Chromium Hexavalent Compounds

CAS No. 18540-29-9

Known to be human carcinogens

Carcinogenicity

Chromium hexavalent (VI) compounds are known to be human carcinogens based on sufficient evidence of carcinogenicity from studies in humans.

Cancer Studies in Humans

Epidemiological studies in various geographical locations have consistently reported increased risks of lung cancer among workers engaged in chromate production, chromate pigment production, and chromium plating. Epidemiological studies of lung cancer among ferrochromium workers were inconclusive. Exposure to specific chromium compounds varies by industry. Chromate-production workers are exposed to a variety of chromium compounds, including hexavalent (VI) and trivalent (III) compounds. Chromate-pigment workers are exposed to chromates in the pigment and to soluble chromium(VI) compounds used in pigment production. Chrome platers are exposed to soluble chromium(VI) compounds and possibly to nickel. Ferrochromium workers are exposed mainly to chromium(III) compounds and possibly to chromium(VI) compounds. Epidemiological studies of stainless-steel welders exposed to chromium(VI) compounds also found an increased risk of lung cancer; however, these studies are of limited use for evaluation of chromium's carcinogenicity, because the welders were also exposed to other potential carcinogens. In addition, epidemiological studies of chromate production workers, chromate pigment workers, and chrome platers found an increased risk of a rare cancer of the sinonasal cavity. The data for cancer at sites other than the lung and sinonasal cavity were unclear. The International Agency for Research on Cancer concluded that there was sufficient evidence in humans for the carcinogenicity of chromium(VI) compounds as encountered in the chromate- and chromate pigment-production, and chromium-plating industries (IARC 1973, 1979, 1990).

Cancer Studies in Experimental Animals

Exposure to chromium(VI) compounds (calcium chromate, chromium trioxide, or sodium dichromate) via inhalation or intratracheal or intrabronchial implantation caused benign and/or malignant lung tumors in rats and/or mice. Intrabronchial implantation of zinc chromate or strontium chromate also caused bronchial tumors in rats, and inhalation exposure to chromium trioxide caused benign nasal tumors in mice. In addition, cancer at the injection site was observed in rats following administration of chromium compounds (calcium chromate, lead chromate, basic lead chromate, zinc chromate, or strontium chromate) by intrapleural, subcutaneous, or intramuscular injection and in mice following intramuscular injection of calcium chromate (IARC 1980, 1990). IARC (1990) concluded that there was sufficient evidence in experimental animals for the carcinogenicity of calcium chromate, lead chromates, strontium chromate, and zinc chromates and limited evidence for the carcinogenicity of chromium trioxide and sodium dichromate.

Since chromium hexavalent compounds were reviewed for listing in the First Annual Report on Carcinogens and reviewed by IARC in 1990, the National Toxicology Program has conducted two-year cancer studies of sodium dichromate in rats and mice. Sodium dichromate administered in the drinking water caused cancer of the oral cavity (squamous-cell carcinoma of the oral mucosa) in rats and increased the combined incidence of benign and malignant tumors (adenoma and carcinoma) of the small intestine (duodenum, jejunum, or ileum) in mice (NTP 2008).

Studies on Mechanisms of Carcinogenesis

Chromosomal aberrations, sister chromatid exchange, and aneuploidy were observed in workers exposed to chromium(VI) compounds. Chromium(VI) compounds also caused genetic damage in a variety of test systems. Most caused mutations and DNA damage in bacteria; however, the poorly soluble compounds had to be dissolved in acids or alkalis to produce genetic effects. A few compounds also caused mutations in yeast and insects. Many chromium(VI) compounds caused genetic damage in cultured human and other animal cells and in experimental animals exposed in vivo. The compounds tested included ammonium chromate and dichromate, calcium chromate, chromium trioxide, sodium chromate and dichromate, potassium chromate and dichromate, strontium chromate, and the industrial product basic zinc chromate (zinc yellow). Among the types of genetic damage observed were gene mutations (including dominant lethal mutations), DNA damage, sister chromatid exchange, chromosomal aberrations, and cell transformation (IARC 1990).

IARC (1990) concluded that there was sufficient evidence in humans for the carcinogenicity of chromium(VI) compounds based on the combined results of epidemiological studies, cancer studies in experimental animals, and evidence that chromium(VI) ions generated at critical sites in the target cells were responsible for the carcinogenic action observed.

Properties

Elemental chromium is a transition-group metal belonging to group VIB of the periodic table and has oxidation states ranging from −2 to +6, of which the divalent (+2, II), trivalent (+3, III), and hexavalent (+6, VI) forms are the most important. Elemental chromium does not occur naturally in the environment. The divalent (chromous) state is readily oxidized to the more stable trivalent (chromic) state. Although the hexavalent state (including chromates) is more stable than the divalent state, it is rarely found in nature. Chromium(VI) compounds are strong oxidizing agents and are highly corrosive. In the environment, they generally are reduced to chromium(III) compounds. The chromium(VI) compounds most commonly encountered in industry are calcium chromate, chromium trioxide, sodium chromate and dichromate, potassium chromate and dichromate, lead chromate, strontium chromate, and zinc chromate (IARC 1990, Costa 1997). However, this listing applies to all hexavalent chromium compounds, not just to those specified above.

Calcium chromate occurs as yellow crystals or a bright-yellow powder. It is slightly soluble in water and soluble in dilute acids, and it reacts with acids and ethanol. Although calcium chromate is not flammable, toxic chromium fumes may be formed in fires, and mixtures with boron burn violently when ignited. Chromium trioxide (also known as chromic trioxide) occurs as dark-red or brown crystals, flakes, or granular powder and is soluble in water, ethyl alcohol, ethyl ether, sulfuric acid, and nitric acid. Contact of chromium trioxide with organic chemicals may result in violent or explosive reactions, and fires with chromium trioxide may produce irritating, corrosive, and toxic gases (ATSDR 2000, HSDB 2009). Lead chromate occurs as yellow, orange, or red crystals or a yellow or orange-yellow powder that is insoluble in water, acetic acid, and ammonia but soluble in dilute nitric acid. When heated, it emits highly toxic fumes, and it may react explosively with azo dyes. The term “lead chromate” is also used to refer to various commercial lead chromate pigments (IARC...
Potassium chromate occurs as yellow crystals and is soluble in water but insoluble in ethanol. Potassium dichromate occurs as red or orange-red crystals and is soluble in water but insoluble in ethanol and acetone. It poses a dangerous fire risk when in contact with organic materials or finely divided combustible materials, such as sawdust (ATSDR 2000, HSDB 2009).

Sodium chromate occurs as yellow crystals and is soluble in water and slightly soluble in methanol. Although it is not flammable, toxic chromium oxide fumes may be formed in fires with sodium chromate (ATSDR 2000, HSDB 2009). Sodium dichromate occurs as bright orange-red or red hygroscopic crystals and is soluble in water and methanol. It reacts explosively with hydrazine, acetic anhydride, boron, silicon, and other materials (IARC 1980, HSDB 2009). Strontium chromate occurs as yellow monoclinic crystals or a yellow powder. It is slightly soluble in water and soluble in dilute hydrochloric acid, nitric acid, and acetic acid. It is not flammable but reacts explosively with hydrazine (HSDB 2009). Zinc chromate occurs as lemon-yellow crystals or powder. It is insoluble in cold water and acetone, sparingly soluble in hot water, and soluble in acid and liquid ammonia. Zinc chromate reacts explosively with hydrazine. The term “zinc chromate” is also used to refer to various commercial zinc and zinc potassium chromates (IARC 1990, HSDB 2009). Physical and chemical properties of these chromium(VI) compounds are listed in the following table, along with their chemical formulas.

Use

The steel industry is the major consumer of chromium. In 2007, estimated consumption of chromium in the United States by end use was 78% in stainless and heat-resistant steel, 13.8% for other steel uses, 3.7% in superalloys, and 4.5% in other alloys and end uses (Papp 2009). Alloys of stainless steel and chromium typically contain between 11.5% and 30% chromium (ATSDR 2000). Chromium(VI) compounds are widely used as corrosion inhibitors, in the manufacture of pigments, in metal finishing and chrome plating, in stainless steel production, in leather tanning, and in wood preservatives (Costa 1997, ATSDR 2000). In 1996, about 52% of all chromium compounds used in the U.S. chemical industry were used in production of wood preservatives; the rest were used in leather tanning (13%), metals finishing (13%), pigments (12%), refractories (linings for high-temperature industrial furnaces) (3%), and other uses (7%) (ATSDR 2000). The use of chromium(VI) compounds in wood preservatives increased dramatically from the late 1970s to the early 2000s; however, this use is expected to decrease because of a voluntary phase-out of all residential uses of wood treated with chromated copper arsenate (pressure-treated wood) that went into effect December 31, 2003 (Brooks 2009). Chromium(VI) compounds are also used in textile-dyeing processes, printing inks, drilling muds, pyrotechnics, water treatment, and chemical synthesis (HSDB 2009).

Calcium chromate is used primarily as a corrosion inhibitor and as a depolarizer in batteries (IARC 1973, 1990, HSDB 2009). Chromium trioxide is used primarily in chrome plating and other metal finishing (particularly in the production of automobiles and military aircraft), in production of wood preservatives, as a corrosion inhibitor, and in production of organic chemicals and catalysts. Lead chromate has been used in paints and printing inks and as a colorant in vinyl, rubber, and paper. Potassium chromate is used in production of dyes and in textile-dyeing processes. Potassium dichromate has largely been replaced by sodium dichromate in many applications; however, it is still used in photomechanical processes and production of pigments and wood preservatives. Sodium chromate is used as a corrosion inhibitor and in textile dyeing processes, inks, paints, leather tanning, wood preservatives, drilling muds, cutting oils, water treatment, and production of other chromium compounds. Sodium dichromate is the primary base material for the production of chromium compounds and is used as a corrosion inhibitor, in metal treatments, in drilling muds, and in the production of dyes, wood preservatives, synthetic organic chemicals, and catalysts. Strontium chromate is used as a corrosion inhibitor and metal conditioner, in aluminum flake coatings, as a colorant in polychloride, in pyrotechnics, in chrome plating, and for sulfate ion control in electro-chemical processes. Zinc chromates are used as corrosion inhibitors and metal conditioners and in paints, varnishes, and oil colors.

Production

The United States is one of the world’s leading producers of chromium compounds. U.S. primary production levels of chromium (i.e., mine production of chromite ore) have not been reported since 1961 (USGS 2010). One surface mine was developed in the United States in the mid to late 2000s (Papp 2009, 2010), but production levels have not been reported. Other domestic sources of chromium include recycled stainless-steel scrap, industry stocks, and the Defense National Stockpile. In 2009, the U.S. chromium supply from recycled stainless-steel scrap was 160,000 metric tons (353 million pounds), down from an average of 174,000 metric tons (383 million pounds) from 2000 to 2008 (Papp 2010, USGS 2010). The supply from industry stocks was not reported for 2009; however, this source supplied an average of 10,200 metric tons (23 million pounds) from 2000 to 2008. The government stockpile releases in 2009 were 1,000 metric tons (2.2 million pounds), down from an average of 464,000 metric tons (1 billion pounds) from 2000 to 2008. In 2009, U.S. imports of chromium were 150,000 metric tons (331 million pounds), down from an average of 455,000 from 2000 to 2008, and exports were 50,000 metric tons (110 million pounds), down from an average of 181,000 metric tons (400,000 pounds) (Papp 2010). In 2009, apparent consumption of chromium was 260,000 metric tons (573 million pounds), down from average of 538,000 metric tons (1.2 billion pounds) from 2000 to 2008. U.S. production of calcium chromate in 1977 was at least 5,450 kg (12,000 lb); no other production data and no U.S. import or export data were found. In the late 1970s and early 1980s, annual U.S. pro-

Table: Chromium(VI) Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>Molec. wt.</th>
<th>Density (g/cm³)</th>
<th>Melting pt.</th>
<th>Dec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chromate</td>
<td>CaCrO₄</td>
<td>156.1</td>
<td>2.89</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Chromium trioxide</td>
<td>CrO₃</td>
<td>100.0</td>
<td>2.70</td>
<td>197°C</td>
<td>yes</td>
</tr>
<tr>
<td>Lead chromate</td>
<td>PbCrO₄</td>
<td>323.2</td>
<td>6.12</td>
<td>844°C</td>
<td>yes</td>
</tr>
<tr>
<td>Potassium chromate</td>
<td>K₂CrO₇</td>
<td>194.2</td>
<td>2.73</td>
<td>975°C</td>
<td>NR</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>K₂Cr₂O₇</td>
<td>294.2</td>
<td>2.68</td>
<td>398°C</td>
<td>~500°C</td>
</tr>
<tr>
<td>Sodium chromate</td>
<td>Na₂CrO₄</td>
<td>162.0</td>
<td>2.72</td>
<td>792°C</td>
<td>NR</td>
</tr>
<tr>
<td>Sodium dichromate</td>
<td>Na₂Cr₂O₇</td>
<td>262.0</td>
<td>2.52</td>
<td>357°C</td>
<td>400°C</td>
</tr>
<tr>
<td>Strontium chromate</td>
<td>SrCrO₄</td>
<td>203.6</td>
<td>3.90</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Zinc chromate</td>
<td>ZnCrO₄</td>
<td>181.4</td>
<td>3.40</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Source: HSDB 2009. *Source specifies the temperature at which density was determined for some but not all of the compounds. Dec. = decomposes; NR = not reported.

Report on Carcinogens, Fourteenth Edition

National Toxicology Program, Department of Health and Human Services
duction of chromium trioxide was around 30 million kilograms (66 million pounds). Annual production capacity was 52 million kilograms (115 million pounds) in 1988; no more recent data were found. Annual U.S. imports of chromium trioxide ranged from 200,000 kg (440,000 lb) in 1977 to 16.5 million kilograms (36.4 million pounds) in 2002; 2008 imports were 8.9 million kilograms (19.6 million pounds). U.S. exports of chromium trioxide were 4.1 million kilograms (9 million pounds) in 1977, 11.6 million kilograms (25.6 million pounds) in 2000, 8.4 million kilograms (18.5 million pounds) in 2002, and 17.4 million kilograms (38.4 million pounds) in 2008 (IARC 1990, HSDB 2009, USITC 2009).

In 1966, U.S. production of potassium chromate and dichromate combined was estimated at 2.6 million to 3.8 million kilograms (5.7 million to 8.4 million pounds). Production of potassium dichromate declined throughout the 1970s, from 3.2 million kilograms (7.1 million pounds) in 1972 to 1.0 million kilograms (2.2 million pounds) in 1978. No more recent production data for potassium chromate or dichromate were found. In the mid 1980s, combined annual U.S. imports of potassium chromate and dichromate ranged from 580,000 kg (1.3 million pounds) to 1.0 million kilograms (2.2 million pounds) (IARC 1990). U.S. imports of potassium dichromate were 189,000 kg (416,000 lb) in 2002 but only 5,000 kg (11,000 lb) in 2008, while U.S. exports decreased from 26,000 kg (57,000 lb) to 77,000 kg (170,000 lb) (USITC 2009).

The United States produced 139,000 short tons of sodium chromate and dichromate combined in 1998 and 140,700 short tons in 1999 (HSDB 2009). U.S. imports of sodium chromate and dichromate were 4.2 million kilograms (9.3 million pounds) in 1982. Imports of sodium dichromate only were 18.8 million kilograms (41.4 million pounds) in 2002 and 33 million kilograms (72.8 million pounds) in 2008. U.S. exports of sodium chromate and dichromate were 8.8 million kilograms (19.4 million pounds) in 1985 and 26.3 million kilograms (58 million pounds) in 1999. Exports of sodium dichromate only were 12.6 million kilograms (27.8 million pounds) in 2002 and 31.3 million kilograms (69 million pounds) in 2008 (HSDB 2009, USITC 2009).

The United States produced 680,000 kg (1.5 million pounds) of strontium chromate in 1970 (IARC 1990). No other production data were found. U.S. imports of strontium chromate were 300,000 kg (660,000 lb) in 1978, 250,000 kg (550,000 lb) in 1982, 180,000 kg (400,000 lb) in 1984, 390,000 kg (860,000 lb) in 1985, and 120,000 kg (265,000 lb) in 1986 and 1987 (IARC 1990, HSDB 2009). No data on U.S. exports were found. The United States produced 30.6 million kilograms (67 million pounds) of lead chromate in 1972 (HSDB 2009). In 1976 and 1977, 20 million kilograms (44 million pounds) of lead chromate were used annually to produce chrome yellow and chrome orange pigments (IARC 1990). No production data were found for zinc chromate. U.S. imports of lead and zinc chromate combined were 289,000 kg (638,000 lb) in 2000, 135,500 kg (300,000 lb) in 2002, and 8.9 million kilograms (19.6 million pounds) in 2008. U.S. exports were 287,500 kg (634,000 lb) in 2000 and 125,000 kg (275,000 lb) in 2002 (USITC 2009). In 2008, no lead or zinc chromate was imported or exported.

Exposure

Chromium, in the form of unidentified chromium compounds, occurs naturally in the earth’s crust and is widely distributed in air, water, soil, and food. Chromium(III) is an essential trace element in humans. The general population is exposed to some chromium(VI) compounds, but the levels of exposure vary. Environmental exposure specifically to chromium(VI) compounds is difficult to quantify, because specific forms of chromium seldom are identified in exposure studies. Although chromium(VI) compounds in the environment may be reduced to chromium(III) compounds, hexavalent forms can persist under some conditions. The general population may be exposed to chromium(VI) compounds through inhalation of ambient air, ingestion of water, or dermal contact with products that contain chromium(VI) compounds, such as pressure-treated wood. People who live near industrial facilities that use chromium(VI) compounds or near chromium waste disposal sites have the greatest potential for exposure (ATSDR 2000).

A 1990 study reported the average concentration of chromium(VI) to be 0.0012 μg/m³ (range = < 0.001 to 3 μg/m³) in indoor air samples collected from residences in Hudson County, New Jersey. Other reports of exposure to chromium were not specific for chromium(VI) compounds, but provide general information on exposure to chromium and chromium compounds. Between 1977 and 1984, typical total chromium concentrations in ambient air in the United States were less than 0.01 μg/m³ in rural areas and 0.01 to 0.03 μg/m³ in urban areas. Average atmospheric concentrations of chromium from more than 2,100 monitoring stations ranged from 0.005 to 0.525 μg/m³. A survey of more than 3,800 tap water samples in 1974 and 1975 found chromium concentrations ranging from 0.4 to 8.0 μg/L, with a mean of 1.8 μg/L. In surveys of U.S. surface waters, chromium concentrations in rivers ranged from less than 1 to 30 μg/L, and concentrations in lakes typically were less than 5 μg/L. Typical chromium levels in most fresh foods are low; chromium was detected in vegetables, fruits, grains, cereals, eggs, meat, and fish at concentrations of between 20 and 520 μg/kg. The mean daily dietary intake of chromium was estimated to be less than 0.2 to 0.4 μg from air, 2.0 μg from water, and 60 μg from food (ATSDR 2000).

According to the U.S. Environmental Protection Agency’s Toxics Release Inventory, environmental releases of chromium compounds since reporting began in 1988 were lowest in 2001 (about half the average from 1988 to 2000). In 2007, 1,384 facilities released 12 million pounds of chromium, and 1,147 facilities released 51 million pounds of chromium compounds. The 100 facilities with the largest releases accounted for most of the total amounts released (TRI 2008).

Most occupational exposure to chromium(VI) compounds is through inhalation or dermal contact. Exposure to specific chromium compounds varies by industry. Chrome production workers are exposed to a variety of chromium compounds, including chromium(VI) and chromium(III) compounds. Chromite pigment workers are exposed to chromates in the pigment and to soluble chromium(VI) compounds used in pigment production. Chrome platers are exposed to soluble chromium(VI) compounds and possibly to nickel. Ferrochromium workers are exposed mainly to chromium(III) compounds and possibly to chromium(VI) compounds.

Occupational exposure to chromium generally exceeds nonoccupational exposure. However, concentrations of airborne chromium in workplaces have declined significantly since the 1980s because of improved emission controls. Typical concentration ranges for airborne chromium(VI) in industries that use chromium(VI) compounds are as follows: stainless-steel welding, 50 to 400 μg/m³; chrome plating, 100 to 500 μg/m³; ferrochrome alloy production, 10 to 140 μg/m³; and chrome pigment production, 60 to 600 μg/m³ (IARC 1990, ATSDR 2000). In the tanning industry, hide is soaked with chromium(VI) compounds in the presence of other chemicals that reduce them to chromium(III) compounds (Costa 1997); therefore, exposure in the tanning industry is almost exclusively to soluble chromium(III) (ATSDR 2000). In a study assessing chromium exposure among stainless-steel welders and mild-steel welders, chromium levels in blood, plasma, and urine were higher among the stainless-steel welders, particularly...
those engaged in manual metal arc welding, which produces fumes with high concentrations of total water-soluble chromium, mainly chromium(VI) (which constituted up to 61% of total soluble chromium) (Edme et al. 1997).

The National Occupational Hazard Survey (conducted from 1972 to 1974) estimated that 16,576 workers potentially were exposed to chromium (types and compounds not specified), 42,043 to potassium dichromate, and 3,519 to calcium chromate (NIOSH 1976). The National Occupational Exposure Survey (conducted 1981 to 1983) estimated that 386,142 workers, including 10,433 women, potentially were exposed to chromium; 61,073, including 19,198 women, to potassium dichromate; 32,129, including 5,565 women, to calcium chromate; and 30,784, including 8,856 women, to lead chromate (NIOSH 1990).

Regulations

Department of Transportation (DOT)
Chromium hexavalent compounds are considered hazardous materials, and special requirements have been set for marking, labeling, and transporting these materials.

Environmental Protection Agency (EPA)
Clean Air Act
Specified color additives may contain chromium at levels no greater than 50 ppm.

Clean Water Act
Numerous hexavalent chromium compounds are designated as hazardous substances.

Comprehensive Environmental Response, Compensation, and Liability Act
Reportable quantity (RQ) = 5,000 lb for chromium; = 10 lb for chromic acid, sodium chromate, ammonium chromate, potassium chromate, strontium chromate, calcium chromate, lithium chromate, potassium bichromate, ammonium bichromate, sodium dichromate; = 1,000 lb for chronic acid, chronic sulfate.

Emergency Planning and Community Right-To-Know Act
Toxics Release Inventory: Chromium compounds are listed substances subject to reporting requirements.

Federal Insecticide, Fungicide, and Rodenticide Act
Wood intended to be used in residential settings cannot be treated with chromated copper arsenate.

Resource Conservation and Recovery Act
Characteristic Hazardous Waste: Toxicity characteristic leaching procedure (TCLP) threshold = 5.0 mg/L for chromium.

Listed Hazardous Waste: Waste codes for which the listing is based wholly or partly on the presence of chromium hexavalent compounds = F006, F019, K002, K003, K004, K005, K006, K007, K008, K048, K049, K050, K051, K061, K062, K069, K086, K100; on the presence of chromium = F032, F034, F035, F037, F038.

Chromium compounds are listed as hazardous constituents of waste.

Safe Drinking Water Act
Maximum contaminant level (MCL) = 0.1 mg/L for total chromium.

Food and Drug Administration (FDA)
Maximum permissible level of chromium in bottled water = 0.1 mg/L.

Specified color additives may contain chromium (as chromates) under certain restrictions. Specified color additives may contain chromium at levels no greater than 50 ppm. Hydrolized leather meal used in the feed of animals may contain chromium at levels not to exceed 2.75% of the total by weight; finished feeds may not contain more than 1% hydrolized leather meal by weight.

Occupational Safety and Health Administration (OSHA)
While this section accurately identifies OSHA’s legally enforceable PELs for this substance in 2010, specific PELs may not reflect the more current studies and may not adequately protect workers. Permissible exposure limit (PEL) = 0.005 mg/m³ for hexavalent chromium and compounds; = 1.0 mg/m³ where the limit of 0.005 mg/m³ has been stayed or otherwise is not in effect. Comprehensive standards have been developed for occupational exposure to hexavalent chromium in any form and in any compound.

Guidelines

American Conference of Governmental Industrial Hygienists (ACGIH)
Threshold limit value – time-weighted average (TLV-TWA) = 0.05 mg/m³ for water-soluble chromium(VI) compounds; = 0.01 mg/m³ for insoluble chromium(VI) compounds.

Biological exposure index (BEI) (end of shift at end of workweek) = 25 µg/L for total chromium in urine; (increase during shift) = 10 µg/L for total chromium in urine.

National Institute for Occupational Safety and Health (NIOSH)
Immediately dangerous to life and health (IDLH) limit = 15 mg/m³ as hexavalent chromium for chronic acid and chromates. Recommended exposure limit (REL) (time-weighted-average workday) (8-h TWA) = 0.0002 mg/m³ (as hexavalent chromium).

NIOSH considers all hexavalent chromium compounds to be potential occupational carcinogens (based on listings for chronic acid and chromates and for chromyl chloride).

References

