Furan
CAS No. 110-00-9

Reasonably anticipated to be a human carcinogen

Carcinogenicity
Furan is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.

Cancer Studies in Experimental Animals
Oral exposure to furan caused tumors at several different tissue sites in mice and rats. Administration of furan by stomach tube for up to two years caused benign and/or malignant liver tumors (hepatocellular adenoma or carcinoma) in mice and rats of both sexes. It also caused bile-duct cancer (cholangiocarcinoma) and mononuclear-cell leukemia in rats of both sexes and benign adrenal-gland tumors (pheochromocytoma) in mice of both sexes (NTP 1993). Similar administration of furan to male rats for 9 to 13 weeks caused bile-duct cancer (cholangiocarcinoma) by 16 months after the end of exposure (Maronpot et al. 1991, Elmore and Sirica 1993). Since furan was listed in the Eighth Report on Carcinogens, an additional study in mice has been identified. Intraperitoneal injection of furan caused benign or malignant liver tumors (hepatocellular adenoma or carcinoma) in newborn male mice (Johansson et al. 1997).

Cancer Studies in Humans
No epidemiological studies were identified that evaluated the relationship between human cancer and exposure specifically to furan.

Studies on Mechanisms of Carcinogenesis
In bacteria, furan caused gene mutations in Salmonella typhimurium strain TA100 (Lee et al. 1994) and in Escherichia coli containing bacteriophage T7 (Ronto et al. 1992), but not in S. typhimurium strains TA98 (Lee et al. 1994), TA1535, or TA1537 (Mortelmans et al. 1986). It did not cause gene mutations in Drosophila melanogaster (Fourem et al. 1994). In mammalian in vitro systems, it caused gene mutations in mouse lymphoma cells (McGregor et al. 1988). DNA damage in Chinese hamster ovary (CHO) cells (NTP 1993), and chromosomal damage in CHO cells with mammalian metabolic activation (NTP 1993, IARC 1995), but it did not cause DNA damage in mouse or rat hepatocytes (Wilson et al. 1992, NTP 1993). In mammalian in vivo systems, furan caused chromosomal aberrations in bone marrow of mice (NTP 1993, Johansson 1997), but did not cause DNA damage in mouse bone marrow or hepatocytes or rat hepatocytes (Wilson et al. 1992, NTP 1993).

A current hypothesis for the mechanism of furan-induced carcinogenesis is metabolic activation of furan by cytochrome P450 to a reactive and cytotoxic intermediate that stimulates cell replication, increasing the likelihood of tumor induction (Kedderis et al. 1993, Chen et al. 1995). The postulated reactive metabolite is cis-2-butene-1,4-dial, which was characterized as a furan metabolite by Chen et al. (1995). This reactive metabolite probably explains furan’s binding reactivity with proteins both in vitro (in uninduced and induced male rat liver microsomes) and in vivo (with male rat liver protein) (Burka et al. 1991, Parmar and Burka 1993). Furan metabolites may react with DNA, but no radiotracer was detected in DNA from livers of rats administered [14C]furan (Burka et al. 1991).

Properties
Furan is a cyclic dienic ether that is a clear, colorless liquid with an ethereal odor (Agras 2009, HSDB 2009). It can turn brown upon standing (HSDB 2009). Furan is slightly soluble in water and is soluble at greater than 10% in acetone, benzene, ether, and ethanol. It is extremely flammable and may form explosive peroxides in the absence of inhibitors (Agras 2009). Physical and chemical properties of furan are listed in the following table.

<table>
<thead>
<tr>
<th>Property</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>68.1°</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>0.9371 at 19.4°C/4°C</td>
</tr>
<tr>
<td>Melting point</td>
<td>–85.6°C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>31.4°C at 760 mm Hg°</td>
</tr>
<tr>
<td>Log K<sub>ow</sub></td>
<td>1.34°</td>
</tr>
<tr>
<td>Water solubility</td>
<td>10 g/L at 25°C°</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>600 mm Hg at 25°C°</td>
</tr>
<tr>
<td>Vapor density relative to air</td>
<td>2.3°</td>
</tr>
</tbody>
</table>

Use
Furan is used primarily as an intermediate in the synthesis and production of tetrahydrofuran, pyrrole, and thiophene. Hydrogenation of furan over a nickel catalyst produces high yields of tetrahydrofuran and is a source of commercial tetrahydrofuran (NTP 1993, IARC 1995). Furan is also used in the formation of lacquers, as a solvent for resins, and in the production of agricultural chemicals, stabilizers, and pharmaceuticals (IARC 1995, HSDB 2009).

Production
Commercial production of furan involves decarbonylation of furfural over a palladium-charcoal catalyst. The commercial product is at least 99% pure (IARC 1995). In 2009, furan was produced by one manufacturer worldwide, in the United States (SRI 2009), and was available from 20 suppliers, including 11 U.S. suppliers (ChemSources 2009). U.S. imports of furan resins totaled about 9.7 million pounds in 1986 (HSDB 2009). Reports filed from 1986 to 1998 under the U.S. Environmental Protection Agency’s Toxic Substances Control Act Inventory Update Rule indicated that U.S. production plus imports of furan totaled 10 million to 50 million pounds (EPA 2004); no reports were filed in 2002.

Exposure
The routes of potential human exposure to furan are inhalation, ingestion, and dermal contact. The pattern of commercial use suggests that minimal exposure to the general population would be expected through contact with products contaminated with furan (NTP 1993). However, furan can be formed in foods during processing. Furan has been detected in the breath of both smokers and nonsmokers and in indoor air, foods, and human milk samples (IARC 1995, NTP 1999, FDA 2005). Furan also occurs naturally in pine resin and in volatile emissions from sorb trees (HSDB 2009).

Furan was measured by the U.S. Food and Drug Administration in various foods and beverages, including infant formulas, baby foods, soups and sauces, fruits and vegetables, bread, and meat products. The maximum concentration found was 125 ppb (μg/kg) in canned soup (FDA 2005). A second study confirmed that heat-treated foods, such as canned and jarred foods, contained measurable quantities of furan (up to 240 μg/kg in canned chili) (Becalski et al. 2005). Furan was measured in fruit juice at concentrations near 1 μg/kg (Goldmann et al. 2005). In several brands of brewed coffee, the highest furan concentration found was 84.2 ppb (FDA 2005, Ho et al. 2005). Furan was
also identified as a component of coffee aroma that has antioxidant activity (Fuster et al. 2000). Furan was also detected at a concentration of 110 μg/kg in jarred baby food containing cooked vegetables (Goldmann et al. 2005). However, furan concentrations decreased after the jar was opened and the contents were heated. When food is heated in a container, furan concentrations increase if the container remains closed, but not if it is open (Hasnip et al. 2006). Furan does not appear to be transferred from the packaging or gasket of the can or jar. Furan is formed from ascorbic acid, fructose, sucrose, and glucose when foods are heated or irradiated (Fan 2005). Furan production increases greatly with decreasing pH of the medium; 1,600 times as much furan is formed at pH 3 as is formed at pH 8. Furan was detected in 1 of 11 breast-milk samples from women in four different urban areas (HSDB 2009).

In one study in Texas, furan was detected in the exhaled breath of two of three male smokers and four of five female nonsmokers (HSDB 2009). Smokers exhaled between 0.25 and 98 μg of furan per hour, and nonsmokers exhaled between 0.33 and 28 μg/h. In a study in Chicago, 15 of 387 breath samples collected from 54 male and female nonsmokers had detectable levels of furan, with a mean concentration of 0.55 ng/L. Furan was also detected in the indoor air of homes in the Chicago, Illinois, and Washington, D.C., metropolitan areas (NTP 1999). If furan is released to air, it will exist almost entirely in the vapor phase (Howard 1989). In daylight, it will react with hydroxyl radicals, with a half-life of 9.5 hours. Furan is resistant to hydrolysis. Its estimated half-life in a shallow model river is 2.5 hours. If released to surface water, it will volatilize rapidly and will not adsorb to sediment or suspended solids or bioaccumulate in aquatic organisms. If released to soil, it will volatilize or leach rapidly. Furan has been detected in industrial effluents, ambient air, wood smoke, and automobile exhaust and in surface water. However, the frequency of detection and concentration generally were low. For example, furan was detected in 1 of 63 industrial effluents at concentrations of less than 10 μg/L and in aqueous condensate samples from low-temperature gasification of rosebud coal at 7 μg/L. (IARC 1995, HSDB 2009).

The primary route of occupational exposure to furan is inhalation. The industrial processes in which furan is used are conducted in closed systems, and its volatility requires that furan be handled in closed containers; therefore, occupational exposure is limited (NTP 1993). The National Occupational Hazard Survey (conducted from 1972 to 1974) estimated that 244 workers potentially were exposed to furan (NIOSH 1976). The National Occupational Exposure Survey (conducted from 1981 to 1983) estimated that 35 workers (mostly in the Business Services industry), including 7 women, potentially were exposed to furan (NIOSH 1990).

Regulations

Department of Transportation (DOT)

Furan is considered a hazardous material, and special requirements have been set for marking, labeling, and transporting this material.

Environmental Protection Agency (EPA)

Clean Air Act

Prevention of Accidental Release: Threshold quantity (TQ) = 5,000 lb.

Comprehensive Environmental Response, Compensation, and Liability Act

Reportable quantity (RQ) = 100 lb.

Emergency Planning and Community Right-To-Know Act

Toxics Release Inventory: Listed substance subject to reporting requirements.

Reportable quantity (RQ) = 100 lb.

Threshold planning quantity (TPQ) = 500 lb.

Resource Conservation and Recovery Act

Listed Hazardous Waste: Waste code for which the listing is based wholly or partly on the presence of furan = U124.

Occupational Safety and Health Administration (OSHA)

Considered a highly hazardous chemical; threshold quantity (TQ) = 500 lb.

References

National Toxicology Program, Department of Health and Human Services

