Report on Carcinogens
Monograph on
Antimony Trioxide:
Appendices

October 2018
Report on Carcinogens Monograph on Antimony Trioxide: Appendices

October 19, 2018

Office of the Report on Carcinogens
Division of the National Toxicology Program
National Institute of Environmental Health Sciences
U.S. Department of Health and Human Services
Table of Contents

Appendix A: Literature Search Strategy ... A-1
 A.1 General approach ... A-1
 A.2 Search strategies ... A-3
 A.3 Exclusion of treatment for leishmaniasis from human cancer searches A-3
 A.4 Updating the literature search ... A-3
 A.5 Review of citations using web-based systematic review software A-3

Appendix B: ADME Tables .. B-1

Appendix C: Human Studies Tables .. C-1

Appendix D: Animal Study Quality Tables ... D-1

Appendix E: Mechanistic and Other Relevant Information .. E-1
 E.1 Tox21/ToxCast high-throughput screening .. E-1
 E.2 Effects of antioxidants and inhibitors of oxidative stress related enzymes on cells exposed to compounds containing trivalent antimony E-2
 E.3 Genotoxicity tables ... E-4
 E.4 Studies related to cell proliferation ... E-20
 E.5 Transcriptomic of antimony(III) potassium tartrate trihydrate in HepG2 cells E-21
 E.6 Immune effects from compounds containing pentavalent antimony E-28

Appendix F: Other Relevant Information .. F-1
 F.1 Studies of antimony(III) potassium tartrate carcinogenicity in experimental animals .. F-1

References .. 1

List of Tables

Table A-1. Major topics searched .. A-1
Table B-1. Antimony(III) trioxide levels (µg/g) in red blood cells during a 1-year chronic inhalation exposure (after 6 months and 12 months of exposure) and a 1-year observation period (6 months and 12 months after exposure) in Fischer 344 male and female rats .. B-1
Table B-2. Blood antimony concentrations (µg/g blood) in female rats and mice exposed to antimony trioxide (N = 5 except where indicated) .. B-1
Table B-3. Tissue distribution of antimony (µg antimony/g tissue) in rats after oral exposure to antimony(III) trioxide by gavage or in the diet ... B-2
Table C-1. Evaluation of selection bias in human cancer studies .. C-1
Table C-2. Evaluation of exposure assessment methods in human cancer studies C-1
Table C-3. Evaluation of outcome assessment in human cancer studies C-2
Table C-4. Evaluation of study sensitivity in human cancer studies C-2
Table C-5. Evaluation of potential for confounding bias for human cancer studies C-3
Table C-6. Evaluation of analysis and selective reporting for human cancer studies C-3
Table D-1. Schroeder et al. (1970) study of male rats exposed to antimony potassium tartrate in the drinking water .. D-1
Table D-2. Schroeder et al. (1970) study of female rats exposed to antimony potassium tartrate in the rinking water ... D-2

Table D-3. Kanisawa and Schroeder (1969) and Schroeder et al. (1968) study of male and female (combined) mice exposed to antimony potassium tartrate in drinking water for the lifespan of the animals ... D-3

Table D-4. NTP (2017b) study of male rats exposed to antimony trioxide by inhalation for 105 weeks ... D-4

Table D-5. NTP (2017b) study of female rats exposed to antimony trioxide by inhalation for 105 weeks ... D-5

Table D-6. NTP (2017b) study of male mice exposed to antimony trioxide by inhalation for 105 weeks ... D-6

Table D-7. NTP (2017b) study of female mice exposed to antimony trioxide by inhalation for 105 weeks ... D-7

Table D-8. Groth et al. (1986) study of male rats exposed to antimony trioxide by inhalation for 53 weeks followed by post-exposure observation for 71 to 73 weeks D-8

Table D-9. Groth et al. (1986) study of female rats exposed to antimony trioxide by inhalation for 53 weeks followed by post-exposure observation for 71 to 73 weeks .. D-9

Table D-10. Newton et al. (1994) study of male rats exposed to antimony trioxide by inhalation for 12 months followed by post-exposure observation for 24 months .. D-10

Table D-11. Newton et al. (1994) study of female rats exposed to antimony trioxide by inhalation for 12 months followed by post-exposure observation for 24 months .. D-11

Table D-12. Watt (1983) study of female rats exposed to antimony trioxide by inhalation for 1 year followed by post-exposure observation for 2 years .. D-12

Table E.2-1. Effects of antioxidants and inhibitors of oxidative stress related enzymes on cells exposed to compounds containing trivalent antimony E-2

Table E.3-1. Genotoxicity of antimony compounds: Mutations ... E-4

Table E.3-2. Genotoxic DNA damaging effects of antimony compounds .. E-6

Table E.3-3. Genotoxicity of antimony compounds – chromosomal aberrations, micronucleus, and sister chromatic exchange .. E-12

Table E.4-1. Mutations in the lung of mice and rats after two-year inhalation exposure to antimony trioxide (NTP 2017b). ... E-20

Table E.5-1. Top 10 upstream regulators for antimony ... E-22

Table E.5-2. Top ten canonical pathways affected by 6-hour exposure to 20 µM antimony(III) potassium tartrate trihydrate ... E-27

Table E.6-1. Effects of compounds containing pentavalent antimony on immunity E-28

Table F.1-1. Neoplasms induced in experimental animal carcinogenicity studies by drinking water studies of antimony potassium tartrate ... F-1

Table F.1-2. Cancer studies in experimental animals exposed to antimony(III) potassium tartrate ... F-1

Table F.1-3. Schroeder et al. (1970) study of male rats and female rats exposed to antimony(III) potassium tartrate in drinking water for the life span of the animals ... F-3

Table F.1-4. Kanisawa and Schroeder (1969) study of male and female (combined) mice
exposed to antimony potassium tartrate in drinking water for the lifespan of the animals... F-4

List of Figures

Figure A-1. Literature search strategy and review... A-2
Appendix A: Literature Search Strategy

Introduction

The objective of the literature search approach is to identify published literature that is relevant for evaluating the potential carcinogenicity of antimony trioxide (https://ntp.niehs.nih.gov/ntp/about_ntp/bsc/2016/december/meetingmaterials/draftantimonytrioxide_508.pdf). The literature search strategy was used to identify publications in the following areas:

- Properties and human exposure (focusing on the U.S. population)
- Disposition (ADME) and toxicokinetics
- Human cancer studies
- Studies of cancer in experimental Animals
- Mechanistic data and other relevant effects
 - Genetic and related effects
 - Mechanistic considerations

A.1 General approach

Database searching encompasses selecting databases and search terms and conducting the searches. Searches of several citation databases are generally conducted using search terms for antimony, combined with search terms for cancer and/or specific topics, including epidemiological and mechanistic studies. A critical step in the process involves consultation with an information specialist to develop relevant search terms. These terms are used to search bibliographic databases. Table A-1 highlights the general concepts searched and databases consulted. To review all the terms used, please refer to the full search strings in Antimony: RoC Protocol (https://ntp.niehs.nih.gov/ntp/roc/protocols/antimonytrioxide_508.pdf).

<table>
<thead>
<tr>
<th>Topic</th>
<th>Search Method</th>
<th>Databases searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>Antimony String AND occur* [tiab]</td>
<td>PubMed</td>
</tr>
<tr>
<td>Human Studies</td>
<td>Antimony String AND ORoC Epidemiological (Human) Studies Search AND ORoC Cancer Search</td>
<td>PubMed, Scopus, Web of Science</td>
</tr>
<tr>
<td>Animal Studies</td>
<td>Antimony String AND Experimental Animals Studies Search AND ORoC Cancer Search</td>
<td>PubMed, Scopus, Web of Science</td>
</tr>
<tr>
<td>Mechanism and Genotoxicity</td>
<td>Antimony String AND ORoC Characteristics of Carcinogens Search</td>
<td>PubMed, Scopus, Web of Science</td>
</tr>
</tbody>
</table>
Figure A-1. Literature search strategy and review

- Literature search: databases (merged searches)
 - General and exposure-related searches
 - Topic-specific searches
- 1st level review (5479)
 - Excluded citations
- Included citations (1675)
- Assignment to topics
 (Note: Some papers are assigned to more than one topic.)
 - Exposure & Properties (1025)
 - ADME & TK (224)
 - Human cancer studies (223)
 - Exp. animal cancer (16)
 - Mechanisms (203)
 - Secondary Citations & Other Sources
- 2nd level review (separately by topic)
 - Excluded citations
- Included citations for all monograph sections (232)
 - Additional search terms & topics
 - Updated Searches
A.2 Search strategies

Relevant literature is identified using search terms, data sources, and strategies as discussed below.

General data search: This search covers a broad range of general data sources for information relevant to many or all of the wide range of monograph topics pertaining to antimony.

Exposure-related data search: This search covers a broad range of potential sources for exposure-related information and physical-chemical properties.

Database searches in PubMed, Scopus, and Web of Science: The majority of the primary literature used to draft the antimony monograph was identified from searches of these three extensive databases available through the NIEHS Library. Searches for antimony were combined with the search terms for each of the monograph topics listed above to create the specific literature searches.

Searches for human cancer studies are somewhat unique because they involve the identification of search terms for exposure scenarios that might result in exposure of people to antimony. For antimony, these exposure-related search terms were based on uses of antimony identified from the EPA’s TRI database and the Chemical Data Report rule website.

QUOSA library of occupational case-control studies search of the QUOSA-based library of more than 6,000 occupational case-control studies, approximately 95% of which are currently available as searchable full-text pdfs, was conducted using the term “antimony.”

Secondary sources: Citations identified from authoritative reviews or from primary references located by literature search, together with publications citing key papers identified using the Web of Science, “Cited Reference Search,” were also added.

A.3 Exclusion of treatment for leishmaniasis from human cancer searches

The use of antimony for the treatment of leishmaniasis is considered an intentional medical exposure and out of the scope of this monograph. The large corpus of literature related to leishmaniasis treatment was excluded when identifying human studies. Unlike other parts of the monograph, in which leishmaniasis related content was excluded via search terms, the mechanisms section literature search did not exclude leishmaniasis via the use of search terms. The studies on the Leishmania parasite itself were excluded at levels 1 and 2 by reviewers, and studies on the host or cells not infected by leishmaniasis were included for information related to mechanism.

A.4 Updating the literature search

The literature searches were last updated in PubMed, Scopus, and Web of Science on November 13, 2017, prior to submitting the draft monograph for peer review on November 29, 2017. References recommended by the peer reviewers were also considered for the final revisions.

A.5 Review of citations using web-based systematic review software

Citations retrieved from literature searches were uploaded to web-based systematic review software and screened using inclusion and exclusion criteria. Multi-level reviews of the literature
were conducted, with initial reviews (Level 1) based on titles and abstracts only to identify citations that could be excluded and to assign the included literature to one or more monograph topics; subsequent reviews (Level 2) for literature assigned to the various monograph topics (Exposure, ADME & TK, Human cancer studies, etc.) were based on full-text (i.e., PDFs) of the papers and were carried out by the writer and scientific reviewer for each monograph section. Two reviewers, at least one of whom is a member of the ORoC at NIEHS, participated at each level of review.
Appendix B: ADME Tables

Table B-1. Antimony(III) trioxide levels (µg/g) in red blood cells during a 1-year chronic inhalation exposure (after 6 months and 12 months of exposure) and a 1-year observation period (6 months and 12 months after exposure) in Fischer 344 male and female rats

<table>
<thead>
<tr>
<th>Group</th>
<th>6 mo</th>
<th>12 mo</th>
<th>18 mo (12 mo exposure and 6 mo obs)</th>
<th>24 mo (12 mo exposure and 12 mo obs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I- Control</td>
<td>BDL</td>
<td>BDL</td>
<td>0.17 ± 0.39</td>
<td>BDL</td>
</tr>
<tr>
<td>II- 0.055 mg/m³</td>
<td>0.53 ± 0.31</td>
<td>1.09 ± 0.21</td>
<td>0.86 ± 0.68</td>
<td>BDL</td>
</tr>
<tr>
<td>III- 0.51 mg/m³</td>
<td>5.07 ± 0.29</td>
<td>7.55 ± 0.60</td>
<td>3.93 ± 0.25</td>
<td>2.53 ± 0.27</td>
</tr>
<tr>
<td>IV- 4.5 mg/m³</td>
<td>34.50 ± 3.8</td>
<td>70.70 ± 6.3</td>
<td>38.60 ± 4.8</td>
<td>30.50 ± 7.5</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I- Control</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>II- 0.055 mg/m³</td>
<td>0.74 ± 0.06</td>
<td>1.48 ± 0.10</td>
<td>0.81 ± 0.30</td>
<td>BDL</td>
</tr>
<tr>
<td>III- 0.51 mg/m³</td>
<td>5.69 ± 0.62</td>
<td>9.94 ± 1.32</td>
<td>6.53 ± 0.90</td>
<td>3.39 ± 0.28</td>
</tr>
<tr>
<td>IV- 4.5 mg/m³</td>
<td>75.60 ± 8.4</td>
<td>121.00 ± 10.6</td>
<td>74.60 ± 18.3</td>
<td>36.60 ± 15.5</td>
</tr>
</tbody>
</table>

Source: Newton et al. (1994).
mo = month; Below detection limit = BDL (lowest limit of detection = 0.02 µg of antimony/mL, i.e., 0.024 µg of antimony(III) trioxide/mL); obs = observation

Total antimony in red blood cells was reported as total antimony(III) trioxide using the relationship 1 mole Sb₂O₃ = 1.197 mole Sb₂.

Table B-2. Blood antimony concentrations (µg/g blood) in female rats and mice exposed to antimony trioxide (N = 5 except where indicated)

<table>
<thead>
<tr>
<th></th>
<th>Day 61</th>
<th>Day 124</th>
<th>Day 269</th>
<th>Day 369</th>
<th>Day 551</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>0.001 ± 0.000</td>
<td>0.001 ± 0.001</td>
<td>0.001 ± 0.000</td>
<td>0.001 ± 0.000</td>
<td>0.001 ± 0.000</td>
</tr>
<tr>
<td>3 mg/m³</td>
<td>0.043 ± 0.002**</td>
<td>0.058 ± 0.001**</td>
<td>0.053 ± 0.006**</td>
<td>0.052 ± 0.003**</td>
<td>0.061 ± 0.010**</td>
</tr>
<tr>
<td>10 mg/m³</td>
<td>0.083 ± 0.002**</td>
<td>0.089 ± 0.002**</td>
<td>0.091 ± 0.002**</td>
<td>0.088 ± 0.003**</td>
<td>0.087 ± 0.004**</td>
</tr>
<tr>
<td>30 mg/m³</td>
<td>0.141 ± 0.003**</td>
<td>0.148 ± 0.005**</td>
<td>0.163 ± 0.008**</td>
<td>0.137 ± 0.007**</td>
<td>0.163 ± 0.006**</td>
</tr>
<tr>
<td>Female Rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>0.139 ± 0.012</td>
<td>0.050 ± 0.002</td>
<td>0.077 ± 0.002</td>
<td>0.084 ± 0.008</td>
<td>0.066 ± 0.005</td>
</tr>
<tr>
<td>3 mg/m³</td>
<td>7.352 ± 0.375**</td>
<td>16.135 ± 0.995**</td>
<td>39.590 ± 3.915**</td>
<td>50.917 ± 2.296**</td>
<td>63.297 ± 3.906**</td>
</tr>
<tr>
<td>10 mg/m³</td>
<td>18.079 ± 0.793**</td>
<td>40.350 ± 1.543**</td>
<td>88.833 ± 2.210**</td>
<td>102.083 ± 2.738**</td>
<td>149.192 ± 8.472**a</td>
</tr>
<tr>
<td>30 mg/m³</td>
<td>43.574 ± 1.741**</td>
<td>96.082 ± 3.940**</td>
<td>175.437 ± 6.471**</td>
<td>200.239 ± 10.302**</td>
<td>231.934 ± 8.681**</td>
</tr>
</tbody>
</table>

Source: NTP (2017b).
**Significantly different (P < 0.01) from the chamber control group by Shirley’s test.

aN = 4.
Table B-3. Tissue distribution of antimony (µg antimony/g tissue) in rats after oral exposure to antimony(III) trioxide by gavage or in the diet

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Controls (M/F)</th>
<th>1000 mg/kg Sb₂O₃ suspension p.o. for 1 day (M/F)</th>
<th>1000 mg/kg Sb₂O₃ suspension p.o. for 14 days (M/F)</th>
<th>2% Sb₂O₃ in diet* for 49 days</th>
<th>2% Sb₂O₃ in diet* for 8 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid</td>
<td>0.098/0.195</td>
<td>1.507/2.103</td>
<td>2.639/2.280</td>
<td>88.9</td>
<td>156.0</td>
</tr>
<tr>
<td>Adrenal</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Lung</td>
<td>0.004/0.002</td>
<td>0.041/0.061</td>
<td>0.746/0.882</td>
<td>14.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.010/0.032</td>
<td>0.197/0.113</td>
<td>1.485/1.386</td>
<td>18.9</td>
<td>8.1</td>
</tr>
<tr>
<td>Heart</td>
<td>0.004/0.003</td>
<td>0.042/0.041</td>
<td>0.643/0.356</td>
<td>7.6</td>
<td>5.1</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.003/0.002</td>
<td>0.012/0.023</td>
<td>0.323/0.261</td>
<td>6.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Liver</td>
<td>0.004/0.003</td>
<td>0.041/0.064</td>
<td>0.823/0.675</td>
<td>8.9</td>
<td>15.5</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>0.080/0.142</td>
<td>1.192/1.996</td>
<td>2.486/3.517</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Bone or femur</td>
<td>0.019/0.010</td>
<td>0.048/0.032</td>
<td>0.254/0.265</td>
<td>NR</td>
<td>2.5</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.003/0.003</td>
<td>0.005/0.005</td>
<td>0.039/0.044</td>
<td>NR</td>
<td>0.3</td>
</tr>
<tr>
<td>Whole blood</td>
<td>0.003/0.003</td>
<td>0.708/0.640</td>
<td>8.278/6.886</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Sources: a TNO Quality of Life 2005 as cited by EU 2008; b Westrick 1953; c Gross et al. 1955 as cited by EU 2008.
F = female; M = male; NR = not reported; p.o. = per os (by mouth).

*Based on consumption of 5 g of food per day per 100 g body weight (Johns Hopkins University 2017), rats exposed to 2% Sb₂O₃ in the diet or by gavage at 1,000 mg/kg body weight would be exposed to approximately 0.1 g per 100 g body weight.
Appendix C: Human Studies Tables

Table C-1. Evaluation of selection bias in human cancer studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Selection bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones 1994</td>
<td>Rating: ++; Direction: ↓</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Only an external analysis was conducted. Although the impact of healthy worker survivor effect (HWSE) is mitigated by stratification by time-since-exposure, HWSE is still possible and may bias results toward the null.</td>
</tr>
<tr>
<td>Schnorr et al. 1995</td>
<td>Rating: ++; ↓</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Only an external analysis was conducted. HWSE was not accounted for in this analysis, which may result in an underestimating of the risk estimates.</td>
</tr>
<tr>
<td>Jones et al. 2007</td>
<td>Rating: ++; ↓</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Missing death information for 5.7% of untraced individuals would slightly bias results if they experienced the outcome. HWSE was not accounted for in the analyses, however, the impact of the smelter closing during follow-up would reduce the residual survival advantage.</td>
</tr>
<tr>
<td>Wingren and Axelson 1993</td>
<td>Rating: +++; ↔</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Cases and controls were selected from the same parishes. No evidence suggests that the selection of subjects was related to both antimony exposure and disease.</td>
</tr>
</tbody>
</table>

↑ = Results bias away from the null; ↓ = Results bias toward the null; ↔ = Unknown direction of bias.

Table C-2. Evaluation of exposure assessment methods in human cancer studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Exposure assessment rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones 1994</td>
<td>Rating: ++/+++; Direction: ↔</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Exposure assessment methods have decent sensitivity and specificity, leading to reliable classification with respect to ever-exposure to antimony and exposure duration. Antimony exposure is assumed based on job description at smelter site.</td>
</tr>
<tr>
<td>Schnorr et al. 1995</td>
<td>Rating: ++; ↓</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Exposure was reliably characterized as ever-exposure to antimony and duration of antimony exposure, but not with respect to concentration of exposure. Based on the reported environmental sampling data, antimony air exposure varied by plant location and year sampled; however, exposure is not captured at the individual level due to lack of information on job duties, and therefore, may be subject to misclassification.</td>
</tr>
<tr>
<td>Jones et al. 2007</td>
<td>Rating: ++; ↓</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Given the modeling efforts used to account for the uncertainty in early air contamination levels, and because air sampling concentrations are likely an underestimate of true individual antimony exposure, exposure levels and timing may not represent true antimony concentrations and worker exposure prior to 1972. Authors mention changes in plant processes before NIOSH collected exposure estimates. The 3 scenarios for back-extrapolation (1. twice as high air concentrations in 1937, 2. average concentration from 1937 to 1972, and 3. a doubling in concentrations from 1937-1960 then a decrease to 1972 levels) are assumptions based on little empirical data.</td>
</tr>
<tr>
<td>Wingren and Axelson 1993</td>
<td>Rating: +; ↑</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Exposure to antimony was based on reported job title at death. Those classified as unexposed who may have worked in a glass producing facility or had other antimony occupational exposure over a lifetime may have misclassified exposure. Reported level of antimony used by surveyed glass working facilities may not represent individual-level occupation.</td>
</tr>
</tbody>
</table>
exposure to employees. Facility surveys of antimony use were conducted at one time point;
unknown if antimony use patterns were consistent.

↑ = Results bias away from the null; ↓ = Results bias toward the null; ↔ = Unknown direction of bias.

Table C-3. Evaluation of outcome assessment in human cancer studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Outcome assessment rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones 1994</td>
<td>Rating: +++; Direction: ↔</td>
<td>Outcome methods distinguish between diseased and non-diseased subjects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Follow-up and diagnoses are conducted independent of exposure status.</td>
</tr>
<tr>
<td>Schnorr et al. 1995</td>
<td>Rating: +++; ↔</td>
<td>Outcome methods distinguish between diseased and non-diseased subjects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Follow-up and diagnoses are conducted independent of exposure status.</td>
</tr>
<tr>
<td>Jones et al. 2007</td>
<td>Rating: +++; ↔</td>
<td>Outcome methods distinguish between diseased and non-diseased subjects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Follow-up and diagnoses are conducted independent of exposure status.</td>
</tr>
<tr>
<td>Wingren and Axelson 1993</td>
<td>Rating: +; ↑</td>
<td>Outcome methods distinguish between diseased and non-diseased subjects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occupational title (i.e. exposure status) was collected from the death and burial register, which noted mortality status. Given the lack of information on the blinding status, diagnostic bias cannot be ruled out. If coder identified diseased subjects as being exposed, it would bias the results away from the null.</td>
</tr>
</tbody>
</table>

↑ = Results bias away from the null; ↓ = Results bias toward the null; ↔ = Unknown direction of bias.

Table C-4. Evaluation of study sensitivity in human cancer studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones 1994</td>
<td>Rating: ++; Direction: ↔</td>
<td>Study has few exposed cases but a substantial duration of exposure with a long range for follow-up. Stratification by exposure duration and years increase sensitivity.</td>
</tr>
<tr>
<td>Schnorr et al. 1995</td>
<td>Rating: ++; ↔</td>
<td>Study had a small-to-moderate number of exposed cases. There was adequate duration for follow-up, with a substantial duration of exposure. Duration and ever-exposure were measured, but not the range of antimony concentrations.</td>
</tr>
<tr>
<td>Jones et al. 2007</td>
<td>Rating: +; ↔</td>
<td>Adequate number of potentially-exposed subjects but a small number of exposed cases. Exposure characterized by job-exposure matrix and detailed work histories. Exposure was modeled with a substantial range and level of exposure with adequate duration for latency. However, exposure was not at an individual level and exposure was extrapolated based on assumptions.</td>
</tr>
<tr>
<td>Wingren and Axelson 1993</td>
<td>Rating: +; ↔</td>
<td>Study captures variability in antimony use by parish where cases and controls died. However, given the unknown number of exposed subjects, exposed cases, the unknown number of controls, and the unknown individual-level exposure to antimony in glass workers, this study has poor sensitivity.</td>
</tr>
</tbody>
</table>

↑ = Results bias away from the null; ↓ = Results bias toward the null; ↔ = Unknown direction of bias.
Table C-5. Evaluation of potential for confounding bias for human cancer studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Confounding rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones 1994</td>
<td>Rating: +; Direction: ↑</td>
<td>No control for smoking or occupational co-exposures in statistical analysis. Likely co-exposure to arsenic and PAHs (lung carcinogens) based on smelting source materials. Smoking not controlled for, despite high prevalence in the study population.</td>
</tr>
<tr>
<td>Schnorr et al. 1995</td>
<td>Rating: +++; ↔</td>
<td>No control for smoking or occupational co-exposures in statistical analysis. Confounding from occupational co-exposures to arsenic and lead are minimal based on source information and environmental testing. Smoking prevalence rates were assumed to be low in this particular population.</td>
</tr>
<tr>
<td>Jones et al. 2007</td>
<td>Rating: ++; ↑</td>
<td>No attempt to statistically account for measured occupational co-exposures in analysis. High level of correlation between antimony, lead, and arsenic air concentrations suggests likely occupational co-exposure. Minimal concern for smoking, but not controlled for in analysis.</td>
</tr>
<tr>
<td>Wingren and Axelson 1993</td>
<td>Rating: +; ↑</td>
<td>Smoking and occupational co-exposures lead and asbestos were not statistically controlled for in analysis. Lead and antimony use patterns were highly correlated, and lead was associated with an increased risk of stomach cancer mortality in this population; therefore, risk of confounding bias is high.</td>
</tr>
</tbody>
</table>

↑ = Results bias away from the null; ↓ = Results bias toward the null; ↔ = Unknown direction of bias.

Table C-6. Evaluation of analysis and selective reporting for human cancer studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Analysis rating</th>
<th>Reporting rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones 1994</td>
<td>Rating: +++</td>
<td>Rating: +++</td>
<td>No evidence that reporting of the data or analyses were limited to only a subset of data that were collected.</td>
</tr>
<tr>
<td>Schnorr et al. 1995</td>
<td>Rating: ++</td>
<td>Rating: +++</td>
<td>No evidence that reporting of the data or analyses were limited to only a subset of the data that were collected.</td>
</tr>
<tr>
<td>Jones et al. 2007</td>
<td>Rating: ++</td>
<td>Rating: +++</td>
<td>No evidence that reporting of the data or analyses were limited to only a subset of the data that were collected.</td>
</tr>
<tr>
<td>Wingren and Axelson 1993</td>
<td>Rating: ++</td>
<td>Rating: ++</td>
<td>It is unknown whether reporting was done on only a subset on data. Sample size for cases, controls, and exposure groups were not reported.</td>
</tr>
</tbody>
</table>
Appendix D: Animal Study Quality Tables

Table D-1. Schroeder et al. (1970) study of male rats exposed to antimony potassium tartrate in the drinking water

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Randomization and initial body weights were not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent control group, exposed to untreated drinking water, had the same number of animals as exposure group did.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Both sexes of a random bred strain, which increases external validity.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>Large numbers of animals (51 males, 59 females) per concentration group were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>NR</td>
<td>Not reported, not even purity.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>++</td>
<td>The maximally tolerated dose level was not reached, because the treated group did not show decreased body weight compared to the control group, although the median life spans and longevity (mean age of the last surviving 10%) for both sexes were decreased by the treatment. The dose might not have been high enough to detect neoplastic effects.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Though exposure duration was never clearly stated, this study appears to use a life time exposure.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+</td>
<td>Only one dose level was tested and no basis for that level was reported. All other elements were administered at the same level, except for lead.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+</td>
<td>Only grossly visible tumors were reported. The methods stated that gross tumors were fixed, but did not state that they were stained or microscopically examined. Consequently, small tumors might have been missed.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>++</td>
<td>A pneumonia epidemic killed many rats and the death rates varied among the groups.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>Life time study, because the animals were observed until their nature death (as compared to scheduled euthanization after a predetermined exposure period).</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>++</td>
<td>Pneumonia killed various numbers of animals per group, before penicillin treatment controlled the disease. It is unclear that all rats, or only visibly sick rats, received penicillin. Furthermore, the disease might in effect select stronger/healthier animals (than the general population) to complete the study. Additionally, test substance purity was unknown.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>++</td>
<td>The statistical methods and results of survival measures were reported, but statistical analysis of tumor incidences were not reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+</td>
<td>Tumors were counted based on gross observation, not histological analysis occurred.</td>
</tr>
</tbody>
</table>

Overall utility: +. The study has low utility because of many limitations, including only reporting grossly visible tumors without organ site or tumor type.
Table D-2. Schroeder et al. (1970) study of female rats exposed to antimony potassium tartrate in the rinking water

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Randomization and initial body weights were not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent control group, exposed to untreated drinking water, had the same number of animals as exposure group did.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Both sexes of a random bred strain, which increases external validity.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>Large numbers of animals (51 males, 59 females) per concentration group were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>NR</td>
<td>Not reported, not even purity.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>++</td>
<td>The maximally tolerated dose level was not reached, because the treated group did not show decreased body weight compared to the control group, although the median life spans and longevity (mean age of the last surviving 10%) for both sexes were decreased by the treatment. The dose might not have been high enough to detect neoplastic effects.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Though exposure duration was never clearly stated, this study appears to use a life time exposure.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+</td>
<td>Only one dose level was tested and no basis for that level was reported.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+</td>
<td>Only grossly visible tumors were reported. The methods stated that gross tumors were fixed, but did not state that they were stained or microscopically examined. Consequently, small tumors might have been missed.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>++</td>
<td>A pneumonia epidemic killed many rats and the death rates varied among the groups.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>Life time study, because the animals were observed until their nature death (as compared to scheduled euthanization after a predetermined exposure period).</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>++</td>
<td>Pneumonia killed various numbers of animals per group, before penicillin treatment controlled the disease. It is unclear that all rats, or only visibly sick rats, received penicillin. Furthermore, the disease might in effect select stronger/healthier animals (than the general population) to complete the study. Additionally, test substance purity was unknown.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>++</td>
<td>The statistical methods and results of survival measures were reported, but statistical analysis of tumor incidences were not reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+</td>
<td>Tumors were counted based on gross observation, not histological analysis occurred.</td>
</tr>
<tr>
<td>Overall utility</td>
<td>+</td>
<td>The study has low utility because of many limitations, including only reporting grossly visible tumors without organ site or tumor type.</td>
</tr>
</tbody>
</table>
Table D-3. Kanisawa and Schroeder (1969) and Schroeder et al. (1968) study of male and female (combined) mice exposed to antimony potassium tartrate in drinking water for the lifespan of the animals

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent control group, exposed to doubly deionized water with added essential trace elements, had the same number of animals as the exposure group did.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Both sexes of random bred mice were used, giving a high level of external validity.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number (54) of mice per sex per group were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>NR</td>
<td>No chemical characterization was reported, not even purity.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>+</td>
<td>The maximally tolerated dose level was not reached, because the treated group did not show decreased body weight compared to the control group. The dose might not have been high enough to detect neoplastic effects.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Mice were exposed for their lifetimes.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+</td>
<td>Only one concentration was tested and no rational for the dose selection was reported. Dose response relationships cannot be evaluated due to only one dose level.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>++</td>
<td>Only gross lesions were microscopically evaluated.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>++</td>
<td>The treated and control groups were treated the same while mice were alive. The examination of organs/tissues varied, because only gross lesions (not all major organs) were examined microscopically.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>The study duration was lifetime, up to the animals' natural death.</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>Testing substance purity and supplier were unknown. Exposure to antimony via other sources (feed, housing) was negligible because the feed was antimony free and metal exposure via housing was minimized.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>++</td>
<td>Although tumor incidents were not statistically analyzed in the study, the data were reported and enabled us to conduct statistical analysis. Statistical methods were described as "numerical data were treated by Chi-squire analysis and by Student's t test", but the reported probability in tables did not specify the result was from which method.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>++</td>
<td>Tumor incidence was reported for two sexes combined only, instead of male and female separately. Site specific (lung, liver, mammary gland, and other) information was limited to tumor incidence, with no subtype. Tumors were also grouped by origin (epithelial, non-epithelial) along with being benign or malignant. Overall information did not allow detecting of specific tumor type increase in either sex.</td>
</tr>
</tbody>
</table>

Overall utility: +. Due to many limitations, including only one tested concentration (below maximally tolerated dose), unknown test substance purity, tumor incidences only reported in combined sexes with no histologic information, and lack of site specific
information (except incidences of three sites in sexes combined), this study is of low utility. Data lack sufficient details to allow us determine whether any specific type of tumor had increased.

Table D-4. NTP (2017b) study of male rats exposed to antimony trioxide by inhalation for 105 weeks

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>+++</td>
<td>Animals were randomly assigned to groups.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent chamber control was used. Data was also compared with historical control.</td>
</tr>
<tr>
<td>Historical data</td>
<td>+++</td>
<td>Yes</td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Standard model.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number, 50/sex/group, of animals were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>+++</td>
<td>The chemical and exposure chamber were well characterized, showing high purity, stability, and homogeneity. Concentration inside the exposure chamber was measured in real-time and alarmed if readings were not within limits of acceptable concentrations. Aerosol size, measured monthly, was also consistently less than 4 µm (MMAD = 1-1.4 µm, GSD 1.8-2.2. Stability in the generation and exposure system was tested before the test, during the test (at 4 weeks for rats), and the end of two-year study.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>+++</td>
<td>Consistent and very close to target concentrations. The highest exposure level was near maximally tolerated levels as evidenced by the trend of decreased survival and a significant decrease in body weight. Neoplasms were significantly increased.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Exposure duration was near life-span</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+++</td>
<td>Three dose levels spanning a range of 30 fold were used.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+++</td>
<td>Detailed and covering all tissues. Full necropsy with histological exam of all major organs was conducted and verified by an independent quality control pathologist.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>+++</td>
<td>Nothing was reported to suggest that animals from different groups were treated differently.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>Near life-span study duration was used.</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>No concerns of confounding were reported.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Statistical analysis was clearly reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+++</td>
<td>No indication of concern. Detailed groupings were provided.</td>
</tr>
</tbody>
</table>

Overall utility: ++++. There were no concerns of confounding as the chemical was pure, stable, the exposure was well characterized, and all groups were treated the same. The study had a high level of sensitivity to detect neoplasms as it used large numbers of both sexes of rats, exposed at three dose levels, which reached the maximally tolerated level, for a near life-span duration. However, the stock of rat used was new to NTP and so little historical control data existed compared to the previously used Fischer 344 rat stock. Complete necropsies with histological examination of most organs was performed, so the ability to detect neoplasms was high.
Table D-5. NTP (2017b) study of female rats exposed to antimony trioxide by inhalation for 105 weeks

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>+++</td>
<td>Animals were randomly assigned to groups</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent chamber control was used. Data was also compared with historical control.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Standard model.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number, 50/sex/group, of animals were used.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposure</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical characterization</td>
<td>+++</td>
<td>The chemical and exposure chamber were well characterized, showing high purity, stability, and homogeneity. Concentration inside the exposure chamber was measured in real-time and alarmed if readings were not within limits of acceptable concentrations. Aerosol size, measured monthly, was also consistently less than 4 µm (MMAD = 0.9-1.5 µm, GSD = 1.7-2.1). Stability in the generation and exposure system was tested before the test, during the test (at 4 weeks for rats), and the end of two-year study.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>+++</td>
<td>Consistent, and very close to target, concentrations. The highest exposure level was near maximally tolerated levels as evidenced by the trend of decreased survival and a significant decrease in body weight. Neoplasms were significantly increased.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Exposure duration was near life-span.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+++</td>
<td>Three dose levels spanning a range of 30 fold were used.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>+++</td>
<td>Detailed and covering all tissues. Full necropsy with histological exam of all major organs was conducted and verified by an independent quality control pathologist.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>+++</td>
<td>Nothing was reported to suggest that animals from different groups were treated differently.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>Near life-span study duration was used.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confounding</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>No concerns of confounding were reported.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reporting and analysis</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Statistical analysis was clearly reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+++</td>
<td>No indication of concern. Detailed groupings were provided.</td>
</tr>
</tbody>
</table>

Overall utility: ++++. There were no concerns of confounding as the chemical was pure, stable, the exposure was well characterized, and all groups were treated the same. The study had a high level of sensitivity to detect neoplasms as it used large numbers of both sexes of rats, exposed at three dose levels, which reached the maximally tolerated level, for a near life-span duration. However, the stock of rat used was new to NTP and so little historical control data existed compared to the previously used Fisher 344 rat stock. Complete necropsies with histological examination of most organs was performed, so the ability to detect neoplasms was high.
Table D-6. NTP (2017b) study of male mice exposed to antimony trioxide by inhalation for 105 weeks

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>+++</td>
<td>Animals were randomly assigned to groups.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent chamber control was used. Data was also compared with historical control.</td>
</tr>
<tr>
<td>Historical data</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Standard model.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number, 50/sex/group, of animals were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>+++</td>
<td>The chemical and exposure chamber were well characterized, showing high purity, stability, and homogeneity. Concentration inside the exposure chamber was measured in real-time and alarmed if readings were not within limits of acceptable concentrations. Aerosol size, measured monthly, was also consistently less than 4 µm (MMAD = 0.9-1.5 µm, GSD 1.7-2.1). Stability in the generation and exposure system was tested before the test, during the test (at 4 weeks for rats), and the end of two-year study.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>+++</td>
<td>Consistent, and very close to target, concentrations. The highest exposure level was near maximally tolerated levels as evidenced by the trend of decreased survival and a significant decrease in body weight. Neoplasms were significantly increased.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Exposure duration was near life-span.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+++</td>
<td>Three dose levels spanning a range of 30 fold were used.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+++</td>
<td>Detailed and covering all tissues. Full necropsy with histological exam of all major organs was conducted and verified by an independent quality control pathologist.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>+++</td>
<td>Nothing was reported to suggest that animals from different groups were treated differently.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>Near life-span study duration was used.</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>No concerns of confounding were reported.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Statistical analysis was clearly reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+++</td>
<td>No indication of concern. Detailed groupings were provided.</td>
</tr>
</tbody>
</table>

Overall utility: ++++. There were no concerns of confounding as the chemical was pure, stable, the exposure was well characterized, and all groups were treated the same. The study had a high level of sensitivity to detect neoplasms as it used large numbers of both sexes of mice, exposed at three dose levels, which reached the maximally tolerated level, for a near life-span duration. Complete necropsies with histological examination of most organs was performed, so the ability to detect neoplasms was high.
Table D-7. NTP (2017b) study of female mice exposed to antimony trioxide by inhalation for 105 weeks

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>+++</td>
<td>Animals were randomly assigned to groups.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent chamber control was used. Data were also compared with historical control.</td>
</tr>
<tr>
<td>Historical data</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Standard model.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number, 50/sex/group, of animals were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>+++</td>
<td>The chemical and exposure chamber were well characterized, showing high purity, stability, and homogeneity. Concentration inside the exposure chamber was measured in real-time and alarmed if readings were not within limits of acceptable concentrations. Aerosol size, measured monthly, was also consistently less than 4 (\mu)m (MMAD = 0.9 - 1.5 (\mu)m, GSD = 1.7 - 2.1). Stability in the generation and exposure system was tested before the test, during the test (at 4 weeks for rats), and the end of two-year study.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>+++</td>
<td>Consistent, and very close to target, concentrations. The highest exposure level was near maximally tolerated levels as evidenced by the trend of decreased survival and a significant decrease in body weight. Neoplasms were significantly increased.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Exposure duration was near life-span.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+++</td>
<td>Three dose levels spanning a range of 30 folds were used.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+++</td>
<td>Detailed and covering all tissues. Full necropsy with histological exam of all major organs was conducted and verified by an independent quality control pathologist.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>+++</td>
<td>Nothing was reported to suggest that animals from different groups were treated differently.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>Near life-span study duration was used.</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>No concerns of confounding were reported.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Statistical analysis was clearly reported.</td>
</tr>
<tr>
<td>Combing lesions</td>
<td>+++</td>
<td>No indication of concern. Detailed groupings were provided.</td>
</tr>
</tbody>
</table>

Overall utility: +++ There were no concerns of confounding as the chemical was pure, stable, the exposure was well characterized, and all groups were treated the same. The study had a high level of sensitivity to detect neoplasms as it used large numbers of both sexes of mice, exposed at three dose levels, which reached the maximally tolerated level, for a near life-span duration. Complete necropsies with histological examination of most organs was performed, so the ability to detect neoplasms was high.
Table D-8. Groth et al. (1986) study of male rats exposed to antimony trioxide by inhalation for 53 weeks followed by post-exposure observation for 71 to 73 weeks

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent untreated chamber controls (filtered air) were used.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Male and female inbred rats were used.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number of rats (90/sex/group) were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>++</td>
<td>The purity was estimated to be 95.8%, however the authors did not explicitly report the purity of antimony trioxide. The purity of elemental antimony was reported as 80% and NIH calculated this to mean a purity of antimony trioxide of 95.8%, assuming all of the antimony present was as antimony trioxide. Trace levels of contamination by carcinogens (arsenic and lead) and others (tin, cesium aluminum, and bromine) were not considered to have significantly contributed to carcinogenic effects. The aerosol concentrations didn't reach target levels of 50 mg/m³ until after 5 months of adjustment and modifications on the exposure equipment. MMAD of aerosol of 2.80 µm was fine, but the GSD was not reported. Aerosol size appeared only measured once at 6 month of exposure.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>++</td>
<td>The exposure level was based on the middle of the concentration range that workers are exposed to, so it would not be expected to be at the maximally tolerated level. The concentrations fluctuated dramatically, up to 191.1 mg/m³ for daily TWAs, while a mean daily TWA was 45, 46 mg/m³ (two chambers) and the target concentration was 50 mg/m³. It is not clear whether the chamber air was humidified. Survival and body weights were similar to controls, but total neoplasms in the lung were significantly increased over untreated controls.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>++</td>
<td>Exposure duration was 53 weeks.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+</td>
<td>Only one exposure level was used and it was based on the middle of the concentration range that workers are exposed to (i.e., well below animals' maximal tolerated dose). The actual exposure concentration fluctuated greatly until about 5 months into the study when the target concentration was reached.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+++</td>
<td>Most organs were histologically examined.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>++</td>
<td>No indication of differential treatments.</td>
</tr>
<tr>
<td>Study duration</td>
<td>++</td>
<td>The study duration was 71 to 73 weeks long, roughly 1.4 years, with only 5 months of observation after the end of 53 week-long exposure. These lengths were likely limited because the rats were 8 months old at the beginning of the study.</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>+</td>
<td>The chemical was only 80% antimony, with various other metal contaminants, such as tin, lead, cesium, aluminum, arsenic, and bromine. Lead and arsenic are carcinogenic.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Statistical analysis was reported for body weights, tissue levels of antimony. Neoplasms were not reported as they were stated to have not occurred.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+++</td>
<td>Neoplasms were combined by site. While no numbers of each pathological type were provided, the tumor combining is fine.</td>
</tr>
</tbody>
</table>

Overall utility: ++. The chemical was not fully characterized, but was estimated to be 95.8% pure, with trace levels of lead and arsenic as contaminants, that were not considered to have significantly contributed to carcinogenic effects. The sensitivity of the study to detect neoplasms was low as only one dose level was used and it was based on the level of exposure to workers and not
the maximally tolerated dose. Further, the exposure concentration varied widely until 5 months into the study when the target concentration was reached. The exposure duration was more than a year and full necropsies with histological examinations were performed. Neoplasms were reported with statistical analysis as total neoplasms combined per organ site.

Table D-9. Groth et al. (1986) study of female rats exposed to antimony trioxide by inhalation for 53 weeks followed by post-exposure observation for 71 to 73 weeks

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent untreated chamber controls (filtered air) were used.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Male and female inbred rats were used.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number of rats (90/sex/group) were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>++</td>
<td>The purity was estimated to be 95.8%, however the authors did not explicitly report the purity of antimony trioxide. The purity of elemental antimony was reported as 80% and NIH calculated this to mean a purity of antimony trioxide of 95.8%, assuming all of the antimony present was as antimony trioxide. Trace levels of contamination by carcinogens (arsenic and lead) and others (tin, cesium aluminum, and bromine) were not considered to have significantly contributed to carcinogenic effects. The aerosol concentrations didn't reach target levels of 50 mg/m³ until after 5 months of adjustment and modifications on the exposure equipment. MMAD of aerosol of 2.80 µm was fine, but the GSD was not reported. Aerosol size appeared only measured once at 6 month of exposure.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>++</td>
<td>The exposure level was based on the middle of the concentration range that workers are exposed to, so it would not be expected to be at the maximally tolerated level. The concentrations fluctuated dramatically, up to 191.1 mg/m³ for daily TWAs, while a mean daily TWA was 45, 46 mg/m³ (two chambers) and the target concentration was 50 mg/m³. It is not clear whether the chamber air was humidified. Survival and body weights were similar to controls, but total neoplasms in the lung were significantly increased over untreated controls.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>++</td>
<td>Exposure duration was 53 weeks.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+</td>
<td>Only one exposure level was used and it was based on the middle of the concentration range that workers are exposed to (i.e., well below animals' maximal tolerated dose). The actual exposure concentration fluctuated greatly until about 5 months into the study when the target concentration was reached.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+++</td>
<td>Most organs were histologically examined.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>++</td>
<td>No indication of differential treatments.</td>
</tr>
<tr>
<td>Study duration</td>
<td>++</td>
<td>The study duration was 71 to 73 weeks long, roughly 1.4 years, with only 5 months of observation after the end of 53 week-long exposure. These lengths were likely limited because the rats were 8 months old at the beginning of the study.</td>
</tr>
<tr>
<td>Confounding</td>
<td>+</td>
<td>The chemical was only 80% antimony, with various other metal contaminants, such as tin, lead, cesium, aluminum, arsenic, and bromine. Lead and arsenic are carcinogenic</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Statistical analysis was reported for body weights, tissue levels of antimony. Statistical significance was not reported for neoplasm incidences, but was calculated by NTP.</td>
</tr>
</tbody>
</table>
Appendix D RoC Monograph on Antimony Trioxide 10/19/18

Combining lesions +++ Neoplasms were combined by site. While no numbers of each pathological type were provided, the tumor combining is fine.

Overall utility: ++. The chemical was not fully characterized, but was estimated to be 95.8% pure, with trace levels of lead and arsenic as contaminants, that were not considered to have significantly contributed to carcinogenic effects. The sensitivity of the study to detect neoplasms was low as only one dose level was used and it was based on the level of exposure to workers and not the maximally tolerated dose. Further, the exposure concentration varied widely until 5 months into the study when the target concentration was reached. The exposure duration was more than a year and full necropsies with histological examinations were performed. Neoplasms were reported with statistical analysis as total neoplasms combined per organ site.

Table D-10. Newton et al. (1994) study of male rats exposed to antimony trioxide by inhalation for 12 months followed by post-exposure observation for 24 months

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>+++</td>
<td>Used a computer program to randomly sort animals so that mean group weights were comparable.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Use concurrent control at the same number of animals as exposure groups.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Normal Fischer rats, which are often used in carcinogenicity studies.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number of rats (65/sex/group) were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>+++</td>
<td>A blend of lots from 9 producers of antimony trioxide. Highly pure material. Particle size was characterized as having a mass median aerodynamic diameter (MMAD) of 3.76 +/- 0.84 𝜇m and a geometric standard deviation (GSD) of 1.79 +/- 0.32. Exposure concentration was analyzed four times a day and particle sizes were analyzed before the study and every three months. Homogeneity of the exposure chamber was verified by measuring 10 different locations.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>++</td>
<td>There were not differences in body weight, survival, or neoplasm incidence, suggesting the dose was not at the maximally tolerated dose.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>12-month exposure.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+++</td>
<td>Three exposed levels were used, which covered a 100-fold range.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>++</td>
<td>Only heart, airway, and peribronchial lymph nodes were histologically examined.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>+++</td>
<td>Consistent treatment and evaluation of groups.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>The study duration was 2 years, with 12 months of exposure and 12 months of observation.</td>
</tr>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>Material of high purity. Animal husbandry reported in detail. No significant body weight loss in the treated groups, compared to the control.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Since neoplasm incidences were not reported, as they were negative, statistical analysis wasn't reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+++</td>
<td>No tumor combining, as only three cases [2 males (including one from control), 1 female] were seen.</td>
</tr>
</tbody>
</table>
Overall utility: ++. There was little concern for confounding as the chemical was pure, exposure conditions were well characterized, and groups were treated consistently with animals randomly assigned to exposure groups. The sensitivity of detecting neoplasms was good as high numbers of both sexes were tested. Exposure were at three concentrations for about half a life-span duration (1 year), though observations (1 year) continued to a near life-span duration. However, the highest exposure level did not reach the maximally tolerated level. Most organs were histologically examined, so most neoplasms had the ability of being detected. Although aerosol size was not ideal (slightly over the current upper limit of test guidelines), this paper did show Sb$_2$O$_3$ accumulation and decreased clearance in the lung (by 80% in the 4.5 mg/m3 group). For inert particle, such overload would/could cause lung tumor. The overload was observed at relatively low exposure concentrations (compared to inert particles, such as TiO$_2$) and Sb$_2$O$_3$ toxicity was suspected. It appears conditions that could potentially lead to cancer did persist (Table 9, post-exposure, chronic inflammation in most animals, although hyperplasia was in only very few animals).

Table D-11. Newton et al. (1994) study of female rats exposed to antimony trioxide by inhalation for 12 months followed by post-exposure observation for 24 months

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>+++</td>
<td>Used a computer program to randomly sort animals so that mean group weights were comparable.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Use concurrent control at the same number of animals as exposure groups.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Normal Fischer rats, which are often used in carcinogenicity studies.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number of rats (65/sex/group) were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>+++</td>
<td>A blend of lots from 9 producers of antimony trioxide. Highly pure material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Particle size was characterized as having a mass median aerodynamic diameter (MMAD) of 3.76 +/- 0.84 µm and a geometric standard deviation (GSD) of 1.79 +/- 0.32. Exposure concentration was analyzed four times a day and particle sizes were analyzed before the study and every three months. Homogeneity of the exposure chamber was verified by measuring 10 different locations.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>++</td>
<td>There were not differences in body weight, survival, or neoplasm incidence, suggesting the dose was not at the maximally tolerated dose.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>12-month exposure.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+++</td>
<td>Three exposed levels were used, which covered a 100-fold range.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>++</td>
<td>Only heart, airway, and peribronchial lymph nodes were histologically examined.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>+++</td>
<td>Consistent treatment and evaluation of groups.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>The study duration was 2 years, with 12 months of exposure and 12 months of observation.</td>
</tr>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>Material of high purity. Animal husbandry reported in detail. No significant body weight loss in the treated groups, compared to the control.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>+++</td>
<td>Since neoplasm incidences were not reported, as they were negative, statistical analysis wasn't reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+++</td>
<td>No tumor combining, as only three cases [2 males (including one from control), 1 female] were seen.</td>
</tr>
</tbody>
</table>

Appendix D RoC Monograph on Antimony Trioxide 10/19/18
Overall utility: ++. There was little concern for confounding as the chemical was pure, exposure conditions were well characterized, and groups were treated consistently with animals randomly assigned to exposure groups. The sensitivity of detecting neoplasms was good as high numbers of both sexes were tested. Exposure were at three concentrations for about half a life-span duration (1 year), though observations (1 year) continued to a near life-span duration. However, the highest exposure level did not reach the maximally tolerated level. Most organs were histologically examined, so most neoplasms had the ability of being detected. Although aerosol size was not ideal (slightly over the current upper limit of test guidelines), this paper did show Sb$_2$O$_3$ accumulation and decreased clearance in the lung (by 80% in the 4.5 mg/m3 group). For inert particle, such overload would/could cause lung tumor. The overload was observed at relatively low exposure concentrations (compared to inert particles, such as TiO$_2$) and Sb$_2$O$_3$ toxicity was suspected. It appears conditions that could potentially lead to cancer did persist (Table 9, post-exposure, chronic inflammation in most animals, although hyperplasia was in only very few animals).

Table D-12. Watt (1983) study of female rats exposed to antimony trioxide by inhalation for 1 year followed by post-exposure observation for 2 years

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent controls were used, although animals were housed in different rooms (housing chambers separated to control, low concentration, and high concentration). Otherwise, treatments were the same.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>++</td>
<td>Only female rats were used</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+</td>
<td>Small number of animals were used. 13-18 animals per group sacrificed at the end of exposure. Less than 10 per group sacrificed between 2 and 12 months post exposure. Less than 20 per group sacrificed 12-months post exposure.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>+++</td>
<td>Detailed chemical analysis verified that Sb$_2$O$_3$ was of high purity. Small amounts of arsenic (0.02%) and lead (0.2%) were found as contaminates. Dust size (measured by SEM) was reported as Feret diameter. Presumably this is average from the same particle with rotation. Aerosol concentration in the exposure chamber. The equipment generated aerosols of MMAD less than 15 µm, but aerosol sizes were not measured. Based on conversion done in Newton et al 1994 paper Table 2, the MMAD is 5.06 µm, which is above the ideal range of rat inhalation study (no more than 4 µm).</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>+++</td>
<td>Another potential concern is the use of pine shaving in the exposure chamber. The rats were not in direct contact with shaving, but metabolism change from pine cannot be excluded. This does not affect the interpretation of this study as all groups were treated the same, but has been suggested by Newton et al 1994 as a factor affecting outcome even though it is based on concerns of increased particulates (rather than rat metabolism). Survival was not reported, but body weight gain was greater than controls, indicating the dose is not close to maximal tolerant dose. Significant increases in neoplasia occurred, indicating the dose level was high enough to cause carcinogenesis.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Exposure occurred for up to 1 year, with intermediate sacrifices at 3, 6, 9 months.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>++</td>
<td>Only two dose levels, ranging over 2.5 folds, were used, limiting the examination of a dose response curve.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>++</td>
<td>Major organs were examined microscopically.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>+++</td>
<td>Consistent treatment among groups, except housed in different rooms.</td>
</tr>
<tr>
<td>Utility question</td>
<td>Rating</td>
<td>Rationale</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>The study duration was 2 years, with 1 year of exposure and 1 year of observation.</td>
</tr>
<tr>
<td>Con founding</td>
<td>++</td>
<td>Animals in high dose group were heavier than low dose group at the beginning, suggesting slightly different development level. Not all organs appear to have been examined during necropsy.</td>
</tr>
</tbody>
</table>

Reporting and analysis

| Reporting data and statistics | ++ | While statistic methods were not specified, the data were reported with raw numbers and therefore enables statistical analysis |
| Combining lesions | +++ | Tumor types were not combined. Scirrhous carcinomas, a pathologically distinctive lung cancer, alone, was significantly increased compared to negative controls. |

Overall utility: ++. The chemical purity was high and exposure was characterized, though the particle size (converted by Newton et al (1994) to be around MMAD 5 µm) was over the recommended (1-4 µm). Only female rats were used, which eliminates the ability to detect sex differences. The sensitivity to detect neoplasms was low as a small number of rats were used at only two dose levels, though the exposure was near life-span duration. The ability to detect neoplasms, if they exist, was moderate as the organs examined during necropsy were not fully reported. The statistical methods used were not reported. The use of large exposure chamber with pigs inside and pine shaving also increased the chance of exposure to non-Sb₂O₃ particles (and possible metabolism alternation due to pine shaving and therefore affecting susceptibility).
Appendix E: Mechanistic and Other Relevant Information

This appendix lists Tox21/ToxCast high-throughput screening (Appendix E.1), effects of antioxidant and inhibitors of enzymes on antimony effects (Appendix E.2), genotoxicities of antimony compounds (Appendix E.3), effects related to cell proliferation (Appendix E.4), transcriptomic of antimony(III) potassium tartrate trihydrate in HepG2 cells (Appendix E.5), and immune effects of compounds containing pentavalent antimony (Appendix E.6).

E.1 Tox21/ToxCast high-throughput screening

A total of six antimony compounds, not including antimony(III) trioxide, were found in the Tox21 (Tice et al. 2013) and ToxCast (Kavlock and Dix 2010, Kavlock et al. 2012) results from the Tox21 Toolbox (NTP 2017a) and iCSS Dashboard (EPA 2017): (1) acetic acid, antimony(III) salt, (2) antimony potassium(III) tartrate trihydrate, (3) antimony(III) trichloride, (4) antimony(V) sulfide, (5) antimony(III) potassium tartrate hydrate, and (6) triphenylstibine(III).

All of the above antimony compounds except acetic acid, antimony(III) salt and antimony potassium(III) tartrate trihydrate were screened in some of the Tox21 assays, although the assays varied. Among the antimony compounds screened in Tox21, triphenylstibine(III) was also screened in ToxCast in only some of the assays in the Attagene (ATG), CeeTox, and NovaScreen (NVS) platforms. In addition, antimony(III) trichloride was also screened in the ATG platform and three estrogen receptor assays in the NVS platform in ToxCast.

The data are reviewed for antimony compounds screened in the subset of assays (Chiu et al. 2017, IARC 2017) that relate to the 10 key characteristics of human carcinogens (Smith et al. 2016). For the purpose of comparing different antimony compounds, only the responses from Tox21 assays, in which several antimony compounds were tested, were compared. The half maximal effective concentration (EC50) and weighted area under the curve were obtained from the Tox21 Toolbox Activity Profiler. Assay results exhibiting the following characteristics were excluded from the analysis: observed cytotoxicity, autofluorescence, insufficient reporter gene activity readout support, suboptimal National Center for Advancing Translational Sciences fits, or substantial variation between sources. Assays that assessed only cell viability were not included. All effective EC50s were within an order of magnitude. Please note that analysis via different criteria, such as dose-response fit threshold, will result in different hits, and therefore the results shown here might be different from others.

The only pentavalent antimony compound, antimony(V) sulfide, showed no activity in Tox21 assays. Antimony(III) potassium tartrate hydrate was active only in one androgen receptor antagonist assay, which was also activated by antimony(III) potassium tartrate trihydrate. Triphenylstibine was not active in any assays linked with the 10 key characteristics of carcinogens, but was active in assays associated with nuclear receptors, including constitutive androstane receptor, pregnane X receptor, and retinoic acid-related orphan receptors γ.

Antimony(III) trichloride and antimony(III) potassium tartrate trihydrate had hits in more assays than other screened antimony compounds. Observed hits by both were related to oxidative stress or antagonism of nuclear receptors, including the androgen receptor, farnesoid X receptor, and peroxisome proliferator-activated receptor delta. Antimony(III) potassium tartrate trihydrate was also active in an estrogen receptor antagonist assay. One of the common characteristics of
nuclear receptors is DNA-binding domain or zinc finger structure. Antimony(III) ions have been reported to displace Zn(II) in zinc finger domains (Nielsen et al. 1985, Grosskopf et al. 2010), providing a possible link to the observed antagonist activity of nuclear receptors.

In summary, the activities of antimony compounds in Tox21 assays were mostly antagonistic to nuclear receptors, possibly because of displacement of Zn(II) in the zinc finger structures of these receptors by antimony(III) ions. These assays also indicated an oxidative stress response. Because only one antimony(V) compound was screened, and some of the trivalent compounds had very little activity in the Tox21 assays, it is unclear whether antimony(III) compounds are in general more active than antimony(V) compounds.

E.2 Effects of antioxidants and inhibitors of oxidative stress related enzymes on cells exposed to compounds containing trivalent antimony

Table E.2-1. Effects of antioxidants and inhibitors of oxidative stress related enzymes on cells exposed to compounds containing trivalent antimony

<table>
<thead>
<tr>
<th>Cell types</th>
<th>Additional treatment (besides antimony exposure)</th>
<th>Oxidative stress and damage</th>
<th>MMP and cell death</th>
<th>Comparison group (cells)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOUCY, CCRF-CEM, HL-60, K-562</td>
<td>BSO, an inhibitor of γ-glutamylcysteine synthetase</td>
<td>↓ GSH</td>
<td>↑ MMPα</td>
<td>exposed to Sb2O3 alone</td>
<td>Lösler et al. 2009</td>
</tr>
<tr>
<td>HL-60, K-562</td>
<td>Mercaptosuccinic acid, an inhibitor of glutathione peroxidase</td>
<td>↑ cell death</td>
<td></td>
<td>exposed to Sb2O3 alone</td>
<td>Lösler et al. 2009</td>
</tr>
<tr>
<td>K-562</td>
<td>3-amino-1,2,4-azole, an inhibitor of catalase</td>
<td>↑ cell death</td>
<td></td>
<td>exposed to Sb2O3 alone</td>
<td>Lösler et al. 2009</td>
</tr>
<tr>
<td>CCRF-CEM, K-562</td>
<td>Sodium ascorbate, an antioxidant, but able to act as an oxidant under oxidative stress</td>
<td>↑ cell death</td>
<td></td>
<td>exposed to Sb2O3 alone</td>
<td>Lösler et al. 2009</td>
</tr>
<tr>
<td>NB4</td>
<td>None</td>
<td>↑ ROS</td>
<td>↑ cell death</td>
<td>negative control</td>
<td>Mann et al. 2006</td>
</tr>
<tr>
<td>NB4-M-AsR3</td>
<td>None</td>
<td>↑ GSH</td>
<td>↓ cell death</td>
<td>parental NB4 cells</td>
<td>Mann et al. 2006</td>
</tr>
<tr>
<td>NB4</td>
<td>BSO, an inhibitor of γ-glutamylcysteine synthetase</td>
<td>↓ GSH</td>
<td>↑ cell death</td>
<td>cells not treated with BSO</td>
<td>Mann et al. 2006</td>
</tr>
<tr>
<td>NB4-M-AsR3</td>
<td>BSO, an inhibitor of γ-glutamylcysteine synthetase</td>
<td>↓ GSH</td>
<td>↑ cell death</td>
<td>cells not treated with BSO</td>
<td>Mann et al. 2006</td>
</tr>
<tr>
<td>Primary rat hepatocytes</td>
<td>none</td>
<td>↑ ROS</td>
<td>↓ MMP</td>
<td></td>
<td>Hashemzaei et al. 2015</td>
</tr>
<tr>
<td>Primary rat hepatocytes</td>
<td>n-bromoheptane, a GSH-depleting agent</td>
<td>↓ GSH</td>
<td>↓ MMP</td>
<td>exposed to SbCl3 alone</td>
<td>Hashemzaei et al. 2015</td>
</tr>
<tr>
<td>Cell types</td>
<td>Additional treatment (besides antimony exposure)</td>
<td>Oxidative stress and damage</td>
<td>MMP and cell death</td>
<td>Comparison group (cells)</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>----------------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Primary rat hepatocytes</td>
<td>Dimethyl sulfoxide, a ROS scavenger</td>
<td>➲ ROS</td>
<td>➲ MMP</td>
<td>exposed to SbCl₃ alone</td>
<td>Hashemzaei et al. 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➲ lipid peroxidation</td>
<td>➲ cell death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary rat hepatocytes</td>
<td>Mannitol, a ROS scavenger</td>
<td>➲ ROS</td>
<td>➲ MMP</td>
<td>exposed to SbCl₃ alone</td>
<td>Hashemzaei et al. 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➲ lipid peroxidation</td>
<td>➲ cell death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary rat hepatocytes</td>
<td>Trifluoperazine, a mitochondria permeability transition pore sealing agent</td>
<td>➲ ROS</td>
<td>➲ MMP</td>
<td>exposed to SbCl₃ alone</td>
<td>Hashemzaei et al. 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➲ lipid peroxidation</td>
<td>➲ cell death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary rat hepatocytes</td>
<td>Carnitine, a mitochondria permeability transition pore sealing agent</td>
<td>➲ ROS</td>
<td>➲ MMP</td>
<td>exposed to SbCl₃ alone</td>
<td>Hashemzaei et al. 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➲ lipid peroxidation</td>
<td>➲ cell death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary rat hepatocytes</td>
<td>L-Glutamine, an adenosine triphosphate (ATP) generating agent</td>
<td>➲ ROS</td>
<td>➲ MMP</td>
<td>exposed to SbCl₃ alone</td>
<td>Hashemzaei et al. 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➲ lipid peroxidation</td>
<td>➲ cell death</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antimony (III) potassium tartrate

<table>
<thead>
<tr>
<th>Cell types</th>
<th>Additional treatment</th>
<th>Oxidative stress and damage</th>
<th>MMP and cell death</th>
<th>Comparison group (cells)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL-60</td>
<td>none</td>
<td>➲ ROS</td>
<td>➲ MMP</td>
<td>negative control</td>
<td>Lecureur et al. 2002</td>
</tr>
<tr>
<td>HL-60</td>
<td>BSO</td>
<td></td>
<td>➲ cell death</td>
<td>exposed to antimony alone</td>
<td>Lecureur et al. 2002</td>
</tr>
<tr>
<td>HL-60</td>
<td>N-acetylcysteine</td>
<td></td>
<td>➲ cell death</td>
<td>exposed to antimony alone</td>
<td>Lecureur et al. 2002</td>
</tr>
</tbody>
</table>

↑ = Increased.
↓ = Decreased.

NB4-M-AsR3 = Arsenic resistant subclone of parental NB4 due to increased GSH levels.
BSO = DL-buthionine-[S,R]-sulfoximine.
CCRF-CEM = a cell line derived from acute lymphoblastic leukemia cells.
HL-60 = a cell line derived from human promyelocytic leukemia.
K-562 = chronic myelogenous leukemia cells.
LOUCY = a cell line derived from T-cell acute lymphoblastic leukemia.
MMP = mitochondrial membrane potential.
NB4 = a cell line derived from human acute promyelocytic leukemia cells.
NB4-M-AsR3 cells = Arsenic-resistant APL cells (derived in Miller lab).
E.3 Genotoxicity tables

The genotoxic tables are organized by endpoints: mutations (Table E.3-1), DNA damage (Table E.3-2), chromosomal aberrations (Table E.3-3).

Table E.3-1. Genotoxicity of antimony compounds: Mutations* b

Mutation studies are listed hierarchically according to the following criteria:

1. By genotoxicity endpoints;
2. By domain of target species (eukaryote and then prokaryote);
3. By testing system (e.g., *E. coli* strains and then *Salmonella* strains); and
4. By compound in the order of antimony(III) trioxide (bold) and then antimony(III) trichloride. Other forms of antimony, such as elemental antimony (Asakura *et al.* 2009) were not included in the table.

<table>
<thead>
<tr>
<th>Genotoxicity endpoint</th>
<th>Antimony form</th>
<th>Testing system/exposure duration</th>
<th>Assay endpoint</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammalian cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point mutations and chromosome deletions</td>
<td>Antimony trioxide</td>
<td>L5178Y mouse lymphoma cell line (+/-S9, 2 experiments) 4-hour exposure duration</td>
<td>Negative (concentrations tested: 6–50 µg/mL)</td>
<td>Precipitate formed at top dose level; authors report no significant toxicity at these doses</td>
<td>Elliott et al. 1998</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/T base pair substitutions</td>
<td>Antimony trioxide</td>
<td>E. coli B/r WP2 try and WP2 hcr try (-S9, spot test method)</td>
<td>Negative (concentrations tested: 0.05–0.5 M)</td>
<td>Microbial toxicity not reported</td>
<td>Kanematsu et al. 1980</td>
</tr>
<tr>
<td>A/T base pair substitution</td>
<td>Antimony trioxide</td>
<td>E. coli WP2P (+/-S9; plate incorporation and pre-incubation protocols) 3-day exposure duration</td>
<td>Negative (concentrations tested: 100–5000 µg/plate)</td>
<td>Microbial toxicity not reported</td>
<td>Elliott et al. 1998</td>
</tr>
<tr>
<td>A/T base pair substitution</td>
<td>Antimony trioxide</td>
<td>E. coli WP2PuvrA (+/-S9; plate incorporation and pre-incubation protocols) 3-day exposure duration</td>
<td>Negative (concentrations tested: 100–5000 µg/plate)</td>
<td>Microbial toxicity not reported</td>
<td>Elliott et al. 1998</td>
</tr>
<tr>
<td>A/T base pair substitutions</td>
<td>Antimony trichloride</td>
<td>E. coli B/r WP2 try and WP2 hcr try (-S9, spot test method)</td>
<td>Negative (concentrations tested: 0.05–0.5 M)</td>
<td>Microbial toxicity not reported</td>
<td>Kanematsu et al. 1980</td>
</tr>
<tr>
<td>Genotoxicity endpoint</td>
<td>Antimony form</td>
<td>Testing system/exposure duration</td>
<td>Assay endpoint</td>
<td>Comments</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>G/C base pair substitutions</td>
<td>Antimony trioxide</td>
<td>S. typhimurium TA 1535, TA 1537, TA100, TA98 (+/-S9; plate incorporation and pre-incubation protocols)</td>
<td>Negative (concentrations tested: 100–5000 µg/plate)</td>
<td>Microbial toxicity not reported</td>
<td>Elliott et al. 1998</td>
</tr>
<tr>
<td>Frameshift mutations</td>
<td>Antimony trioxide</td>
<td>S. typhimurium TA 1537 and 98 (+/-S9; plate incorporation and 60 min pre-incubation protocols)</td>
<td>Negative (concentrations tested: 100–5000 µg/plate)</td>
<td>Microbial toxicity not reported</td>
<td>Elliott et al. 1998</td>
</tr>
<tr>
<td>Base pair substitution and frameshift mutations</td>
<td>Antimony trioxide</td>
<td>S. typhimurium TA98, TA100, TA1535, TA1537, TA1568 (-S9, spot test method)</td>
<td>Negative (concentrations tested: 0.05–0.5 M)</td>
<td>Duration of chemical exposure for spot test assay not reported; microbial toxicity not reported</td>
<td>Kanematsu et al. 1980</td>
</tr>
<tr>
<td>Base pair substitution and frameshift mutations</td>
<td>Antimony trioxide</td>
<td>S. typhimurium TA100, TA98 (+/-S9; 20 min pre-incubation modification)</td>
<td>Negative in 3 experiments (concentrations tested: 0.43–1.71 µg/plate)</td>
<td>Survival after pre-incubation step reported</td>
<td>Kuroda et al. 1991</td>
</tr>
<tr>
<td>Base pair substitution and frameshift mutations</td>
<td>Antimony trichloride</td>
<td>S. typhimurium TA98, TA100, TA1535, TA1537, TA1568 (-S9, spot test method)</td>
<td>Negative (concentrations tested: 0.05–0.5 M)</td>
<td>Duration of chemical exposure for spot test assay not reported; microbial toxicity not reported</td>
<td>Kanematsu et al. 1980</td>
</tr>
<tr>
<td>Base pair substitution and frameshift mutations</td>
<td>Antimony trichloride</td>
<td>S. typhimurium TA100, TA98 (+/-S9; 20 min pre-incubation modification)</td>
<td>Negative in 3 experiments (concentrations tested: 625–5000 µg/plate)</td>
<td>Survival after pre-incubation step reported</td>
<td>Kuroda et al. 1991</td>
</tr>
</tbody>
</table>

*aAll data in prokaryotes were derived bacterial reverse mutation assays. The single eukaryotic study data was derived from the mouse lymphoma TK gene mutation assay.

*bLevels of significance are designated as follows: *P < 0.05; **P < 0.01.
Table E.3-2. Genotoxic DNA damaging effects of antimony compounds

Listing order of the studies are as follows:
1. Assay, in the order of metaphase analysis, micronucleus assay, and sister chromatid exchange assay;
2. Target system, in the order of studies in human cells, animal studies, in vitro studies, and biochemical studies;
3. Compound, in the order of antimony(III) trioxide (bold), antimony(III) trichloride, and other antimony(III) compounds.

<table>
<thead>
<tr>
<th>Genotoxic endpoint</th>
<th>Antimony form</th>
<th>Assay name</th>
<th>Testing system</th>
<th>Assay endpoint<sup>a</sup></th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Damage (epidemiological studies)<sup>b</sup></td>
<td>Occupational antimony trioxide</td>
<td>Alkaline FPG-modified comet assay</td>
<td>Blood lymphocytes from occupationally exposed workers (-S9)</td>
<td>Frequency of subjects with oxidative DNA damage</td>
<td>Sb₂O₃ levels for direct and indirect exposure groups lower than OSHA/NIOSH PEL and REL for workplace. Moderate oxidative DNA damage observed in direct exposure group (0.12 ± 0.11 μg/m³); potential concomitant exposures not addressed.</td>
<td>Cavallo et al. 2002</td>
</tr>
<tr>
<td>DNA strand breaks, alkali-labile sites, oxidized purines</td>
<td>Occupational antimony trioxide</td>
<td>Alkaline FPG-modified comet assay</td>
<td>Blood lymphocytes from occupationally exposed workers (-S9)</td>
<td>Frequency of subjects with oxidative DNA damage</td>
<td>Sb₂O₃ levels for direct and indirect exposure groups lower than OSHA/NIOSH PEL and REL for workplace. Moderate oxidative DNA damage observed in direct exposure group (0.12 ± 0.11 μg/m³); potential concomitant exposures not addressed.</td>
<td>Cavallo et al. 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conc. (μg/m³)</td>
<td># with oxidative damage/total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>3/23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.120 ± 0.110</td>
<td>11/17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.052 ± 0.038</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Relative risk of DNA damage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conc. (μg/m³)</td>
<td>Adjusted relative risk</td>
<td>95% CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.120 ± 0.110</td>
<td>14.2**</td>
<td>2.7–73.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.052 ± 0.038</td>
<td>1.7</td>
<td>0.1–22.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tail moment values for FPG-treated cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conc. (μg/m³)</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>24.4 ± 9.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.120 ± 0.110</td>
<td>32.4 ± 16.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.052 ± 0.038</td>
<td>28.8 ± 5.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tail moment values for untreated cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conc. (μg/m³)</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>16.3 ± 6.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.120 ± 0.110</td>
<td>14.6 ± 8.29</td>
<td></td>
</tr>
</tbody>
</table>
Genotoxicity endpoint

<table>
<thead>
<tr>
<th>Antimony form</th>
<th>Assay name</th>
<th>Testing system</th>
<th>Assay endpoint</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational antimony trioxide</td>
<td>AP sites quantified using ELISA technique</td>
<td>Blood lymphocytes from occupationally exposed workers (-S9)</td>
<td>The quantity of DNA damage (determined by the number of AP sites/1 × 10^5 bp) among the studied workers was significantly (p = 0.004) higher compared to that recorded for the control group and a significant positive correlation was found between the quantity of DNA damage (in the form of increased AP sites) and urinary antimony level among workers (r = 0.873, P < 0.001). Total oxidative capacity (also measured by ELISA) was not different between workers and controls.</td>
<td>The number of measured abasic sites ranged from 17.22 (control group) to 26.88 (exposed workers)/1 × 10^5 bp. This range is higher than expected.</td>
<td>El Shanawany et al. 2017</td>
</tr>
</tbody>
</table>

DNA damage (in vitro studies in human cells)

<table>
<thead>
<tr>
<th>Antimony trichloride (concentrations tested: 1–50 μM)</th>
<th>Alkaline comet assay +/- proteinase K</th>
<th>Human whole blood or human lymphocytes exposed ex vivo (-S9)</th>
<th>Mean tail moment in human whole blood in comet assay without proteinase K</th>
<th>Significance tested by Kruskal-Wallis one-way ANOVA on ranks.</th>
<th>Schaumloffel and Gebel 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. (μM)</td>
<td>Time (hrs)</td>
<td>Mean ± SD</td>
<td>Conc. (μM)</td>
<td>Time (hrs)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>0</td>
<td>2.5</td>
<td>1.28 ± 0.10</td>
<td>0</td>
<td>2.5</td>
<td>1.00 ± 0.02</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>1.26 ± 0.01</td>
<td>1</td>
<td>2.5</td>
<td>1.23 ± 0.28</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>1.32 ± 0.08</td>
<td>5</td>
<td>2.5</td>
<td>1.39 ± 0.19*</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>1.32 ± 0.04</td>
<td>10</td>
<td>2.5</td>
<td>1.75 ± 0.08*</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
<td>1.47 ± 0.07</td>
<td>25</td>
<td>2.5</td>
<td>1.75 ± 0.08*</td>
</tr>
<tr>
<td>50</td>
<td>2.5</td>
<td>1.75 ± 0.08*</td>
<td>50</td>
<td>2.5</td>
<td>1.75 ± 0.08*</td>
</tr>
<tr>
<td>Genotoxicity endpoint</td>
<td>Antimony form</td>
<td>Assay name</td>
<td>Testing system</td>
<td>Assay endpoint*</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Mean tail moment in human lymphocytes in comet assay with proteinase K

<table>
<thead>
<tr>
<th>Conc. (μM)</th>
<th>Time (hrs)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5</td>
<td>1.08 ± 0.11</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>1.13 ± 0.09</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>1.30 ± 0.20</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>1.47 ± 0.13*</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
<td>1.53 ± 0.08*</td>
</tr>
<tr>
<td>50</td>
<td>2.5</td>
<td>1.94 ± 0.30***</td>
</tr>
</tbody>
</table>

DNA damage (animal studies)

DNA strand breaks and alkali labile sites

Antimony trioxide

NC: air

In vivo exposure (inhalation)

Alkaline comet assay

<table>
<thead>
<tr>
<th>Dose (mg/m³)</th>
<th>Time (mo.)</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>25.6 ± 0.78</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>33.7 ± 2.62*</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>33.5 ± 2.02**</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>37.5 ± 2.28***</td>
</tr>
</tbody>
</table>

Lung of female mice exposed via inhalation for 12 months

Percent tail DNA

<table>
<thead>
<tr>
<th>Dose (mg/m³)</th>
<th>Time (mo.)</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>32.8 ± 1.11</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>35.8 ± 2.09</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>36.4 ± 2.65</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>45.5 ± 2.32***</td>
</tr>
</tbody>
</table>

Trend tests show significant increase for both lung tissue of males and females exposed to trioxide; No increase in percent tail DNA observed in leukocytes of males or females exposed to trioxide. Normally distributed data analyzed by independent sample’s t-test and linear regression; data that were not normally distributed were analyzed by the Mann-Whitney test followed NTP 2017b.
<table>
<thead>
<tr>
<th>Genotoxicity endpoint</th>
<th>Antimony form</th>
<th>Assay name</th>
<th>Testing system</th>
<th>Assay endpoint*</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA strand breaks and alkali labile sites</td>
<td>Antimony trioxide
N: air</td>
<td>In vivo exposure (inhalation)
Alkaline comet assay</td>
<td>Lung and blood leukocytes of male and female rats exposed via inhalation for 12 months</td>
<td>No statistically significant increases were observed in percent tail DNA in blood leukocytes or lung tissue in exposed rats of either sex</td>
<td>by the Kendall rank correlation test</td>
<td>NTP 2017b</td>
</tr>
</tbody>
</table>

DNA damage (in vitro studies in non-human mammalian cells)

| DNA strand breaks and alkali labile sites | Antimony trichloride | Alkaline comet assay | V79 Chinese hamster cells exposed **in vitro** (-S9) | Tail moment was significantly elevated at a minimum dose of 1 µM Sb(III); no difference could be found comparing the results obtained in presence and absence of proteinase K. | DNA damage observed below cytotoxic levels; antimony uptake measured | Gebel *et al.* 1998 |

DNA damage (bacterial systems)

<table>
<thead>
<tr>
<th>Growth in recombination-repair deficient bacterial strain</th>
<th>Antimony trioxide
N: Kanamycin (5, 10 20 µg/plate)
P: Mitomycin C (0.05, 0.1, and 0.2 µg/plate)</th>
<th>B. subtilis rec assay</th>
<th>B. subtilis M45(rec-) and H17(rec+)</th>
<th>HI17 (Rec+) and M45 (Rec-) inhibition length</th>
<th>Used spore plate method</th>
<th>Kuroda et al. 1991</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Conc. (µg/plate)</th>
<th>Difference in inhibition length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC (5)</td>
<td>0</td>
</tr>
<tr>
<td>NC (10)</td>
<td>0</td>
</tr>
<tr>
<td>NC (20)</td>
<td>0.5</td>
</tr>
<tr>
<td>PC (0.05)</td>
<td>8.0</td>
</tr>
<tr>
<td>PC (0.1)</td>
<td>8.0</td>
</tr>
<tr>
<td>PC (0.2)</td>
<td>7.0</td>
</tr>
<tr>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>0.6</td>
<td>4.0</td>
</tr>
<tr>
<td>1.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Genotoxicity endpoint</td>
<td>Antimony form</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Growth in recombination-repair deficient bacterial strain</td>
<td>Antimony trioxide</td>
</tr>
<tr>
<td>Growth in recombination-repair deficient bacterial strain</td>
<td>Antimony trichloride</td>
</tr>
<tr>
<td>Growth in recombination-repair deficient bacterial strain</td>
<td>Antimony trichloride</td>
</tr>
</tbody>
</table>

References
- Kanematsu et al. 1980
- Kuroda et al. 1991
- Nishioka 1975
Genotoxicity endpoint

<table>
<thead>
<tr>
<th>Genotoxicity endpoint</th>
<th>Antimony form</th>
<th>Assay name</th>
<th>Testing system</th>
<th>Assay endpoint(^a)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction of recombination-repair genes</td>
<td>Antimony trichloride</td>
<td>SOS chromotest for genotoxicity</td>
<td>E. coli PQ37 derived from strain GC4436 (-S9)</td>
<td>SOS chromotest was negative for antimony trichloride (concentration tested: 11–707 μM)</td>
<td>Cytotoxicity observed at 354 μM</td>
<td>Lantzsch and Gebel 1997</td>
</tr>
<tr>
<td>Induction of recombination-repair genes</td>
<td>Antimony trichloride</td>
<td>Umu test for genotoxicity</td>
<td>S. typhimurium TA1535/pSK1002 (-S9)</td>
<td>Umu test was negative for antimony trichloride (concentrations tested: 1.6–820 μM)</td>
<td>Data not reported</td>
<td>Yamamoto et al. 2002</td>
</tr>
</tbody>
</table>

DNA Damage (biochemical assay)

<table>
<thead>
<tr>
<th>plasmid DNA nicking</th>
<th>Trimethyl-stibine</th>
<th>Plasmid DNA nicking assay</th>
<th>Plasmid pBR322 exposed in vitro (gaseous phase) to test reactions for 30 min.</th>
<th>Estimated Quantity of Open Circular form of Plasmid(^b)</th>
<th>Chemical reactions to produce trimethylstibine were conducted in situ; Plus and minus designations were estimated from images only (no quantitation of nicked and supercoiled forms). Negative results were reported for potassium antimony tartrate.</th>
<th>Andrewes et al. 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trimethylarsine</td>
<td>PC: Trimethylarsine</td>
<td>Plasmid pBR322 exposed in vitro (gaseous phase) to test reactions for 30 min.</td>
<td>Estimated Quantity of Open Circular form of Plasmid(^b)</td>
<td>Chemical reactions to produce trimethylstibine were conducted in situ; Plus and minus designations were estimated from images only (no quantitation of nicked and supercoiled forms). Negative results were reported for potassium antimony tartrate.</td>
<td>Andrewes et al. 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose (μM)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>+/-</td>
</tr>
<tr>
<td>5</td>
<td>+/-</td>
</tr>
<tr>
<td>20</td>
<td>+/-</td>
</tr>
<tr>
<td>50</td>
<td>+</td>
</tr>
<tr>
<td>200</td>
<td>++</td>
</tr>
<tr>
<td>500</td>
<td>+++</td>
</tr>
<tr>
<td>5000</td>
<td>+++</td>
</tr>
</tbody>
</table>

Notes:

- AP = apurinic/apyrimidinic; avg = average; CI = confidence interval; conc. = concentration; ELISA = enzyme-linked immunosorbent assay; FPG = formamidopyrimidine-DNA glycosylase; hr = hour(s); mo = month(s); NC = negative control; NR = not reported; PC = positive control; SD = standard deviation; SE = standard error; VC = vehicle control.
- Levels of significance are designated as follows: *P < 0.05; **P < 0.01; ***P < 0.001.
- DNA damage estimated as quantity of open circular (vs supercoiled) forms from images of plasmids electrophoretically separated in ethidium bromide-stained agarose gels.

Table:

<table>
<thead>
<tr>
<th>Dose (μM)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>+/-</td>
</tr>
<tr>
<td>5</td>
<td>+/-</td>
</tr>
<tr>
<td>20</td>
<td>+/-</td>
</tr>
<tr>
<td>50</td>
<td>+</td>
</tr>
<tr>
<td>200</td>
<td>++</td>
</tr>
<tr>
<td>500</td>
<td>+++</td>
</tr>
<tr>
<td>5000</td>
<td>+++</td>
</tr>
</tbody>
</table>
Table E.3-3. Genotoxicity of antimony compounds – chromosomal aberrations, micronucleus, and sister chromatid exchangea, b

Studies are listed hierarchically according to the following criteria:

1. Assay, in the order of assays for chromosomal aberrations, micronucleus, and sister chromatid exchange.
2. Target system, in the order of studies in human cells, animal studies, \textit{in vitro} studies, biochemical studies.
3. Compound, in the order of antimony trioxide (bold), antimony trichloride, other antimony(III) compounds.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Exposure and assay name</th>
<th>Testing system and exposure duration</th>
<th>Assay endpoint</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomal aberrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony trioxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC: dimethyl sulfoxide (10 µL/mL)</td>
<td>\textit{In vitro} exposure lymphocytes with 2 hr exposure to colcemid (-S9)</td>
<td>Human peripheral lymphocytes with 2 hr exposure to colcemid (-S9)</td>
<td>Mean % aberrant cells excluding gaps</td>
<td>Precipitate formed at top dose level</td>
<td>Elliott et al. 1998</td>
</tr>
<tr>
<td>PC: mitomycin C (0.2 µg/mL for-S9) or cyclophosphamide (50 µg/mL for +S9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony sodium tartrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paton and Allison 1972</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Substance: Antimony Trioxide

VC: HPMC/poly-sorbate

In vivo exposure

- **Ex vivo metaphase analysis**
 - Sprague-Dawley rat bone marrow cells (-S9)
 - Exposure time: Once daily for 21 consecutive days by oral gavage (except PC administered on only on day 21)
 - Dose: 250, 500, 1000 mg/kg

Assay endpoint

- **Assay endpoint**
 - Sprague-Dawley rat bone marrow cells (-S9)
 - Exposure time: Once daily for 21 consecutive days by oral gavage (except PC administered on only on day 21)
 - Dose: 250, 500, 1000 mg/kg

Assay endpoint

- **Assay endpoint**
 - Frequency of cells with chromosomal aberration excluding gaps in male rats

<table>
<thead>
<tr>
<th>Group</th>
<th>HIC/LEC (mg/kg)</th>
<th>Mean% ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>20</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>PC</td>
<td>20</td>
<td>13 ± 6.63***</td>
</tr>
</tbody>
</table>

Comments

- Body-weight gain was reduced (<10%) in the top dose group of treated rats of both sexes over the 3-week dosing period.

References

- Kirkland et al. 2007

PC: Cyclophosphamide

In vivo exposure

- **Ex vivo metaphase analysis**
 - Male Swiss albino mice bone marrow cells (-S9)
 - Exposure by daily oral gavage on days 7, 14 and 21.
 - Dose: 400, 666.7, 1000 mg/kg

Assay endpoint

- **Assay endpoint**
 - Frequency of aberrations excluding gap

<table>
<thead>
<tr>
<th>LEC (mg/kg)</th>
<th>Time (days)</th>
<th>Mean% ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>7</td>
<td>1.4 ± 1.140</td>
</tr>
<tr>
<td>400</td>
<td>7</td>
<td>2.2 ± 0.447*</td>
</tr>
<tr>
<td>NC</td>
<td>14</td>
<td>1.6 ± 0.547</td>
</tr>
<tr>
<td>400</td>
<td>14</td>
<td>3.2 ± 0.447*</td>
</tr>
<tr>
<td>NC</td>
<td>21</td>
<td>1.6 ± 0.547</td>
</tr>
<tr>
<td>400</td>
<td>21</td>
<td>4.6 ± 0.547*</td>
</tr>
</tbody>
</table>

Comments

- Purity of test compound not reported;
- Test for trend significant for 7 and 14 days for analysis including and excluding gaps (not shown in this table).
- No increases in chromosomal aberrations was observed after single acute exposure at same doses and measured 6, 12, 18 and 24 hours; Highest dose was lethal.

References

- Gurnani et al. 1992b

NC: distilled water

In vivo exposure

- **Ex vivo metaphase analysis**
 - Female Swiss albino mice bone marrow cells (-S9)
 - Dose: 70, 140, 233.3 mg/kg

Assay endpoint

- **Assay endpoint**
 - Frequency of aberrations including gap

<table>
<thead>
<tr>
<th>LEC (mg/kg)</th>
<th>Time (hrs)</th>
<th>Mean% ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>6</td>
<td>1.6 ± 0.547</td>
</tr>
<tr>
<td>70</td>
<td>6</td>
<td>2.6 ± 0.547</td>
</tr>
<tr>
<td>NC</td>
<td>12</td>
<td>1.0 ± 1.0</td>
</tr>
<tr>
<td>70</td>
<td>12</td>
<td>3.0 ± 0.0</td>
</tr>
</tbody>
</table>

Comments

- Source and purity of test compound not reported
- Test for trend significant for 6, 12, 18, and 24 hr analysis including and excluding gaps (not shown in this table).

References

- Gurnani et al. 1992a
<table>
<thead>
<tr>
<th>Substance</th>
<th>Exposure and assay name</th>
<th>Testing system and exposure duration</th>
<th>Assay endpoint</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium antimony tartrate
Control: untreated animals

Male rats bone marrow (-S9)
Exposure via single intraperitoneal injection at each dose; Also, tested repeated exposure (daily for 5 days) at each dose.
Dose: 2.0, 8.4, 14.8 mg/kg</td>
<td>In vivo exposure
Ex vivo metaphase analysis</td>
<td>Metaphases with aberrations excluding gap</td>
<td>LEC (mg/kg, unless specified)</td>
<td>Time after treatment (hr, unless specified)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>n/a</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>6</td>
<td>2.0*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>24</td>
<td>2.4*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>48</td>
<td>5.2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0 mg/kg/day x 5 days</td>
<td>–</td>
<td>7.6*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micronuclei</th>
<th>Epidemiology study
Sister chromatid exchange assay</th>
<th>Blood lymphocytes from textile workers exposed to low levels of antimony trioxide
23 exposed workers: 17 high exposure (0.12 ± 11 µg/m³) and 6 lower exposure (0.052 ± 0.038 µg/m³)
23 controls</th>
<th>Mean micronuclei/1000 binucleated cells did not differ between controls and two exposure groups</th>
<th>High exposure well below OHSA permissible exposure levels and NIOSH recommended exposure levels
Exposure groups had similar ages, and smoking habits</th>
<th>Cavallo et al. 2002</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Antimony trichloride
NC: DMSO
PC:</th>
<th>In vitro exposure
Micronucleus test</th>
<th>Human peripheral lymphocytes (-S9)
Doses: 0, 0.5, 2, 5, 25 µM</th>
<th>Induction of micronuclei by Sb(III)</th>
<th>Co-incubation with SOD or CAT had no effect on micronucleus frequency; Statistical</th>
<th>Schaumlöffel and Gebel 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEC (µM)</td>
<td>Time (hrs)</td>
<td>MN/1000 BN, mean ± SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>10 ± 1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Exposure and assay name</td>
<td>Testing system and exposure duration</td>
<td>Assay endpoint</td>
<td>Assay endpoint</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>mitomycin C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(data not shown)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony trioxide</td>
<td>In vivo exposure</td>
<td>Male mice peripheral blood erythrocytes exposed via inhalation for 12 months. Dose: 0, 3, 10, 30 mg/m³</td>
<td>No significant increase in micronucleated PCEs/1,000 PCEs in male mice</td>
<td>Micronucleated NCEs/1,000 NCEs</td>
<td>Twenty thousand CD71+ reticulocytes (PCE) were scored per animal for the presence of micronuclei and 1×10^6 erythrocytes (NCE) were counted for micronuclei. William’s and Dunn’s test were used for pairwise significance, and Jonckheere’s test and linear regression used for trend significance. MN frequency in NCEs but not PCEs significant by trend test ($P < 0.001$) in both sexes.</td>
</tr>
<tr>
<td>NC: air</td>
<td>Ex vivo micronucleus test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female mice peripheral blood erythrocytes exposed via inhalation for 12 months Dose: 0, 3, 10, 30 mg/m³</td>
<td>No significant increase in micronucleated PCEs/1,000 PCEs in female mice</td>
<td>Micronucleated NCEs/1,000 NCEs</td>
<td>Twenty thousand CD71+ reticulocytes (PCE) were scored per animal for the presence of micronuclei and 1×10^6 erythrocytes (NCE) were counted for micronuclei. William’s and Dunn’s test were used for pairwise significance, and Jonckheere’s test and linear regression used for trend significance. MN frequency in NCEs but not PCEs significant by trend test ($P < 0.001$) in both sexes.</td>
</tr>
<tr>
<td>Antimony trioxide</td>
<td>In vivo exposure</td>
<td>Male rat peripheral blood erythrocytes exposed via inhalation for 12 months</td>
<td>No significant increase in micronucleated PCEs/1,000 PCEs or micronucleated NCEs/1000 NCEs in male rats.</td>
<td>Micronucleated NCEs/1,000 NCEs</td>
<td>Twenty thousand CD71+ reticulocytes (PCE) were scored per animal for the presence of micronuclei and 1×10^6 erythrocytes (NCE) were counted for micronuclei. William’s and Dunn’s test were used for pairwise significance, and Jonckheere’s test and linear regression used for trend significance. MN frequency in NCEs but not PCEs significant by trend test ($P < 0.001$) in both sexes.</td>
</tr>
<tr>
<td>NC: air</td>
<td>Ex vivo micronucleus test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female rat peripheral blood erythrocytes exposed via inhalation for 12 months</td>
<td>No significant increase in micronucleated PCEs/1,000 PCEs or micronucleated NCEs/1000 NCEs in female rats.</td>
<td>Micronucleated NCEs/1,000 NCEs</td>
<td>Twenty thousand CD71+ reticulocytes (PCE) were scored per animal for the presence of micronuclei and 1×10^6 erythrocytes (NCE) were counted for micronuclei. William’s and Dunn’s test were used for pairwise significance, and Jonckheere’s test and linear regression used for trend significance. MN frequency in NCEs but not PCEs significant by trend test ($P < 0.001$) in both sexes.</td>
</tr>
<tr>
<td>Substance</td>
<td>Exposure and assay name</td>
<td>Testing system and exposure duration</td>
<td>Assay endpoint</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Antimony trichloride</td>
<td>In vitro exposure</td>
<td>Human fibroblast cells (-S9)</td>
<td>Positive findings for all cell types at all doses</td>
<td>Jonckheere’s test and linear regression used for trend significance. No significant changes were observed in MN frequency in rats of either sex.</td>
<td>Huang et al. 1998</td>
</tr>
</tbody>
</table>
| | Micronucleus test | Human bronchial epithelial cells (BES-6) (-S9) | | LD$_{50}$ = 40 μM in fibroblast cells
LD$_{50}$ = 80 μM in BES-6 cells
LD$_{50}$ = 180 μM in CHO-K1 cells | |
<p>| | | Chinese hamster ovary cells (CHO-K1) (-S9) | | |
| | | Exposure time: 4 hr, Dose: 50–400 μM | | | |
| Antimony trioxide | In vivo exposure | Mouse bone marrow (-S9) male and females Single dose study | No increases in mean incidence of MPE/1000 PE in the single dose study (males and females) or in the repeated dose study (sex not identified). | Significantly decreased frequency of polychromatic erythrocytes observed in females at 24 hr in the single dose experiment. | Elliott et al. 1998 |
| | Micronucleus test | Exposure time: 24 and 48 hr Dose: 5000 mg/kg by oral gavage Repeated dose study: Exposure time: 8, 15 and 22 days Dose: 400, 667, or 1000 mg/kg by oral gavage | | |
| | VC: DMSO | | | |
| | PC: Cyclophosphamide (20 mg/kg) | | | |
| Antimony trioxide | In vivo exposure | Sprague-Dawley male and female rat bone marrow cells (-S9) | No increase in the frequency of micronucleated PCE in male and female rats | Kirkland et al. 2007 | |
| | Micronucleus test | | | |</p>
<table>
<thead>
<tr>
<th>Substance</th>
<th>Exposure and assay name</th>
<th>Testing system and exposure duration</th>
<th>Assay endpoint</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC: HPMC/poly-sorbate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC: Cyclophosphamide (20 mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC: DMSO (25 µL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC: Mitomycin C (0.5 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antimony trioxide

In vitro

| Micronucleus test with cytokinesis block | Chinese hamster V79 cells | Exposure time: 24 hr | Dose: 2–50 µM |

Assay endpoint

<table>
<thead>
<tr>
<th>Mean number of micronuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>VC</td>
</tr>
<tr>
<td>PC</td>
</tr>
<tr>
<td>Antimony trioxide</td>
</tr>
</tbody>
</table>

Study measured both antimony uptake in cells and cytotoxicity (50% neutral red uptake was found with SbCl₃ at 83 µM)

Gebel *et al.* 1998

Sister chromatid exchange

Occupational antimony trioxide

Epidemiology study

Sister chromatid exchange assay

Peripheral blood lymphocytes from textile workers exposed to low levels of antimony trioxide

23 exposed workers: 17 high exposure (0.12 ± 11 µg/m³) and 6 lower exposure (0.052 ± 0.038 µg/m³)

23 controls

Mean SCE did not differ between controls and two exposure groups

High exposure well below OHSA permissible exposure levels and NIOSH recommended exposure levels

Exposure groups had similar ages, and smoking habits

Cavallo *et al.* 2002

Antimony trioxide

(dissolved in distilled water)

In vitro

Sister chromatid exchange assay

Human peripheral blood lymphocytes from healthy non-smokers aged 25-35 years (-S9)

SCE/cell

<table>
<thead>
<tr>
<th>LEC (µM)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.6 ± 3.4</td>
</tr>
<tr>
<td>0.5</td>
<td>11.5 ± 4.4*</td>
</tr>
</tbody>
</table>

NC was DMSO, and it is unclear whether the 0 µM result was from distilled water or DMSO. No PC was

Gebel *et al.* 1997
<table>
<thead>
<tr>
<th>Substance</th>
<th>Exposure and assay name</th>
<th>Testing system and exposure duration</th>
<th>Assay endpoint</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC: DMSO</td>
<td>In vitro exposure</td>
<td>Human peripheral blood lymphocytes from healthy non-smokers aged 25–35 years (-S9)</td>
<td>SCE/cell</td>
<td></td>
<td>Gebel et al. 1997</td>
</tr>
<tr>
<td>Antimony trichloride (dissolved in DMSO)</td>
<td>NC: DMSO</td>
<td>Exposure time: 24 hrs</td>
<td></td>
<td>No PC was stated in the study. Results are from 60 metaphase cells scored on two slides.</td>
<td></td>
</tr>
<tr>
<td>Antimony trioxide</td>
<td>NC: Water (100 µL)</td>
<td>In vitro exposure</td>
<td>Frequency of sister chromatid exchanges/metaphase</td>
<td>Sb<sub>2</sub>O<sub>3</sub> was negative in the SCE assay; Similar results in experiment 1, although LEC was 0.17 µg/mL</td>
<td>Kuroda et al. 1991</td>
</tr>
<tr>
<td>Antimony trichloride</td>
<td>NC: Water (100 µL)</td>
<td>In vitro exposure</td>
<td>Frequency of sister chromatid exchanges/metaphase</td>
<td>SbCl<sub>5</sub> was negative in the SCE assay. Toxic at 20 µg/mL; similar results in experiment 2, although LEC was 5 µg/mL.</td>
<td>Kuroda et al. 1991</td>
</tr>
</tbody>
</table>

b.w. = body weight; FISH = fluorescence in situ hybridization; HIC = Highest ineffective concentration; hr = hour(s); LEC = Lowest effective concentration; mo = months; NC = Negative control; NR = not reported; PC = Positive Control; VC = Vehicle Control.

*P < 0.05, **P < 0.01, ***P < 0.001.
Provided are the form of the test compound, study details including the testing system and exposure duration, assay endpoint results for test compounds and positive and negative controls, comments provided by reviewers, and reference.

Compounds containing pentavalent antimony are not included. For instance, trimethylantimony dichloride in Dopp et al. 2006 (no increase of MN formation, chromosome aberration, or sister chromatid exchange in the Chinese hamster ovary cells after exposure to at up to 1 mM. When the cells underwent electroporation to double the intake of trimethylantimony dichloride, the formation of MN was increased.) and KSbO3 in Migliore et al. 1999 (non significant increase of centromere-negative MN) were not included in the table.
E.4 Studies related to cell proliferation

Table E.4-1. Mutations in the lung of mice and rats after two-year inhalation exposure to antimony trioxide (NTP 2017b).

<table>
<thead>
<tr>
<th>Genotoxicity endpoint</th>
<th>Testing system</th>
<th>Assay endpoint</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egfr mutations</td>
<td>Lung tumors from exposed B6C3F1/N mice. Both nontumor lung and spontaneous tumors from control mice.</td>
<td>Mutation Frequency</td>
<td></td>
<td>NTP 2017b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentration (mg/m³)</td>
<td># with mutation/# tissues assayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (nontumor lung)</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (tumor lung)</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (tumor lung)</td>
<td>11/28*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (tumor lung)</td>
<td>11/26*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 (tumor lung)</td>
<td>15/26**</td>
<td></td>
</tr>
<tr>
<td>Egfr mutations</td>
<td>Lung tumors from exposed Wistar Han rats. Both nontumor lung and spontaneous tumors from control mice.</td>
<td>Mutation Frequency</td>
<td></td>
<td>NTP 2017b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentration (mg/m³)</td>
<td># with mutation/# tissues assayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (nontumor lung)</td>
<td>0/11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (tumor lung)</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (tumor lung)</td>
<td>3/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (tumor lung)</td>
<td>6/11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 (tumor lung)</td>
<td>4/10</td>
<td></td>
</tr>
<tr>
<td>Kras mutations</td>
<td>Lung tumors from exposed Wistar Han rats. Both nontumor lung and spontaneous tumors from control mice.</td>
<td>Mutation Frequency</td>
<td></td>
<td>NTP 2017b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentration (mg/m³)</td>
<td># with mutation/# tissues assayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (nontumor lung)</td>
<td>0/11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (tumor lung)</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (tumor lung)</td>
<td>0/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (tumor lung)</td>
<td>1/11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 (tumor lung)</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>Kras mutations</td>
<td>Lung tumors from exposed B6C3F1/N mice. Both nontumor lung and spontaneous tumors from control mice.</td>
<td>Mutation Frequency</td>
<td></td>
<td>NTP 2017b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentration (mg/m³)</td>
<td># with mutation/# tissues assayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (nontumor lung)</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 (tumor lung)</td>
<td>3/9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (tumor lung)</td>
<td>9/28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (tumor lung)</td>
<td>15/26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 (tumor lung)</td>
<td>10/26</td>
<td></td>
</tr>
</tbody>
</table>
E.5 Transcriptomic of antimony(III) potassium tartrate trihydrate in HepG2 cells

One DNA microarray study (Kawata et al. 2007) of in vitro effects of an antimony(III) compound on a human cell line was found in the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) database (NCBI 2017). HepG2 (human liver carcinoma) cells were exposed to bis[(+)-tartato]diantimonate(III) dipotassium trihydrate (i.e., antimony(III) potassium tartrate trihydrate, equivalent to one molecule of antimony(III) potassium tartrate plus three water molecules) at a concentration of 200 µM for 6 hours, and the gene expression changes seen in a Human Genome Focus array (Affymetrix) were compared with changes following exposure to five other substances, including arsenic(III) oxide at 20 µM and nickel(III) chloride hexahydrate at 6.5 nM. The gene expression profile after antimony(III) potassium tartrate trihydrate exposure was most similar to that after nickel(III) chloride hexahydrate exposure.

The microarray data were downloaded from the NCBI GEO database and analyzed in Ingenuity Pathway Analysis (Qiagen) by the NTP ORoC, using the filter of minimal 2-fold change. Of the top ten canonical pathways affected (Table E.5-1), seven were related to immune reactions (pathways 1, 2, 4, 5, 7, 8, and 9). These findings are consistent with the former use of antimony(III) potassium tartrate as an antiparasitic agent for leishmaniasis. The other three pathways were eicosanoid signaling, bladder-cancer signaling, and detoxification of oxidized guanosine triphosphate (GTP) and deoxyguanosine triphosphate (dGTP). Although antimony is not known to cause urinary-bladder cancer, the chemically similar arsenic increases the incidence of transitional-cell carcinoma of the urinary bladder in humans. An effect on the oxidized GTP and dGTP detoxification pathway is consistent with the observation that various antimony compounds increase oxidative stress (as discussed in Section 6.2).

In the upstream analysis, the top three affected regulators were vascular endothelial growth factor (VEGF), colony-stimulating factor 2 (CSF2) (a cytokine), and the triggering receptor expressed on myeloid cells 1 (TREM1), which stimulates neutrophil- and monocyte-mediated inflammatory responses (Appendix E.5, Table E.5-1). In a 2015 study, antimony(III) potassium tartrate inhibited the VEGF-induced formation of capillary-like structures in endothelial cells (Wang et al. 2015). In other words, antimony(III) potassium tartrate showed anti-tumor effects via anti-angiogenesis in cultured cells. Both CSF2 and TREM1 stimulate immune or inflammatory responses. These top three affected regulators are predominantly involved in skin disease and cancer. Some anti-cancer effects, such as increased differentiation of cells, were also enriched in the gene expression. To identify key factors contributing to potential carcinogenic effects, further analysis is needed. It is also possible that 6-hour exposure leads to mostly acute responses, which may differ from the long-term effects.
Table E.5-1. Top 10 upstream regulators for antimony

<table>
<thead>
<tr>
<th>Upstream regulator</th>
<th>Expr fold change</th>
<th>Molecule type</th>
<th>Predicted activation state</th>
<th>Activation z-score</th>
<th>P-value of overlap</th>
<th>Target molecules in dataset</th>
<th>Mechanistic network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Vegf</td>
<td></td>
<td>group</td>
<td>Activated</td>
<td>9.487</td>
<td>bias 1.88E-09</td>
<td>ANGPT2, ANGPTL4, AQP4, ATF3, AURKA, AURKB, BCL2A1, BI R5, BNC1, BTN1A1, CA2, CALB1, CALCRL, CCL7, CCNF, CD3E AP, CDC14A, CDC20, CDC25A, CDC25B, CDC25C, CDC45, CDH5, CDK1, CDKN2C, CDKN3, CELSR1, CHI3L1, CHIA, CHRN2B, CHST7, CKS1B, CLCF1, CNN1, CNTFR, CPA3, CFL1, CRYAB, CSF2, CXCL1, CXCL8, CXCR2, CXCR4, CYR61, DBF4, DPF3, DRD3, DTYMK, DUSP4, DUSP5, EDN1, EGR1, EGR3, EMCN, EMP2, ESM1, FABP4, FAIM2, FANC, FGFR16, FGFR2, FLNA, FOSB, FOSL1, GATA1, GEM1, GPR4, GPRC5B, HBE1, HBEGF, HDC, HMox1, HOXB8, HPSE, HTR7, IL18, IL1A, IL3RA, IL4, ITGAM3BP, JAM2, JUN, KIF15, KIF22, KIF2C, KITLG, LEF1, LPAR1, LRTAT, LV-YVE1, MCM2, MCM5, MID1, MKI67, MMP10, MMP14, MT1G, MYCN, NDC80, NEK2, NFATC1, NGB, NR4A2, NR4A3, NRCAM, NRG1, PLK1, PLXNA2, PMAIP1, PRC1, PRKCB, PSMC3IP, PTH, RGS2, RGS20, SOC52, SOCS3, ST8SIA4, STK10, TAAR5, TACR1, TACSTD2, TBX6, THBD, TNC, TNFRSF9, TNFRSF15, TPX2, TRAF5, TRAIP, TRPC4, TTK, UBE2C, XCR1</td>
<td></td>
</tr>
<tr>
<td>2 CSF2</td>
<td>8.025</td>
<td>cytokine</td>
<td>Activated</td>
<td>8.308</td>
<td>bias 1.85E-08</td>
<td>ADA, ADAM8, ADGRE5, ANXA1, AURKA, BCL2A1, BIRC5, C5A R1, CCL4, CCNF, CCR1, CCR5, CCR7, CD1C, CD209, CD28, CD33, CD40LG, CD69, CD8A, CDC20, CDK1, CDKN1A, CDKN2B, CDK N2C, CENPE, CHAF1A, CHAF1B, CKS1B, CLCF1, COL8A1, CSF1, CSF2, CTLA4, CXCL1, CXCL2, CXCL8, CXCR4, CYBB, EDN1, EGR1, EGR2, EGR3, EPOR, EX01, FANC, FCGR2B, FOLR2, FOS, FOSL1, FPR2, GATA1, GCLM, GDF15, HBEGF, HDC, HLA-DQB1, HRH4, HRK, HSPH1, IER3, IFNG, IGFB, IL1A, IL1RN, IL24, IL3RA, IL4, ITGAM, LEP, MCM5, MKI67, MMP1, MMP14, MRCl, NEK2, NFATC1, NFE2, NFKBIA, NRA42, NUSA1P1, OSM, PDE1B, PIM1, PLK1, POLD1, POLE, PPP1R15A, PRC1, PTGER2, RARA, RECQL4, RELB, RRM2, SERPINB9, SLCA15, SOCS2, SOCS3, SPAG5, SPI1, STMN1, THBS1, TLR2, TLR4, TNFAIP3, TNFRSF1B, TN</td>
<td></td>
</tr>
</tbody>
</table>

352 (5)
<table>
<thead>
<tr>
<th>Upstream regulator</th>
<th>Expr fold change</th>
<th>Molecule type</th>
<th>Predicted activation state</th>
<th>Activation z-score</th>
<th>Flags</th>
<th>R-value of overlap</th>
<th>Target molecules in dataset</th>
<th>Mechanistic network</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREM1</td>
<td>1.62</td>
<td>transmembrane receptor</td>
<td>Activated</td>
<td>4.945</td>
<td>bias 0.000000</td>
<td>203</td>
<td>FRSF9, TNFSF14, TNFSF15, TNFSF8, TPM4, TPX2, UBE2C, ZFP6</td>
<td></td>
</tr>
<tr>
<td>GATA2</td>
<td>2.854</td>
<td>transcription regulator</td>
<td>1.922</td>
<td>0.000000</td>
<td>237</td>
<td>ADGRE5, ANGPT2, ANGPTL4, ARPP21, C9, CCL21, CCR8, CD17, CD34, CD36, CD69, CD96, CDH5, CDK6, CDKN1A, CEL, CELSR3, CHGA, CHI3L1, CLDN18, CMA1, CPA1, CPA3, CST7, CYBB, CYF2F1, CYP4F11, DDX4, DLK1, E2F2, EDN1, ELANE, EMCN, EPHA3, FABP4, FCN1, GABRP, GATA1, GATA2, GP5, GP9, GPR65, GUCA2A, HBQ1, HHC, HOXA10, HSD17B1, ICA2M, IZKFI, IL3RA, IL4, IL4R, ITGAM, KLF2, KLF3, LYL1, MAFB, MEP1A, MMRN1, MIP6B, PDE2A, PAX3, PDE9A, PLK2, PRG3, RAG1, REG1A, S100A5, S100A9, S100G, SERPINB10, SLC4A1, SLC9A5, SOX18, SPI1, SS TR2, TAC3, TACSTD2, TAL1, THBS1, TUBA8, UBASH3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calcitriol</td>
<td>0.412</td>
<td>chemical drug</td>
<td>0.412</td>
<td>0.000000</td>
<td>494</td>
<td>ADAM19, ALPI, ANGPT2, ANKRD2, AT5P5D, BIRC5, CA2, CALB1, CALC, CASR, CCNA1, CCR8, CDC20, CDC45, CD1, CDK5RI1, CDKN1A, CEBPB, CELSR3, CHAF1A, CHAF1B, CHGA, CKM, COL4A1, CSF1, CSF2, CXCL2, CXCL3, CXCL8, CYP24A1, CYP2C9, CYP3A4, CYP46A1, CYR61, DCSAMP, DEF4B4/A/DEF4B4B, DUSP1, DUSP10, EDN1, EGR1, ETFB, EXO1, FABP4, FAM107A, FCE R2, FOS, GADD45A, GADD45G, GEM, HBEFG, HSPB7, IER3, IFITM1, IFNG, IGF1, IGFBP5, IL10RA, IL17A, IL18, IL1A, IL1RN, IL4, INECP, INS, ITGA4, ITGAM, ITGB7, JUN, KIF20A, KIF22, KL, KL13, KLF5, LEP, LGI1, LPAR1, LPL, LTBPI, MAOA, ACM2, MCM5, MMP1, MRC1, MYH8, NEK2, NFATC1, NXK2-1, NME4, NPHS1, NTHL1, NUPT1, NUSAP1, PDE9A, PORE, Pou1F1, PRC1, PRKCB, PRKCD, PTGER2, PTGFR, PTH, RAB38, RAD51AP1, RARRES1</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

(2)
<table>
<thead>
<tr>
<th>Upstream regulator</th>
<th>Expr fold change</th>
<th>Molecule type</th>
<th>Predicted activation state</th>
<th>Activation z-score</th>
<th>Flags</th>
<th>P-value of overlap</th>
<th>Target molecules in dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBPMS, REL, RRM2, RUNX1T1, S100A9, S100G, SERPINB7, SERPINB9, SLCA2A4, SLCA7A7, SNPH, SOCS3, SPAG5, STMN1, SVU39H1, TACC3, TERT, THBD, THBS1, THRA, TK1, TLR2, TLR4, TNF</td>
<td>1.706</td>
<td>6</td>
<td>transcription regulator</td>
<td>-1.136</td>
<td>0.000000</td>
<td>514</td>
<td>AICDA, ASCL2, BATF, CCR10, CCR7, CCR8, CD40LG, CD40LG, CD25B, CDK1, CDKN1A, CDKN2C, CEBPB, CSF1, CXCR4, CXCR5, DUSP1, DUSP10, DUSP4, E2F2, EGR2, EGR4, FLT3LG, FOXO3, FSHB, GADD45B, GADD45G, IFNG, IL10RA, IL4, IL4R, IL9, IRF8, KLF6, LTA, MAP3K14, MPZ, NFAT5, NFATC1, NR4A3, PDCD1, PTPN13, PTPN14, PTPN22, RAPGEF4, REL, RPS6KA2, SELL, Sema3F, SH2D1A, SOCS3, SOX4, SOX5, TNFRSF25, TNFSF14, TNFSF8, TRAF1, TRAF5</td>
</tr>
<tr>
<td>phorbol myristate acetate</td>
<td>chemical drug</td>
<td>Activated</td>
<td>7.684</td>
<td>bias</td>
<td>0.000000</td>
<td>604</td>
<td>ADAM28, ADAM8, ADM, ADRB3, AGER, ALOX12, ANGPT2, ANGPT4, ANX1A, AQP4, ATP2A3, AURKA, AURKB, BCL2A1, BDNF, BIRC5, BLM, BTG2, C5AR1, CA2A, CA8, CAV1, CCL1, CCL4, CNA1, CCR7, CD209, CD28, CD36, CD40LG, CD69, CDK1, CDK5R1, CDK5R2, CDKN1A, CDKN2B, CGA, CHGA, CKM, CLC1F1, CRH, CRHR1, CSF1, CSF2, CTLA4, CXCL13, CXCL2, CXCL3, CXCL8, CXCR2, CXCR4, CYBB, CYP24A1, CYP2A6 (includes others), CYR61, DEF4B4A/DEF4B4B, DSG1, DUSP1, DUSP2, DUSP3, E2F1, E2F3, EGR1, EGR2, EGR3, EGR4, EIF4EBP1, ELANE, EN1, EP300, EPOR, ERBB4, FGF2, FGF7, FOS, FOSB, FOSL1, FSHB, FUGT9, GABRP, GAP43, GATA1, GATA2, GDF5, GEM, GML, GNRH1, GRIN2A, H1FX, HAS1, HBEGF, HDC, HMGA1, HPSE, HS111B1, HS17B1, HS3D1B1, HTR2A, HTR7, IFNG, IGF1, IGF5P2, IGBP5, IL12B1, IL17A, IL18, IL1A, IL1RN, IL10RA, IL24, IL4, ITGAM, ITM2A, JUN, JUNB, JUND, KCN10J1, KIF2C, KLF2, KLF6, KLK3, KRAS, LAMB3, LOR, LPL, LTA, LYVE1, MAD1L1, MPP1, MPP11, MPP12, MPP14, MPP19, MPZ, MRC1, MSR1, MST1R, MT2A, MUC4, MYH7, MYOZ2, NCR1, NFAT5, NFATC1, NFkBA, NFKBIE, NKX2-1, NOCT, NR4A2, NTS, OLR1, OSM, OSR2, PAK2, PDCD1, PDE1C, PDPN, PIM1, PLIN3, PODXL2, PON1, POUI1F1, PPP1R15A, PRKC...</td>
</tr>
<tr>
<td>Upstream regulator</td>
<td>Exor fold change</td>
<td>Molecule type</td>
<td>Predicted activation state</td>
<td>Activation Z-score</td>
<td>Flags</td>
<td>P-value of overlap</td>
<td>Target molecules in dataset</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>HDAC1</td>
<td>0.743</td>
<td>transcription regulator</td>
<td>-0.945</td>
<td>0.000000</td>
<td>942</td>
<td></td>
<td>ADIPOQ, AIMP3, ANGPT2, ASCL2, ATF3, BDNF, CCN1, CCN2, CCR8, CD27, CD34, CDC25A, CDC25C, CDK1, CDKN1A, COL1A2, COL9A1, CXCL8, E2F2, EGR1, EHMT2, FABP4, FAM107A, FO, H2AFX, HB1, HB2, IFN17A, IL17A, IL24, IL4, IN, ITG4K, LK3, L1G1, MAD1L1, MCM5, MPZ, MT1G, MUC4, MYH7, NFATC1, NFKB1A, NKX2-5, PAX3, PLK1, PMAIP1, POLL, PPP2R2B, PRM1, PTH, RAD54L, RAG1, RECQL4, RELB, RGS10, RMR2, RUNX2, S100A9, SATB1, SNAI1, SOX10, TAGLN, TAL1, TXB1, TXB2, TERT, TUBB3, TYM</td>
</tr>
<tr>
<td>PTGER2</td>
<td>2.853</td>
<td>g-protein coupled receptor</td>
<td>Activated 5.127 bias 0.000001</td>
<td>62</td>
<td></td>
<td></td>
<td>AURKA, CCNB2, CCR7, CDKN3, CENPE, CFP, CKS2, CXCL8, CXCR2, CXCR4, EGR1, FPR1, H2AFX, HAMP, HDC, HIST1H2AB, IFNG, IL17A, IL1A, KIF15, KIF20A, KIF22, KIF2C, KLRD1, MK167, NEK2, NUSAPI1, PIM1, PLK1, PRC1, PTGER3, PTGES, SPAG5, THBS1, TPSX2, TROAP, TTK</td>
</tr>
<tr>
<td>TFN</td>
<td>1.621</td>
<td>cytokine</td>
<td>Activated 8.752 bias 0.000001</td>
<td>84</td>
<td></td>
<td></td>
<td>ACTA1, ADAM8, ADAMT55, ADIPOQ, AIMP3, ADRB1, ADRB3, EBP1, AGER, AI, AMP3, ANGPT2, ANGPTL4, ANXA1, ARHGDIB, ATF3, AURK, BCL2A1, BDKRB1, BDKRB2, BDNF, BIK, BIRC5, BTG2, BTG3, C5AR1, CA2, CEBP1, CAV1, CCK, CCL1, CCL22, CCL4, CCL7, CCR1, CCR5, CCR7, CCR8, CD1C, CD209, CD247, CD28, CD36, CD3E, CD40LG, CD5, CD69, CD82, CDC25C, CDH13, CDH5, CDK5R1, CDKN1A, CDKN2C, CDX1, CEBPB, CEBPG, CHI3L1, CHRNA4, CHRN2, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHST7, CIB2, CKM, CLCF1, CLDN7, CNN1, COL1A5A1, COL1A6A1, COL1A2, COLQ, COLT1, CPA3, CRH, CRHR1, CRLF1, CRYAB, CSF1, CSF2, CSN2, CST7, CTLA4, CTSF, CX3CR1, CXCL1, CXCL13, CXCL2, C</td>
</tr>
<tr>
<td>Upstream regulator</td>
<td>Expr fold change</td>
<td>Molecule type</td>
<td>Predicted activation state</td>
<td>Activation z-score</td>
<td>Flags</td>
<td>P-value of overlap</td>
<td>Target molecules in dataset</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>XCL3,CXCL5,CXCL8,CXCR2,CXCR4,CXCR5,CYBB,CYP26B1,CYP2C8,CYP61,CYTH3,DCSTAMP,DEFB4A,DEFB4B,DFP3,DUSP1,DUSP10,DUSP2,DUSP4,DUSP5,DLV1,E2F1,EDN1,EG1,EGR2,EGR3,ELF3,EMCN,EMP2,ENG,ENPP3,EREG,ESM1,FABP4,FAT2,FCAR,FCER2,FCGR2B,FGF2,FGF5,FOS,FOSB,FOXJ1,FOXF1,FOXF2,FPR1,FPR2,FSCN1,G0S2,GABRA1,GADD45A,GADD45B,GADD45G,GATA2,GCLM,GDF15,GEM,GNAA,GNB1,GPR176,GPRC5B,GRIA1,HAS1,HBEFG,HDC,HIVEP1,HLYA-H,HOXB8,HRK,HSD11B1,HSPA1A/HSPA1B,HSPG2,ICAM2,IER2,IER3,IFI27,IFITM1,IFNA1/IFNA13,IFNB1,IFNG,IGF1,IGFBP2,IGFBP5,IL10RA,IL17A,IL18,IL18R1,IL1A,IL1RN,IL24,IL3,IL36RN,IL3RA,IL4,IL4R,INS,IRF8,ITGA4,ITGAM,ITGB7,JUN,JUNB,JUND,KIF20A,KITLG,KL,KL1,KL2,KLF6,KLK3,LAMA4,LAMB3,LBP,LEP,LPL,LTBP4,LYVE1,MADCAM1,MAFF,MAP3K14,MC1R,MCFC2,MECOM,MFHAS1,MGMT,MMP1,MMP10,MMP12,MMP14,MMP28,MMP7,MSR1,MST1R,MSTN,MT2A,MUC1,MUC4,MHY7,NCAN,NCFC2,NEFH,NFATC1,NFKBIA,NFKBIE,NKX21,NKX6-1,NOC2,NOD2,NPHS1,NPPB,NR4A2,NR4A3,NR6A1,OAS2,OLR1,OSM,OTUD7B,P2RY6,P2X2,P2X6,PDCD1,PDE2A,PDGFRA,PDGP1,PIM1,PLA2G3,PLA2G4C,PLA2G5,PLIN1,PLOK2,PLP1,PMAIP1,PPLR15A,PRKCD,PRSS23,PTGIS,PTGFR,PPTPRN,YPCARD,RARA,RBPM5,RCAN2,REL,RELB,RFX2,RGS1,RGS2,RGS20,RGS3,RGS5,RND1,RRAD,RRM2,RRM2,RU122,S100A9,SCN1A,SCN1B,SCOC2,SCUBE2,SELP,SLC24A1,SLC12A1,SLC16A2,SLC1A3,SLC2A4,SLC7A8,SNA11,SNN,SOCS2,SOCS3,SOX4,SPHK1,ST8SIA4,STMN1,SYNGR3,TAGLN,TBXAS1,TERC,THBD,THBS1,THBS2,TIE1,TK1,TLR2,TLR4,TCN,TNFAIP3,TNFRSF1B,TNFRSF1B,TNFRSF9,TNFSF14,TNFSF15,TNFSF8,TNFSF9,TNCC1,TRA1,TRA2,TRA5,TREM2,TRIM15,TRPCL3,TRPC6,TWIST1,TXNRD1,VIP,WNT10B,WNT5A,WNT7A,YY1,ZFP36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E.5-2. Top ten canonical pathways affected by 6-hour exposure to 20 μM antimony(III) potassium tartrate trihydrate

<table>
<thead>
<tr>
<th>Order</th>
<th>Ingenuity Canonical Pathways</th>
<th>-log(P-value)</th>
<th>Ratio</th>
<th>Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agranulocyte Adhesion and Diapedesis</td>
<td>4.29</td>
<td>0.358</td>
<td>CLDN7,CCL8,SELL,CLDN8,PODXL2,MYH3,CXCR4,IL1RN,CLDN14,C5AR1,MYH11,CXCL1,MYH7,MMP11,MADCAM1,MYL6B,CDH5,CXCL8,IL18,XCL2,CXCR2,S ELPLG,IL1A,IL36RN,ITGA4,ACTA1,CXCL3,CD34,CXCL14,MMP1,MMP25,ITGA3,MMP12,ITGB7,CXCL5,CCL4,MMP28,ICAM2,CLDN17,CCL7,CLDN18,CCL1,MMP17,CCL21,CXCL2,MMP7,CCL22,MMP19,CXCL13,MMP20,MMP10,MYH8,MMP14</td>
</tr>
<tr>
<td>2</td>
<td>Granulocyte Adhesion and Diapedesis</td>
<td>3.79</td>
<td>0.35</td>
<td>CLDN7,CCL8,SELL,CLDN8,CXCR4,IL1RN,CLDN14,C5AR1,CXCL1,MMP11,TNFRSF1B,FPR2,CDH5,CXCL8,HSPB1,IL18,XCL2,CXCR2,SELP,IL1A,IL36RN,ITGA4,CXCL3,CXCL14,MMP1,HRH2,MMP25,ITGA1,ITGA3,MMP12,FPR1,HRH4,CXCL5,CCL4,MMP28,ICAM2,CLDN17,CCL7,CLDN18,CCL1,MMP17,CCL21,CXCL2,MMP7,CCL22,MMP19,CXCL13,MMP20,MMP10,MMP14</td>
</tr>
<tr>
<td>3</td>
<td>Eicosanoid Signaling</td>
<td>3.63</td>
<td>0.449</td>
<td>DPEP3,ALOX12,FPR2,PTGER1,LTB4R2,PLA2G7,PLA2G6,DPEP1,PLA2G3,PLA2G5,PTGER2,PTGIS,PTGFR,PLA2G4C,TLB4A2R,PLA2G2E,ALOX12B,PTGES,PTGIR,PTGER3,ALOX15,TBXAS1</td>
</tr>
<tr>
<td>4</td>
<td>Role of Cytokines in Mediating Communication between Immune Cells</td>
<td>3.28</td>
<td>0.444</td>
<td>IFNA10,IL3,CSF2,IFNG,IL4,IFNA7,IFNA14,CXCL8,IL26,IL18,IL1RN,IL25,IFNA1/IFNA13,IL24,IL1A,IL36RN,IL17A,IFNA16,IFNB1,IFNA4</td>
</tr>
<tr>
<td>5</td>
<td>Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza</td>
<td>2.91</td>
<td>0.447</td>
<td>IFNA10,IFNG,CCR1,IFNA7,IFNA14,CXCL8,CCL5,IL18,IL1RN,IFNA1/IFNA13,IL1A,IL36RN,IL17A,CCL4,IFNA16,IFNB1,IFNA4</td>
</tr>
<tr>
<td>6</td>
<td>Bladder Cancer Signaling</td>
<td>2.33</td>
<td>0.351</td>
<td>FGF5,MMP25,FGF1,MMP12,E2F1,THBS1,FGB20,SUV39H1,CDKN1A,MMP28,FGF12,MMP11,FGB21,FGB7,FGB3,FGB22,MMP17,CXCL8,MMP7,MMP19,FGB16,MMP20,MMP10,FGB8,MMP1,FGB9,MMP14</td>
</tr>
<tr>
<td>7</td>
<td>Crosstalk between Dendritic Cells and Natural Killer Cells</td>
<td>2.24</td>
<td>0.346</td>
<td>CAMK2B,CCR7,IL3,CSF2,IFNG,TREM2,HLA-F,FSCN2,TLR4,CD209,FSCN1,FSCN3,KIR2DL2,TNFRSF1B,PRF1,IL4,LT,NECTIN2,CD69,IL3RA,KLRD1,IL18,CD40LG,CD28,IFNA1/IFNA13,ACTA1,IFNB1</td>
</tr>
<tr>
<td>8</td>
<td>Role of IL-17A in Psoriasis</td>
<td>2.2</td>
<td>0.583</td>
<td>S100A9,CLCXL1,IL17A,DEFB4A/DEFB4B,CXCL3,CXCL5,CXCL8</td>
</tr>
<tr>
<td>9</td>
<td>Role of Wnt/GSK-3β Signaling in the Pathogenesis of Influenza</td>
<td>2.1</td>
<td>0.362</td>
<td>IFNA10,IFNG,WNT5A,LEF1,FZD2,WNT5B,IFNA7,IFNA14,FZD7,DVL1,FZD9,WNT2B,WNT11,WNT8B,IFNA1/IFNA13,WNT7A,IFNA16,IFNB1,APC2,IFNA4,WNT10B</td>
</tr>
<tr>
<td>10</td>
<td>Oxidized GTP and dGTP Detoxification</td>
<td>1.99</td>
<td>1</td>
<td>RUVBL2,NUDT1,DDX6</td>
</tr>
</tbody>
</table>

Pathways 1, 2, 4, 5, 7, 8, and 9 (green background) are related to immune reactions. Pathway 6 (with orange background) is related to cancer. Pathway 10 (with yellow background) is related to oxidative stress.
E.6 Immune effects from compounds containing pentavalent antimony

This appendix lists immune function from compounds containing pentavalent antimony (Table E.6-1).

Table E.6-1. Effects of compounds containing pentavalent antimony on immunity

<table>
<thead>
<tr>
<th>Patients, species, or experimental system</th>
<th>Antimony compound</th>
<th>Immune effects</th>
<th>Functional or mechanistic association</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy active duty soldiers treated for leishmaniasis</td>
<td>Sodium stibogluconate</td>
<td>Transient lymphopenia (decreased CD4+ and CD8+ T cells)</td>
<td>Increased susceptibility to Herpes Zoster infections</td>
<td>Wortmann et al. 1998</td>
</tr>
<tr>
<td>Patients treated for cutaneous leishmaniasis</td>
<td>Glucantime (meglumine antimoniate)</td>
<td>Elevated IL-1β, TNF-α, IL-6 and IL-8</td>
<td>Amplified pro-inflammatory cytokines upon exposure to antimonials</td>
<td>Kocyigit et al. 2002</td>
</tr>
<tr>
<td>Patients treated for visceral leishmaniasis</td>
<td>Sodium stibogluconate</td>
<td>Elevated IL-1β, TNF-α, IL-6, GM-CSF, and C1q-binding circulating immune complexes (CIC)</td>
<td>Amplified pro-inflammatory cytokines and CIC-induced GM-CSF upon exposure to antimonials</td>
<td>Elshafie et al. 2007</td>
</tr>
<tr>
<td>BALB/c mice</td>
<td>Antimony sodium gluconate</td>
<td>Activation of peritoneal macrophages associated with enhanced antigen presentation to T cells</td>
<td>Increased macrophage membrane fluidity and enhanced antigen presentation capacity</td>
<td>Ghosh et al. 2013</td>
</tr>
<tr>
<td>Normal C57BL/6 mice, IFNγ gene knockout mice, inducible nitric oxide synthase-knockout (iNOS KO) mice, and respiratory burst-deficient gp91phox−/− (X-linked chronic granulomatous disease [X-CGD]) mice</td>
<td>Sodium stibogluconate</td>
<td>In IFNγ gene knockout mice, pentavalent antimony inhibited but did not kill intracellular Leishmania donovani; treatment was effective in killing the parasite in normal, iNOS KO, and X-CGD mice.</td>
<td>Results support a role for T cell-derived IFNγ as a critical host factor required for the efficacy of antimony in promoting parasite killing</td>
<td>Murray and Delph-Etienne 2000</td>
</tr>
<tr>
<td>BALB/c mice</td>
<td>Antimony sodium gluconate</td>
<td>Sodium stibogluconate synergizes with IL-2 to promote IFNγ-dependent anti-Renca tumor immune response</td>
<td>Supports a role for pentavalent antimony in promoting IFNγ-dependent anti-tumor immune response</td>
<td>Fan et al. 2009</td>
</tr>
<tr>
<td>Patients, species, or experimental system</td>
<td>Antimony compound</td>
<td>Immune effects</td>
<td>Functional or mechanistic association</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>In vitro studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murine Baf 3 cell line and TF-1 human myeloid leukemia cells</td>
<td>Sodium stibogluconate</td>
<td>Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases including Src homology PTPase1 (SHP-1), SHP-2, and PTP1B</td>
<td>Sodium stibogluconate, which contains a pentavalent antimony atom, (but not antimony(III) potassium tartrate) can alter signaling of multiple cytokines (IL-3, IFNα, and GM-CSF) that signal through receptor tyrosine kinases regulated by PTPases</td>
<td>Pathak and Yi 2001</td>
</tr>
<tr>
<td>Various cancer cell lines</td>
<td>Sodium stibogluconate</td>
<td>Sodium stibogluconate enhanced IFNα-induced Stat1 tyrosine phosphorylation, inactivated intracellular SHP-1 and SHP-2, and induced cellular protein tyrosine phosphorylation in cancer cell lines</td>
<td>Sodium stibogluconate treatment was found to synergize with IFNα to overcome cancer cell lines that were refractory to the anti-cancer effects of IFNα in vitro and in vivo</td>
<td>Yi et al. 2002</td>
</tr>
<tr>
<td>Human CD4+ and CD8+ T lymphocytes from healthy donors and melanoma patients</td>
<td>Sodium stibogluconate</td>
<td>Sodium stibogluconate synergizes with IL-2 to potentiate induction of IFNγ + T cells</td>
<td>Sodium stibogluconate treatment may potentiate T cell function in the presence of IL-2</td>
<td>Fan et al. 2009</td>
</tr>
</tbody>
</table>
Appendix F: Other Relevant Information

F.1 Studies of antimony(III) potassium tartrate carcinogenicity in experimental animals

This appendix includes neoplasms induced in experimental animals exposed to antimony potassium tartrate (Table F.1-1), details of these animal studies (Table F.1-2) and risk of bias rating of Schroeder et al. (1970) study (male rats in Table F.1-3, female rats in Table F.1-4) and Kanisawa and Schroeder (1969) study (Table F.1-5).

Table F.1-1. Neoplasms induced in experimental animal carcinogenicity studies by drinking water studies of antimony potassium tartrate

Studies are presented in the order of descending overall utility.

<table>
<thead>
<tr>
<th>Species strain/stock*</th>
<th>Site</th>
<th>Classification</th>
<th>Neoplasms (Sex of animal)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat, Long-Evans</td>
<td>None</td>
<td>None</td>
<td>None (M and F)</td>
<td>Schroeder et al. 1970</td>
</tr>
<tr>
<td>Mouse, Swiss CD-1</td>
<td>None</td>
<td>None</td>
<td>None (M and F)</td>
<td>Schroeder et al. 1968, Kanisawa and Schroeder 1969</td>
</tr>
</tbody>
</table>

F = female, M = male.

F.2 Cancer studies in experimental animals exposed to antimony(III) potassium tartrate

<table>
<thead>
<tr>
<th>Reference and study design</th>
<th>Exposure</th>
<th>Tumor site – Tumor type</th>
<th>Dose levels</th>
<th>Tumor incidence (n/N) (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schroeder et al. 1970</td>
<td>Agent and purity: Antimony potassium tartrate NR</td>
<td>Whole body – Tumor NOS (M)</td>
<td>0</td>
<td>10/50 (20%)</td>
<td>Survival: The survival of females at 50% death ($P < 0.025$ by chi-square analysis) and males and females for longevity (mean age of the last surviving 10%) ($P < 0.001$ by Student’s t test) was significantly reduced compared to untreated controls.</td>
</tr>
<tr>
<td>Animal: Rat — Long-Evans (random bred) M, F</td>
<td>Exposure route: Drinking water</td>
<td></td>
<td>5</td>
<td>6/50 (12%)</td>
<td></td>
</tr>
<tr>
<td>Animal age at the beginning of exposure: NR (possibly at weaning)</td>
<td>Exposure concentrations, frequency, and duration: 0 5 ppm not clearly reported (possibly ad libitum x life-span)</td>
<td>Whole body – Tumor NOS (F)</td>
<td>0</td>
<td>14/39 (35.9%)</td>
<td>Body weight: Both males and females were similar to controls.</td>
</tr>
<tr>
<td>Study duration: ~4 years</td>
<td></td>
<td></td>
<td>5</td>
<td>18/47 (38.3%)</td>
<td>Overall utility: [-] The study has low utility because of many limitations, including only reporting grossly visible tumors without organ site or tumor type.</td>
</tr>
</tbody>
</table>
Reference and study design

Kanisawa and Schroeder 1969

- **Animal:** Mouse — White Swiss CD-1 (Random bred) M+F (combined)
- **Animal age at the beginning of exposure:** Weanling
- **Study duration:** Life span

Exposure

- **Agent and purity:** Antimony potassium tartrate NR
- **Exposure route:** Drinking water
- **Exposure concentrations, frequency, and duration:**
 - 0 5 μg/mL in double deionized water ad libitum x life span

Tumor site – Tumor type

<table>
<thead>
<tr>
<th>Dose levels</th>
<th>Tumor incidence (n/N) (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole body – Tumor NOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>24/71 (33.8%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18/76 (23.7%)</td>
<td></td>
</tr>
<tr>
<td>Whole body – Malignant tumor NOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8/71 (11.3%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6/76 (7.9%)</td>
<td></td>
</tr>
<tr>
<td>Whole body – Benign tumor NOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16/71 (22.5%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12/76 (15.8%)</td>
<td></td>
</tr>
<tr>
<td>Mammary gland – Tumor NOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1/71 (1.4%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3/76 (3.9%)</td>
<td></td>
</tr>
<tr>
<td>Lung – Tumor NOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15/71 (21.1%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10/76 (13.2%)</td>
<td></td>
</tr>
<tr>
<td>Liver – Tumor NOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4/71 (5.6%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1/76 (1.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Survival: Survival was similar to controls.

Body weight: Males were sporadically lower than controls at 90, 150, and 540 days, while females were more consistently lower at 150, 360, and 540 days.

Other comments: The incidences were reported for both sexes combined, but it was stated that none of the neoplasms were significantly increased.

Overall utility: [+] This study is of low utility due to many limitations, including only one tested concentration (below maximally tolerated dose for males, and close to or at maximally tolerated dose for females), unknown test substance purity, tumor incidences only reported in combined sexes with no histologic information, and lack of site specific information (except incidences of three sites in sexes combined). Data lack sufficient details to allow us determine whether any specific type of tumor had increased in a sex.

F = female; M = male; n/N = number of animals with neoplasms divided by the total number of animals tested in that dose group; NR = not reported; NOS = not otherwise specified.
Table F.1-3. Schroeder *et al.* (1970) study of male rats and female rats exposed to antimony(III) potassium tartrate in drinking water for the life span of the animals

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Randomization and initial body weights were not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent control group, exposed to untreated drinking water, had the same number of animals as exposure group did.</td>
</tr>
<tr>
<td>Historical data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Both sexes of a random bred strain, which increases external validity.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>Large numbers of animals (51 males, 59 females) per concentration group were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>NR</td>
<td>Not reported, not even purity.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>++</td>
<td>The maximally tolerated dose level was not reached, because the treated group did not show decreased body weight compared to the control group, although the median life spans and longevity (mean age of the last surviving 10%) for both sexes were decreased by the treatment. The dose might not have been high enough to detect neoplastic effects.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Though exposure duration was never clearly stated, this study appears to use a lifetime exposure.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+</td>
<td>Only one dose level was tested and no basis for that level was reported. All other elements were administered at the same level, except for lead.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>+</td>
<td>Only grossly visible tumors were reported. The methods stated that gross tumors were fixed, but did not state that they were stained or microscopically examined. Consequently, small tumors might have been missed.</td>
</tr>
<tr>
<td>Consistency between groups</td>
<td>++</td>
<td>A pneumonia epidemic killed many rats and the death rates varied among the groups.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>Life time study, because the animals were observed until their nature death (as compared to scheduled euthanization after a predetermined exposure period).</td>
</tr>
<tr>
<td>Confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding</td>
<td>++</td>
<td>Pneumonia killed various numbers of animals per group, before penicillin treatment controlled the disease. It is unclear that all rats, or only visibly sick rats, received penicillin. Furthermore, the disease might in effect select stronger/healthier animals (than the general population) to complete the study. Additionally, test substance purity was unknown.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>++</td>
<td>The statistical methods and results of survival measures were reported, but statistical analysis of tumor incidences were not reported.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>+</td>
<td>Tumors were counted based on gross observation, not histological analysis occurred.</td>
</tr>
</tbody>
</table>

Overall utility: +. The study has low utility because of many limitations, including only reporting grossly visible tumors without organ site or tumor type.

NR = Not reported, +++ = High utility, ++ = Moderate utility, + = Low utility.
Table F.1-4. Kanisawa and Schroeder (1969) study of male and female (combined) mice exposed to antimony potassium tartrate in drinking water for the lifespan of the animals

<table>
<thead>
<tr>
<th>Utility question</th>
<th>Rating</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td>NR</td>
<td>Not reported.</td>
</tr>
<tr>
<td>Controls</td>
<td>+++</td>
<td>Concurrent control group, exposed to doubly deionized water with added essential trace elements, had the same number of animals as the exposure group did.</td>
</tr>
<tr>
<td>Historical data</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Animal model</td>
<td>+++</td>
<td>Both sexes of random bred mice were used, giving a high level of external validity.</td>
</tr>
<tr>
<td>Statistical power</td>
<td>+++</td>
<td>A large number (54) of mice per sex per group were used.</td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical characterization</td>
<td>NR</td>
<td>No chemical characterization was reported, not even purity.</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>+</td>
<td>The maximally tolerated dose level was not reached, because the treated group did not show decreased body weight compared to the control group. The dose might not have been high enough to detect neoplastic effects.</td>
</tr>
<tr>
<td>Exposure duration</td>
<td>+++</td>
<td>Mice were exposed for their lifetimes.</td>
</tr>
<tr>
<td>Dose-response</td>
<td>+</td>
<td>Only one concentration was tested and no rational for the dose selection was reported. Dose response relationships cannot be evaluated due to only one dose level.</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>++</td>
<td>Only gross lesions were microscopically evaluated.</td>
</tr>
<tr>
<td>Consistency</td>
<td>++</td>
<td>The treated and control groups were treated the same while mice were alive. The examination of organs/tissues varied, because only gross lesions (not all major organs) were examined microscopically.</td>
</tr>
<tr>
<td>Study duration</td>
<td>+++</td>
<td>The study duration was lifetime, up to the animals’ natural death.</td>
</tr>
<tr>
<td>Confounding</td>
<td>+++</td>
<td>Testing substance purity and supplier were unknown. Exposure to antimony via other sources (feed, housing) was negligible because the feed was antimony free and metal exposure via housing was minimized.</td>
</tr>
<tr>
<td>Reporting and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting data and statistics</td>
<td>++</td>
<td>Although tumor incidents were not statistically analyzed in the study, the data were reported and enabled us to conduct statistical analysis. Statistical methods were described as "numerical data were treated by Chi-square analysis and by Student's t test", but the reported probability in tables did not specify the result was from which method.</td>
</tr>
<tr>
<td>Combining lesions</td>
<td>++</td>
<td>Tumor incidence was reported for two sexes combined only, instead of male and female separately. Site specific (lung, liver, mammary gland, and other) information was limited to tumor incidence, with no subtype. Tumors were also grouped by origin (epithelial, non-epithelial) along with being benign or malignant. Overall information did not allow detecting of specific tumor type increase in either sex.</td>
</tr>
</tbody>
</table>

Overall utility: +. Due to many limitations, including only one tested concentration (below maximally tolerated dose), unknown test substance purity, tumor incidences only reported in combined sexes with no histologic information, and lack of site specific information (except incidences of three sites in sexes combined), this study is of low utility. Data lack sufficient details to allow us determine whether any specific type of tumor had increased.

NR = Not reported, +++ = High utility, ++ = Moderate utility, + = Low utility.
References

2. Asakura K, Satoh H, Chiba M, Okamoto M, Serizawa K, Nakano M, Omae K. 2009. Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. *J Occup Health* 51(6): 498-512. (Supported by the IMS [Intelligent Manufacturing Systems] Promotion Center, Manufacturing Science and Technology Center. Authors affiliated with Keio University School of Medicine, Japan; Tohoku University Graduate School of Medicine, Japan; International University of Health and Welfare, Japan; Hitachi Ltd., Japan.)

4. Chiu WA, Guyton KZ, Martin MT, Reif DM, Rusyn I. 2017. Use of high-throughput *in vitro* toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups. *ALTEX*: 14 pp. (Supported by NIH and NIEHS. Authors affiliated with Texas A&M University, TX; IARC, France; US EPA, NC; North Carolina State University, NC.)

5. Dopp E, Hartmann LM, Florea AM, von Recklinghausen U, Rabieh S, Shokouhi B, Hirner AV, Rettenmeier AW. 2006. Trimethylantimony dichloride causes genotoxic effects in Chinese hamster ovary cells after forced uptake. *Toxicol Vitro* 20(6): 1060-1065. (Supported by the German Research Foundation. Authors affiliated with University Hospital Essen, Germany; University of Duisburg-Essen, Germany.)

9. Elshafie AI, Åhlin E, Mathsson L, ElGhazali G, Rönnelid J. 2007. Circulating immune complexes (IC) and IC-induced levels of GM-CSF are increased in sudanese patients with
acute visceral *Leishmania donovani* infection undergoing sodium stibogluconate treatment: implications for disease pathogenesis. *J Immunol* 178(8): 5383-5389. (Supported by the Swedish Society of Medicine, King Gustav V’s 80-years Fund, Swedish League against Rheumatism, Ugglas Foundation, Groschinsky Foundation, Viberg Foundation, and Swedish Fund for Research Without Animal Experiments. Authors affiliated with Uppsala University, Sweden; Alribate University Hospital, Sudan; University of Khartoum, Sudan; King Fahad Medical City, Saudi Arabia.)

12. Fan K, Borden E, Yi T. 2009. Interferon-gamma is induced in human peripheral blood immune cells *in vitro* by sodium stibogluconate/interleukin-2 and mediates its antitumor activity *in vivo*. *J Interferon Cytokine Res* 29(8): 451-460. (Support not reported. Authors affiliated with Lerner Research Institute, OH; Cleveland Clinic Foundation, OH; Taussig Cancer Center, OH.)

13. Gebel T, Christensen S, Dunkelberg H. 1997. Comparative and environmental genotoxicity of antimony and arsenic. *Anticancer Res* 17(4a): 2603-2607. (Support not reported. Authors affiliated with University of Goettingen, Germany.)

17. Grosskopf C, Schwerdtle T, Mullenders LH, Hartwig A. 2010. Antimony impairs nucleotide excision repair: XPA and XPE as potential molecular targets. *Chem Res Toxicol* 23(7): 1175-1183. (Supported by the DFG. Authors affiliated with Technische Universität Berlin, Germany; Westfälische Wilhelms-Universität Münster, Germany; Leiden University Medical Center, Netherlands.)

18. Groth DH, Stettler LE, Burg JR, Busey WM, Grant GC, Wong L. 1986. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats. *J Toxicol Environ Health* 18(4): 607-626. (Supported by NIOSH and Midwest Research Institute. Authors affiliated with NIOSH, OH; Experimental Pathology Laboratories, VA; College of William and Mary, VA; Midwest Research Institute, MO.)

21. Hashemzaei M, Pourahmad J, SaFAeinejad F, Tabrizian K, Akbari F, Bagheri G, Hosseini MJ, Shahraki J. 2015. Antimony induces oxidative stress and cell death in normal hepatocytes. Toxicol Environ Chem 97(2): 256-265. (Supported by the Zabol University of Medical Sciences. Authors affiliated with Zabol University of Medical Sciences, Iran; Shahid Beheshti University of Medical Sciences, Iran; Zanjan University of Medical Sciences, Iran.)

22. Huang H, Shu SC, Shih JH, Kuo CJ, Chiu ID. 1998. Antimony trichloride induces DNA damage and apoptosis in mammalian cells. Toxicology 129(2-3): 113-123. (Supported by the National Science Council, Republic of China. Authors affiliated with National Tsing-Hua University, Taiwan.)

27. Kanematsu N, Hara M, Kada T. 1980. Rec assay and mutagenicity studies on metal compounds. Mutat Res 77(2): 109-116. (Supported by the Ministry of Welfare, the Ministry of Education, the Science and Technology Agency of Japan, the Takamatsunomiya Cancer Foundation and the Nissan Science Foundation. Authors affiliated with Gifu College of Dentistry, Japan; National Institute of Genetics, Japan.)

28. Kanisawa M, Schroeder HA. 1969. Life term studies on the effect of trace elements on spontaneous tumors in mice and rats. Cancer Res 29(4): 892-895. (Supported by the USPHS, the US Army, the American Cancer Society, and the CIBA Pharmaceutical Company. Authors affiliated with Dartmouth Medical School, NH; Brattleboro Memorial Hospital, VT.)

32. Kirkland D, Whitwell J, Deyo J, Serex T. 2007. Failure of antimony trioxide to induce micronuclei or chromosomal aberrations in rat bone marrow after sub-chronic oral dosing. *Mutat Res* 627(2): 119-128. (Supported by the International Antimony Oxide Industry Association (IAOIA) and the Antimony Trioxide Stakeholders (ATOS). Authors affiliated with Covance Laboratories Ltd., UK; Eastman Chemical Company, TN; Blasland, Bouck & Lee Inc., CA.)

38. Mann KK, Davison K, Colombo M, Colosimo AL, Diaz Z, Padovani AM, Guo Q, Scrivens PJ, Gao W, Mader S, Miller WH, Jr. 2006. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling. *Toxicol Lett* 160(2): 158-170. (Supported by the CIHR, the Montreal Centre for Experimental Therapeutics in Cancer/CIHR/FRSQ, BCRP, Department of the Army, and the U.S. Army Medical Research Acquisition Activity. Authors affiliated with Montreal Centre for Experimental Therapeutics in Cancer and Lady Davis Institute for Medical Research, Canada; Université de Montréal, Canada.)

47. Pathak MK, Yi T. 2001. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. *J Immunol* 167(6): 3391-3397. (Supported in part by Grants R01CA79891 and R01MG58893. Authors affiliated with Cleveland Clinic Foundation, OH.)

51. Schroeder HA, Mitchener M, Balassa JJ, Kanisawa M, Nason AP. 1968. Zirconium, niobium, antimony and fluorine in mice: effects on growth, survival and tissue levels. *J Nutr* 95(1): 95-101. (Supported by the Public Health Service, the National Heart Institute, the US Army and CIBA Pharmaceutical Products, Inc. Authors affiliated with Dartmouth Medical School, NH; Brattleboro Memorial Hospital, VT.)

52. Schroeder HA, Mitchener M, Nason AP. 1970. Zirconium, niobium, antimony, vanadium and lead in rats: life term studies. *J Nutr* 100(1): 59-68. (Supported by the Public Health Service, the National Heart Institute, the U.S. Army, and Cooper Laboratories, Inc. Authors affiliated with Dartmouth Medical School, NH; Brattleboro Memorial Hospital, VT.)

53. Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert PF, Hecht SS, Bucher JR, Stewart BW, Baan RA, Cogliano VJ, Straif K. 2016. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. *Environ Health Perspect* 124(6): 713-721. (Supported by NIEHS. Authors affiliated with University of California Berkeley, CA; IARC, France; US EPA, Washington, D.C. and NC; ATSDR; Texas A&M University, TX; University of Wisconsin School of Medicine and Public Health, WI; University of Minnesota, MN; NIEHS, NC; University of New South Wales, Australia.)

54. Tice RR, Austin CP, Kavlock RJ, Bucher JR. 2013. Improving the human hazard characterization of chemicals: a Tox21 update. *Environ Health Perspect* 121(7): 756-765. (Support not reported. Authors affiliated with NIH, NC and MD; US EPA, NC.)

56. Wang B, Yu W, Guo J, Jiang X, Lu W, Liu M, Pang X. 2015. The antiparasitic drug, potassium antimony tartrate, inhibits tumor angiogenesis and tumor growth in nonsmall-cell lung cancer. *J Pharmacol Exp Ther* 352(1): 129-138. (Supported by the National Basic Research Program of China, the National Natural Science Foundation of China, the Science and Technology Commission of Shanghai Municipality, the Chenguang Program from Shanghai Municipal Education Commission, and the Fundamental Research Funds for the Central Universities. Authors affiliated with East China Normal University, China; Texas A&M University Health Science Center, TX.)
57. Watt WD. 1983. *Chronic Inhalation Toxicity of Antimony Trioxide: Validation of the Threshold Limit Value*. Detroit, MI: Wayne State University, PhD Thesis. (Supported by ASARCO, Inc. Author affiliated with Wayne State University, MI.)

