Overview of Occupational Exposures to Pentachlorophenol

Components, Contaminants, and Common Co-Exposures

Kevin L Dunn, M.Sc.

CDC/NIOSH

Disclaimer: The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the National Institute for Occupational Safety and Health.
Background

- PCP was produced in the United States primarily in four chemical plants, from 1936 to 2006.
- PCP was widely used in herbicides, fungicides, and wood preservatives.
- Currently used industrially as a wood preservative for utility poles, railroad ties, and wharf pilings.
Background

- PCP was not restricted to its country of origin, some products were made during this time with PCP produced outside of the U.S.

- Currently there are no companies reporting production activities in the U.S., one facility in North America

- One known formulation facility in Tuscaloosa AL
Background

- PCP is classified by the International Agency for Research on Cancer as a possible human carcinogen (Group 2B)
- Use has been restricted to certified applicators in the U.S. since 1984
- Polychlorinated di-benzo dioxins and polychlorinated di-benzo furans are contaminants formed during the production of PCP

2,3,4,5,6-pentachlorophenol (CAS 87-86-5)
Manufacturing

- All PCP manufactured in the United States was produced by the direct chlorination of phenol in the presence of various catalysts.

- Phenol and chlorophenols were added to a chlorinator tank.

- Chlorination was achieved with vaporized liquid chlorine until the Trichlorophenol stage is reached (60-65°C).

- A catalyst was added, and temperature raised to 70-75°C until a specific gravity of 1.670 was reached.

- Batch temperature was then gradually increased until desired crystallization point of the completed Penta-Chlorophenol state is reached.
Commercial Manufacturing

- PCP manufacturing contaminants included dioxins and dioxin-like compounds (Hepta-, Hexa, and octachloro di-benzo dioxins and furans), but not 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in significant levels.

- PCP finishing options included:-
 - Flake – 1930s to the 1960s
 - Prilling – 1960s (flaking and prilling offered greatest exposure scenarios)
 - Block molding – 1970s to present

- Production peaked in the late 1960s due to demands for NaPCP

- Most production facilities also made other chemical products
Common PCP contaminants

• From Technical Grade PCP analysis
 - Hexachlorodibenzo-\(p\)-dioxins (HxCDD)
 - Hexachlorodibenzofurans (HxCDF)
 - Heptachlorodibenzo-\(p\)-dioxins (HpCDD)
 - Heptachlorodibenzofurans (HpCDF)
 - Octachlorodibenzo-\(p\)-dioxin (OCDD)
 - Octachlorodibenzofurans (OCDF)

• Serum analyses of Human and animal populations use these same markers in determining exposures to PCP
Examples of Company Analysis of Technical Grade PCP Contaminants

<table>
<thead>
<tr>
<th>Year</th>
<th>Sample Type</th>
<th>Analyte</th>
<th>Number of Samples</th>
<th>Mean µg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>PCP</td>
<td>2,3,7,8-TCDD</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1965</td>
<td>PCP</td>
<td>HpCDD</td>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCDD</td>
<td>1</td>
<td>140</td>
</tr>
<tr>
<td>1970</td>
<td>PCP</td>
<td>HxCDD</td>
<td>3</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HpCDD</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCDD</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1976</td>
<td>PCP</td>
<td>HxCDD</td>
<td>6</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HpCDD</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCDD</td>
<td>6</td>
<td>283</td>
</tr>
<tr>
<td>1977</td>
<td>PCP</td>
<td>HxCDD</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCDD</td>
<td>1</td>
<td>584</td>
</tr>
</tbody>
</table>
Modern Use Restricted

• Wood Preservatives

 o PCP has a long history of use as a wood preservative (restricted use since 1984)

 o May be used alone or in conjunction with other chemical substances such as
 ▪ Creosote- can be wood creosote, coal tar creosote, coal tar pitch, or coal tar pitch volatiles
 ▪ Chromated Copper Arsenate (CCA)
Wood Preservative Industry Exposures

- About 27000 workers in the PCP wood preservative industry as of 1991 (NIOSH National Occupational Exposure Survey)

- 2007 Census shows 13,369 workers in the wood preservative industry total. (U.S. Census)

- PCP treatment is still a common operation in the industry today

- Several studies report elevated HpCDD, HxCDD, and OCDD in blood serum samples from people living near active and former wood treatment facilities

- These blood serum markers are very similar to those found in PCP manufacturing workers, though not as high
Wood preservative process and exposure routes

- PCP and or other preservatives impregnated into wood stock at high temperature and pressure
- Wood is then stacked to air dry or kiln dried
- If air dried, evaporation into air or dripping of chemical mixtures onto the ground can occur
- Wood wastes could be burned, waste water often injected in boilers
- Often created chronic low level exposure to surrounding areas
<table>
<thead>
<tr>
<th>Year</th>
<th>Industry</th>
<th>Lbs Disposal or Other releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>NAICS 321-Wood Products</td>
<td>1307.2</td>
</tr>
<tr>
<td></td>
<td>NAICS 562-Hazardous Waste/Solvent Recovery</td>
<td>1131.6</td>
</tr>
<tr>
<td>2008</td>
<td>NAICS 321-Wood Products</td>
<td>2965.9</td>
</tr>
<tr>
<td></td>
<td>NAICS 562-Hazardous Waste/Solvent Recovery</td>
<td>2596.1</td>
</tr>
<tr>
<td>2010</td>
<td>NAICS 321-Wood Products</td>
<td>3940.1</td>
</tr>
<tr>
<td></td>
<td>NAICS 562-Hazardous Waste/Solvent Recovery</td>
<td>328209</td>
</tr>
<tr>
<td>2011</td>
<td>NAICS 321-Wood Products</td>
<td>4785</td>
</tr>
<tr>
<td></td>
<td>NAICS 562-Hazardous Waste/Solvent Recovery</td>
<td>89450</td>
</tr>
</tbody>
</table>
Questions?
Selected References

Selected References

