Occupational Studies of Workers in Pentachlorophenol Production

James J. Collins, PhD The Dow Chemical Company

Published Epidemiology Studies of Workers Manufacturing Pentachlorophenol

- Dow (Midland, Michigan)
 - Collins et al. 2007; Ramlow et al. 1996
 - Ruder & Lin 2011
- Middle Volga Chemical (Chapaevsk, Russia)
 - Revich et al., 2001
- Monsanto (Krummerich in Sauget, Illinois)
 - Hryhorczuk et al. 1998
 - O'Malley et al. 1990
 - Ruder & Lin 2011
- Monsanto (Newport, South Wales)
 - Baxter, 1984
- Phillips (Amsterdam, The Netherlands)
 - Boers et al. 2010; Bueno de Mesquita et al. 1993
- Reichhold (Tacoma, Washington)
 - Ruder & Lin 2011
- Spolana (Czech Republic)
 - Jirasek et al. 1976
- Tianjin Chemical (Tianjin, China)
 - Cheng et al. 1993
- Vulcan (Wichita, Kansas)
 - Ruder & Lin 2011

Exposures in PCP Manufacture

- Exposures thought to be highest in PCP manufacture compared to wood treating, pulp & paper, and sawmill
 - Most cases of chloracne reported in PCP manufacture
 - Supported by Limited serum dioxin evaluations
- Chloracne has rarely occurred in wood treating industry
 - Case study (Cole et al. 1986)
 - Dermal exposure from poor work practices
- Case control studies have relatively low dioxin levels and often no difference in dioxin levels between cases and controls (Hardell et al., 2001)

Percentage of PCP Manufacturing Workers Who Developed Chloracne

Lipid adjusted serum dioxin and furan levels

Two Methods of Making PCP

1. Chlorination of phenol

- a. Mostly widely used (all US production)
- b. Contaminants include polychlorinated phenols (tetra-, tri-), hexachlorobenzene, dioxins (HXDD, HPDD, OCDD), and some furans
- 2. Hydrolysis of hexachlorobenzene
 - a. Used sometimes in Europe and China
 - b. Contaminants include polychlorinated phenols^{CI} (tetra-, tri-), hexachlorobenzene, dioxins (TCDD, HXDD, HPDD, OCDD), and some furans

Sources: Plimmer 1973; Fisher 1991; IARC 1997; ATSDR 2001

HC

Estimated Half-Life in Human Body

Substance	Half-life
Pentachlorophenol	30-50 hours
Tetrachlorophenol	30-50 hours
Trichlorophenol	30-50 hours
Hexachlorobenzene	2.5-3.0 years
2378-TCDD	6.5 years
123478-HXDD	7.0 years
123678-HxDD	9.0 years
123789-HXDD	6.3 years
1234678-HPDD	6.7 years
OCDD	7.3 years

Sources: Plimmer 1973; ATSDR 2001; Aylward et al. 2013

Lipid adjusted serum dioxin and furan levels

US Pentachlorophenol Dioxin Profile

Octachlorodibenzodioxin

Heptachlorodibenzodioxin

Hexachlorodibenzodioxin (1,2,3,4,7,8), (1,2,3,6,7,8), and (1,2,3,7,8,9) Isomers

Biomonitoring

- Chlorophenols disappear rapidly in the body
 - difficult to access past exposure from biomonitoring
- Dioxins are long-lived in the body
 - could be used as indicators of past exposure to not only dioxins, but also to commercial PCP
 - assumes level of contaminants constant

Other Exposures

- PCP was often made in plants making other pesticides including 2,4,5 trichlorophenol (TCP) and 2,4,5 trichlorophenoxyacetic acid (2,4,5-T)
- Many other potential exposures depending on site

Lipid adjusted serum dioxin levels

Source: de Mesquita et al. 1993; Boers et al., 2010

Thursday, April 10, 2013

OCDD Levels

Source: Collins et al., 2007 hursday, April 10, 2013

Treatment of Mixtures

- Occupational exposures are always mixtures of exposures
- Approaches for mixtures in epidemiology
 - 1. <u>Independent</u> each exposure produces separate exposure response
 - Focus on one chemical and ignore others (most common)
 - <u>Additive</u> two or more chemicals have additive effect on exposure response
 - TEQ for dioxins
 - *3.* <u>Synergistic</u> total effect is greater than the sum of the effects
 - Smoking, asbestos and lung cancer
 - Smoking, arsenic and lung cancer
 - 4. <u>Antagonist</u> Some chemicals interfere with the toxic impact of other chemicals
 - Selenium and mercury in diet

Methods of Exposure Assessment

1. Four dimensions of exposure

- a. Identity
 - PCP and contaminants
 - Dioxin's Toxic Equivalents
- b. Form
 - Distilled, solution (oil or aqueous), flakes, prills, blocks
 - Dermal, inhaled, ingested
- c. Concentration
 - Expert opinion
 - Industrial hygiene monitoring
 - biomonitoring
- d. Time
 - Work history

Exposure Modeling Issues

- If disease risk is thought to be proportional to dose then a cumulative exposure model may be appropriate
- Induction time analyses may be necessary to study cancer risk
- Internal versus external comparisons
 - Internal comparisons
 - usually reduce the healthy worker effect (selection bias)
 - allow direct comparison of relative risk across strata.
 - External comparisons
 - based on regional rates can adjust for geographic variability in social, cultural, and economic factors in relation to disease (Doll, 1985)
 - generally very stable.

Modeling of Pentachlorophenol Exposures

Modeling of Dioxin Exposures

Exposure Estimation Approaches

- 1. Exposed/Unexposed
 - PCP w/contaminants (Cheng et al., 1993)
- 2. Duration of exposure
 - PCP w/contaminants (Hryhorczuk et al., 1998)(Ruder & Yin, 2011)
 - Dioxins (Kogevinas et al., 1997)*
- 3. Estimation using expert opinion and industrial hygiene monitoring
 - PCP & dioxins (Ramlow et al. 1996)
- 4. Modeling from biomonitoring
 - Dioxins (Flesch-Janys et al. 1998; Boers et al. 2010)* (Collins et al. 2009)

The Combines PCP and TCP workers

Summary

- Few studies have examined cancer risk in PCP production workers
 - Exposure characterization is mostly crude
- Few studies have examined serum dioxin levels in PCP exposed workers
 - While there has been several studies which examined TCDD, few studies even tried to measure the higher chlorinated dioxins

Only 3 PCP Industrial Workers Studies Examined Cancer Rates

PCP STUDY RESULTS – MIDLAND, MICHIGAN (DOW)

Relative Risk & 95% Confidence Interval of Cancer Among Dow's **Pentachlorophenol** Workers using IARC Cancers of Concern

Source: Collins et al. 2009

Relative Risk & 95% Confidence Interval for Non-Hodgkin Lymphoma

ppt-years

Dow PCP Worker Studies

- Dioxin exposures among Dow PCP workers were well above background
 - Chloracne present in 20% of PCP workers
 - Extensive serum dioxin evaluations including serial serum samples
- Detailed work histories for all workers
- Long follow-up (1940-2003) and low loss during follow-up
- Our findings are consistent with other studies of highly exposed persons

Conclusions

- "Other than possibly an increased risk of non-Hodgkin lymphoma, we find no other causes of death related to the mixture of dioxin contaminants found in PCP."
- All cancers combined and lung cancer at expected levels
- For NHL
 - No trend with exposure
 - NHL risk greatest in highest exposure category (only 4 deaths)
 - Other studies have not consistently found increase in NHL