexavalent Compounds
sodium equilin sulfate see Estrogens, Steroidal
sodium estrone sulfate see Estrogens, Steroidal
solar radiation see Ultraviolet Radiation Related Exposures
solvent blue 18 (C.I.) see Disperse Blue 1
special-purpose glass fibers see Certain Glass Wool Fibers (Inhalable)
spirits see Alcoholic Beverage Consumption
steroidal estrogens see Estrogens, Steroidal
stilbestrol see Diethylstilbestrol
strontium chromate see Chromium Hexavalent Compounds
styrene oxide see Styrene-7,8-oxide
sulfur mustard see Mustard Gas
sulfuric acid see Strong Inorganic Acid Mists Containing Sulfuric Acid
sunbeds see Ultraviolet Radiation Related Exposures, Sunlamps or Sunbeds, Exposure to
sunlamps see Ultraviolet Radiation Related Exposures
synthetic mineral fibers see Ceramic Fibers (Respirable Size) and Certain Glass Wool Fibers (Inhalable)
synthetic vitreous fibers see Certain Glass Wool Fibers (Inhalable)

TCDD see 2,3,7,8-Tetrachlorodibenzo-\(p\)-dioxin 2,3,7,8-TCDD see 2,3,7,8-Tetrachlorodibenzo-\(p\)-dioxin
TCE see Trichloroethylene
TDI see Toluene Diisocyanates
TEPA see Thiopeta
TFE see Tetrafluoroethylene
TRIS see Tris(2,3-dibromopropyl) Phosphate
Telone II see 1,3-Dichloropropene (Technical Grade)
Tempstran code 100/475 glass fibers see Certain Glass Wool Fibers (Inhalable)
2-tert-butyl-4-hydroxyanisole (2-BHA) see Butylated Hydroxyanisole
3-tert-butyl-4-hydroxyanisole (3-BHA) see Butylated Hydroxyanisole
1,4,5,8-tetraamino-9,10-anthracenedione see Disperse Blue 1
1,4,5,8-tetraaminoanthracenquinone see Disperse Blue 1
tetrachlorobiphenyl see Polychlorinated Biphenyls
tetrachloroethene see Tetrachloroethylene
tetrachloromethane see Carbon Tetrachloride
tetraethyl lead see Lead and Lead Compounds
tetrafluoroethylene see Tetrafluoroethylene
tetramethyl lead see Lead and Lead Compounds
dichlorodiphenyltrichloroethane see 1,3-Dichloropropene (Technical Grade)
trichloroethylene see Trichloroethylene
1,1,2-trichloroethene see Trichloroethylene
1,1-dichloroethylene see Dichloroethylene
trichloromethane see Chloroform
1-(trichloromethyl)benzene see Benzotrichloride
\(\alpha,\alpha,\alpha\)-trichlorotoluene see Benzotrichloride
tridyline see Silica, Crystalline (Respirable Size)
trihexylenetriphosphoramide see Thiopeta
trimethylenemethanesulfonate see 1,4,Butanediol Dimethanesulfonate
trioxane see Formaldehyde
tris(1-aziridinyl)phosphine sulfide see Thiopeta
tryptan blue see 3,3’-Dimethylbenzidine and Dyes Metabolized to 3,3’-Dimethylbenzidine
tungsten carbides see Cobalt-Related Exposures, Cobalt–Tungsten Carbide: Powders and Hard Metals

UMDH see 1,1-Dimethylhydrazine
UVA see Ultraviolet Radiation Related Exposures
UVB see Ultraviolet Radiation Related Exposures
UVC see Ultraviolet Radiation Related Exposures
UVR see Ultraviolet Radiation Related Exposures
unsymmetrical dimethyldihydrazine see 1,1-Dimethyldihydrazine
untreated mineral oils see Mineral Oils: Untreated and Mildly Treated
urethan see Urethane

Vidaza see Azacitidine
4-vinylcyclohexene diepoxy see 4-Vinyl-1-cyclohexene Diepoxide
vinylcyclohexene dioxy see 4-Vinyl-1-cyclohexene Diepoxide
vitreous fibers, synthetic see Certain Glass Wool Fibers (Inhalable)

WC/Co see Cobalt-Related Exposures, Cobalt–Tungsten Carbide: Powders and Hard Metals
wine see Alcoholic Beverage Consumption

xanthotoxin see Methoxsalen with Ultraviolet A Therapy
X-radiation see Ionizing Radiation
X-rays see Ionizing Radiation, X-Radiation and Gamma Radiation

yohimban-16-carboxylic acid, 11,17-dimethoxy-18-[\(\beta\)-2\(\beta\)];\(\beta\)-Opten, (3\(\beta\),16\(\beta\),17\(\alpha\),18\(\beta\),20\(\alpha\))- see Reserpin

(Z)-1,3-dichloropropene see 1,3-Dichloropropene (Technical Grade)
(Z)-2-[\(\text{-2\(\beta\),1-\(\text{dipheny}l\text{but-1-\text{enylphenoxy}\text{-}\(N,\text{V-dimethylethanamine see Tamoxifen}}\right)\)
Zanosar see Streptozocin
zeolites see Erionite
zinc beryllium silicate see Beryllium and Beryllium Compounds
zinc chromates see Chromium Hexavalent Compounds
zinc yellow see Chromium Hexavalent Compounds
Appendix G:
List of Substances by CAS Number

50-00-0 see Formaldehyde
50-18-0 see Cyclophosphamide
50-29-3 see Dichlorodi phenyltrichloroethane
50-32-8 (benzo[a]pyrene) see Polycyclic Aromatic Hydrocarbons: 15 Listings
50-55-5 see Reserpine
51-52-5 see Propylthiouracil
51-79-6 see Urethane
52-24-4 see Thiopeta
53-70-3 (dibenz[a]anthracene) see Polycyclic Aromatic Hydrocarbons: 15 Listings
53-96-3 see 2-Acetylaminofluorene
55-18-5 (4-Nitrosodiethylamine) see N-Nitrosamines: 15 Listings
55-86-7 see Nitrogen Mustard Hydrochloride
55-98-1 see 1,4-Butanediol Dimethylsulfonate
56-23-5 see Carbon Tetrachloride
56-53-1 see Diethylstilbestrol
56-55-3 (benzo[a]anthracene) see Polycyclic Aromatic Hydrocarbons: 15 Listings
56-75-7 see Chloramphenicol
57-14-7 see 1,1-Dimethylhydrazine
57-41-0 (phenytoin) see Phenytin and Phenytin Sodium
57-57-8 see N-Propionylcysteine
57-83-0 see Progestosterone
58-89-9 (lindane) see Lindane, Hexachlorocyclohexane (Technical Grade), and Other Hexachlorocyclohexane Isomers
59-89-2 (N-nitrosomorpholine) see N-Nitrosamines: 15 Listings
60-11-7 see 4-Dimethylaminoazobenzene
61-82-5 see Amitrole
62-44-1 (phenacetin) see Phenacetin and Analgesic Mixtures Containing Phenacetin
62-50-0 see Ethylmethanesulfonate
62-55-5 see Thioacetamide
62-56-6 see Thiouracil
62-75-9 (N-nitrosodiethylamine) see N-Nitrosamines: 15 Listings
63-92-3 see Phenoxazin-2(1H)-one Hydrochloride
64-67-5 see Diethyl Sulfate
66-27-3 see Methyl Methanesulfonate
67-66-3 see Chloroform
67-72-1 see Hexachloroethane
68-22-4 see Norethisterone
70-25-7 (N-methyl-N-nitro-N-nitrosoguanidine) see N-Nitrosamines: 15 Listings
71-43-2 see Benzene
75-01-4 (vinyl chloride) see Vinyl Halides (Selected)
75-02-5 (vinyl fluoride) see Vinyl Halides (Selected)
75-07-0 see Acetaldehyde
75-09-2 see Dichloromethane
75-21-8 see Ethylene Oxide
75-27-4 see Bromodichloromethane
75-52-5 see Nitromethane
75-55-8 see 2-Methylazidine
75-56-9 see Propylene Oxide
77-09-8 see Phenolphthalein
77-78-1 see Dimethyl Sulfate
78-79-5 see Isoprene
79-01-6 see Trichloroethylene
79-06-1 see Acrylamide
79-44-7 see Dimethylcarbamoyl Chloride
79-46-9 see 2-Nitropropane
81-49-2 see 1-Amino-2,4-Dibromoanthaquinone
82-28-0 see 1-Amino-2-Methylanthraquinone
87-86-5 (pentachlorophenol) see Pentachlorophenol and By-products of Its Synthesis
88-06-2 see 2,4,6-Trichlorophenol
88-72-2 see o-Nitrotoluene
90-04-0 (o-anisidine) see o-Anisidine and Its Hydrochloride
90-94-8 see Michler's Ketone
91-08-7 (2,6-toluene disosyanate) see Toluene Disocyanates
91-20-3 see Naphthalene
91-23-6 see o-Nitroanisole
91-59-8 see 2-Naphthylamine
91-94-1 (3,3’-dichlorobenzidine) see 3,3’-Dichlorobenzidine and Its Hydrochloride
92-67-1 see 4-Aminobiphenyl
92-87-5 (benzidine) see Benzidine and Dyes Metabolized to Benzidine
93-15-2 see Methyleneugenol
94-59-7 see Safrole
95-06-7 see Sulfolane
95-53-4 (o-toluidine) see o-Toluidine and Its Hydrochloride
95-69-2 (p-chloro-o-toluidine) see p-Chloro-o-toluidine and Its Hydrochloride
95-80-7 see 2,4-Diaminotoluene
95-83-0 see 4-Chloro-o-phenylenediamine
96-09-3 see Styrene-7,8-oxide
96-12-8 see 1,2-Dibromo-3-chloropropane
96-13-9 see 2,3-Dibromo-1-propanol
96-18-4 see 1,2,3-Trichloropropane
96-45-7 see Ethylene Thiourea
97-56-3 see o-Aminooazotoluene
98-07-7 see Benzotrichloride
98-82-8 see Cumene
98-95-3 see Nitrobenzene
100-42-5 see Styrene
100-75-4 (N-nitrosopiperidine) see N-Nitrosamines: 15 Listings
101-14-4 see 4,4’-Methylenebis(2-chloroaniline)
101-61-1 see 4,4’-Methylenebis[N,N-dimethyl]benzeneamine
101-77-9 (4,4’-methyleneedianilide) see 4,4’-Methyleneedianilide and its Dichlorohydroxyamine
101-80-4 see 4,4’-Oxydianiline
101-90-6 see Diglycidyl Resorcinol Ether
106-46-7 see 1,4-Dichlorobenzene
106-87-6 see 4-Vinyl-1-cyclohexene Diepoxide
106-89-8 see Epichlorohydrin
106-93-4 see 1,2-Dibromoethane
106-94-5 see 1-Bromopropane
106-99-8 see 1,3-Butadiene
107-06-2 see 1,2-Dichloroethane
107-13-1 see Acrylonitrile
107-30-2 (chloromethyl methyl ether) see Bis(chloromethyl) Ether and Technical-Grade Chloromethyl Methyl Ether
110-00-9 see Furan
115-28-6 see Chloroform
116-14-7 see Tetrafluoroethylene
117-10-2 see Danthon
117-79-3 see 2-Aminoantraquinone
117-81-7 see Di(2-ethylhexyl) Phthalate
118-74-1 see Hexachlorobenzene
119-90-4 (3,3’-dimethoxybenzidine) see 3,3’-Dimethoxybenzidine and Dyes Metabolized to 3,3’-Dimethoxybenzidine
119-93-7 (3,3’-dimethylbenzidine) see 3,3’-Dimethylbenzidine and Dyes Metabolized to 3,3’-Dimethylbenzidine
120-71-8 see p-Cresidine
122-66-7 see Hydrazobenzene
123-91-1 see 1,4-Dioxane
126-72-7 see Tris(2,3-dibromopropyl) Phosphate
126-99-8 see Chloroprene
127-18-4 see Tetrachloroethylene
131-52-2 (pentachlorophenol, sodium salt) see Pentachlorophenol and By-products of Its Synthesis
134-29-2 (o-anisidine hydrochloride) see o-Anisidine and Its Hydrochloride
135-20-6 see Cupferron
136-35-6 see Diazaaminobenzene
136-40-3 see Phenazopyridine Hydrochloride
139-13-9 see Nitrilotriacetic Acid
139-65-1 see 4,4’-Thiodianiline
143-30-0 see Keone
148-82-3 see Melphalan
154-93-8 bis[chloroethyl] nitrosourea see Nitrosourea Chemotherapeutic Agents
189-55-9 (dibenz[a,i]pyrene) see Polycyclic Aromatic Hydrocarbons: 15 Listings
189-64-0 (dibenz[a,i]pyrene) see Polycyclic Aromatic Hydrocarbons: 15 Listings
191-30-0 (dibenz[a,i]pyrene) see Polycyclic Aromatic Hydrocarbons: 15 Listings
National Toxicology Program, Department of Health and Human Services