Final Safety Assessment

Crosslinked Alkyl Acrylates as Used in Cosmetics

November 17, 2011

The 2011 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Monice M. Fiume, Senior Scientific Analyst/Writer, Bart Heldreth, Ph.D., Chemist, CIR, and Ivan Boyer, Ph.D., Senior Toxicologist, CIR.

© Cosmetic Ingredient Review

1101 17th Street, NW, Suite 412 ◇ Washington, DC 20036-4702 ◇ ph 202.331.0651 ◇ fax 202.331.0088 ◇

cirinfo@cir-safety.org
ABSTRACT

The CIR Expert Panel assessed the safety of crosslinked alkyl acrylates as used in cosmetics. The 23 crosslinked alkyl acrylates included in this safety assessment are reported to function as absorbents, film formers, emulsion stabilizers, viscosity increasing agents, suspending agents, binders, and/or skin conditioning agents. The Panel reviewed available animal and clinical data, as well as information from previous CIR reports on monomer components. Because data were not available for the individual ingredients, and because residual monomer may be present, the Panel extrapolated from previous reports to support safety. The Panel concluded that crosslinked alkyl acrylates are safe in the present practices of use and concentration, provided that they are not polymerized in benzene. For those ingredients polymerized in benzene, the data available were insufficient to make a determination of safety. A risk assessment for the amount of benzene present would be needed.

INTRODUCTION

This draft final report includes information relevant to the safety of 23 crosslinked alkyl acrylates as used in cosmetic formulations. These crosslinked polymers consist of co-monomers of at least one of: acrylic acid, sodium acrylate, methacrylic acid, or alkyl acrylate that share chemical properties, including a general lack of chemical reactivity. The ingredients included in this group are:

- Acrylates/C10-30Alkyl Acrylate Crosspolymer
- Acrylates/C12-13 Alkyl Methacrylates/Methoxyethyl Acrylate Crosspolymer
- Acrylates Crosspolymer
- Acrylates/Ethylhexyl Acrylate Crosspolymer
- Acrylates/Ethylhexyl Acrylate/Glycidyl Methacrylate Crosspolymer
- Acrylates/PEG-4 Dimethacrylate Crosspolymer
- Acrylates/Steareth-20 Methacrylate Crosspolymer
- Acrylates/Vinyl Isodecanoate Crosspolymer
- Acrylates/Vinyl Neodecanoate Crosspolymer
- Allyl Methacrylate/Glycol Dimethacrylate Crosspolymer
- Allyl Methacrylates Crosspolymer
- Butyl Acrylate/Glycol Dimethacrylate Crosspolymer
- C8-22 Alkyl Acrylates/Methacrylic Acid Crosspolymer
- Glycol Dimethacrylate/Vinyl Alcohol Crosspolymer
- Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer
- Lauryl Methacrylate/Sodium Methacrylate Crosspolymer
- Methacrylic Acid/PEG-6 Methacrylate/PEG-6 Dimethacrylate Crosspolymer
- PEG/PPG-5/2 Methacrylate/Methacrylic Acid Crosspolymer
- Potassium Acrylates/C10-30 Alkyl Acrylate Crosspolymer
Sodium Acrylates Crosspolymer
Sodium Acrylates/C10-30 Alkyl Acrylate Crosspolymer
Sodium Acrylates/Vinyl Isodecanoate Crosspolymer
Stearyl/Lauryl Methacrylate Crosspolymer

These ingredients are reported to function in cosmetics as absorbents, film formers, emulsion stabilizers, viscosity increasing agents, suspending agents, binders, or skin conditioning agents.

In 2002, the Cosmetic Ingredient Review (CIR) published the Final Report on the Safety Assessment of Acrylates Copolymer and 33 Related Cosmetic Ingredients. The Panel concluded that those ingredients were safe for use in cosmetics when formulated to avoid skin irritation. While copolymers are polymers synthesized from two or more different monomers, crosspolymers are polymers that are crosslinked (i.e. individual polymer chains are connected by bridging molecules [crosslinking agents]). Crosslinked polymers are generally less chemically reactive and less soluble (if not totally insoluble) than their respective non-crosslinked counterparts.

A CIR report on another family of polymers is also available. In 1982, the CIR published the Final Report on the Safety Assessment of Carbomers-934, -910, -934P, 940, -941, and -962, in which it was concluded that carbomers are safe as used. That conclusion was reaffirmed in 2003. A carbomer is a homopolymer of acrylic acid crosslinked with an allyl ether of pentaerythritol, an allyl ether of sucrose, or an allyl ether of propylene.

Due to the paucity of published safety and toxicity data on these ingredients, this draft report includes summary information included in technical data sheets, ingredient specification sheets, and material safety data sheets (MSDSs); this information is identified as such.

CHEMISTRY

Definition and Structure

Crosslinked alkyl acrylates are crosslinked polymers in which the co-monomers consist of at least one of the following: acrylic acid, sodium acrylate, methacrylic acid, or alkyl acrylate. Whereas polymers consisting purely of acrylic acid are often referred to as “carbomers,” copolymers comprised of mixtures of acrylic acid and alkyl acrylate monomers may sometimes be referred to as “alkyl carboxers.” In that vein, most of the ingredients in this report could be classified as crosslinked alkyl carboxers. For example, dodecyl (C12 alkyl) acrylate, acrylic acid, and methacrylic acid could be copolymerized and crosslinked with diallyl sucrose to form an acrylates/C10-30 alkyl acrylate crosspolymer with the internal structure:
Accordingly, although all of the monomers and crosslinking agents may be the same, two polymers with very different physical properties may share the same name under INCI conventions. The definitions and structures of the ingredients included in this review are provided in Table 1.

Physical and Chemical Properties

The available physical and chemical property information is provided in Table 2. The properties of a single ingredient, such as the above crosspolymer, can vary from a highly swellable, soft material to an unswellable, very hard material because of the multitude of possible reaction conditions and methods involved in the manufacture of these polymers. The nature of these ingredients is highly dependent on the identity of the alcohol radicals of these acrylate esters (e.g., the stearyl and lauryl groups of stearyl/lauryl methacrylate crosspolymer). Acrylate crosspolymers that correspond to one INCI name often have many trade names, and production processes may vary for different trade name products bearing the same INCI name. Since the products may have different properties, the trade name is included in parenthesis when available.

The polymers in this group share a general lack of chemical reactivity that renders them nearly impervious to degradation. These ingredients are essentially insensitive to solar ultraviolet light (UV) degradation, as the primary UV absorption of acrylcs is at a lower wavelength.

Method of Manufacture

Crosslinked alkyl acrylates are typically produced via free-radical, head-to-tail chain-propagation polymerization. The most common method is the emulsion method, but bulk and solution methods are also used. The marked variability in the identity of monomers and crosslinking agents, the ratio of co-monomers, the order of addition of co-monomers, the level of crosslinking, and other reaction conditions in the polymerization process can significantly alter the polymeric structure and properties of the product. Additionally, post-synthesis, mechanical processing of these products can also significantly affect the consistency of these ingredients. These variables will likely differ from vendor to vendor, and possibly even from batch to batch.
Table 3a lists the monomers used to create these crosspolymers (based on INCI definition), and Table 3b names the crosslinking compounds and initiators used.

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

According to a trade product technical data sheet, acrylates/C10-30 alkyl acrylate crosspolymer (as Pemulen) is polymerized in an ethyl acetate-cyclohexane mixture. Another source reports that acrylates/C10-30 alkyl acrylate crosspolymer may be polymerized in benzene. A third supplier reports that acrylates/C10-30 alkyl acrylate crosspolymer is polymerized in n-hexane.

Acrylates/Steareth-20 Methacrylate Crosspolymer

Acrylates/steareth-20 methacrylate crosspolymer (as Aculyn 88 polymer) is manufactured by an emulsion polymerization process.

Acrylates/Vinyl Isodecanoate Crosspolymer

Acrylates/vinyl isodecanoate crosspolymer (as Stabylen 30) is produced synthetically by a free radical polymerization.

Acrylates/Vinyl Neodecanoate Crosspolymer

Acrylates/vinyl neodecanoate crosspolymer (as Aculyn 38 polymer) is manufactured by an emulsion polymerization process.

Impurities and Residual Monomer or Solvent

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

According to product specification sheets from one company, acrylates/C10-30 alkyl acrylate crosspolymer can contain (total) residual solvent (ethyl acetate + cyclohexane) at a maximum of 0.45% (Carbopol 1382; Carbopol Ultrez 20; Carbopol Ultrez 21) or 0.5% (Pemulen TR1; Pemulen TR2; Carbopol ETD 2020). Another supplier, who uses n-hexane as a solvent, reported that the maximum residual solvent in the polymer is 0.2% n-hexane.

As Carbopol 1342, the product specifications state that acrylates/C10-30 alkyl acrylate crosspolymer can contain 0.5% (max.) residual benzene. A supplier reported that analysis of 40 lots of Carbopol 1342 indicated that the average level of benzene was 0.25%, and the level ranged from 0.04-0.41% benzene. (According to the European Commission Cosmetics Directive, benzene cannot be present as a constituent of other substances, or in mixtures, in concentrations equal to, or greater than 0.1% by weight. As another point of reference, United States Pharmacopeia (USP) limits for benzene for several carbomers manufactured with benzene range from 0.01-0.5%.)
One source stated that residual monomer content of acrylates/C10-30 alkyl acrylate crosspolymer (trade name not provided) is typically less than 0.25% acrylic acid and less than 0.5% residual ester (C10-30 alkyl acrylate), while another stated that acrylic acid monomer content is <0.1%.

Acrylates Crosspolymer

One source reported that acrylates crosspolymer contained <0.005% methyl methacrylate and <0.005% butyl acrylate, and another reported 0.005% (max) of methyl methacrylate, ethylene methacrylate, and isobutyl methacrylate, and that acrylates crosspolymer did not contain residual solvents or preservatives.

Acrylates/Steareth-20 Methacrylate Crosspolymer

The composition of acrylates/steareth-20 methacrylate crosspolymer (as Aculyn 88 polymer) is stated as 28.0-30.0% acrylates/steareth-20 methacrylate crosspolymer, <0.01% residual monomer, 70.0-72.0% solvent (water), and 0.195% (max) sodium benzoate. According to actual analytical specifications, the amount of residual ethyl acrylate present is ≤0.0001%.

Acrylates/Vinyl Isodecanoate Crosspolymer

The residual acrylic acid monomer content of acrylates/vinyl isodecanoate crosspolymer (Stabylen 30) is reported to be <0.05% by weight.

Acrylates/Vinyl Neodecanoate Crosspolymer

The composition of acrylates/vinyl neodecanoate crosspolymer (as Aculyn 38 polymer) is stated as 28.0-30.0% acrylates/vinyl neodecanoate crosspolymer, <0.1% residual monomer, and 70.0-72.0% solvent (water). According to actual analytical specifications, the amount of residual ethyl acrylate present was ≤0.0001%. Another source reported the residual monomer level of acrylates/vinyl neodecanoate crosspolymer is <0.01%.

Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer

The residual monomer levels of lauryl methacrylate/glycol dimethacrylate crosspolymer are <0.01% lauryl methacrylate and <0.01 ppm ethylene glycol dimethacrylate. Lauryl methacrylate/glycol dimethacrylate crosspolymer has a residual solvent level of ≤0.1% isopropanol. The ingredient can contain up to 2% adsorbed water.

Sodium Acrylates Crosspolymer-2

The maximum amount of residual monomer content in sodium acrylates crosspolymer-2 (Aqua Keep 10SH-NFC) is 0.02%.
Cosmetic

Crosslinked alkyl acrylates are reported to function as absorbents, film formers, emulsion stabilizers, viscosity increasing agents, suspending agents, binders, and/or skin conditioning agents in cosmetic formulations.\(^4\) Acrylates/C10-30 alkyl acrylate crosspolymer functions as a primary emulsifier in oil-in-water emulsions.\(^7\) Voluntary Cosmetic Registration Program (VCRP) data obtained in 2011\(^{29}\) and concentration of use information received in response to a survey conducted by the Personal Care Products Council,\(^{30}\) indicate that 11 of the 23 crosslinked alkyl acrylates named in this report currently are used in cosmetic formulations. Acrylates/C10-30 alkyl acrylate crosspolymer has the greatest number of uses, with 1696 reported; 1365 of those uses are in leave-on products. Acrylates crosspolymer, acrylates/vinyl isodecanoate crosspolymer, acrylates/vinyl neodecanoate crosspolymer, allyl methacrylates crosspolymer, lauryl methacrylate/glycol dimethacrylate crosspolymer, lauryl methacrylate/sodium methacrylate crosspolymer, and sodium acrylates/C10-30 alkyl acrylate crosspolymer are all used in less than 75 formulations.

Some acrylates/C10-30 alkyl acrylate crosspolymers are polymerized in benzene; the highest reported concentrations of use of this ingredient when polymerized in benzene are 0.4 and 1.1% for leave-on and rinse-off products, respectively.\(^{31}\) The use concentrations for acrylates/C10-30 alkyl acrylate crosspolymer not polymerized in benzene are up to 5% in leave-on and rinse-off products; 5% is the highest rinse-off concentration of use of the crosslinked alkyl acrylates. The highest concentration of use reported in leave-on crosslinked alkyl acrylates is 6% acrylates/ethylhexyl acrylate crosspolymer.\(^{30}\) Frequency and concentration of use data are provided in Table 4a. The ingredients not reported to be used are listed in Table 4b.

Products containing some crosslinked alkyl acrylates may be applied to baby skin, used near the eye area or mucous membranes, or could possibly be ingested or inhaled. In practice, 95% to 99% of the particles released from cosmetic sprays have aerodynamic equivalent diameters in the 10 to 110 µm range.\(^{32,33}\) Therefore, most particles incidentally inhaled from cosmetic sprays would be deposited in the nasopharyngeal region and would not be respirable to any appreciable level.\(^{34,35}\) There is some evidence indicating that deodorant spray products can release substantially larger fractions of particulates having aerodynamic diameters in the range considered to be respirable.\(^{35}\) However, the information is not sufficient to determine whether significantly greater lung exposures result from the use of deodorant sprays, compared to other cosmetic sprays.

All of the ingredients included in this review, with the exception of acrylates/C12-13 alkyl methacrylates methoxyethyl acrylate crosspolymer and methacrylic acid/PEG-6 methacrylate/PEG-6 dimethacrylate crosspolymer, are listed in the European Union inventory of cosmetic ingredients.\(^{36}\) The two ingredients that are not included in the EU inventory are in the process of being named and will be added once that process is complete.\(^{37}\)

Non-Cosmetic

Acrylic ester polymers are used in coatings, textiles, adhesives, and paper manufacture.\(^5\)

TOXICOKINETICS

Published toxicokinetics, absorption, distribution, metabolism, and excretion data were not found for the crosspolymers. Large polymeric structures, however, such as cross-linked alkyl acrylates, generally are not absorbed through the skin. Toxicokinetics data on some of the monomers are provided in Table 5.
Effect on Skin Permeation

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

A topical formulation vehicle that included acrylates/C10-30 alkyl acrylate crosspolymer (Pemulen TR-2), in combination with PEG 400 and carbomer, reduced the permeation of N,N-diethyl-m-toluamide (DEET) through skin. Evaluations were made *in vitro* using excised rat skin and *in vivo* using Beagle dogs.

TOXICOLOGICAL STUDIES

To aid in the evaluation of the safety of these crosspolymers, Table 5 provides a brief summary of relevant data on a number of monomer components. (This summary is not intended to be an all-encompassing review of these monomers.)

Single Dose (Acute) Toxicity

Dermal

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

According to an industry MSDS, the dermal LD$_{50}$ of acrylates/C10-30 alkyl acrylate crosspolymer (as Pemulen TR1) in rabbits is >2.0 g/kg.

Acrylates/Vinyl Neodecanoate Crosspolymer

The dermal LD$_{50}$ of acrylates/vinyl neodecanoate crosspolymer (as Aculyn 38 polymer) in rabbits is >5.0 g/kg.

Oral

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

According to an industry MSDS, the oral LD$_{50}$ of acrylates/C10-30 alkyl acrylate crosspolymer (as Pemulen TR1) in rats is >10 g/kg. Another source provided information from an MSDS, stating that the oral LD$_{50}$ in rats is >2 g/kg.

Acrylates/Vinyl Isodecanoate Crosspolymer

The oral LD$_{50}$ acrylates/vinyl isodecanoate crosspolymer (as Stabyle 30) in rats is >2 g/kg body wt.

Acrylates/Vinyl Neodecanoate Crosspolymer

The oral LD$_{50}$ of acrylates/vinyl neodecanoate crosspolymer (as Aculyn 38 polymer) in rats is >5.0 g/kg.
Sodium Acrylates Crosspolymer-2

According to an industry MSDS, the oral LD$_{50}$ of sodium acrylates crosspolymer-2 (as Aqua Keep 10SH-NFC) in rats is >2 g/kg.41

Inhalation

Acrylates/Vinyl Neodecanoate Crosspolymers

The inhalation LC$_{50}$ of acrylates/vinyl neodecanoate crosspolymer (as Aculyn 38 polymer) in rats is >16.34 mg/l air (1 h).12

Repeated Dose Toxicity

Inhalation

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

In an industry MSDS for acrylates/C10-30 alkyl acrylate crosspolymers (as Pemulen TR-1), a 2-yr inhalation study in which rats were exposed to a respirable, water-absorbent sodium polyacrylate dust is described under toxicological information. Lung effects such as inflammation, hyperplasia, and tumors, were observed.39 There were no observed adverse effects at exposures of 0.05 mg/m3.

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

Published reproductive and developmental toxicity data were not found. Reproductive and developmental toxicity data on some of the monomers are provided in Table 5.

GENOTOXICITY

Genotoxicity data on some of the monomers are provided in Table 5.

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

Acrylates/C10-30 alkyl acrylate crosspolymer, tested at 156-500 µg/plate in dimethyl sulfoxide, was not mutagenic in an Ames assay with Salmonella typhimurium TA98 and TA100.23 It is not stated directly, but it appears that the studies were performed with and without metabolic activation.
Acrylates/Steareth-20 Methacrylate Crosspolymer

The acrylic copolymer of acrylates/steareth-20 methacrylate crosspolymer (as Aculyn 88 polymer) was not mutagenic in an Ames test, with or without metabolic activation.\(^{10}\) (Study performed using good laboratory practices (GLP); details not provided.)

Acrylates/Vinyl Neodecanoate Crosspolymer

The acrylic copolymer of acrylates/vinyl neodecanoate crosspolymer (as Aculyn 38 polymer) was not mutagenic in an Ames test, with or without metabolic activation.\(^{12}\) (GLP study; details not provided.)

Sodium Acrylates Crosspolymer-2

According to an industry MSDS, sodium acrylates crosspolymer-2 (as Aqua Keep 10SH-NFC) was negative in an Ames test using *S. typhimurium* TA98, TA100, TA1535, and TA1537 and *Escherichia coli* WP2uvrA.\(^{41}\)

CARCINOGENICITY

Published carcinogenicity studies were not found. Carcinogenicity data on some of the monomers are provided in Table 5.

IRRITATION AND SENSITIZATION

Irritation and sensitization data on some of the monomers are provided in Table 5.

Skin Irritation and Sensitization

Dermal irritation and sensitization studies, using alternative methods and non-human and human test populations, are presented in Table .

In an alternative method study, acrylates/vinyl neodecanoate crosspolymer was predicted to be a non-irritant. The non-human studies reported no to slight irritation with undiluted and weak sensitization with 2% aq., acrylates/C10-30 alkyl acrylate crosspolymer, no irritation with acrylates crosspolymer at 30% in olive oil, and no irritation or sensitization with sodium acrylates crosspolymer-2 (concentration not specified). Mostly, human testing with undiluted acrylates/C10-30 alkyl acrylate crosspolymer, acrylates crosspolymer, and acrylates/ethylhexyl acrylate crosspolymer, up to 2.5% aq. acrylates/vinyl isodecanoate crosspolymer, 1% aq. dilutions of formulations containing 2% acrylates/vinyl neodecanoate crosspolymer, and formulations containing up to 2.6% lauryl methacrylate/glycol dimethacrylate crosspolymers do not indicate any dermal irritation or sensitization. The only exception was a weak irritant response noted during an intensified Shelanski human repeated insult patch test (HRIPT) with undiluted acrylates/C10-30 alkyl acrylate crosspolymer.
Ocular Irritation

Alternative Studies

Acrylates/Vinyl Isodecanoate Crosspolymer

The EYE-TEX alternative method was used to predict the *in vivo* ocular irritation classification of acrylates/vinyl isodecanoate crosspolymer (as Stabyle 30). The results obtained in a standard volume-response study using samples of ≤100 µl test material corresponded to a Draize ocular irritation classification of non-irritant.

Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer

The EpiOcular Human Cell Construct (MTT assay), was used to assess the potential ocular irritation of a face powder containing 1% lauryl methacrylate/glycol dimethacrylate crosspolymer. The ET₅₀ (duration of exposure resulting in a 50% decrease in MTT conversion) of the test material was >1440 min, which was the maximum exposure time. (As a reference point, the ET₅₀ of the positive control, 0.3% Triton X-100, was 16.3 min.)

Non-Human

Acrylates/C10-30 Alkyl Acrylate Crosspolymer

The ocular irritation potential of acrylates/C10-30 alkyl acrylate crosspolymer (as Carbopol ETD) was evaluated using groups of 3 albino rabbits. The test material, undiluted and as a 1% neutralized solution (pH 6.9-7.0), was instilled into the conjunctival sac of one eye of each rabbit per group; the contralateral eyes served as a control. The eyes were not rinsed. The undiluted test material produced slight to moderate corneal and conjunctival irritation which cleared by day 7. Slight iridal and conjunctival irritation was observed with the 1% solution. All signs of irritation cleared with 72 h.

In other studies using the same procedure, the ocular irritation potential of acrylates/C10-30 alkyl acrylate crosspolymer (as Carbopol Ultrez 20 and as Carbopol Ultrez 21) was evaluated using groups of 3 rabbits. The test material was evaluated undiluted and as a 5% dilution in distilled water. The undiluted test material produced moderate corneal irritation and conjunctival irritation which cleared by day 21. (The maximum mean score (MMS) was 37.7/110.) Moderate conjunctival irritation (MMS 9.3/110) was observed with the 5% solution, which was classified as a minimal irritant.

The ocular irritation potential of acrylates/C10-30 alkyl acrylate crosspolymer (as Pemulen) was evaluated by instilling 0.021 g of the test article into the conjunctival sac of one eye of 9 New Zealand White (NZW) rabbits. The contralateral eyes were untreated and served as the control. At 30 sec post-instillation, both eyes of 3 rabbits were rinsed; the eyes of the other 6 rabbits were not rinsed. The eyes were examined for irritation for up to 72 h following dosing. “Significant” ocular irritation was observed in 3 of the 6 unrinsed eyes. At 24 h after instillation, corneal opacity was observed in 3 and iritis in one unrinsed eye; minimal conjunctivitis was seen in all 6 unrinsed eyes. These observations were resolved by 72 h. “Less severe responses” were observed in the rinsed eyes. Iritis was observed in one and conjunctivitis in 3 of the rinsed eyes at 24 h after dosing. At 48 h after dosing, conjunctivitis was observed in one rinsed eye. Based on the observations made for the unrinsed eyes, the authors stated that this product was considered a borderline irritant.
Acrylates Crosspolymer

The ocular irritation potential of acrylates crosspolymer was evaluated by instilling 0.1 ml of the test material, at a concentration of 50% in olive oil, into the conjunctival sac of one eye of 3 Japanese white rabbits. The Draize score was 1.3. (Additional details were not provided.)

Sodium Acrylates Crosspolymer-2

According to an industry MSDS, sodium acrylates crosspolymer-2 (as Aqua Keep 10SH-NFC) is not an ocular irritant in rabbits.

CLINICAL ASSESSMENT OF SAFETY

Risk Assessment

Conservative risk assessments were submitted by the Personal Care Products Council’s CIR Science and Support Committee (SSC) and by the CIR to address the carcinogenic endpoint for benzene, because it may be used as a solvent in the manufacture of acrylates/C10-30 alkyl acrylates crosspolymer. Both assessments assumed the highest reported concentration of residual benzene in acrylates/ C10-30 alkyl acrylates crosspolymer used as a raw ingredient, the highest reported use concentration in a leave-on product of the raw ingredient polymerized in benzene, 10% evaporation of the residual benzene during manufacturing of the product, 10% benzene absorbed from the product through the skin, and the reported 50th and 95th percentile of the amount of product used daily.

CIR SSC Risk Assessment

The assumptions used to calculate CIR SSC’s example exposure assessment were:

- 50th percentile use = 7.63 g body lotion used/use day
- 95th percentile use = 16.83 g body lotion used/use day
- 0.4% acrylates/C10-30 alkyl acrylate crosspolymer in body lotion
- 0.41% benzene in acrylates/C10-30 alkyl acrylate crosspolymer
- 10% benzene absorbed percutaneously

Estimated Exposure
0.41% benzene in raw material x 0.4% acrylates/C10-30 alkyl acrylates crosspolymer in a body product
=0.00164% benzene in the product

50th 7.63 g body product used/day x 0.00164% = 12.5 µg/day

95th 16.83 g body product used/day x 0.00164% = 276 µg/day

absorb 10% x 125 µg/day
The SSC Comparison to Risk Level

The Environmental Protection Agency (EPA) drinking water concentration associated with 10^6 cancer risk is 1 and 10 $\mu g/L$. Assuming consumption of 2 L of water each day, this results in a value of 2 to 20 $\mu g/day$. The estimated exposure from the use of a leave-on body product at the 50th percentile, assuming the greatest concentration of acrylates/C10-30 alkyl acrylates crosspolymer polymerized in benzene, is within the range associated with a 10^6 cancer risk, while use at the 95th percentile is just above the range associated with a 10^6 risk. The SSC noted that significant volatilization of benzene would occur during the manufacture of the finished product because the temperatures reached during processing are at or near the boiling point of benzene (80.1°C). They indicated that assuming that only 10% of the residual benzene is volatilized during product manufacture, would yield an exposure within the range associated with a 10^6 risk for use of a body lotion at the 95th percentile.

CIR’s Risk Assessment

The EPA presents the oral slope factor for benzene as a range, based on the assumption that benzene is 100% absorbed after oral exposure. Specifically, the slope factor ranges from 1.5×10^{-5} to 5.5×10^{-5} [$\mu g/kg/day$]. The EPA drinking water concentration range (1 to 10 $\mu g/liter$) representing a 10^{-6} lifetime cancer risk was calculated from the slope factor range, rounding down the lowest concentration of the range to 1 $\mu g/liter$ and rounding up the highest concentration to 10 $\mu g/liter$.

General Equation:

- $[\%]$ benzene in acrylates/C10-30 alkyl acrylates crosspolymer $\times [\%]$ acrylates/C10-30 alkyl acrylates crosspolymer in body lotion $\times [g/day]$ body lotion $\times [\%]$ benzene absorbed percutaneously $\times [kg]^{-1}$ body weight $\times 10^6$ [$\mu g/g$] conversion factor \times slope factor [$\mu g/kg/day]^{-1}$ = Cancer Risk Estimate [unitless]

Using the EPA’s highest cancer slope factor in the range $(5.5 \times 10^{-5}$ [$\mu g/kg/day]^{-1})$ in accordance with the EPA risk assessment guidelines yields an upper bound lifetime cancer risk estimate of 2.2×10^{-5}, assuming the 95th percentile product use and 70 kg body weight:

Upper Bound Risk for 95th percentile exposure:

- $0.41 \% \times 0.4 \% \times 16.83 \ g/day \times 10\% \times 1/70 \ [kg]^{-1} \times 10^6 \ \mu g/g \times 5.5 \times 10^{-5} \ [\mu g/kg/day]^{-1} = 2.17 \times 10^{-5}$

This estimate (2.2×10^{-5}) is 22 times higher than the upper bound risk estimate considered to be de minimis (10^{-6}).
Assuming that 10% of the benzene evaporates during the product manufacturing process reduces the upper bound estimate to 2×10^{-5} ($2.17 \times 10^{-5} \times 90\% = 1.95 \times 10^{-5}$), which is still about 20 times higher than 10^{-6}.

Using the EPA's lowest cancer slope factor in their range ($1.5 \times 10^{-5} [\mu g/kg/day]^{-1}$), assuming 50th percentile product use, 10% percutaneous absorption, and 10% evaporation during the manufacturing process yields upper bound cancer risk estimates that still exceed 10^{-6} by 2 to 3 fold:

Upper Bound Risk for 50th percentile exposure:

- $0.41 \% \times 0.4 \% \times 7.63 \, g/day \times 10\% \times 1/70 \,[kg]^{-1} \times 10^6 \, \mu g/g \times 1.5 \times 10^{-5} \,[\mu g/kg/day]^{-1} \times 90\% = 2.41 \times 10^{-6}$

The SSC reported that the cancer risk would $<10^{-6}$, by comparing the estimated daily absorbed dose of benzene from the product to drinking water concentrations that EPA suggests represents a 10^{-6} lifetime risk. However, CIR calculated upper-bound lifetime cancer risk estimates up to 20-fold greater than 10^{-6}, based on EPA's cancer slope factors for benzene.

INDUSTRIAL EXPOSURE LIMITS

According to an industry MSDS, no exposure limits have been established for acrylates/C10-30 alkyl acrylate crosspolymer. The industry-recommended permissible exposure limits for respirable polyacrylate dusts is $0.05 \, mg/m^3$. Breathing of dust may cause coughing, mucous production, and shortness of breath. According to an industry MSDS, the exposure limit for respirable sodium acrylates crosspolymer-2 dust (particle size $<10 \, \mu m$) is $0.05 \, mg/m^3$.

SUMMARY

Crosslinked alkyl acrylates are reported to function in cosmetic formulations as absorbents, film formers, emulsion stabilizers, viscosity increasing agents, suspending agents, binders, and/or skin conditioning agents. In 2011, it was reported that acrylates/C10-30 alkyl acrylate crosspolymer was used in 1696 cosmetic formulations; 1365 of those uses are in leave-on products, and the reported concentration of use in these leave-on products is up to 5%. According to industry data, acrylates/ethylhexyl acrylate crosspolymer had the highest concentration of use in a leave-on product at 6%; the highest concentration of use reported in rinse-off products was 5% acrylates/C10-30 alkyl acrylate crosspolymer.
Toxicokinetic data were not found in the published literature. Little toxicity data were available; the acute dermal and oral toxicity data that were found indicated that these ingredients are not very toxic. The little genotoxicity data that were available reported negative results in Ames tests. Carcinogenicity data were not found in the published literature for the polymers, but data were available for the monomers.

In an alternative method study, acrylates/vinyl neodecanoate crosspolymer was predicted to be a non-irritant. The non-human studies reported no to slight irritation with undiluted and weak sensitization with 2% aq., acrylates/C10-30 alkyl acrylate crosspolymer, no irritation with acrylates crosspolymer at 30% in olive oil, and no irritation or sensitization with sodium acrylates crosspolymer-2 (concentration not specified). Mostly, human testing with undiluted acrylates/C10-30 alkyl acrylate crosspolymer, acrylates crosspolymer, and acrylates/ethylhexyl acrylate crosspolymer, up to 2.5% aq. acrylates/vinyl isodecanoate crosspolymer, 1% aq. dilutions of formulations containing 2% acrylates/vinyl neodecanoate crosspolymer, and formulations containing up to 2.6% lauryl methacrylate/glycol dimethacrylate crosspolymers do not indicate any dermal irritation or sensitization. The only exception was a weak irritant response noted during an intensified Shelanski human repeated insult patch test (HRIPT) with undiluted acrylates/C10-30 alkyl acrylate crosspolymer.

Alternative test methods for ocular irritation indicated that acrylates/vinyl isodecanoate crosspolymer and a formulation containing 1% lauryl methacrylate/glycol dimethacrylate crosspolymer are not likely ocular irritants. In studies using rabbits, undiluted acrylates/C10-30 alkyl acrylate crosspolymer produced minimal to moderate irritation, and it was considered a borderline irritant in unrinse rabbit eyes. Acrylates crosspolymer, at 50% in olive oil, and sodium acrylates crosspolymer-2 did not appear to be ocular irritants in rabbit eyes.

Two different risk assessments evaluating the carcinogenic endpoint for benzene that may be present in acrylates/ C10-30 alkyl acrylates crosspolymer resulted in different lifetime risk. One found that the risk was within the range associated with a 10^6 cancer risk, while the other reported a 20-fold greater risk.

DISCUSSION

Few published data were available on the crosslinked alkyl acrylates. The CIR Expert Panel was provided with some summary information on the monomers for their use in evaluating these crosspolymers.

The Panel noted that these crosslinked alkyl acrylates are macromolecules that are not expected to pass through the stratum corneum of the skin, so significant dermal absorption is not expected. Therefore, topically applied cosmetics are not expected to result in systemic or reproductive and developmental toxicity or to have genotoxic or carcinogenic effects upon use.

The Panel noted that cosmetic products containing these ingredients are reportedly used around the eyes, on the lips, and on other mucous membranes. Thus, crosslinked alkyl acrylates could be absorbed systemically through the relatively moist, thin stratum cornea of the conjunctiva, lips, and other mucous membranes, and through ingestion when applied to the lips. However, the Panel noted that any absorption through healthy intact mucous membranes is likely to be not significant, primarily because of the relatively large molecular sizes. Furthermore, the chemically inert nature of the polymers precludes degradation to smaller absorbable species. Absorption of the polymers and their residual monomers in cosmetic products also would be limited after application to the lips or eye area based on the relatively small fractions of the applied products that might be inadvertently ingested or make direct contact with the conjunctiva.

The Panel addressed the concern of residual monomer or solvent that might be present in the crosspolymers. In most cases, taking into consideration the low amount of residual monomer in the crosspolymers and the low use concentration of the polymers themselves, the Panel was not concerned that the presence of
residual monomer would result in adverse effects. However, the use of benzene as a solvent is an exception and did cause concern. It cannot be predicted with certainty what quantity of benzene would be volatilized/leached from acrylates/C10-30 alkyl acrylates crosspolymer during manufacture, formulation, or use. While some benzene is inevitably volatilized during manufacture, some benzene may be trapped in the polymer matrix and may leach out during formulation and use, but there is no way of knowing how much (or if any) benzene would leach out without appropriate data from a representative product formulation.

Conservative risk assessments were submitted by industry and by the CIR to address the carcinogenic endpoint for benzene, because it may be used as a solvent in the manufacture of acrylates/C10-30 alkyl acrylates crosspolymer. Both assessments assumed the highest reported concentration of residual benzene in acrylates/C10-30 alkyl acrylates crosspolymer used as a raw ingredient, the highest reported use concentration in a leave-on product of the raw ingredient polymerized in benzene, 10% evaporation of the residual benzene during manufacturing of the product, 10% benzene absorbed from the product through the skin, and the reported 95th percentile of the amount of product used daily. Industry reported that the cancer risk would <10^{-6}, by comparing the estimated daily absorbed dose of benzene from the product to drinking water concentrations that EPA suggests represents a 10^{-6} lifetime risk. However, CIR calculated upper-bound lifetime cancer risk estimates up to 20-fold greater than 10^{-6}, based on EPA’s cancer slope factors for benzene. Given the uncertainty of the assumptions used in the risk assessment, the Panel was not comfortable with using a risk assessment in evaluating the carcinogenic endpoint. Therefore, the Panel found the data insufficient to conclude that the residual benzene levels are safe.

Because these ingredients can be used in products that may be aerosolized, including sprays and powders, the Panel discussed the issue of potential inhalation toxicity. The limited data available from an acute exposure study suggested little potential for pulmonary overload or other respiratory effects at relevant doses. The Panel considered other data available to characterize the potential for crosslinked alkyl acrylates to cause systemic toxicity, irritation, sensitization, or other effects. They noted the lack of systemic toxicity at high doses in several acute oral exposure studies, little or no irritation or sensitization in multiple tests of dermal and ocular exposure, and the absence of genotoxicity in Ames tests. In addition, these ingredients are macromolecules, insoluble in water, and chemically inert under physiological conditions or conditions of use, which supports the view that they are unlikely to be absorbed or cause local effects in the respiratory tract. Further, these ingredients are reportedly used at concentrations ≤4% in cosmetic products that may be aerosolized. The Panel noted that 95 – 99% of particles produced in cosmetic aerosols would not be respirable to any appreciable extent. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, this information indicates that inhalation would not be a significant route of exposure that might lead to local respiratory or systemic toxic effects.

CONCLUSION

The CIR Expert Panel concluded that the crosslinked alkyl acrylates listed below are safe in the present practices of use and concentration described in this safety assessment, except when they are polymerized in benzene. Acrylates/C10-30 Alkyl Acrylate Crosspolymer may be polymerized in benzene, and the available data are insufficient to make a determination of safety for this crosslinked alkyl acrylate when it is polymerized in benzene.
Acrylates/C10-30 Alkyl Acrylate Crosspolymer
Acrylates/C12-13 Alkyl Methacrylates/Methoxyethyl Acrylate Crosspolymer*

Acrylates Crosspolymer
Acrylates/Ethylhexyl Acrylate Crosspolymer
Acrylates/Ethylhexyl Acrylate/Glycidyl Methacrylate Crosspolymer*
Acrylates/PEG-4 Dimethacrylate Crosspolymer*
Acrylates/Steareth-20 Methacrylate Crosspolymer
Acrylates/Vinyl Isodecanoate Crosspolymer
Acrylates/Vinyl Neodecanoate Crosspolymer
Allyl Methacrylate/Glycol Dimethacrylate Crosspolymer*
Allyl Methacrylates Crosspolymer
Butyl Acrylate/Glycol Dimethacrylate Crosspolymer*
C8-22 Alkyl Acrylates/Methacrylic Acid Crosspolymer*
Glycol Dimethacrylate/Vinyl Alcohol Crosspolymer*
Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer
Lauryl Methacrylate/Sodium Methacrylate Crosspolymer
Methacrylic Acid/PEG-6 Methacrylate/PEG-6 Dimethacrylate Crosspolymer*
PEG/PPG-5/2 Methacrylate/Methacrylic Acid Crosspolymer*
Potassium Acrylates/C10-30 Alkyl Acrylate Crosspolymer*
Sodium Acrylates Crosspolymer-2
Sodium Acrylates/C10-30 Alkyl Acrylate Crosspolymer
Sodium Acrylates/Vinyl Isodecanoate Crosspolymer*
Stearyl/Lauryl Methacrylate Crosspolymer*

*Were the ingredients not in current use (as indicated by *) to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/ C10-30 Alkyl Acrylate Crosspolymer</td>
<td>a copolymer of C10-30 alkyl acrylate and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters crosslinked with an allyl (2-propenyl) ether of sucrose or an allyl ether of pentaerythritol</td>
<td>Emulsion Stabilizer; Viscosity Increasing Agent – Aq.; Viscosity Increasing Agent - NonAq.</td>
<td></td>
</tr>
</tbody>
</table>

C According to the International Cosmetic Ingredient Dictionary and Handbook nomenclature conventions, “simple,” as used herein, is “described as simple alkyls ranging from C1 to C4 (linear or branched).”
<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/ C12-13 Alkyl Methacrylates/ Methoxyethyl Acrylate Crosspolymer</td>
<td>a copolymer of C12-13 alkyl methacrylates, methoxyethyl acrylate, and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with vinyloxazoline</td>
<td>hair fixative</td>
</tr>
<tr>
<td>Acrylates Crosspolymer</td>
<td>a copolymer of acrylic acid, methacrylic acid or one of its simple esters, crosslinked with glycol dimethacrylate</td>
<td>Absorbent</td>
</tr>
<tr>
<td>26794-61-6 (when R is butyl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74464-10-1 (when R is isobutyl)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. **Definitions, functions, and structures**

Copolymer of:

![Copolymer structure](image)

Crosslinked with:

![Crosslinked structure](image)
<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/ Ethylhexyl Acrylate Crosspolymer</td>
<td>a copolymer of 2-ethylhexylacrylate and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with ethylene glycol dimethacrylate</td>
<td>Binder</td>
<td>![Copolymer Diagram]</td>
</tr>
</tbody>
</table>

Copolymer of:

\[
\begin{align*}
\text{H}_2\text{C} & \text{O} \\
& \text{O} \\
& \text{CH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{C} & \text{O} \quad \text{R} \\
& \text{O} \\
& \text{CH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{C} & \text{O} \quad \text{R} \\
& \text{O} \\
& \text{CH}_3 \\
\end{align*}
\]

R = hydrogen or a "simple" alkyl chain

Crosslinked with:

\[
\begin{align*}
\text{H}_2\text{C} & \text{O} \\
& \text{O} \\
& \text{CH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{C} & \text{O} \\
& \text{O} \\
& \text{CH}_3 \\
\end{align*}
\]
<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
</table>
| Acrylates/ Ethylhexyl Acrylate/Glycidyl Methacrylate Crosspolymer | a copolymer of 2-ethylhexyl acrylate, glycidyl methacrylate and one or more monomers consisting of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with triethylene glycol dimethacrylate | Film Former | ![Copolymer of:](image1) R = hydrogen or a "simple" alkyl chain
Crosslinked with: ![Crosslinked with:](image2) |
| Acrylates/ PEG-4 Dimethacrylate Crosspolymer | a copolymer of one or more monomers of acrylic acid, methacrylic acid or one of their simple esters crosslinked by PEG-4 dimethacrylate | Film Former | ![Copolymer of:](image3) R = hydrogen or a "simple" alkyl chain
Crosslinked with: ![Crosslinked with:](image4) |
<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/ Steareth-20</td>
<td>a copolymer of steareth-20 methacrylate and one or more monomers consisting of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with an allyl ether of pentaerythritol or an allyl ether of trimethylolpropane</td>
<td>Film Former; Suspending Agent – Non-Surfactant</td>
<td></td>
</tr>
<tr>
<td>Methacrylate Crosspolymer</td>
<td>Film Former; Suspending Agent – Non-Surfactant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copolymer of:

\[
\begin{align*}
[H_2C=O] & (OCH_2CH_2)_{26}(CH_2)_{17}CH_3 \\
[H_2C=O] & R \\
[H_2C=O] & CH_3
\end{align*}
\]

\(R = \text{hydrogen or a "simple" alkyl chain} \)

Crosslinked with:

\[
\begin{align*}
R'O & \text{OR'} \\
R'O & \text{or} \\
\text{or} & \text{OR'}
\end{align*}
\]

\(R' = \text{hydrogen or 2-propenyl, wherein at least two } R' \text{ groups are 2-propenyl} \)
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/ Vinyl Isodecanoate Crosspolymer</td>
<td>a copolymer of the ester of vinyl isodecanoate and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters crosslinked with polyalkenyl polyether</td>
<td>Emulsion Stabilizer; Suspending Agent – Non-Surfactant; Viscosity Increasing Agent - Aq.</td>
<td></td>
</tr>
</tbody>
</table>

Copolymer of:

![Chemical structure of copolymer](attachment)

R = isododecyl (branched, 12 carbon chain)
R' = hydrogen or a "simple" alkyl chain

Crosslinked with a "polyalkenyl polyether." One example of such could be:

![Crosslinked structure](attachment)

R" = hydrogen or 2-propenyl, wherein at least two R" groups are 2-propenyl
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/ Vinyl Neodecanoate</td>
<td>a copolymer of vinyl neodecanoate and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters crosslinked with an allyl ether of trimethylolpropane or pentaerythritol</td>
<td>Emulsion Stabilizer; Film Former; Viscosity Increasing Agent - Aq.</td>
<td></td>
</tr>
</tbody>
</table>

Copolymer of:

![Copolymer structure](image)

Crosslinked with:

![Crosslink structure](image)

R = hydrogen or a "simple" alkyl chain

R' = hydrogen or 2-propenyl, wherein at least two R' groups are 2-propenyl
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allyl Methacrylate/Glycol Dimethacrylate Crosspolymer</td>
<td>a highly crosslinked polymer of allyl methacrylate and ethylene glycol dimethacrylate (diisopropyl peroxydicarbonate initiated)</td>
<td>Oral Care Agent; Skin Protectant; Skin-Conditioning Agent; Emollient; Skin-Conditioning Agent – Misc.</td>
<td></td>
</tr>
<tr>
<td>779327-42-3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copolymer of:

![Chemical structure](..)

Both of which can function as crosslinking agents

| Allyl Methacrylates Crosspolymer | a copolymer of allyl methacrylate crosslinked with ethylene glycol dimethacrylate | Emulsion Stabilizer; Opacifying Agents; Viscosity Increasing Agent – NonAq. | ![Chemical structure](..) |
| 182212-41-5 | | | |

Copolymer of:

![Chemical structure](..)

Both of which can function as crosslinking agents
<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyl Acrylate/ Glycol Dimethacrylate Crosspolymer</td>
<td>a homopolymer of butyl acrylate cross-linked with ethylene glycol dimethacrylate</td>
<td>Absorbent; Film Former</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homopolymer of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crosslinked with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8-22 Alkyl Acrylates/ Methacrylic Acid Crosspolymer</td>
<td>a copolymer of C8-22 alkyl acrylate and methacrylic acid crosslinked with hexanediol diacrylate</td>
<td>Film Former; Hair Fixative; Hair-Waving/ Straightening Agent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copolymer of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crosslinked with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Definitions, functions, and structures

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycol Dimethacrylate/ Vinyl Alcohol Crosspolymer</td>
<td>vinyl alcohol and ethylene glycol dimethacrylate</td>
<td>Film Former</td>
<td>Copolymer of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer</td>
<td>a crosslinked copolymer of lauryl methacrylate and ethylene glycol dimethacrylate monomers</td>
<td>Film Former; Hair Fixative</td>
<td>Copolymer of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
</table>
| Lauryl Methacrylate/Sodium Methacrylate Crosspolymer | a copolymer of lauryl methacrylate and sodium methacrylate crosslinked with ethylene glycol dimethacrylate. | Slip Modifier; Surface Modifier | ![Copolymer of:](image)

Crosslinked with:

![Crosslinked with:](image)

Methacrylic Acid/PEG-6 Methacrylate/PEG-6 Dimethacrylate Crosspolymer

- a copolymer of methacrylic acid and PEG-6 methacrylate crosslinked with polyethylene glycol dimethacrylate

Copolymer of:

![Copolymer of:](image)

Crosslinked with:

![Crosslinked with:](image)

wherein “n” is variable
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG/PPG-5/2 Methacrylate/Methacrylic Acid Crosspolymer</td>
<td>a copolymer of methacrylic acid and polyethylene glycol, polypropylene glycol methacrylate containing an average of 5 moles of ethylene oxide and 2 moles of propylene oxide, crosslinked with ethylene glycol dimethacrylate</td>
<td>Film Former</td>
<td> </td>
</tr>
</tbody>
</table>
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Acrylates/C10-30</td>
<td>the potassium salt of Acrylates/C10-30 Alkyl Acrylate Crosspolymer.</td>
<td>Film Former</td>
<td></td>
</tr>
<tr>
<td>Alkyl Acrylate Crosspolymer</td>
<td>30 Alkyl Acrylate Crosspolymer.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copolymer of:

\[
\begin{align*}
\text{R} = & \text{10 to 30 carbon alkyl chain} \\
\text{R'} = & \text{H or a "simple" alkyl group (the potassium salt is formed post-polymerization)}
\end{align*}
\]

Crosslinked with:

\[
\text{R''} = \text{hydrogen or 2-propenyl, wherein at least two R'' groups are 2-propenyl}
\]
Table 1. Definitions, functions, and structures

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Acrylates</td>
<td>the sodium salt of a copolymer of acrylic acid, methacrylic acid or one or more of its simple esters crosslinked with ethylene diglycidyl ether</td>
<td>Absorbent</td>
<td></td>
</tr>
<tr>
<td>Crosspolymer-2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copolymer of:

\[
\begin{align*}
\text{Sodium Acrylates} & : \quad \text{the sodium salt of a copolymer of acrylic acid, methacrylic acid or one or more of its simple esters crosslinked with ethylene diglycidyl ether} \\
\text{Crosspolymer-2} & : \quad - \\
\end{align*}
\]

R = H or a "simple" alkyl group (the sodium salt is formed post-polymerization)

Crosslinked with:

\[
\begin{align*}
\text{ethylene diglycidyl ether} & : \quad \text{the sodium salt of acrylic acid, methacrylic acid or one or more of its simple esters crosslinked with ethylene diglycidyl ether} \\
\text{Sodium Acrylates/C10-30 Alkyl} & : \quad \text{the sodium salt of Acrylates/C10-30} \\
\text{Acrylate Crosspolymer} & : \quad \text{Alkyl Acrylate Crosspolymer} \\
\end{align*}
\]

R = 10 to 30 carbon alkyl chain

R' = H or a "simple" alkyl group (the sodium salt is formed post-polymerization)

Crosslinked with:

\[
\begin{align*}
\text{R''} & = \text{hydrogen or 2-propenyl, wherein at least two R'' groups are 2-propenyl} \\
\end{align*}
\]
Table 1. **Definitions, functions, and structures**

<table>
<thead>
<tr>
<th>Ingredient/CAS No.</th>
<th>Definition</th>
<th>Reported Function(s)</th>
<th>Formula/Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Acrylates/ Vinyl Isononate Crosspolymer</td>
<td>the sodium salt of Acrylates/Vinyl Isononate Crosspolymer.</td>
<td>Emulsion Stabilizer; Suspending Agent - Non-Surfactant; Viscosity Increasing Agent – Aq.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copolymer of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = isododecyl (branched, 12 carbon chain)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R' = H or a "simple" alkyl group (the sodium salt is formed post-polymerization)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crosslinked with a "polyalkenyl polyether." One example of such could be:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R"O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R" = hydrogen or 2-propenyl, wherein at least two R" groups are 2-propenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stearyl/ Lauryl Methacrylate Crosspolymer</td>
<td>a copolymer of lauryl methacrylate and stearyl methacrylate crosslinked with ethylene glycol dimethacrylate</td>
<td>Skin-Conditioning Agent - Misc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copolymer of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crosslinked with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References4,8,48
Table 2. **Chemical and physical properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td></td>
<td>13-19</td>
</tr>
<tr>
<td>appearance</td>
<td>white powder;</td>
<td></td>
</tr>
<tr>
<td>odor</td>
<td>slightly acetic</td>
<td>13-19</td>
</tr>
<tr>
<td>activity, as supplied</td>
<td>approximately 100% active</td>
<td>8</td>
</tr>
<tr>
<td>molecular weight</td>
<td>>500,000 Daltons</td>
<td>8</td>
</tr>
<tr>
<td>solubility</td>
<td>swells in water</td>
<td>39</td>
</tr>
<tr>
<td>pH</td>
<td>~2.5 – 3 at 1% in water</td>
<td>39</td>
</tr>
<tr>
<td>heavy metals content</td>
<td>10 ppm (max), under all trade names</td>
<td>13-19</td>
</tr>
<tr>
<td>specific gravity</td>
<td>1.4 (at 20°C)</td>
<td>39</td>
</tr>
<tr>
<td>particle size (as tested by one source)</td>
<td>2-7 µm</td>
<td>23</td>
</tr>
<tr>
<td>bulk density</td>
<td><0.24 kg/l; <2 lb/gal</td>
<td>39</td>
</tr>
</tbody>
</table>

Acrylates Crosspolymer

particle size (as tested by one source)	18-22 µm	24
heavy metal content	lead, 10 ppm (max)	25
	arsenic, 2 ppm (max)	

Acrylates/Steareth-20 Methacrylate Crosspolymer

appearance (Aculyn 88 polymer)	milk-white fluid	10
solids content (Aculyn 88 polymer)	28.0-30.0% by wt	10
heavy metal content (Aculyn 88 polymer)	iron, 1.028 ppm	
	zinc, 0.082 ppm	
pH (Aculyn 88 polymer)	3.30-4.30	10

Acrylates/Vinyl Isodecanoate Crosspolymer

| molecular weight | 24,400 Daltons (avg; <1% by weight is <1000 Daltons) | 11 |

Acrylates/Vinyl Neodecanoate Crosspolymer

<p>| appearance (Aculyn 38 polymer) | milk-white fluid | 12 |
| solids content (Aculyn 38 polymer) | 28.0-30.0% by weight | 12 |
| activity, as supplied | 29% solids in 71% water | 26 |</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>heavy metal content (Aculyn 38 polymer)</td>
<td>copper, 0.2 ppm</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>iron, 0.5 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zinc, 1.2 ppm</td>
<td></td>
</tr>
<tr>
<td>pH (as Aculyn 38 polymer)</td>
<td>2.10-3.20</td>
<td>12</td>
</tr>
</tbody>
</table>

Allyl Methacrylates Crosspolymer

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>appearance</td>
<td>fine white powder</td>
<td>49,50</td>
</tr>
<tr>
<td>solubility</td>
<td>insoluble</td>
<td>49,50</td>
</tr>
<tr>
<td>refractive index</td>
<td>1.517-1.519</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>1.511-1.513</td>
<td>50</td>
</tr>
<tr>
<td>particle size (by laser diffraction)</td>
<td>5-15 µm</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>15-25 µm</td>
<td>50</td>
</tr>
<tr>
<td>bulk density</td>
<td>0.03 g/cc</td>
<td>49,50</td>
</tr>
<tr>
<td>water adsorption</td>
<td>oleophilic (hydrophobic)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>dual: hydrophilic and oleophilic</td>
<td></td>
</tr>
</tbody>
</table>

Sodium Acrylates Crosspolymer-2

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>appearance</td>
<td>white powder</td>
<td>28</td>
</tr>
<tr>
<td>odor</td>
<td>odorless</td>
<td>41</td>
</tr>
<tr>
<td>solubility</td>
<td>swells in water</td>
<td>41</td>
</tr>
<tr>
<td>pH</td>
<td>6-8</td>
<td>41</td>
</tr>
<tr>
<td>particle size</td>
<td>approx. 20 µm</td>
<td>28</td>
</tr>
<tr>
<td>bulk density</td>
<td>0.75-0.95 g/ml</td>
<td>41</td>
</tr>
<tr>
<td>stability</td>
<td>stable at room temperature</td>
<td>41</td>
</tr>
</tbody>
</table>
Table 3a. Monomers used to create crosslinked alkyl acrylates

- **acrylic acid**, simple esters (simple alkyls ranging from C1 to C4, linear or branched, i.e., methyl, ethyl, propyl, and butyl esters, including branched versions: isopropyl, isobutyl, sec-butyl, and tert-butyl esters)

- butyl acrylate
- C8-22 alkyl acrylate
- 2-ethylhexyl acrylate
- glycidyl methacrylate
- lauryl methacrylate
- methacrylic acid

 methacrylic acid, simple esters (simple alkyls ranging from C1 to C4, linear or branched, i.e., methyl, ethyl, propyl, and butyl esters, including branched versions: isopropyl, isobutyl, sec-butyl, and tert-butyl esters)

- PEG-6 methacrylate
- PEG/PPG-5/2
- sodium methacrylate
- steareth-20 methacrylate
- stearyl methacrylate
- vinyl alcohol
- vinyl isodecanoate, ester of
- vinyl neodecanoate

Table 3b. Crosslinkers and initiators used in manufacture of acrylate crosspolymers

- allyl methacrylate
- ethylene diglycidyl ether
- glycol dimethacrylate
- hexanediol diacrylate
- PEG-4 dimethacrylate
- pentaerythritol, allyl ether
- polyalkenyl polyether
- polyethylene glycol dimethacrylate
sucrose, allyl ether
triethylene glycol dimethacrylate
trimethylolpropane, allyl ether
diisopropyl peroxydicarbonate (initiator)
Table 4a. Frequency and concentration of use according to duration and type of exposure

<table>
<thead>
<tr>
<th>Duration of Use</th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>) - not polymerized in benzene</th>
<th>Conc of Use (%<sup>19</sup>) - polymerized in benzene<sup>11</sup></th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td>Acrylates Crosspolymer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1696</td>
<td>0.0002-5</td>
<td>0.05-1.1</td>
<td>2</td>
<td>0.1-4</td>
</tr>
<tr>
<td>Leave-On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1365</td>
<td>0.0002-5</td>
<td>0.05-0.4</td>
<td>NR</td>
<td>0.3-0.8</td>
</tr>
<tr>
<td>Rinse Off</td>
<td>313</td>
<td>0.002-5</td>
<td>0.2-1.1</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td>18</td>
<td>1</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Area</td>
<td>132</td>
<td>0.003-2</td>
<td>NR</td>
<td>NR</td>
<td>4</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>3</td>
<td>0.5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation-Sprays</td>
<td>70<sup>th</sup></td>
<td>0.03-2</td>
<td>NR</td>
<td>NR</td>
<td>2</td>
</tr>
<tr>
<td>Incidental Inhalation-Powders</td>
<td>6</td>
<td>0.0002-0.1</td>
<td>NR</td>
<td>2</td>
<td>0.1-4</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>1591</td>
<td>0.0002-5</td>
<td>0.05-1.1</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>1</td>
<td>0.001</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>77</td>
<td>0.1-2</td>
<td>0.2</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>11</td>
<td>0.4-5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>9</td>
<td>0.1-1</td>
<td>NR</td>
<td>NR</td>
<td>4</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>111</td>
<td>0.002-3</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Baby Products</td>
<td>10</td>
<td>0.2</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals[*]

<table>
<thead>
<tr>
<th>Duration of Use</th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>) - not polymerized in benzene</th>
<th>Conc of Use (%<sup>19</sup>) - polymerized in benzene<sup>11</sup></th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates/Ethylhexyl Acrylate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>4-6</td>
<td>NR</td>
<td>33</td>
<td>0.2-0.5</td>
</tr>
</tbody>
</table>

Duration of Use

<table>
<thead>
<tr>
<th>Exposure Type</th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>) - not polymerized in benzene</th>
<th>Conc of Use (%<sup>19</sup>) - polymerized in benzene<sup>11</sup></th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave-On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>4-6</td>
<td>NR</td>
<td>25</td>
<td>0.3-0.5</td>
</tr>
<tr>
<td>Rinse Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Exposure Type

<table>
<thead>
<tr>
<th>Exposure Type</th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>) - not polymerized in benzene</th>
<th>Conc of Use (%<sup>19</sup>) - polymerized in benzene<sup>11</sup></th>
<th># of Uses<sup>29</sup></th>
<th>Conc of Use (%<sup>19</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation-Sprays</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0.4</td>
</tr>
<tr>
<td>Incidental Inhalation-Powders</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># of Uses<sup>29</sup></td>
<td>Conc of Use (%) - not polymerized in benzene</td>
<td>Conc of Use (%) - polymerized in benzene<sup>27</sup></td>
<td># of Uses<sup>29</sup></td>
<td>Conc of Use (%)<sup>30</sup></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>Allyl Methacrylates Crosspolymer</td>
<td>Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals*</td>
<td>10</td>
<td>2</td>
<td>48</td>
<td>0.003-2</td>
<td>63</td>
</tr>
<tr>
<td>Duration of Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leave-On</td>
<td>4</td>
<td>NR</td>
<td>44</td>
<td>0.003-2</td>
<td>56</td>
</tr>
<tr>
<td>Rinse Off</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0.1</td>
<td>7</td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td>2</td>
<td>2</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Exposure Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Area</td>
<td>NR</td>
<td>NR</td>
<td>4</td>
<td>0.003-0.8</td>
<td>9</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>NR</td>
<td>NR</td>
<td>16</td>
<td>0.04-0.2</td>
<td>8</td>
</tr>
<tr>
<td>Incidental Inhalation-Sprays</td>
<td>NR</td>
<td>NR</td>
<td>2<sup>a</sup></td>
<td>NR</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>Incidental Inhalation-Powders</td>
<td>NR</td>
<td>NR</td>
<td>2</td>
<td>0.3-0.8</td>
<td>8</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>10</td>
<td>2</td>
<td>31</td>
<td>0.003-2</td>
<td>53</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>6</td>
<td>2</td>
<td>16</td>
<td>0.04-0.2</td>
<td>8</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

^a Data is from a study conducted in 1971.
Table 4a. Frequency and concentration of use according to duration and type of exposure (continued)

<table>
<thead>
<tr>
<th></th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauryl Methacrylate/Sodium Methacrylate Crosspolymer</td>
<td>1</td>
<td>0.004-4</td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>0.8</td>
</tr>
<tr>
<td>Sodium Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Acrylates Crosspolymer-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>1</td>
<td>0.004-4</td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Duration of Use

<table>
<thead>
<tr>
<th></th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave-On</td>
<td>1</td>
<td>0.1-4</td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>0.8</td>
</tr>
<tr>
<td>Rinse Off</td>
<td>NR</td>
<td>0.004-0.1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Exposure Type

<table>
<thead>
<tr>
<th></th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Area</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation-Sprays</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation - Powders</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>1</td>
<td>0.004-4</td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>0.8</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

* Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

* Includes deodorants, in that it is not known whether or not the product is a spray.

* Includes suntan products, in that it is not known whether or not the reported product is a spray.

NR – no reported uses
Table 4b. **Ingredients Not Reported to be Used**

- Acrylates/C12-13 Alkyl Methacrylates/Methoxyethyl Acrylate Crosspolymer
- Acrylates/Ethylhexyl Acrylate/Glycidyl Methacrylate Crosspolymer
- Acrylates/PEG-4 Dimethacrylate Crosspolymer
- Allyl Methacrylate/Glycol Dimethacrylate Crosspolymer
- Butyl Acrylate/Glycol Dimethacrylate Crosspolymer
- C8-22 Alkyl Acrylates/Methacrylic Acid Crosspolymer
- Glycol Dimethacrylate/Vinyl Alcohol Crosspolymer
- Methacrylic Acid/PEG-6 Methacrylate/PEG-6 Dimethacrylate Crosspolymer
- PEG/PPG-5/2 Methacrylate/Methacrylic Acid Crosspolymer
- Potassium Acrylates/C10-30 Alkyl Acrylate Crosspolymer
- Sodium Acrylates/Vinyl Isodecanoate Crosspolymer
- Stearyl/Lauryl Methacrylate Crosspolymer
Table 6. Dermal irritation and sensitization – alternative, non-human, and human

<table>
<thead>
<tr>
<th>Test Article</th>
<th>Concentration/Dose</th>
<th>Test Population</th>
<th>Procedure</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATIVE STUDIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylates/Vinyl Isodecanoate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Stabyle 30 (tradename)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>SKIN-TEX method; standard volume-response study</td>
<td></td>
<td></td>
<td></td>
<td>non-irritant (predicted classification)</td>
<td></td>
</tr>
<tr>
<td>using ≤100 ml samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-HUMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Pemulen (tradename)</td>
<td>0.5 g undiluted</td>
<td>6 NZW rabbits</td>
<td>semi-occlusive; abraded and non-abraded sites; 24 h application</td>
<td>PII 0.42/8 – negligible irritation potential very slight erythema was observed at 1 h; no irritation observed at 72 h</td>
<td>46</td>
</tr>
<tr>
<td>as Carbopol ETD (tradename)</td>
<td>0.5 g undiluted</td>
<td>3 rabbits</td>
<td>semi-occlusive patch; non-abraded skin; 4 h application</td>
<td>PII 0.0-1.5; non- to slight irritant very slight erythema and edema</td>
<td>43</td>
</tr>
<tr>
<td>0.5 ml of a 1% neutralized solution</td>
<td></td>
<td></td>
<td></td>
<td>PII 0.0-0.1; non- to very slight irritant</td>
<td></td>
</tr>
<tr>
<td>as Carbopol Ultrez-21 (tradename)</td>
<td>0.5 g, moistened</td>
<td>3 rabbits</td>
<td>semi-occlusive patch; non-abraded skin; 4 h application</td>
<td>PII 0.3 – produced slight irritation</td>
<td>44</td>
</tr>
<tr>
<td>with 0.5 ml water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Carbopol Ultrez-20 (tradename)</td>
<td>0.5 g, moistened</td>
<td>3 rabbits</td>
<td>semi-occlusive patch; non-abraded skin; 4 h application</td>
<td>PII 0.3 – produced slight irritation</td>
<td>45</td>
</tr>
<tr>
<td>with 0.5 ml water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td>2% aq.</td>
<td>5 guinea pigs</td>
<td>maximization (split adjuvant) test (details not provided)</td>
<td>weak sensitizer</td>
<td>23</td>
</tr>
</tbody>
</table>

Acrylates Crosspolymer
Table 6. Dermal irritation and sensitization – alternative studies, non-human, and human (continued)

<table>
<thead>
<tr>
<th>Test Article</th>
<th>Concentration/Dose</th>
<th>Test Population</th>
<th>Procedure</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylates Crosspolymer</td>
<td>30% in olive oil</td>
<td>3 rabbits</td>
<td>open application of 0.1 ml to a 2.5 cm x 2.5 cm site; 1x/day for 4 days</td>
<td>no irritation</td>
<td>24</td>
</tr>
<tr>
<td>Sodium Acrylates Crosspolymer-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Aqua Keep 10SH-NFC (tradename)</td>
<td>not stated</td>
<td>rabbits</td>
<td>information provided in an industry MSDS</td>
<td>not an irritant</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>guinea pigs</td>
<td></td>
<td>not a sensitizer</td>
<td></td>
</tr>
<tr>
<td>HUMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td>15 µl of 2% aq. dilution</td>
<td>20 subjects</td>
<td>single 24-h occlusive patch</td>
<td>24 h: ± response in 3/20 subjects</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84 h: ± response in 1/20 subjects</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(results were based on Japanese criteria)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Carbopol ETD (tradename)</td>
<td>undiluted (>97.5%)<sup>51</sup></td>
<td>100 subjects</td>
<td>material was applied to a 2 cm x 2 cm pad; patch was applied for 4 consecutive days during wks 1-3; challenge was performed after 1 wk and included 4 applications</td>
<td>not an irritant or sensitizer</td>
<td>43</td>
</tr>
<tr>
<td>as Carbopol Ultrez 21 (tradename)</td>
<td>150 mg of a 10% dilution</td>
<td>111 subjects</td>
<td>test material was applied to a 2 cm x 2 cm pad; patch was applied for 4 consecutive days during wks 1-3; challenge was performed after 1 wk and included 4 applications</td>
<td>not an irritant or sensitizer</td>
<td>44</td>
</tr>
<tr>
<td>as Carbopol Ultrez 20 (tradename)</td>
<td>150 mg of a 10% dilution</td>
<td>111 subjects</td>
<td>test material was applied to a 2 cm x 2 cm pad; patch was applied for 4 consecutive days during wks 1-3; challenge was performed after 1 wk and included 4 applications</td>
<td>not an irritant or sensitizer</td>
<td>45</td>
</tr>
<tr>
<td>Test Article</td>
<td>Concentration/Dose</td>
<td>Test Population</td>
<td>Procedure</td>
<td>Results</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>as Pemulen (tradename)</td>
<td>undiluted (97.5%)[51]</td>
<td>54 subjects</td>
<td>“intensified” Shelanski HRIPT; test material was applied to a 1” x 1” patch</td>
<td>weak irritant response; not a sensitizer</td>
<td>45</td>
</tr>
<tr>
<td>body lotion with 0.15% Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td>0.2 g</td>
<td>107 subjects</td>
<td>test material was applied to a 1” x 1” absorbent pad and allowed to volatize for several min; semi-occlusive patch; 24 h applications made 3 x/wk for 3 wk; challenge was applied after 2 wks</td>
<td>not a dermal irritant or sensitizer</td>
<td>52</td>
</tr>
<tr>
<td>crème with 0.60% Acrylates/C10-30 Alkyl Acrylate Crosspolymer</td>
<td>0.2 g</td>
<td>51 subjects</td>
<td>test material was applied to a 1” x 1” absorbent pad and allowed to volatize for several min; semi-occlusive patch; 24 h semi-occlusive patches applied 3 x/wk for 3 wk; challenge was applied after 2 wks</td>
<td>not a dermal irritant or sensitizer</td>
<td>53</td>
</tr>
<tr>
<td>Acrylates Crosspolymer</td>
<td>15 µl; 30% in olive oil</td>
<td>20 subjects</td>
<td>single 24-h occlusive patch</td>
<td>not an irritant according to Japanese criteria</td>
<td>24</td>
</tr>
<tr>
<td>eye lotion with 0.75% Acrylates Crosspolymer</td>
<td>undiluted</td>
<td>46 subjects</td>
<td>HRIPT with occlusive patch</td>
<td>not an irritant or sensitizer</td>
<td>54</td>
</tr>
<tr>
<td>skin cleanser with 0.8% Acrylates Crosspolymer</td>
<td>1% aq. dilution</td>
<td>60 subjects</td>
<td>HRIPT with occlusive patch</td>
<td>not an irritant or sensitizer</td>
<td>54</td>
</tr>
<tr>
<td>lipstick with 4% Acrylates Crosspolymer</td>
<td>0.2 g</td>
<td>85 subjects</td>
<td>HRIPT with occlusive patch</td>
<td>not an irritant or sensitizer</td>
<td>55</td>
</tr>
<tr>
<td>Acrylates/Ethylhexyl Acrylate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>facial sunscreen with 6.8565% Acrylates/Ethylhexyl Acrylate Crosspolymer</td>
<td>undiluted</td>
<td>600 subjects</td>
<td>modified Draize RIPT with ten 48-h induction patches using 0.5 in square occlusive patches; the first challenge was applied after a 2-wk non-treatment period; an additional challenge application was made 1 wk after the first challenge application</td>
<td>no evidence of primary irritation, skin fatigue, or sensitization</td>
<td>56</td>
</tr>
</tbody>
</table>
Table 6. Dermal irritation and sensitization – alternative studies, non-human, and human (continued)

<table>
<thead>
<tr>
<th>Test Article</th>
<th>Concentration/Dose</th>
<th>Test Population</th>
<th>Procedure</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>the acrylic copolymer of Aculyn 88 Polymer (tradename)</td>
<td>not stated</td>
<td>not stated</td>
<td>21-day cumulative irritation study (GCP)</td>
<td>no irritation or sensitization</td>
<td>30</td>
</tr>
<tr>
<td>the acrylic copolymer of Aculyn 88 Polymer (tradename)</td>
<td>not stated</td>
<td>not stated</td>
<td>HRIPT (GCP)</td>
<td>no irritation or sensitization</td>
<td>30</td>
</tr>
<tr>
<td>Acrylates/Vinyl Isodecanoate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Stabylen 30 (tradename)</td>
<td>0.5-2.5% aq.</td>
<td>25 subjects</td>
<td>Kligman test (additional details were not provided)</td>
<td>not an irritant or sensitizer</td>
<td>40</td>
</tr>
<tr>
<td>Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the acrylic copolymer of Aculyn 38 Polymer (tradename)</td>
<td>not stated</td>
<td>not stated</td>
<td>21-day cumulative irritation study (GCP)</td>
<td>at most, a mild irritant with unformulated polymer and under worse-case conditions</td>
<td>32</td>
</tr>
<tr>
<td>the acrylic copolymer of Aculyn 38 Polymer (tradename)</td>
<td>not stated</td>
<td>not stated</td>
<td>HRIPT (GCP)</td>
<td>not an irritant or sensitizer</td>
<td>32</td>
</tr>
<tr>
<td>bath crème with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>108 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>57</td>
</tr>
<tr>
<td>bath crème with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>109 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>58</td>
</tr>
<tr>
<td>bubble bath with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>108 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>59</td>
</tr>
<tr>
<td>Test Article</td>
<td>Concentration/Dose</td>
<td>Test Population</td>
<td>Procedure</td>
<td>Results</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>bath gel with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>108 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>60</td>
</tr>
<tr>
<td>bath product with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>106 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>61</td>
</tr>
<tr>
<td>bath foam with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>106 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>62</td>
</tr>
<tr>
<td>bath foam with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>106 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>63</td>
</tr>
<tr>
<td>bath foam with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>106 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>64</td>
</tr>
<tr>
<td>bubble bath with 2% Acrylates/Vinyl Neodecanoate Crosspolymer</td>
<td>1% aq. dilution</td>
<td>107 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 2-wk non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>65</td>
</tr>
<tr>
<td>face powder with 1% Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer</td>
<td>0.2 g</td>
<td>104 subjects</td>
<td>HRIPT; 24-h occlusive patches applied 3x/wk for 3 wks; 24-h challenge after a 10-15 day non-treatment period; (size of patch was not provided)</td>
<td>not an irritant or sensitizer</td>
<td>66</td>
</tr>
<tr>
<td>exfoliator cream with 2.6% Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer</td>
<td>0.2 g</td>
<td>619 subjects</td>
<td>HRIPT with ten 24 h occlusive applications of a ¾” x ¾” patch; 24-h challenge after a 2-wk non-treatment period; rechallenge was performed on 2 subjects using semi-occlusive and open repetitive application</td>
<td>not an irritant or sensitizer after challenge, one subject had moderate (at 24 h) and mild (at 72 h) erythema and edema, and one subject had barely perceptible erythema at 72 h; these results were not reproducible at rechallenge</td>
<td>67</td>
</tr>
</tbody>
</table>

Table 6. Dermal irritation and sensitization – alternative studies, non-human, and human (continued)
Table 6. Dermal irritation and sensitization – alternative studies, non-human, and human (continued)
Table 5. **Relevant summary information on component monomers**

<table>
<thead>
<tr>
<th>Monomer Component</th>
<th>Parameter Evaluated</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Acrylic Acid | Toxicokinetics | Dermal: radioactivity was recovered mostly in the skin trap, and then in expired CO₂
Oral: In numerous studies using rats, the dose was primarily excreted in expired air in most cases; elimination was generally rapid; uptake and elimination appeared to be biphasic; absorption and excretion were also rapid in mice
Inhalation: Rats were exposed to acrylic acid via inhalation; most of the radioactivity was found in the head and snout, with relatively large amounts also recovered in the upper respiratory tract | 1 |
| | Toxicological Studies| Single Dose - Dermal: LD₅₀ – 295 to 950 mg/kg in rabbits
Oral: LD₅₀ – 2100 to 3200 mg/kg in rabbits and rats; produced gastric lesions
Inhalation: LC₅₀ – 3600 mg/m³ in rats | 1 |
| | | Repeated Dose – Dermal: 4% produced toxic effects in mice in a 13-wk study
Oral: toxic effects were observed in rats in a 90-day drinking water study with doses of ≤750 mg/kg and in a 90-day gavage study in rats doses with 150 or 375 mg/kg; stomach lesions were not observed with up to 500 ppm in a 12-mos drinking study with rats
Inhalation: nasal irritation and/or lesions were observed in rats and/or mice exposed to 1500 ppm for 4-day up to 225 ppm for 2-wk, 300 ppm for 20-days, and 75 ppm for 13-wks | 1 |
| | Reproductive and Developmental Toxicity | Oral: did not produce teratogenic effects in rats, NOAEL of 250 mg/kg; did affect body weights and some organ weights in the parental animals
Inhalation: not teratogenic or embryotoxic in rats at concentrations up to 120 ppm; did produce maternal toxicity at concentrations of 120 ppm and greater | 1 |
<p>| | Genotoxicity | genotoxic in mouse lymphoma assays, and in an in vitro cytogenetic assay; not genotoxic or mutagenic in Ames tests, unscheduled DNA synthesis (UDS) assay, micronucleus assay, in vivo transformation assay, Chinese hamster ovary (CHO)/HGPRT, in vivo cytogenetic assay, Drosophila test, or mouse dominant lethal assay | 1 |</p>
<table>
<thead>
<tr>
<th>Monomer Component</th>
<th>Parameter Evaluated</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinogenicity</td>
<td>Dermal: in one study, 4% in acetone was a complete but weak carcinogen in mice; in another, 1% was not carcinogenic in mice</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Oral: not carcinogenic in rats when given in drinking water at up to 1200 ppm</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Parenteral: not carcinogenic when 1.4 mg was injected subcutaneously (s.c.) to mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IARC Evaluation: no epidemiological data relevant to carcinogenicity were available; no experimental data relevant to carcinogenicity were available; not classifiable as to its carcinogenicity to humans (Group 3)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Irritation and Sensitization</td>
<td>Skin: 4% was irritating to the skin of mice</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mucosal: a 1% solution caused significant injury to the rabbit eye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Acrylate</td>
<td>Toxicokinetics</td>
<td>Dermal: in guinea pigs exposed dermally to methyl [2,3-14C]acrylate, radioactivity was seen in the s.c. tissues and throughout the body</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Oral: the dose was primarily excreted in expired air; elimination was rapid (rats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toxicological Studies</td>
<td>Single Dose - Oral: produced gastric lesions when given inhibited with 200 ppm hydroquinone monomethyl ether (HQMME)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Repeated Dose – Oral: not toxic when given orally to rats (details not provided)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Reproductive and Developmental Toxicity</td>
<td>Inhalation: up to 200 ppm did not produce teratogenic or reproductive effects in rats</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>genotoxic in mouse lymphoma and chromosomal aberration assays; positive in one and negative in two micronucleus tests; not mutagenic or genotoxic in an Ames, Salmonella/microsome, liquid incubation, monolayer, suspension, or ASS2/XRPT assay</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Carcinogenicity</td>
<td>Inhalation: up to 135 ppm was not carcinogenic to rats</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IARC Evaluation: no epidemiological data relevant to the carcinogenicity; inadequate evidence in experimental animals; not classifiable as to its carcinogenicity to humans (Group 3)</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Monomer Component</td>
<td>Parameter Evaluated</td>
<td>Outcome</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Ethyl Acrylate</td>
<td>Toxicokinetics</td>
<td>Oral: the dose was primarily excreted in expired air; elimination was rapid (rats)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Toxicological Studies</td>
<td>Single Dose - Oral: produced gastric lesions when given inhibited with 15-20 ppm HQMME</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated Dose – Oral: 2-wk study in rats with dosing via gavage or drinking water - gastric lesions were observed, primarily in the forestomach, at doses of 20-100 mg/kg given by gavage and at concentrations 1000-4000 ppm in drinking water; in a 13-wk gavage study, doses of ≤200 mg/kg produced lesions in the forestomach of rats; stomach lesions were not observed at concentrations up to 2000 ppm in a 2-yr drinking study with rats or up to 1000 ppm in a 2-yr capsule study with dogs</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhalation: no nasal lesions were observed with up to 300 ppm in a 1-month study using rats and mice; nasal lesions were observed at concentrations of ≥242 ppm in rats in a 12-wk study</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Reproductive and Developmental Toxicity</td>
<td>Inhalation: up to 200 ppm was not embryotoxic or fetotoxic in rats; maternal toxicity observed with 150 ppm</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>genotoxic in a mouse lymphoma and chromosomal aberration assay; induced chromosomal mal segregation and mitotic recombination using S. cerevisiae; positive in one and negative in one micronucleus assay; not mutagenic or genotoxic in an Ames, Salmo nella/microsome, liquid incubation, monolayer, chromosomal, sister chromatid exchange (SCE), or Drosophila assay</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Carcinogenicity</td>
<td>Dermal: tested undiluted, not carcinogenic to mice</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral: in corn oil, carcinogenic in male and female rats and mice at 100 and 200 mg/kg</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhalation: up to 225 ppm was not carcinogenic in mice or rats</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IARC Evaluation: no epidemiological data relevant to the carcinogenicity; sufficient evidence in experimental animals; possibly carcinogenic to humans (Group 2B)</td>
<td>1</td>
</tr>
<tr>
<td>Butyl Acrylate</td>
<td>Toxicokinetics</td>
<td>Oral: the dose was primarily excreted in expired air (rats)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Toxicological Studies</td>
<td>Single Dose Oral: produced gastric lesions when given inhibited with 10-55 HQMME</td>
<td>1</td>
</tr>
<tr>
<td>Monomer Component</td>
<td>Parameter Evaluated</td>
<td>Outcome</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>Repeated Dose – Oral:</td>
<td>not toxic when given orally to rats (details not provided)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inhalation:</td>
<td>toxicity was observed in rats and hamsters upon 3 6-h exposures to 820 and 817 ppm, respectively; nasal lesions were observed in rats exposed to concentrations ≥108 ppm in a 13-wk study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproductive and Developmental Toxicity</td>
<td>Inhalation: no toxic effects were seen with 25 ppm; high concentrations had toxic effects on the fetuses and dams</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>positive in one and negative in one chromosomal aberration assay; not mutagenic or genotoxic in an Ames, Salmonella/microsome, liquid incubation, UDS, micronucleus, or in vitro transformation assay</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Carcinogenicity</td>
<td>Dermal: 1% was not carcinogenic in mice</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inhalation:</td>
<td>up to 135 ppm was not carcinogenic to rats</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>IARC Evaluation:</td>
<td>no epidemiological data relevant to the carcinogenicity; inadequate evidence in experimental animals; not classifiable as to its carcinogenicity to humans (Group 3)</td>
<td>1</td>
</tr>
<tr>
<td>2-Ethylhexyl Acrylate</td>
<td>Toxicokinetics</td>
<td>Oral: the dose was primarily excreted in expired air; elimination was rapid (rats)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Reproductive and Developmental Toxicity</td>
<td>Inhalation: up to 100 ppm did not produce teratogenic or reproductive effects in rats</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>genotoxic in a mouse lymphoma forward mutation assay with metabolic activation; equivocally genotoxic in mutation and aberrations assays; weakly mutagenic in SCE and UDS assays; not mutagenic or genotoxic in a microbial mutagen test, Ames test, mammalian cell transformation assay, micronucleus test, monolayer or suspension assay, CHO assay, or in vivo cytogenic assay</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Carcinogenicity</td>
<td>Dermal: carcinogenic at a dose of ≥21% when applied to mice – the carcinogenic response may have been associated</td>
<td>1</td>
</tr>
<tr>
<td>Monomer Component</td>
<td>Parameter Evaluated</td>
<td>Outcome</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Polyacrylic Acid</td>
<td>Animal Toxicology</td>
<td>safe as used when formulated to avoid skin irritation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CIR Conclusion (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Polyacrylate</td>
<td>Animal Toxicology</td>
<td>not genotoxic in an Ames assay, a plate test, a mouse lymphoma assay, an in vivo mouse micronucleus assay</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Reproductive and Developmental Toxicity</td>
<td>up to 3000 mg/kg/day low mol-wt and up to 1125 mg/kg/day high mol-wt did not cause reproductive effects in rats</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>not genotoxic</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IRRITATION AND SENSITIZATION</td>
<td>not an irritant or sensitizer (concentration not given)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ocular</td>
<td>not an irritant to rabbit skin when applied undiluted</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5. Relevant summary information on components (continued)

Irritation and Sensitization

- **Dermal - Non-Human**: sensitization was observed when guinea-pigs were treated with 2-ethylhexyl acrylate in Freund's complete adjuvant. **IARC Evaluation**: inadequate evidence in humans for carcinogenicity; limited evidence in experimental animals; not classifiable as to its carcinogenicity to humans (Group 3).

- **Human**: in a provocative test with 243 patients with a history of exposure to (meth)acrylates, none of the patients were sensitized with patches containing 0.1% to 5% 2-ethylhexyl acrylate.

- **Oral**: up to 3000 mg/kg/day low mol-wt and up to 1125 mg/kg/day high mol-wt did not cause reproductive effects in rats.

- **Human**: not an irritant or sensitizer (concentration not given).

- **Ocular**: the greatest tolerated concentration was 13-20% for rinsed and 20-30% for unrisned rabbit eyes; in an irritant threshold test, 2% was the greatest concentration that did not produce irritation in rabbit eyes.
<table>
<thead>
<tr>
<th>Monomer Component</th>
<th>Parameter Evaluated</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methacrylic Acid</td>
<td>Toxicokinetics</td>
<td>readily absorbed through the mucous membranes of the lungs and gastrointestinal tract of and the skin, and is readily distributed to all major tissues</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Animal Toxicology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Dose – Dermal: reported LD$_{50}$ values ranged from 500-1243 mg/kg for rabbits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral: reported LD$_{50}$ values ranged from 827-1600 mg/kg for mice, 277-2260 mg/kg for rats, and 280-1200 mg/kg for rabbits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhalation: reported LC$_{50}$ values were 3657 ppm in mice, 1350 ppm/4 h in rats, and 2522 ppm/1 h in rabbits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeated Dose – Oral: no signs of toxicity in a short-term study</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhalation: nose and eye irritation and weight loss in rats with 5 exposures to 1300 ppm; only renal congestion in rats with 20 exposures to 300 ppm; in a 2-wk study, repeated doses of \geq100 ppm caused reactions in rats, of \geq500 ppm caused reactions in mice, and 1000 ppm killed all rats and mice; in a 90-day study, respiratory effects were seen in rats and mice exposed to 300 ppm – cytomegaly of renal tubular epithelium was observed in \geq50% of test male mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproductive and Developmental Toxicity</td>
<td>Inhalation: no reproductive or developmental effects at concentrations up to 300 ppm</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>In Vitro: adverse effects were seen with exposure of rat embryos to \geq129 µg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>positive in a DNA cell-binding assay; negative in an Ames test</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Carcinogenicity</td>
<td>it was reported that IARC reviewed methacrylic acid, but did not prepare a monograph because inadequate data were available</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Irritation and Sensitization</td>
<td>Dermal – Non-Human: corrosive to rabbit and guinea pig skin; in a guinea pig maximization study, it was difficult to determine if observed reactions were hypersensitivity or irritation; guinea pigs were not sensitized in 3 other studies</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mucosal: caused severe corneal, iridal, and conjunctival effects in rabbits in one study; in an inhalation study, 56,916 ppm was corrosive to rabbit eyes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clinical Use</td>
<td>negative results were reported in a number of patch tests of patients allergic to methyl methacrylate and to workers exposed to acrylates</td>
<td>73</td>
</tr>
<tr>
<td>Monomer Component</td>
<td>Parameter Evaluated</td>
<td>Outcome</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Discussion Items</td>
<td></td>
<td>the Panel was concerned with the extreme corrosivity; a presentation demonstrated that a trained professional could apply the acid to the nail without exposure to the skin, but this could not be demonstrated for retail consumers; due to concerns that inhalation could affect the respiratory tract, and the nail technician could be subjected to increased exposure in a commercial setting, the NIOSH-recommended exposure limit of 20 ppm as a time-weighted average concentration should not be exceeded; the Consumer Product Safety Commission rule requires child-resistant packaging for liquid household products containing >5% methacrylic acid (wt to vol)</td>
<td></td>
</tr>
<tr>
<td>CIR Conclusion (2005)</td>
<td></td>
<td>safe as used as a nail primer by trained professionals; insufficient data for retail use by consumers</td>
<td>73</td>
</tr>
<tr>
<td>Methyl Methacrylate</td>
<td>Toxicokinetics</td>
<td>can be absorbed through the skin of humans</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Animal Toxicology</td>
<td>Repeated Dose - Oral: chronic exposure to ≤400 ppm did not cause tumors in hamsters or rats</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>genotoxic in a chromosomal aberration, SCE, and mouse lymphoma assay; not mutagenic in a Salmonella/microsome or liquid incubation assay</td>
<td>1</td>
</tr>
</tbody>
</table>
| | Carcinogenicity | **Oral**: not carcinogenic in a drinking study using rats
Inhalation: up to 400 ppm was not carcinogenic in mice or rats
IARC: *inadequate evidence* in humans for carcinogenicity; *evidence suggesting lack of carcinogenicity* in experimental animals; *not classifiable as to its carcinogenicity in humans* (Group 3) | 74, 75 |
| | Irritation and Sensitization | **Dermal – Non-Human**: sensitizing at 25% in guinea pigs; minimum induction concentration was 1 M; was a weak contact allergen in a local lymph node assay
Human: the frequency of positive reactions among all patients to methyl methacrylate was 7/22; the frequency of positive reactions among patients with artificial nails was 1/10 | 76 |
Table 5. Relevant summary information on components (continued)

<table>
<thead>
<tr>
<th>Monomer Component</th>
<th>Parameter Evaluated</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl Methacrylate</td>
<td>Genotoxicity</td>
<td>not mutagenic in a Salmonella/microsome assay; genotoxicity in a mouse lymphoma cell assay was considered likely due to a clastogenic mechanism</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Irritation and Sensitization</td>
<td>Dermal – Human: the frequency of positive reactions among all patients tested was 14/22; The frequency of positive reactions among patients with artificial nails was 7/11 (64%),</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Discussion Items</td>
<td>(This ingredient was reviewed for its use in nail enhancement products.) the Panel was concerned with the strong sensitization and cross- or co-reactivity potential of methacrylates; however data were submitted that indicated there would be little monomer available for exposure to the skin; genotoxicity data indicated the same methacrylates could produce chromosome damage; the Panel restricted methacrylates to the nail, and they must not come in contact with skin; initial concern that exotherms created from the rapid polymerization of the monomers could damage the nail were alleviated</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>CIR Conclusion (2005)</td>
<td>safe as used in nail enhancement products when skin contact is avoided; products containing this ingredient should be accompanied with directions to avoid skin contact, because of the sensitizing potential of methacrylates</td>
<td>75</td>
</tr>
<tr>
<td>Butyl Methacrylate</td>
<td>Animal Toxicology</td>
<td>Single Dose – Dermal: 10 cc/kg did not cause mortality in rabbits, but acute dermal irritation was reported; one LD${50}$ value of >2000 mg/kg in rabbits was reported; the LD${50}$ in guinea pigs was >20 ml/kg Oral: reported oral LD${50}$ values in rats ranged from >2000 to $>20,000$ mg/kg Inhalation: reported LC${50}$ value was 28,469 mg/m3 rats;</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Reproductive and Developmental Toxicity</td>
<td>Oral: a decrease in corpora lutea and implantations was reported in rats; the parental NOAELs were 1000 and 300 mg/kg/day for males and females, respectively Inhalation: threshold concentration for embryotoxic and teratogenic effects in rats was 0.1 mg/m3; slight fetotoxicity was reported in rats exposed to ≤1200 ppm on days 6-20 of gestation</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>not mutagenic in multiple Ames tests with or without metabolic activation; was mutagenic to Salmonella typhimurium TA1538 with metabolic activation in one study</td>
<td>75</td>
</tr>
<tr>
<td>Monomer Component</td>
<td>Parameter Evaluated</td>
<td>Outcome</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Isobutyl Methacrylate | Animal Toxicology | **Single Dose – Dermal:** the reported dermal LD$_{50}$ was >20 ml/kg in guinea pigs
 Oral: reported LD$_{50}$ values in rats ranged from >5000 to $12,800$ mg/kg
 Inhalation: 50% of mice died after exposure to 29.74 mg/l for 289 minutes; was considered a toxic (but not highly toxic) substance by inhalation exposure
 Genotoxicity: not mutagenic in multiple Ames tests with or without metabolic activation | 75 |
| | Irritation and Sensitization | **Dermal - Non-Human:** a very strong sensitizer in one study using guinea pigs; considered a moderate sensitizer in another study using guinea pigs; in a few studies, a sensitization reaction was not produced
 Human: 1% caused 1 positive reaction in 12 subjects in a Draize contact sensitization study; in provocative testing, 1% elicited positive reactions to patch tests
 Ocular: mildly irritating to rabbit eyes | 75 |
| | Discussion Items | (This ingredient was reviewed for its use in nail enhancement products.) The Panel was concerned with the strong sensitization and cross- or co-reactivity potential of methacrylates; however, data were submitted that indicated there would be little monomer available for exposure to the skin; genotoxicity data indicated the some methacrylates could produce chromosome damage; the Panel restricted methacrylates to the nail, and they must not come in contact with skin; initial concern that exotherms created from the rapid polymerization of the monomers could damage the nail were alleviated. | 75 |
| | CIR Conclusion (2005) | *safe as used in nail enhancement products when skin contact is avoided; products containing this ingredient should be accompanied with directions to avoid skin contact, because of the sensitizing potential of methacrylates* | 75 |
Table 5. Relevant summary information on components (continued)

<table>
<thead>
<tr>
<th>Monomer Component</th>
<th>Parameter Evaluated</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion Items</td>
<td></td>
<td>(This ingredient was reviewed for its use in nail enhancement products.) The Panel was concerned with the strong sensitization and cross- or co-reactivity potential of methacrylates; however data were submitted that indicated there would be little monomer available for exposure to the skin; genotoxicity data indicated the some methacrylates could produce chromosome damage; the Panel restricted methacrylates to the nail, and they must not come in contact with skin; initial concern that exotherms created from the rapid polymerization of the monomers could damage the nail were alleviated.</td>
<td>75</td>
</tr>
<tr>
<td>CIR Conclusion (2005)</td>
<td></td>
<td>safe as used in nail enhancement products when skin contact is avoided; products containing this ingredient should be accompanied with directions to avoid skin contact, because of the sensitizing potential of methacrylates</td>
<td>75</td>
</tr>
<tr>
<td>Lauryl Methacrylate</td>
<td>Animal Toxicology</td>
<td>Single Dose — Oral: no rats dosed with ≤21.5 ml/kg C12-C18 methacrylate monomers died</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhalation: the RD$_{50}$ was 3900 mg/m3 in mice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeated Dose — Inhalation: not toxic to rats in a 20-day study</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Irritation and Sensitization</td>
<td>Dermal — Non-Human: strong sensitizer in guinea pigs</td>
<td>75</td>
</tr>
<tr>
<td>Discussion Items</td>
<td></td>
<td>(This ingredient was reviewed for its use in nail enhancement products.) The Panel was concerned with the strong sensitization and cross- or co-reactivity potential of methacrylates; however data were submitted that indicated there would be little monomer available for exposure to the skin; genotoxicity data indicated the some methacrylates could produce chromosome damage; the Panel restricted methacrylates to the nail, and they must not come in contact with skin; initial concern that exotherms created from the rapid polymerization of the monomers could damage the nail were alleviated.</td>
<td>75</td>
</tr>
<tr>
<td>CIR Conclusion (2005)</td>
<td></td>
<td>safe as used in nail enhancement products when skin contact is avoided; products containing this ingredient should be accompanied with directions to avoid skin contact, because of the sensitizing potential of methacrylates</td>
<td>75</td>
</tr>
<tr>
<td>PEG-4 Dimethacrylate</td>
<td>Animal Toxicology</td>
<td>Single Dose — Dermal: the LD$_{50}$ was >3 g/kg in rats</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral: LD$_{50}$ was >5000 mg/kg in rats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genotoxicity</td>
<td>not mutagenic in multiple Ames tests with or without metabolic activation; weakly positive in a mouse lymphoma cell assay with metabolic activation</td>
<td>75</td>
</tr>
</tbody>
</table>

57
<table>
<thead>
<tr>
<th>Monomer Component</th>
<th>Parameter Evaluated</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinogenicity</td>
<td>Dermal:</td>
<td>no increase in skin or visceral tumors in an 80-wk study with 25 mg given twice weekly</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irritation and Sensitization</td>
<td>Dermal - Non-Human:</td>
<td>moderate sensitizer in guinea pigs; not a sensitizer in one study</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocular:</td>
<td>minimally irritating to rabbit eyes</td>
<td></td>
</tr>
<tr>
<td>Discussion Items</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>(This ingredient was reviewed for its use nail enhancement products.)</td>
<td>The Panel was concerned with the strong sensitization and cross- or co-reactivity potential of methacrylates; however data were submitted that indicated there would be little monomer available for exposure to the skin; genotoxicity data indicated the some methacrylates could produce chromosome damage; the Panel restricted methacrylates to the nail, and they must not come in contact with skin; initial concern that exotherms created from the rapid polymerization of the monomers could damage the nail were alleviated.</td>
<td></td>
</tr>
<tr>
<td>CIR Conclusion (2005)</td>
<td>safe as used in nail enhancement products when skin contact is avoided; products containing this ingredient should be accompanied with directions to avoid skin contact, because of the sensitizing potential of methacrylates</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

42. Institute for In Vitro Sciences, Inc. Topical application ocular irritation screening assay using the epiocular human cell construct on a facepowder containing 1% lauryl methacrylate/glycol dimethacrylate crosspolymer. Study no. 09AC65, 03AA05.015001. Laboratory project no. 5463. 4-20-2009. Unpublished data submitted by the Council on Feb. 7, 2011. (10 pp) Available from CIR.

48. CAS Registry Online Database. 2010.

