Occupational Studies of Workers in Pentachlorophenol Production

James J. Collins, PhD
The Dow Chemical Company
Published Epidemiology Studies of Workers Manufacturing Pentachlorophenol

- Dow (Midland, Michigan)
 - Collins et al. 2007; Ramlow et al. 1996
 - Ruder & Lin 2011
- Middle Volga Chemical (Chapaevsk, Russia)
 - Revich et al., 2001
- Monsanto (Krummerich in Sauget, Illinois)
 - Hryhorczuk et al. 1998
 - O’Malley et al. 1990
 - Ruder & Lin 2011
- Monsanto (Newport, South Wales)
 - Baxter, 1984
- Phillips (Amsterdam, The Netherlands)
 - Boers et al. 2010; Bueno de Mesquita et al. 1993
- Reichhold (Tacoma, Washington)
 - Ruder & Lin 2011
- Spolana (Czech Republic)
 - Jirasek et al. 1976
- Tianjin Chemical (Tianjin, China)
 - Cheng et al. 1993
- Vulcan (Wichita, Kansas)
 - Ruder & Lin 2011
Exposures in PCP Manufacture

• Exposures thought to be highest in PCP manufacture compared to wood treating, pulp & paper, and sawmill
 – Most cases of chloracne reported in PCP manufacture
 – Supported by Limited serum dioxin evaluations
• Chloracne has rarely occurred in wood treating industry
 – Case study (Cole et al. 1986)
 • Dermal exposure from poor work practices
• Case control studies have relatively low dioxin levels and often no difference in dioxin levels between cases and controls (Hardell et al., 2001)

Sources: Williams 1982; Schecter et al. 1994; Collins et al. 2007; McLean et al. 2009
Percentage of PCP Manufacturing Workers Who Developed Chloracne
Lipid adjusted serum dioxin and furan levels

Source: Schecter et al. 1994; Collins et al. 2007; McLean et al. 2009
Two Methods of Making PCP

1. Chlorination of phenol
 a. Mostly widely used (all US production)
 b. Contaminants include polychlorinated phenols (tetra-, tri-), hexachlorobenzene, dioxins (HXDD, HPDD, OCDD), and some furans

2. Hydrolysis of hexachlorobenzene
 a. Used sometimes in Europe and China
 b. Contaminants include polychlorinated phenols (tetra-, tri-), hexachlorobenzene, dioxins (TCDD, HXDD, HPDD, OCDD), and some furans

Sources: Plimmer 1973; Fisher 1991; IARC 1997; ATSDR 2001
Estimated Half-Life in Human Body

<table>
<thead>
<tr>
<th>Substance</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>30-50 hours</td>
</tr>
<tr>
<td>Tetrachlorophenol</td>
<td>30-50 hours</td>
</tr>
<tr>
<td>Trichlorophenol</td>
<td>30-50 hours</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>2.5-3.0 years</td>
</tr>
<tr>
<td>2378-TCDD</td>
<td>6.5 years</td>
</tr>
<tr>
<td>123478-HXDD</td>
<td>7.0 years</td>
</tr>
<tr>
<td>123678-HxDD</td>
<td>9.0 years</td>
</tr>
<tr>
<td>123789-HXDD</td>
<td>6.3 years</td>
</tr>
<tr>
<td>1234678-HPDD</td>
<td>6.7 years</td>
</tr>
<tr>
<td>OCDD</td>
<td>7.3 years</td>
</tr>
</tbody>
</table>

Sources: Plimmer 1973; ATSDR 2001; Aylward et al. 2013
Lipid adjusted serum dioxin and furan levels

Source: Collins et al. 2007
US Pentachlorophenol Dioxin Profile

Octachlorodibenzodioxin

Heptachlorodibenzodioxin

Hexachlorodibenzodioxin (1,2,3,4,7,8), (1,2,3,6,7,8), and (1,2,3,7,8,9) Isomers
Biomonitoring

• Chlorophenols disappear rapidly in the body
 – difficult to access past exposure from biomonitoring

• Dioxins are long-lived in the body
 – could be used as indicators of past exposure to not only dioxins, but also to commercial PCP
 • assumes level of contaminants constant
Other Exposures

• PCP was often made in plants making other pesticides including 2,4,5 trichlorophenol (TCP) and 2,4,5 trichlorophenoxyacetic acid (2,4,5-T)
• Many other potential exposures depending on site
Lipid adjusted serum dioxin levels

Source: de Mesquita et al. 1993; Boers et al., 2010
OCDD Levels

Source: Collins et al., 2007
Treatment of Mixtures

• Occupational exposures are always mixtures of exposures
• Approaches for mixtures in epidemiology
 1. **Independent** – each exposure produces separate exposure response
 • Focus on one chemical and ignore others (most common)
 2. **Additive** – two or more chemicals have additive effect on exposure response
 • TEQ for dioxins
 3. **Synergistic** – total effect is greater than the sum of the effects
 • Smoking, asbestos and lung cancer
 • Smoking, arsenic and lung cancer
 4. **Antagonist** – Some chemicals interfere with the toxic impact of other chemicals
 • Selenium and mercury in diet
Methods of Exposure Assessment

1. Four dimensions of exposure
 a. Identity
 • PCP and contaminants
 – Dioxin’s Toxic Equivalents
 b. Form
 • Distilled, solution (oil or aqueous), flakes, prills, blocks
 – Dermal, inhaled, ingested
 c. Concentration
 • Expert opinion
 • Industrial hygiene monitoring
 • Biomonitoring
 d. Time
 • Work history
Exposure Modeling Issues

• If disease risk is thought to be proportional to dose then a cumulative exposure model may be appropriate.

• Induction time analyses may be necessary to study cancer risk.

• Internal versus external comparisons
 – Internal comparisons
 • usually reduce the healthy worker effect (selection bias)
 • allow direct comparison of relative risk across strata.
 – External comparisons
 • based on regional rates can adjust for geographic variability in social, cultural, and economic factors in relation to disease (Doll, 1985)
 • generally very stable.
Modeling of Pentachlorophenol Exposures

End of Exposure

Pentachlorophenol mg/m³

Age

Thursday, April 10, 2013
Modeling of Dioxin Exposures

- Workplace Exposure
- Background Exposure

End of Exposure

Time of Measurement

Dioxin, ng/kg vs. Age
Exposure Estimation Approaches

1. Exposed/Unexposed
 - PCP w/contaminants (Cheng et al., 1993)

2. Duration of exposure
 - PCP w/contaminants (Hryhorczuk et al., 1998) (Ruder & Yin, 2011)
 - Dioxins (Kogevinas et al., 1997)*

3. Estimation using expert opinion and industrial hygiene monitoring
 - PCP & dioxins (Ramlow et al. 1996)

4. Modeling from biomonitoring
 - Dioxins (Flesch-Janys et al. 1998; Boers et al. 2010)* (Collins et al. 2009)

* Combines PCP and TCP workers
Summary

• Few studies have examined cancer risk in PCP production workers
 – Exposure characterization is mostly crude
• Few studies have examined serum dioxin levels in PCP exposed workers
 – While there has been several studies which examined TCDD, few studies even tried to measure the higher chlorinated dioxins
Only 3 PCP Industrial Workers Studies Examined Cancer Rates

Cheng et al. 1993
Collins et al., 2009 & Ramlow et al., 1996
Ruder & Yin 2011

Number of Workers
PCP STUDY RESULTS – MIDLAND, MICHIGAN (DOW)
Relative Risk & 95% Confidence Interval of Cancer Among Dow’s Pentachlorophenol Workers using IARC Cancers of Concern

Source: Collins et al. 2009
Relative Risk & 95% Confidence Interval for Non-Hodgkin Lymphoma

Relative Risk

ppt-years

Background 0.01-0.69 0.70-3.99 4.00-113.37

Relative Risk

ppt-years

Thursday, April 10, 2013

24
Dow PCP Worker Studies

• Dioxin exposures among Dow PCP workers were well above background
 – Chloracne present in 20% of PCP workers
 – Extensive serum dioxin evaluations including serial serum samples
• Detailed work histories for all workers
• Long follow-up (1940-2003) and low loss during follow-up
• Our findings are consistent with other studies of highly exposed persons
Conclusions

• “Other than possibly an increased risk of non-Hodgkin lymphoma, we find no other causes of death related to the mixture of dioxin contaminants found in PCP.”

• All cancers combined and lung cancer at expected levels

• For NHL
 – No trend with exposure
 – NHL risk greatest in highest exposure category (only 4 deaths)
 – Other studies have not consistently found increase in NHL